1
|
Park KT, Jo H, Jeon SH, Jeong K, Im M, Kim JW, Jung JP, Jung HC, Lee JH, Kim W. Analgesic Effect of Human Placenta Hydrolysate on CFA-Induced Inflammatory Pain in Mice. Pharmaceuticals (Basel) 2024; 17:1179. [PMID: 39338341 PMCID: PMC11435073 DOI: 10.3390/ph17091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
To evaluate the efficacy of human placenta hydrolysate (HPH) in a mice model of CFA-induced inflammatory pain. TNF-α, IL-1β, and IL-6 are key pro-inflammatory cytokine factors for relieving inflammatory pain. Therefore, this study investigates whether HPH suppresses CFA-induced pain and attenuates the inflammatory process by regulating cytokines. In addition, the relationship between neuropathic pain and HPH was established by staining GFAP and Iba-1 in mice spinal cord tissues. This study was conducted for a total of day 28, and inflammatory pain was induced in mice by injecting CFA into the right paw at day 0 and day 14, respectively. 100 μL of 20% glucose and polydeoxyribonucleotide (PDRN) and 100, 200, and 300 μL of HPH were administered intraperitoneally twice a week. In the CFA-induced group, cold and mechanical allodynia and pro-inflammatory cytokine factors in the spinal cord and plantar tissue were significantly increased. The five groups of drugs evenly reduced pain and gene expression of inflammatory factors, and particularly excellent effects were confirmed in the HPH 200 and 300 groups. Meanwhile, the expression of GFAP and Iba-1 in the spinal cord was increased by CFA administration but decreased by HPH administration, which was confirmed to suppress damage to peripheral ganglia. The present study suggests that HPH attenuates CFA-induced inflammatory pain through inhibition of pro-inflammatory cytokine factors and protection of peripheral nerves.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - So-Hyun Jeon
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Kyeongsoo Jeong
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Minju Im
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jae-Won Kim
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jong-Pil Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Hoe Chang Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Jae Hun Lee
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
2
|
Rees TA, Tasma Z, Garelja ML, O'Carroll SJ, Walker CS, Hay DL. Calcitonin receptor, calcitonin gene-related peptide and amylin distribution in C1/2 dorsal root ganglia. J Headache Pain 2024; 25:36. [PMID: 38481170 PMCID: PMC10938748 DOI: 10.1186/s10194-024-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The upper cervical dorsal root ganglia (DRG) are important for the transmission of sensory information associated with the back of the head and neck, contributing to head pain. Calcitonin receptor (CTR)-based receptors, such as the amylin 1 (AMY1) receptor, and ligands, calcitonin gene-related peptide (CGRP) and amylin, have been linked to migraine and pain. However, the contribution of this system to nociception involving the cervical DRG is unclear. Therefore, this study aimed to determine the relative distribution of the CTR, CGRP, and amylin in upper cervical DRG. METHODS CTR, CGRP, and amylin immunofluorescence was examined relative to neural markers in C1/2 DRG from male and female mice, rats, and human cases. Immunofluorescence was supported by RNA-fluorescence in situ hybridization examining amylin mRNA distribution in rat DRG. RESULTS Amylin immunofluorescence was observed in neuronal soma and fibres. Amylin mRNA (Iapp) was also detected. Amylin and CGRP co-expression was observed in 19% (mouse), 17% (rat), and 36% (human) of DRG neurons in distinct vesicle-like neuronal puncta from one another. CTR immunoreactivity was present in DRG neurons, and both peptides produced receptor signalling in primary DRG cell cultures. CTR-positive neurons frequently co-expressed amylin and/or CGRP (66% rat; 84% human), with some sex differences. CONCLUSIONS Amylin and CGRP could both be local peptide agonists for CTR-based receptors in upper cervical DRG, potentially acting through autocrine and/or paracrine signalling mechanisms to modulate neuron function. Amylin and its receptors could represent novel pain targets.
Collapse
Affiliation(s)
- Tayla A Rees
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Michael L Garelja
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand.
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
3
|
Ashina M, Hoffmann J, Ashina H, Hay DL, Flores-Montanez Y, Do TP, De Icco R, Dodick DW. Pharmacotherapies for Migraine and Translating Evidence From Bench to Bedside. Mayo Clin Proc 2024; 99:285-299. [PMID: 38180396 DOI: 10.1016/j.mayocp.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/02/2023] [Accepted: 07/11/2023] [Indexed: 01/06/2024]
Abstract
Migraine is a ubiquitous neurologic disorder that afflicts more than 1 billion people worldwide. Recommended therapeutic strategies include the use of acute and, if needed, preventive medications. During the past 2 decades, tremendous progress has been made in better understanding the molecular mechanisms underlying migraine pathogenesis, which in turn has resulted in the advent of novel medications targeting signaling molecule calcitonin gene-related peptide or its receptor. Here, we provide an update on the rational use of pharmacotherapies for migraine to facilitate more informed clinical decision-making. We then discuss the scientific discoveries that led to the advent of new medications targeting calcitonin gene-related peptide signaling. Last, we conclude with recent advances that are being made to identify novel drug targets for migraine.
Collapse
Affiliation(s)
- Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jan Hoffmann
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience.), King's College Hospital, London, United Kingdom; NIHR-Wellcome Trust King's Clinical Research Facility/SLaM Biomedical Research Centre, King's College Hospital, London, United Kingdom
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Brain and Spinal Cord Injury, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Yadira Flores-Montanez
- BIDMC Comprehensive Headache Center, Department of Neurology and Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA; University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Pavia, Italy
| | | |
Collapse
|
4
|
Sasamoto N, Ngo L, Vitonis AF, Dillon ST, Sieberg CB, Missmer SA, Libermann TA, Terry KL. Plasma proteomic profiles of pain subtypes in adolescents and young adults with endometriosis. Hum Reprod 2023; 38:1509-1519. [PMID: 37196326 PMCID: PMC10391309 DOI: 10.1093/humrep/dead099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
STUDY QUESTION What are the similarities and differences in the systemic proteomic profiles by endometriosis-associated pain subtypes among adolescents and young adults with endometriosis? SUMMARY ANSWER Endometriosis-associated pain subtypes exhibited distinct plasma proteomic profiles. WHAT IS KNOWN ALREADY Endometriosis patients, especially those diagnosed in adolescents and young adults, are often plagued by various pain symptoms. However, it is not clear what biological processes underlie this heterogeneity. STUDY DESIGN, SIZE, DURATION We conducted a cross-sectional analysis using data and plasma samples from 142 adolescent or young adult participants of the Women's Health Study: From Adolescence to Adulthood cohort with laparoscopically confirmed endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS We measured 1305 plasma protein levels by SomaScan. We classified self-reported endometriosis-associated pain into subtypes of dysmenorrhea, acyclic pelvic pain, life impacting pelvic pain, bladder pain, bowel pain, and widespread pain phenotype. We used logistic regression to calculate the odds ratios and 95% confidence intervals for differentially expressed proteins, adjusting for age, BMI, fasting status, and hormone use at blood draw. Ingenuity Pathway Analysis identified enriched biological pathways. MAIN RESULTS AND THE ROLE OF CHANCE Our study population consisted mainly of adolescents and young adults (mean age at blood draw = 18 years), with nearly all (97%) scored as rASRM stage I/II at laparoscopic diagnosis of endometriosis, which is a common clinical presentation of endometriosis diagnosed at a younger age. Pain subtypes exhibited distinct plasma proteomic profiles. Multiple cell movement pathways were downregulated in cases with severe dysmenorrhea and life impacting pelvic pain compared to those without (P < 7.5×10-15). Endometriosis cases with acyclic pelvic pain had upregulation of immune cell adhesion pathways (P < 9.0×10-9), while those with bladder pain had upregulation of immune cell migration (P < 3.7×10-8) and those with bowel pain had downregulation (P < 6.5×10-7) of the immune cell migration pathways compared to those without. Having a wide-spread pain phenotype involved downregulation of multiple immune pathways (P < 8.0×10-10). LIMITATIONS, REASONS FOR CAUTION Our study was limited by the lack of an independent validation cohort. We were also only able to explore any presence of a pain subtype and could not evaluate multiple combinations by pain subtypes. Further mechanistic studies are warranted to elucidate the differences in pathophysiology by endometriosis-pain subtype. WIDER IMPLICATIONS OF THE FINDINGS The observed variation in plasma protein profiles by pain subtypes suggests different underlying molecular mechanisms, highlighting the need for potential consideration of pain subtypes for effectively treating endometriosis patients presenting with various pain symptoms. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Department of Defense W81XWH1910318 and the 2017 Boston Center for Endometriosis Trainee Award. Financial support for establishment of and data collection within the A2A cohort were provided by the J. Willard and Alice S. Marriott Foundation. N.S., A.F.V., S.A.M., and K.L.T. have received funding from the Marriott Family Foundation. C.B.S. is funded by an R35 MIRA Award from NIGMS (5R35GM142676). S.A.M. and K.L.T. are supported by NICHD R01HD094842. S.A.M. reports serving as an advisory board member for AbbVie and Roche, Field Chief Editor for Frontiers in Reproductive Health, personal fees from Abbott for roundtable participation; none of these are related to this study. Other authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison F Vitonis
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, USA
| | - Simon T Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christine B Sieberg
- Biobehavioral Pain Innovations Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, MA, USA
- Pain & Affective Neuroscience Center, Department of Anesthesiology, Critical Care, & Pain Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stacey A Missmer
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Towia A Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathryn L Terry
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Boston Center for Endometriosis, Boston Children’s Hospital and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
7
|
Garelja ML, Hay DL. A narrative review of the calcitonin peptide family and associated receptors as migraine targets: Calcitonin gene-related peptide and beyond. Headache 2022; 62:1093-1104. [PMID: 36226379 PMCID: PMC9613588 DOI: 10.1111/head.14388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To summarize the pharmacology of the calcitonin peptide family of receptors and explore their relationship to migraine and current migraine therapies. BACKGROUND Therapeutics that dampen calcitonin gene-related peptide (CGRP) signaling are now in clinical use to prevent or treat migraine. However, CGRP belongs to a broader peptide family, including the peptides amylin and adrenomedullin. Receptors for this family are complex, displaying overlapping pharmacologic profiles. Despite the focus on CGRP and the CGRP receptor in migraine research, recent evidence implicates related peptides and receptors in migraine. METHODS This narrative review summarizes literature encompassing the current pharmacologic understanding of the calcitonin peptide family, and the evidence that links specific members of this family to migraine and migraine-like behaviors. RESULTS Recent work links amylin and adrenomedullin to migraine-like behavior in rodent models and migraine-like attacks in individuals with migraine. We collate novel information that suggests females may be more sensitive to amylin and CGRP in the context of migraine-like behaviors. We report that drugs designed to antagonize the canonical CGRP receptor also antagonize a second CGRP-responsive receptor and speculate as to whether this influences therapeutic efficacy. We also discuss the specificity of current drugs with regards to CGRP isoforms and how this may influence therapeutic profiles. Lastly, we emphasize that receptors related to, but distinct from, the canonical CGRP receptor may represent underappreciated and novel drug targets. CONCLUSION Multiple peptides within the calcitonin family have been linked to migraine. The current focus on CGRP and its canonical receptor may be obscuring pathways to further therapeutics. Drug discovery schemes that take a wider view of the receptor family may lead to the development of new anti-migraine drugs with favorable clinical profiles. We also propose that understanding these related peptides and receptors may improve our interpretation regarding the mechanism of action of current drugs.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Debbie L. Hay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand,Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
8
|
Rees T, Hendrikse E, Hay D, Walker C. Beyond CGRP: The calcitonin peptide family as targets for migraine and pain. Br J Pharmacol 2022; 179:381-399. [PMID: 34187083 PMCID: PMC9441195 DOI: 10.1111/bph.15605] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023] Open
Abstract
The CGRP system has emerged as a key pharmacological target for the treatment of migraine. However, some individuals who suffer from migraine have low or no response to anti-CGRP or other treatments, suggesting the need for additional clinical targets. CGRP belongs to the calcitonin family of peptides, which includes calcitonin, amylin, adrenomedullin and adrenomedullin 2. These peptides display a range of pro-nociceptive and anti-nociceptive actions, in primary headache conditions such as migraine. Calcitonin family peptides also show expression at sites relevant to migraine and pain. This suggests that calcitonin family peptides and their receptors, beyond CGRP, may be therapeutically useful in the treatment of migraine and other pain disorders. This review considers the localisation of the calcitonin family in peripheral pain pathways and discusses how they may contribute to migraine and pain. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- T.A. Rees
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E.R Hendrikse
- School of Biological Science, University of Auckland, Auckland, NZ
| | - D.L. Hay
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| | - C.S Walker
- School of Biological Science, University of Auckland, Auckland, NZ.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Corresponding author(s): Christopher S Walker, , Debbie L. Hay,
| |
Collapse
|
9
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
10
|
Sisakht M, Khoshdel Z, Mahmoodazdeh A, Shafiee SM, Takhshid MA. Adrenomedullin increases cAMP accumulation and BDNF expression in rat DRG and spinal motor neurons. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:978-985. [PMID: 34712429 PMCID: PMC8528252 DOI: 10.22038/ijbms.2021.54796.12289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/23/2021] [Indexed: 11/06/2022]
Abstract
Objectives Adrenomedullin (AM) has high expression in the spinal cord. In this study, we investigated the expression of AM and its receptor components, including calcitonin receptor-like receptor (CLR) and receptor activity modifying proteins (RAMPs) in dorsal root ganglion (DRG) and spinal motor (SM) neurons. Furthermore, the effects of AM on cAMP/cAMP response element-binding protein (CREB), AKT/glycogen synthase kinase-3 beta (GSK-3β) signaling pathways, and expressions of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were evaluated. Materials and Methods Rat embryonic DRG and SM neurons were isolated, purified, and cultured. Real-time PCR was used to assess expressions of AM, CLR, and RAMPs. cAMP levels, p-CREB, BDNF, and NT-3 were determined using an enzyme-linked immunosorbent assay. p-AKT and p-GSK-3β levels were determined by western blotting. Real-time PCR showed expressions of AM, CLR, RAMP2, and RAMP3 in both DRG and SM neurons. Results AM increased cAMP accumulation and p-CREB levels in DRG and SM neurons. AM increased p-AKT and p-GSK-3β in DRG, but not SM neurons. AM significantly increased BDNF expression in both DRG and SM neurons. There was also an increase in NT-3 level in both DRG and SM neurons, which is statistically significant in SM neurons. Conclusion These results showed both DRG and SM neurons are targets of AM actions in the spinal cord. An increase in BDNF expression by AM in both DRG and SM neurons suggests the possible beneficial role of AM in protecting, survival, and regeneration of sensory and motor neurons.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodazdeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Ghanizada H, Al-Karagholi MAM, Arngrim N, Mørch-Rasmussen M, Walker CS, Hay DL, Ashina M. Effect of Adrenomedullin on Migraine-Like Attacks in Patients With Migraine: A Randomized Crossover Study. Neurology 2021; 96:e2488-e2499. [PMID: 33827963 DOI: 10.1212/wnl.0000000000011930] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/24/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether the IV infusion of adrenomedullin, a potent vasodilator belonging to calcitonin family of peptides, provokes attacks of migraine in patients. METHODS Twenty patients with migraine without aura participated in a placebo-controlled and double-blind clinical study. In a randomized crossover design, the patients received an IV infusion of human adrenomedullin (19.9 pmol/kg/min) or placebo (saline) administrated via an automated IV pump (20 minutes). The patients participated in 2 study days with a washout period of minimum of 7 days. The primary outcome of the study was predefined as a difference in migraine incidence (0-12 hours), and the secondary outcomes were the area under curve (AUC0-12 hours) for the headache intensity score and AUC0-90 minutes for mean arterial blood pressure (MAP), flushing, and heart rate (HR). RESULTS Eleven patients with migraine without aura (55%) fulfilled migraine attacks criteria after adrenomedullin infusion compared to only 3 patients who reported attack (15%) after placebo (p = 0.039). We found that patients reported in a period of 0 to 12 hours stronger headache intensity after adrenomedullin compared to placebo infusion (p = 0.035). AUC0-90 minutes value for HR and flushing (p < 0.05) was significant and for MAP (p = 0.502) remained unchanged. Common reported adverse events were facial flushing, heat sensation, and palpitation (p < 0.001). CONCLUSION Our data implicate adrenomedullin in migraine pathogenesis. This suggests that adrenomedullin or its receptors are novel therapeutic targets for the treatment of migraine. However, we cannot discount the possibility that adrenomedullin may be acting through the canonical calcitonin gene-related peptide receptor. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT04111484.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand
| | - Mohammad Al-Mahdi Al-Karagholi
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand
| | - Nanna Arngrim
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand
| | - Mette Mørch-Rasmussen
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand
| | - Debbie L Hay
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand
| | - Messoud Ashina
- From the Danish Headache Center and Department of Neurology (H.G., M.A.-M.A.-K., N.A., M.M.-R., M.A.), Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; School of Biological Sciences and Centre for Brain Research (C.S.W., D.L.H.), University of Auckland; and Department of Pharmacology and Toxicology (D.L.H.), University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Zheng Z, Shi X, Xiang Y, Zhang A, Fang Y. Involvement of 5-Hydroxytryptamine Receptor 2A in the Pathophysiology of Medication-Overuse Headache. J Pain Res 2021; 14:453-461. [PMID: 33623427 PMCID: PMC7896776 DOI: 10.2147/jpr.s283734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
Background Recent studies indicated that analgesic overuse upregulated 5-hydroxytryptamine receptor 2A (5-HT2AR) and subsequently activated nitric oxide synthase (NOS) and thus induced latent sensitization, which provided a mechanistic basis for medication-overuse headache (MOH). Moreover, glycogen synthase kinase-3β (GSK-3β) was regulated by serotonin receptors and the phosphorylation of GSK-3β affected NOS activity, indicating that GSK-3β could be involved in the regulation of NOS activity by 5-HT2AR in MOH pathophysiology. Herein, we performed this study to investigate the role of 5-HT2AR in MOH pathophysiology and the role of GSK-3β in the regulation of NOS activity by 5-HT2AR. Materials and Methods Wistar rats were daily administered with paracetamol (200 mg/kg) for 30 days to set animal models for pre-clinical MOH research. After the rat MOH models were successfully established, the expression of 5-HT2AR and NOS, GSK-3β activity in trigeminal nucleus caudalis (TNC) were assayed. Then, 5-HT2AR antagonist ketanserin and agonist DOI were applied to investigate the effect of 5-HT2AR on NOS activity in TNC of MOH rats, and GSK-3β antagonist LiCl and agonist perifosine were applied to explore the role of GSK-3β in the activation of NOS by 5-HT2AR. Results We found that the expression of 5-HT2AR and NOS, GSK-3β activity were enhanced in TNC of MOH rats. 5-HT2AR modulator regulated the activity of NOS and GSK-3β in TNC of MOH rats, and drugs acting on GSK-3β affected NOS activity. Conclusion These data suggest that GSK-3β may mediate the activation of NOS by 5-HT2AR and underline the role of 5-HT2AR in MOH pathophysiology.
Collapse
Affiliation(s)
- Zhenyang Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China
| | - Xiaolei Shi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yue Xiang
- Department of Nursing, Fujian Health College, Fuzhou, 350101, People's Republic of China
| | - Aiwu Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yannan Fang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
13
|
Mahmoodazdeh A, Shafiee SM, Sisakht M, Khoshdel Z, Takhshid MA. Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1197-1206. [PMID: 32963742 PMCID: PMC7491506 DOI: 10.22038/ijbms.2020.45134.10514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/13/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. MATERIALS AND METHODS Rat embryonic DRG neurons were isolated and cultured. The effect of various concentrations of DOX (0.0 to 100 µM) in the absence or presence of AM (3.125 -100 nM) on cell death, apoptosis, oxidative stress, expression of tumor necrosis-α (TNF-α), interleukin1- β (IL-1β), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP) 3 and 13, and SRY-related protein 9 (SOX9) were examined. RESULTS Based on MTT assay data, DOX decreased the viability of DRG neurons in a dose and time-dependent manner (IC50=6.88 µm) while dose-dependently, AM protected DRG neurons against DOX-induced cell death. Furthermore, results of annexin V apoptosis assay revealed the protective effects of AM (25 nm) against DOX (6.88 µM)-induced apoptosis and necrosis of DRG neurons. Also, AM significantly ameliorated DOX-induced oxidative stress in DRG neurons. Real-time PCR results showed a significant increase in the expression of TNF-α, IL-1β, iNOS, MMP 3, and MMP 13, and a decrease in the expression of SOX9 following treatment with DOX. Treatment with AM (25 nM) significantly reversed the effects of DOX on the above-mentioned genes expression. CONCLUSION Our findings suggest that AM can be considered a novel ameliorating drug against DOX-induced neurotoxicity.
Collapse
Affiliation(s)
- Amir Mahmoodazdeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Abstract
Adrenomedullin, a peptide with multiple physiological functions in nervous system injury and disease, has aroused the interest of researchers. This review summarizes the role of adrenomedullin in neuropathological disorders, including pathological pain, brain injury and nerve regeneration, and their treatment. As a newly characterized pronociceptive mediator, adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain, cancer pain, neuropathic pain induced by spinal nerve injury and diabetic neuropathy. Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance. Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury. Additionally, adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions. Therefore, adrenomedullin is an important participant in nervous system diseases.
Collapse
Affiliation(s)
- Feng-Jiao Li
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Si-Ru Zheng
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dong-Mei Wang
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| |
Collapse
|
15
|
The BDNF Protein and its Cognate mRNAs in the Rat Spinal Cord during Amylin-induced Reversal of Morphine Tolerance. Neuroscience 2019; 422:54-64. [PMID: 31689388 DOI: 10.1016/j.neuroscience.2019.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The pancreatic peptide, Amylin (AMY), reportedly affects nociception in rodents. Here, we investigated the potential effect of AMY on the tolerance to morphine and on the expression of BDNF at both levels of protein and RNA in the lumbar spinal cord of morphine tolerant rats. Animals in both groups of control and test received a single daily dose of intrathecal (i.t.) morphine for 10 days. Rats in the test group received AMY (1, 10 and 60 pmoles) in addition to morphine from days 6 to10. Morphine tolerance was established at day 5. AMY alone showed enduring antinociceptive effects for 10 days. Real-Time PCR, western blotting and ELISA were used respectively to assess levels of BDNF transcripts and their encoded proteins. Rats tolerant to i.t. morphine showed increased expression of exons I, IV, and IX of the BDNF gene, and had elevated levels of pro-BDNF and BDNF protein in their lumbar spinal cord. AMY, when co-administered with morphine from days 6 to 10, reversed morphine tolerance and adversely affected the morphine-induced expression of the BDNF gene at both levels of protein and mRNAs containing exons I, IV and IX. AMY alone increased levels of exons I and IV transcripts. Levels of pro-BDNF and BDNF proteins remained unchanged in the lumbar spinal cord of rats treated by AMY alone. These results suggest that i.t. AMY not only abolished morphine tolerance, but also reduced the morphine induced increase in the expression of both BDNF transcripts and protein in the lumbar spinal cord.
Collapse
|
16
|
Chang CL, Hsu SYT. Development of chimeric and bifunctional antagonists for CLR/RAMP receptors. PLoS One 2019; 14:e0216996. [PMID: 31150417 PMCID: PMC6544337 DOI: 10.1371/journal.pone.0216996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 11/26/2022] Open
Abstract
CGRP, adrenomedullin (ADM), and adrenomedullin 2 (ADM2) family peptides are
important neuropeptides and hormones for the regulation of neurotransmission,
vasotone, cardiovascular morphogenesis, vascular integrity, and feto‒placental
development. These peptides signal through CLR/RAMP1, 2 and 3 receptor
complexes. CLR/RAMP1, or CGRP receptor, antagonists have been developed for the
treatment of migraine headache and osteoarthritis pain; whereas CLR/RAMP2, or
ADM receptor, antagonists are being developed for the treatment of tumor
growth/metastasis. Based on the finding that an acylated chimeric ADM/ADM2
analog potently stimulates CLR/RAMP1 and 2 signaling, we hypothesized that the
binding domain of this analog could have potent inhibitory activity on CLR/RAMP
receptors. Consistent with this hypothesis, we showed that acylated truncated
ADM/ADM2 analogs of 27–31 residues exhibit potent antagonistic activity toward
CLR/RAMP1 and 2. On the other hand, nonacylated analogs have minimal activity.
Further truncation at the junctional region of these chimeric analogs led to the
generation of CLR/RAMP1-selective antagonists. A 17-amino-acid analog
(Antagonist 2–4) showed 100-fold selectivity for CLR/RAMP1 and was >100-fold
more potent than the classic CGRP receptor antagonist CGRP8-37. In addition, we
showed (1) a lysine residue in the Antagonist 2–4 is important for enhancing the
antagonistic activity, (2) an analog consisted of an ADM sequence motif and a
12-amino-acid binding domain of CGRP exhibits potent CLR/RAMP1-inhibitory
activity, and (3) a chimeric analog consisted of a somatostatin analog and an
ADM antagonist exhibits dual activities on somatostatin and CLR/RAMP receptors.
Because the blockage of CLR/RAMP signaling prevents migraine pain and suppresses
tumor growth/metastasis, further studies of these analogs, which presumably have
better access to the tumor microenvironment and nerve endings at the trigeminal
ganglion and synovial joints as compared to antibody-based therapies, may lead
to the development of better anti-CGRP therapy and alternative antiangiogenesis
therapy. Likewise, the use of bifunctional somatostatin-ADM antagonist analogs
could be a promising strategy for the treatment of high-grade neuroendocrine
tumors by targeting an antiangiogenesis agent to the neuroendocrine tumor
microenvironment.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital
Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan,
Taiwan
| | | |
Collapse
|
17
|
Russo AF. CGRP-based Migraine Therapeutics: How Might They Work, Why So Safe, and What Next? ACS Pharmacol Transl Sci 2019; 2:2-8. [PMID: 31559394 PMCID: PMC6761833 DOI: 10.1021/acsptsci.8b00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Migraine is a debilitating neurological condition that involves the neuropeptide calcitonin gene-related peptide (CGRP). An exciting development is the recent FDA approval of the first in an emerging class of CGRP-targeted drugs designed to prevent migraine. Yet despite this efficacy, there are some fundamental unanswered questions, such as where and how CGRP works in migraine. Preclinical data suggest that CGRP acts via both peripheral and central mechanisms. The relevance of peripheral sites is highlighted by the clinical efficacy of CGRP-blocking antibodies, even though they do not appreciably cross the blood-brain barrier. The most likely sites of action are within the dura and trigeminal ganglia. Furthermore, it would be foolish to ignore perivascular actions in the dura since CGRP is the most potent vasodilatory peptide. Ultimately, the consequence of blocking CGRP or its receptor is reduced peripheral neural sensitization. Underlying their efficacy is the question of why the antibodies have such an excellent safety profile so far. This may be due to the presence of a second CGRP receptor and vesicular release of a large bolus of peptides. Finally, despite the promise of these drugs, there are unmet gaps because they do not work for all patients; so what next? We can expect advances on several fronts, including CGRP receptor structures that may help development of centrally-acting antagonists, combinatorial treatments that integrate other therapies, and development of drugs that target other neuropeptides. This is truly an exciting time for CGRP and the migraine field with many more discoveries on the horizon.
Collapse
Affiliation(s)
- Andrew F. Russo
- Departments
of Molecular Physiology and Biophysics, Neurology, University of Iowa, Iowa City, Iowa 52242, United States
- Center
for the Prevention and Treatment of Visual Loss, Iowa VA Health Care System, Iowa City, Iowa 52246, United States
| |
Collapse
|
18
|
Huang H, Wang M, Hong Y. Intrathecal administration of adrenomedullin induces mechanical allodynia and neurochemical changes in spinal cord and DRG. Neurosci Lett 2019; 690:196-201. [DOI: 10.1016/j.neulet.2018.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022]
|
19
|
Hu W, He T, Huo Y, Hong Y. Involvement of Adrenomedullin in Bone Cancer Pain in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.601.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Ferrero H, Larrayoz IM, Gil-Bea FJ, Martínez A, Ramírez MJ. Adrenomedullin, a Novel Target for Neurodegenerative Diseases. Mol Neurobiol 2018; 55:8799-8814. [PMID: 29600350 DOI: 10.1007/s12035-018-1031-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer's disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hilda Ferrero
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Francisco J Gil-Bea
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
- Neuroscience Area, Biodonostia Health Research Institute, CIBERNED, San Sebastian, Spain
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, and IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain.
| |
Collapse
|
21
|
Hendrikse ER, Bower RL, Hay DL, Walker CS. Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 2018; 39:403-419. [PMID: 29566540 DOI: 10.1177/0333102418765787] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide is an important target for migraine and other painful neurovascular conditions. Understanding the normal biological functions of calcitonin gene-related peptide is critical to understand the mechanisms of calcitonin gene-related peptide-blocking therapies as well as engineering improvements to these medications. Calcitonin gene-related peptide is closely related to other peptides in the calcitonin gene-related peptide family of peptides, including amylin. Relatedness in peptide sequence and in receptor biology makes it difficult to tease apart the contributions that each peptide and receptor makes to physiological processes and to disorders. SUMMARY The focus of this review is the expression of calcitonin gene-related peptide, related peptides and their receptors in the central nervous system. Calcitonin gene-related peptide is expressed throughout the nervous system, whereas amylin and adrenomedullin have only limited expression at discrete sites in the brain. The components of two receptors that respond to calcitonin gene-related peptide, the calcitonin gene-related peptide receptor (calcitonin receptor-like receptor with receptor activity-modifying protein 1) and the AMY1 receptor (calcitonin receptor with receptor activity-modifying protein 1), are expressed throughout the nervous system. Understanding expression of the peptides and their receptors lays the foundation for more deeply understanding their physiology, pathophysiology and therapeutic use.
Collapse
Affiliation(s)
- Erica R Hendrikse
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebekah L Bower
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
22
|
Khoshdel Z, Takhshid MA, Owji AA. Effects of intrathecal amylin on formalin-induced nociception and on cAMP accumulation in the rat embryonic spinal cells. Neuropeptides 2016; 57:95-100. [PMID: 26778650 DOI: 10.1016/j.npep.2015.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 11/17/2022]
Abstract
Amylin (AMY) is a member of calcitonin family of peptides. In this study, the effects of intrathecal (i.t) injection of AMY on the inflammatory pain and on the cAMP accumulation in the rat spinal cells were investigated. By using AMY receptor antagonists, we also studied the pharmacology of AMY receptors in the spinal cells. Formalin model of inflammatory pain was induced by intraplantar injection of formalin. AMY (0.06250-2500pmol/rat) was administrated i.t 15min before the injection of formalin. Antagonists were injected i.t 10min before the injection of AMY and/or morphine. AMY reduced formalin-induced pain in a dose dependent mode. This effect was inhibited by the potent AMY antagonist, AC187 but not CGRP8-37. rAMY8-37, most commonly reported as a weak AMY antagonist, showed to be equally or more potent than AC187 in antagonizing the above effects. The opioid antagonist, naloxone, had no significant effects on AMY antinociceptive effects. Primary dissociated cell culture was used to investigate the effect of AMY on cAMP production and to characterize AMY receptors in the spinal cells. AMY moderately increases cAMP accumulation in the spinal cells with an EC50 value of 74.62nM. This effect was not affected by CGRP8-37 but was inhibited by AC187 and rAMY8-37 with pA2 values of 7.94 and 7.87 respectively. In conclusion, effects of AMY in reducing formalin induced pain and on the cAMP accumulation by spinal cells are mediated through undefined receptors.
Collapse
Affiliation(s)
- Zahra Khoshdel
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Akbar Owji
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Chen Y, Zhang Y, Huo Y, Wang D, Hong Y. Adrenomedullin mediates tumor necrosis factor-α-induced responses in dorsal root ganglia in rats. Brain Res 2016; 1644:183-91. [PMID: 27184601 DOI: 10.1016/j.brainres.2016.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
Adrenomedullin (AM), a member of the calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pain peptide. This study investigated the possible involvement of AM in tumor necrosis factor-alpha (TNF-α)-induced responses contributing to neuronal plasticity in the dorsal root ganglia (DRG). Exposure of the DRG explant cultures to TNF-α (5nM) for 48h upregulated the expression of AM mRNA. The treatment with TNF-α also increased the level of CGRP, CCL-2 and MMP-9 mRNA in the cultured DRG. This increase was attenuated by the co-treatment with the selective AM receptor antagonist AM22-52 (2μM). The blockade of AM receptors inhibited TNF-α-induced increase of the glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), phosphorylated cAMP response element binding protein (pCREB) and nuclear factor kappa B (pNF-κB) proteins. On the other hand, the treatment with the AM receptor agonist AM1-50 (10nM) for 96h induced an increase in the level of GFAP, IL-1β, pCREB and pNF-κB proteins. The inhibition of AM activity did not change TNF-α-induced phosphorylation of extracellular signal-related kinase (pERK) while the treatment with AM1-50 still increased the level of pERK in the cultured DRG. Immunofluorescence assay showed the colocalization of AM-like immunoreactivity (IR) with TNF-α-IR in DRG neurons. The present study suggests that the increased AM receptor signaling mediated the many, but not all, TNF-α-induced activities, contributing to peripheral sensitization in neuropathic pain.
Collapse
Affiliation(s)
- Yajuan Chen
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Yan Zhang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Yuanhui Huo
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China.
| |
Collapse
|
24
|
Li D, Chen H, Luo XH, Sun Y, Xia W, Xiong YC. CX3CR1-Mediated Akt1 Activation Contributes to the Paclitaxel-Induced Painful Peripheral Neuropathy in Rats. Neurochem Res 2016; 41:1305-14. [PMID: 26961886 DOI: 10.1007/s11064-016-1827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Dai Li
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Hui Chen
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Xiao-Huan Luo
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China
| | - Yang Sun
- Department of Pain, Branch of The First Affiliate Hospital of Xinjiang Medical University, Changji, People's Republic of China
| | - Wei Xia
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
25
|
Wang D, Zeng J, Li Q, Huang J, Couture R, Hong Y. Contribution of adrenomedullin to the switch of G protein-coupled μ-opioid receptors from Gi to Gs in the spinal dorsal horn following chronic morphine exposure in rats. Br J Pharmacol 2016; 173:1196-207. [PMID: 26750148 DOI: 10.1111/bph.13419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic exposure to morphine increases spinal adrenomedullin (AM) bioactivity resulting in the development and maintenance of morphine tolerance. This study investigated the possible involvement of AM in morphine-evoked alteration in μ-opioid receptor-coupled G proteins. EXPERIMENTAL APPROACH Agents were administered intrathecally (i.t.) in rats. Nociceptive behaviours and cumulative dose-response of morphine analgesia were assessed. Neurochemicals in the spinal dorsal horn were assayed by immunoprecipitation, Western blot analysis and ELISA. KEY RESULTS Intrathecal injection of AM (8 μg) for 9 days decreased and increased the levels of μ receptor-coupled Gi and Gs proteins respectively. Morphine stimulation (5 μg) after chronic treatment with AM also induced an increase in cAMP production in the spinal dorsal horn. Co-administration of the selective AM receptor antagonist AM22-52 inhibited chronic morphine-evoked switch of G protein-coupled μ receptor from Gi to Gs. Chronic exposure to AM increased the phosphorylation of cAMP-responsive element-binding protein (CREB) and ERK. Co-administration of the PKA inhibitor H-89 (5 μg) or MEK1 inhibitor PD98059 (1 μg) reversed the AM-induced thermal/mechanical hypersensitivity, decline in morphine analgesic potency, switch of G protein-coupled μ receptor and increase in cAMP. CONCLUSIONS AND IMPLICATIONS The present study supports the hypothesis that an increase in AM activity in the spinal dorsal horn contributes to the switch of the μ receptor-coupled G protein from Gi to Gs protein via the activation of cAMP/PKA/CREB and ERK signalling pathways in chronic morphine use.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Juan Zeng
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Qi Li
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Jianzhong Huang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
26
|
PI3K mediated activation of GSK-3β reduces at-level primary afferent growth responses associated with excitotoxic spinal cord injury dysesthesias. Mol Pain 2015; 11:35. [PMID: 26093674 PMCID: PMC4475622 DOI: 10.1186/s12990-015-0041-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 02/08/2023] Open
Abstract
Background Neuropathic pain and sensory abnormalities are a debilitating secondary consequence of spinal cord injury (SCI). Maladaptive structural plasticity is gaining recognition for its role in contributing to the development of post SCI pain syndromes. We previously demonstrated that excitotoxic induced SCI dysesthesias are associated with enhanced dorsal root ganglia (DRG) neuronal outgrowth. Although glycogen synthase kinase-3β (GSK-3β) is a known intracellular regulator neuronal growth, the potential contribution to primary afferent growth responses following SCI are undefined. We hypothesized that SCI triggers inhibition of GSK-3β signaling resulting in enhanced DRG growth responses, and that PI3K mediated activation of GSK-3β can prevent this growth and the development of at-level pain syndromes. Results Excitotoxic SCI using intraspinal quisqualic acid (QUIS) resulted in inhibition of GSK-3β in the superficial spinal cord dorsal horn and adjacent DRG. Double immunofluorescent staining showed that GSK-3βP was expressed in DRG neurons, especially small nociceptive, CGRP and IB4-positive neurons. Intrathecal administration of a potent PI3-kinase inhibitor (LY294002), a known GSK-3β activator, significantly decreased GSK-3βP expression levels in the dorsal horn. QUIS injection resulted in early (3 days) and sustained (14 days) DRG neurite outgrowth of small and subsequently large fibers that was reduced with short term (3 days) administration of LY294002. Furthermore, LY294002 treatment initiated on the date of injury, prevented the development of overgrooming, a spontaneous at-level pain related dysesthesia. Conclusions QUIS induced SCI resulted in inhibition of GSK-3β in primary afferents and enhanced at-level DRG intrinsic growth (neurite elongation and initiation). Early PI3K mediated activation of GSK-3β attenuated QUIS-induced DRG neurite outgrowth and prevented the development of at-level dysesthesias.
Collapse
|
27
|
Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, Shu B, Xiang HB, Xu B, Manyande A, Cao F, Tian YK. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015; 263:39-49. [DOI: 10.1016/j.expneurol.2014.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
|
28
|
Upregulation of pronociceptive mediators and downregulation of opioid peptide by adrenomedullin following chronic exposure to morphine in rats. Neuroscience 2014; 280:31-9. [PMID: 25218960 DOI: 10.1016/j.neuroscience.2014.08.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023]
Abstract
Adrenomedullin (AM) belongs to a calcitonin gene-related peptide (CGRP) family and has been demonstrated to recruit CGRP following chronic use of morphine and neuronal nitric oxide synthase (nNOS) in inflammation. The present study investigated the possibility that AM initiates the changes of other molecules contributing to the development of morphine tolerance in its chronic use. Intrathecal (i.t.) co-administration of the AM receptor antagonist AM22-52 (35.8 μg) inhibited tolerance to morphine-induced analgesia while a daily injection of the AM receptor agonist AM1-50 (8 μg, i.t., bolus) for 9 days induced a decrease in the potency of morphine analgesia and thermal hyperalgesia. Persistent exposure of cultured dorsal root ganglion (DRG) explants to morphine (3.3 μM) for 4 days resulted in an increase in AM and CGRP mRNA levels. However, morphine failed to produce these effects in the presence of AM22-52 (2 μM). The i.t. administration of morphine for 6 days increased the expression of nNOS in the spinal dorsal horn and DRG neurons but decreased expression of the endogenous opioid peptide bovine adrenal medulla 22 (BAM22) in small- and medium-sized neurons in DRG. Particularly, the co-administration of AM22-52 (35.8 μg) inhibited the morphine-induced alterations in nNOS and BAM22. These results indicated that the increase in nNOS and CGRP expressions and the decrease in BAM22 were attributed to the increased AM receptor signaling induced by chronic morphine. The present study supports the hypothesis that the enhancement of AM bioactivity triggered upregulation of pronociceptive mediators and downregulation of pain-inhibiting molecule in a cascade contributing to the development of morphine tolerance.
Collapse
|
29
|
Wang D, Huo Y, Quirion R, Hong Y. Involvement of adrenomedullin in the attenuation of acute morphine-induced analgesia in rats. Peptides 2014; 54:67-70. [PMID: 24468549 DOI: 10.1016/j.peptides.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/21/2022]
Abstract
Adrenomedullin (AM) is a member of calcitonin gene-related peptide (CGRP) family and a pain-related peptide. We have shown that chronic administration of morphine (20 μg) upregulates AM activity contributing to morphine tolerance. The present study investigated if AM is involved in acute morphine-induced analgesia. Single intrathecal (i.t.) injection of morphine at a dose of 5 μg increased the tail-flick latency (TFL). This analgesic effect was potentiated by the co-administration of the AM receptor antagonist AM22-52 (5 and 10 nmol). Exposure of sensory ganglion culture to morphine increased AM content in the ganglia in concentration (0.33-10 μM)- and time (10-240 min)-dependent manners. However, treatment with morphine (3.3 μM) for 30-240 min did not alter AM mRNA levels in the cultured ganglia. Furthermore, exposure of ganglion cultures to morphine (3.3 μM) for 30-240, but not 10 min induced an increase in AM content in the culture medium. These results reveal that a single morphine treatment potentiates post-translational change and the release of AM in sensory ganglia masking morphine-induced analgesia. Thus, targeting AM and its receptors should be considered as a novel approach to improve the analgesic potency of opiates during their acute use.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Yuanhui Huo
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Rémi Quirion
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
30
|
Zeng X, Lin MY, Wang D, Zhang Y, Hong Y. Involvement of adrenomedullin in spinal glial activation following chronic administration of morphine in rats. Eur J Pain 2014; 18:1323-32. [PMID: 24664661 DOI: 10.1002/j.1532-2149.2014.493.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Adrenomedullin (AM) belongs to the calcitonin gene-related peptide (CGRP) family. Our previous studies show that chronic exposure to morphine increases spinal AM bioactivity, contributing to the development and maintenance of morphine tolerance. This study investigated the possible involvement of AM in morphine-evoked gliosis. METHODS Real-time polymerase chain reaction was performed to determine interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α (TNF-α) mRNAs in the spinal dorsal horn and cultured sensory ganglion explants. Immunohistochemistry was performed to identify spinal microglia and astrocytes. RESULTS Repetitive intrathecal (i.t.) injection of morphine (20 μg) increased the expression of IL-1β, IL-6 and TNF-α mRNAs in the spinal dorsal horn. The co-administration of the selective AM receptor antagonist AM22-52 (36 μg) markedly attenuated chronic morphine-evoked increase in IL-1β and IL-6, but not TNF-α, mRNA levels. Exposure of cultured dorsal root ganglion (DRG) explants to morphine (3.3 μmol/L) for 6 days up-regulated IL-1β and IL-6 mRNA expressions. The depletion of AM gene using small interfering RNA (siRNA) approach abolished morphine-evoked increase in IL-1β and IL-6 syntheses in the cultured DRG. The blockade of AM receptors by i.t. AM22-52 also inhibited chronic morphine-evoked cell hypertrophy of microglia and astrocytes as well as an increase in OX-42 and GFAP (glial fibrillary acidic protein) immunoreactivities. Furthermore, the 6-day treatment with AM (10 μg, i.t.) induced morphological changes of microglia and astrocytes as well as an increase in IL-1β, IL-6 and TNF-α mRNA levels in the spinal dorsal horn. CONCLUSION The present study supports the idea that up-regulation of the pronociceptive mediator AM can recruit spinal glial cells, resulting in an increase in cytokines during chronic use of morphine.
Collapse
Affiliation(s)
- X Zeng
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, China; Research Institute of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | | | | | | | | |
Collapse
|
31
|
Sardi C, Zambusi L, Finardi A, Ruffini F, Tolun AA, Dickerson IM, Righi M, Zacchetti D, Grohovaz F, Provini L, Furlan R, Morara S. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 271:18-29. [PMID: 24746422 DOI: 10.1016/j.jneuroim.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/15/2023]
Abstract
Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null>heterozygote>wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing-remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocation of RCP.
Collapse
Affiliation(s)
- Claudia Sardi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy
| | - Laura Zambusi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Francesca Ruffini
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Adviye A Tolun
- Dept. of Biochem. Mol. Biol., University of Miami, Miami, FL 33101, USA
| | - Ian M Dickerson
- Dept. of Neurobiol. Anatomy, University of Rochester, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Marco Righi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Daniele Zacchetti
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Fabio Grohovaz
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Luciano Provini
- Dept. of Pharmacol. Biomol. Sci., University of Milano, Via Trentacoste 2, 20133 Milano, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Stefano Morara
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy.
| |
Collapse
|
32
|
Xu B, Guan XH, Yu JX, Lv J, Zhang HX, Fu QC, Xiang HB, Bu HL, Shi D, Shu B, Qin LS, Manyande A, Tian YK. Activation of spinal phosphatidylinositol 3-kinase/protein kinase B mediates pain behavior induced by plantar incision in mice. Exp Neurol 2014; 255:71-82. [PMID: 24594219 DOI: 10.1016/j.expneurol.2014.02.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 01/25/2014] [Accepted: 02/18/2014] [Indexed: 12/30/2022]
Abstract
The etiology of postoperative pain may be different from antigen-induced inflammatory pain and neuropathic pain. However, central neural plasticity plays a key role in incision pain. It is also known that phosphatidylinositol 3-kinase (PI3K) and protein kinase B/Akt (PKB/Akt) are widely expressed in laminae I-IV of the spinal horn and play a critical role in spinal central sensitization. In the present study, we explored the role of PI3K and Akt in incision pain behaviors. Plantar incision induced a time-dependent activation of spinal PI3K-p110γ and Akt, while activated Akt and PI3K-p110γ were localized in spinal neurons or microglias, but not in astrocytes. Pre-treatment with PI3K inhibitors, wortmannin or LY294002 prevented the activation of Akt brought on by plantar incision in a dose-dependent manner. In addition, inhibition of spinal PI3K signaling pathway prevented pain behaviors (dose-dependent) and spinal Fos protein expression caused by plantar incision. These data demonstrated that PI3K signaling mediated pain behaviors caused by plantar incision in mice.
Collapse
Affiliation(s)
- Bing Xu
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China
| | - Xue-Hai Guan
- Department of Anesthesiology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| | - Jun-Xiong Yu
- Department of Anesthesiology, the Affiliated Hospital of Guilin Medical College, Guilin 543001, PR China
| | - Jing Lv
- Department of Anesthesiology, the Affiliated Hospital of Guilin Medical College, Guilin 543001, PR China
| | - Hong-Xing Zhang
- The First Clinical College, China Medical University, 155 Nanjing Road, Shenyang 11001, PR China
| | - Qiao-Chu Fu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Hui-Lian Bu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Bin Shu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China
| | - Li-Sheng Qin
- Department of Anesthesiology, Liuzhou Traditional Chinese Medical Hospital, the Third Affiliated Hospital of Guangxi University of Chinese Medicine, 32 Jiefang West Road, Liuzhou 545001, PR China
| | - Anne Manyande
- School of Psychology, Social Work and Human Sciences, University of West London, London, UK
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan 430030, PR China.
| |
Collapse
|
33
|
Morell M, Camprubí-Robles M, Culler MD, de Lecea L, Delgado M. Cortistatin attenuates inflammatory pain via spinal and peripheral actions. Neurobiol Dis 2013; 63:141-54. [PMID: 24333694 DOI: 10.1016/j.nbd.2013.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022] Open
Abstract
Clinical pain, as a consequence of inflammation or injury of peripheral organs (inflammatory pain) or nerve injury (neuropathic pain), represents a serious public health issue. Treatment of pain-related suffering requires knowledge of how pain signals are initially interpreted and subsequently transmitted and perpetuated. To limit duration and intensity of pain, inhibitory signals participate in pain perception. Cortistatin is a cyclic-neuropeptide that exerts potent inhibitory actions on cortical neurons and immune cells. Here, we found that cortistatin is a natural analgesic component of the peripheral nociceptive system produced by peptidergic nociceptive neurons of the dorsal root ganglia in response to inflammatory and noxious stimuli. Moreover, cortistatin is produced by GABAergic interneurons of deep layers of dorsal horn of spinal cord. By using cortistatin-deficient mice, we demonstrated that endogenous cortistatin critically tunes pain perception in physiological and pathological states. Furthermore, peripheral and spinal injection of cortistatin potently reduced nocifensive behavior, heat hyperalgesia and tactile allodynia in experimental models of clinical pain evoked by chronic inflammation, surgery and arthritis. The analgesic effects of cortistatin were independent of its anti-inflammatory activity and directly exerted on peripheral and central nociceptive terminals via Gαi-coupled somatostatin-receptors (mainly sstr2) and blocking intracellular signaling that drives neuronal plasticity including protein kinase A-, calcium- and Akt/ERK-mediated release of nociceptive peptides. Moreover, cortistatin could modulate, through its binding to ghrelin-receptor (GHSR1), pain-induced sensitization of secondary neurons in spinal cord. Therefore, cortistatin emerges as an anti-inflammatory factor with potent analgesic effects that offers a new approach to clinical pain therapy, especially in inflammatory states.
Collapse
Affiliation(s)
- María Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain
| | - María Camprubí-Robles
- Institute of Molecular and Cell Biology, Miguel Hernandez University, 03202 Alicante, Spain
| | | | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
34
|
Walker CS, Hay DL. CGRP in the trigeminovascular system: a role for CGRP, adrenomedullin and amylin receptors? Br J Pharmacol 2013; 170:1293-307. [PMID: 23425327 PMCID: PMC3838677 DOI: 10.1111/bph.12129] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The neuropeptide calcitonin gene-related peptide (CGRP) is reported to play an important role in migraine. It is expressed throughout the trigeminovascular system. Antagonists targeting the CGRP receptor have been developed and have shown efficacy in clinical trials for migraine. However, no CGRP antagonist is yet approved for treating this condition. The molecular composition of the CGRP receptor is unusual because it comprises two subunits; one is a GPCR, the calcitonin receptor-like receptor (CLR). This associates with receptor activity-modifying protein (RAMP) 1 to yield a functional receptor for CGRP. However, RAMP1 also associates with the calcitonin receptor, creating a receptor for the related peptide amylin but this also has high affinity for CGRP. Other combinations of CLR or the calcitonin receptor with RAMPs can also generate receptors that are responsive to CGRP. CGRP potentially modulates an array of signal transduction pathways downstream of activation of these receptors, in a cell type-dependent manner. The physiological significance of these signalling processes remains unclear but may be a potential avenue for refining drug design. This complexity has prompted us to review the signalling and expression of CGRP and related receptors in the trigeminovascular system. This reveals that more than one CGRP responsive receptor may be expressed in key parts of this system and that further work is required to determine their contribution to CGRP physiology and pathophysiology. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- C S Walker
- School of Biological Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
35
|
Sugimoto Y, Shiraishi S, Yasuda T, Hamada H, Kawamoto M. Intrathecal adrenomedullin modulates acute inflammatory pain in the rat formalin test. Neurosci Lett 2013; 552:146-50. [PMID: 23939287 DOI: 10.1016/j.neulet.2013.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Adrenomedullin (AM), a member of the calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pronociceptive mediator. This study was undertaken to investigate the role of AM in acute inflammatory pain induced by formalin injection in rats. Interestingly Cerebrospinal fluid (CSF) levels of AM increased 45 min after formalin injection and a selective AM receptor antagonist, AM22-52, administered intrathecally (i.t.) decreased phase 2 flinching in a dose-dependent manner but not phase 1 flinching during the formalin test. This anti-hyperalgesic effect of i.t. AM22-52 lasted for 4 h or more. AM in the CSF contributes to the modulation of acute inflammatory pain in the formalin test, and blocking downstream signaling effects of the AM receptor has the potential to relieve pain associated with acute inflammation.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Department of Anesthesiology and Critical Care, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
36
|
Morell M, Souza-Moreira L, Caro M, O'Valle F, Forte-Lago I, de Lecea L, Gonzalez-Rey E, Delgado M. Analgesic Effect of the Neuropeptide Cortistatin in Murine Models of Arthritic Inflammatory Pain. ACTA ACUST UNITED AC 2013; 65:1390-401. [DOI: 10.1002/art.37877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/15/2013] [Indexed: 11/08/2022]
|
37
|
Wang D, Ruan L, Hong Y, Chabot JG, Quirion R. Involvement of PKA-dependent upregulation of nNOS-CGRP in adrenomedullin-initiated mechanistic pathway underlying CFA-induced response in rats. Exp Neurol 2012; 239:111-9. [PMID: 23063906 DOI: 10.1016/j.expneurol.2012.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/30/2012] [Accepted: 10/04/2012] [Indexed: 11/28/2022]
Abstract
We have previously shown that intrathecal administration of the adrenomedullin (AM) receptor antagonist AM(22-52) produces a long-lasting anti-hyperalgesia effect. This study examined the hypothesis that AM recruits other pronociceptive mediators in complete Freund's adjuvant (CFA)-induced inflammation. Injection of CFA in the hindpaw of rat produced an increase in the expression of nNOS in dorsal root ganglion (DRG) and the spinal dorsal horn. An intrathecal administration of AM(22-52), but not the CGRP antagonist BIBN4096BS, abolished the CFA-induced increase of nNOS. Moreover, AM-induced increase of CGRP was inhibited by the nNOS inhibitors L-NAME and 7-nitroindazole in cultured ganglion explants. Addition of AM to ganglion cultures induced an increase in nNOS protein, which was attenuated by the PKA inhibitor H-89. Treatment with AM also concentration-dependently increased cAMP content and pPKA protein level, but not its non-phosphorylated form, in cultured ganglia. In addition, nNOS was shown to be co-localized with the AM receptor components calcitonin receptor-like receptor and receptor activity-modifying protein 2- and 3 in DRG neurons. The present study suggests that the enhanced activity of nitric oxide (NO) mediates the biological action of AM at the spinal level and that AM recruits NO-CGRP via cAMP/PKA signaling in a mechanistic pathway underlying CFA-induced hyperalgesia.
Collapse
Affiliation(s)
- Dongmei Wang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | | | | | | | | |
Collapse
|
38
|
Martínez-Herrero S, Larráyoz IM, Ochoa-Callejero L, García-Sanmartín J, Martínez A. Adrenomedullin as a growth and cell fate regulatory factor for adult neural stem cells. Stem Cells Int 2012; 2012:804717. [PMID: 23049570 PMCID: PMC3462413 DOI: 10.1155/2012/804717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 01/10/2023] Open
Abstract
The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin (AM). AM, a 52-amino acid peptide which exerts a plethora of physiological functions, acts as a growth and cell fate regulatory factor for adult neural stem and progenitor cells. AM regulates the proliferation rate and the differentiation into neurons, astrocytes, and oligodendrocytes of stem/progenitor cells, probably through the PI3K/Akt pathway. The active peptides derived from the AM gene are able to regulate the cytoskeleton dynamics, which is extremely important for mature neural cell morphogenesis. In addition, a defective cytoskeleton may impair cell cycle and migration, so AM may contribute to neural stem cell growth regulation by allowing cells to pass through mitosis. Regulation of AM levels may contribute to program stem cells for their use in medical therapies.
Collapse
Affiliation(s)
| | - Ignacio M. Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | | | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
39
|
Mobarakeh JI, Torkaman-Boutorabi A, Rahimi AA, Ghasri S, Nezhad RMA, Hamzely A, Khoshkholgh Sima B, Takahashi K, Nunoki K, Yanai K. Interaction of histamine and calcitonin gene-related peptide in the formalin induced pain perception in rats. ACTA ACUST UNITED AC 2011; 32:195-201. [PMID: 21673449 DOI: 10.2220/biomedres.32.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Histamine and calcitonin gene-related peptide (CGRP) contribute to the pain perception. The aim of the present study is to clarify the interaction of histamine and CGRP in the perception of inflammatory pain. The effects of a histamine H1 receptor antagonist (pyrilamine, i.p.), an H2 receptor antagonist (ranitidine, i.p.) and a CGRP antagonist (CGRP 8-37, i.t.) on the formalininduced pain was studied in rats. Pyrilamine and ranitidine produced a dose-dependent antinociceptive response in the first and the second phases of the formalin test. A single administration of pyrilamine (1 mg/kg, i.p.), ranitidine (10 mg/kg, i.p.) or CGRP 8-37 (10 µg/µL, i.t.) had no significant effects on the pain perception in the second phase. A combination of CGRP 8-37 and pyrilamine or ranitidine at these sub-effective doses, however, showed nociceptive response in the second phase. Moreover, a histamine (i.t.)-induced hyperalgesia was completely prevented by treatment with GGRP 8-37 at this dose. Our findings have raised the possibility that the CGRP system has interaction with histamine in the perception of inflammatory pain.
Collapse
|
40
|
Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. J Neurosci 2011; 31:2113-24. [PMID: 21307248 DOI: 10.1523/jneurosci.2139-10.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphinositide 3-kinase (PI3K), Akt, and their downstream kinase, mammalian target of rapamycin (mTOR), are implicated in neural plasticity. The functional linkages of this signaling cascade in spinal dorsal horn and their role in inflammatory hyperalgesia have not been elucidated. In the present work, we identified the following characteristics of this cascade. (1) Local inflammation led to increase in rat dorsal horn phosphorylation (activation) of Akt (pAkt) and mTOR (pmTOR), as assessed by Western blotting and immunocytochemistry. (2) Increased pAkt and pmTOR were prominent in neurons in laminae I, III, and IV, whereas pmTOR and its downstream targets (pS6, p4EBP) were also observed in glial cells. (3) Intrathecal treatment with inhibitors to PI3K or Akt attenuated Formalin-induced second-phase flinching behavior, as well as carrageenan-induced thermal hyperalgesia and tactile allodynia. (4) Intrathecal rapamycin (an mTORC1 inhibitor) displayed anti-hyperalgesic effect in both inflammatory pain models. Importantly, intrathecal wortmannin at anti-hyperalgesic doses reversed the evoked increase not only in Akt but also in mTORC1 signaling (pS6/p4EBP). (5) pAkt and pmTOR are expressed in neurokinin 1 receptor-positive neurons in laminae I-III after peripheral inflammation. Intrathecal injection of Substance P activated this cascade (increased phosphorylation) and resulted in hyperalgesia, both of which effects were blocked by intrathecal wortmannin and rapamycin. Together, these findings reveal that afferent inputs trigged by peripheral inflammation initiate spinal activation of PI3K-Akt-mTOR signaling pathway, a component of which participates in neuronal circuits of facilitated pain processing.
Collapse
|
41
|
Wang D, Chen P, Li Q, Quirion R, Hong Y. Blockade of adrenomedullin receptors reverses morphine tolerance and its neurochemical mechanisms. Behav Brain Res 2011; 221:83-90. [PMID: 21382419 DOI: 10.1016/j.bbr.2011.02.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/29/2022]
Abstract
Adrenomedullin (AM) has been demonstrated to be involved in the development of opioid tolerance. The present study further investigated the role of AM in the maintenance of morphine tolerance, morphine-associated hyperalgesia and its cellular mechanisms. Intrathecal (i.t.) injection of morphine for 6 days induced a decline of its analgesic effect and hyperalgesia. Acute administration of the AM receptor antagonist AM(22-52) resumed the potency of morphine in a dose-dependent manner (12, 35.8 and 71.5 μg, i.t.). The AM(22-52) treatment also suppressed morphine tolerance-associated hyperalgesia. Furthermore, i.t. administration of AM(22-52) at a dose of 35.8 μg reversed the morphine induced-enhancement of nNOS (neuronal nitric oxide synthase) and CGRP immunoreactivity in the spinal dorsal horn and/or dorsal root ganglia (DRG). Interestingly, chronic administration of morphine reduced the expression of the endogenous opioid peptide bovine adrenal medulla 22 (BAM22) in small- and medium-sized neurons in DRG and this reduction was partially reversed by the administration of AM(22-52) (35.8 μg). These results suggest that the activation of AM receptors was involved in the maintenance of morphine tolerance mediating by not only upregulation of the pronociceptive mediators, nNOS and CGRP but also the down-regulation of pain-inhibiting molecule BAM22. Our data support the hypothesis that the level of both pronociceptive mediators and endogenous pain-inhibiting molecules has an impact on the potency of morphine analgesia. Targeting AM receptors is a promising approach to maintain the potency of morphine analgesia during chronic use of this drug.
Collapse
Affiliation(s)
- Dongmei Wang
- Provincial Key Laboratory of Developmental Biology and Neuroscience, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
A role for protein kinase C-dependent upregulation of adrenomedullin in the development of morphine tolerance in male rats. J Neurosci 2010; 30:12508-16. [PMID: 20844145 DOI: 10.1523/jneurosci.0306-10.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adrenomedullin (AM) belongs to calcitonin gene-related peptide (CGRP) family and is a pronociceptive mediator. This study investigated whether AM plays a role in the development of tolerance to morphine-induced analgesia. Repetitive intrathecal injection of morphine increased the expression of AM-like immunoreactivity (AM-IR) in the spinal dorsal horn and dorsal root ganglion (DRG) neurons. Ganglion explant culture study showed that this upregulation of AM-IR was μ-opioid receptor dependent through the use of another agonist, fentanyl, and a selective antagonist, CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)). The coadministration of the selective AM receptor antagonist AM(22-52) markedly attenuated the development of morphine tolerance, associated thermal hyperalgesia, and increase in AM-IR. A likely autocrine mechanism is supported by the finding that AM-IR is colocalized with AM receptor components in DRG neurons. Furthermore, opiate-induced increase in AM content was blocked by protein kinase C (PKC) inhibitors, whereas a PKC activator increased AM synthesis and release. A treatment with AM(22-52) also inhibited increases in the expression of CGRP-IR in the spinal cord and DRGs as well as in culture ganglion explants, whereas exposure to CGRP failed to alter AM content. Together, these results reveal that a sustained opiate treatment induces an upregulation of AM through the activation of μ-opioid receptors and the PKC signaling pathway. This phenomenon contributes to the development of tolerance to the antinociceptive effects of opiates at least partially via the upregulation of CGRP. Targeting AM and its receptors should be considered as a novel approach to preserve the analgesic potency of opiates during their chronic use.
Collapse
|
43
|
Fernández AP, Serrano J, Martínez-Murillo R, Martínez A. Lack of adrenomedullin in the central nervous system results in apparently paradoxical alterations on pain sensitivity. Endocrinology 2010; 151:4908-15. [PMID: 20858768 DOI: 10.1210/en.2010-0121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) is a regulatory peptide, coded by the adm gene, which is involved in numerous physiological processes, including pain sensitivity. Previous studies have shown that intrathecal injection of AM induced hyperalgesia in the rat. Here, we explore pain sensitivity in a mouse conditional knockout for adm in neurons of the central nervous system, including the spinal cord and dorsal root ganglia. Double immunofluorescence in wild-type (WT) animals shows that AM immunoreactivity is found in calcitonin gene-related peptide-positive neurons of the dorsal root ganglia but not in neurons that bind isolectin B4. Mice lacking adm had modified expression of canonical sensorial neuropeptides, having significantly more calcitonin gene-related peptide and less substance P and enkephalin than their WT littermates. Furthermore, the spinal cord of adm knockout mice expressed higher levels of the AM receptor components, suggesting a compensation attempt to deal with the lack of afferent AM signaling. Behavioral nociceptive tests also found differences between genotypes. In the tail-flick test, which measures mostly spinal reflexes, the adm-null animals had a longer latency than their WT counterparts. On the other hand, in the hotplate test, which requires encephalic processing, mice lacking adm had shorter latencies than normal littermates. These results suggest that AM acts as a nociceptive modulator in spinal reflexes, whereas it may have an analgesic function at higher cognitive levels. This study confirms the important role of AM in pain sensitivity processing but unveils a more complex scenario than previously surmised.
Collapse
Affiliation(s)
- Ana P Fernández
- Department of Cellular, Molecular, and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Huang X, Yang J, Chang JK, Dun NJ. Amylin suppresses acetic acid-induced visceral pain and spinal c-fos expression in the mouse. Neuroscience 2009; 165:1429-38. [PMID: 19958820 DOI: 10.1016/j.neuroscience.2009.11.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/30/2022]
Abstract
Amylin is a member of calcitonin or calcitonin gene-related peptide (CGRP) family. Immunohistochemical study revealed a dense network of amylin-immunoreactive (irAMY) cell processes in the superficial dorsal horn of the mice. Numerous dorsal root ganglion (DRG) and trigeminal ganglion cells expressed moderate to strong irAMY. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed amylin receptor mRNA in the mouse spinal cord, brain stem, cortex, hypothalamus and hippocampus. The nociceptive or antinociceptive effects of amylin were evaluated in the acetic acid-induced writhing test. Amylin (0.1, 0.5 and 1 mg/kg, intraperitoneally (i.p.) or 1-10 microg, intrathecally (i.t.)) reduced the number of writhes in a dose-dependent manner. Pretreatment of the mice with the amylin receptor antagonist salmon calcitonin (8-32), either by i.p. or i.t., antagonized the effect of amylin on acetic acid-induced writhing test. Locomotor activity was not significantly modified by amylin injected either i.p. (0.01-1 mg/kg) or i.t. (1-10 microg). Measurement of c-fos mRNA by RT-PCR or proteins by Western blot showed that the levels were upregulated in the spinal cord of mice injected with acetic acid and the increase was attenuated by pretreatment with amylin (10 microg, i.t.). Collectively, our result demonstrates that irAMY is expressed in DRG neurons with their cell processes projecting to the superficial layers of the dorsal horn, and that the peptide by interacting with amylin receptors in the spinal cord may be antinociceptive.
Collapse
Affiliation(s)
- X Huang
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
45
|
Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats. Pain 2009; 146:105-13. [DOI: 10.1016/j.pain.2009.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 02/05/2023]
|
46
|
Abstract
Of all clinically marketed drugs, greater than thirty percent are modulators of G protein-coupled receptors (GPCRs). Nearly 400 GPCRs (i.e., excluding odorant and light receptors) are encoded within the human genome, but only a small fraction of these seven-transmembrane proteins have been identified as drug targets. Chronic pain affects more than one-third of the population, representing a substantial societal burden in use of health care resources and lost productivity. Furthermore, currently available treatments are often inadequate, underscoring the significant need for better therapeutic strategies. The expansion of the identified human GPCR repertoire, coupled with recent insights into the function and structure of GPCRs, offers new opportunities for the development of novel analgesic therapeutics.
Collapse
Affiliation(s)
- Laura S Stone
- Faculty of Dentistry, Alan Edwards Centre for Research on Pain, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
47
|
Bhardwaj SK, Baharnoori M, Sharif-Askari B, Kamath A, Williams S, Srivastava LK. Behavioral characterization of dysbindin-1 deficient sandy mice. Behav Brain Res 2008; 197:435-41. [PMID: 18984010 DOI: 10.1016/j.bbr.2008.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/09/2008] [Accepted: 10/07/2008] [Indexed: 12/15/2022]
Abstract
Dysbindin-1 (dystrobrevin binding protein-1) has been reported as a candidate gene associated with schizophrenia. Dysbindin-1 mRNA and protein levels are significantly reduced in the prefrontal cortex and hippocampus of schizophrenia subjects. To understand the in-vivo functions of dysbindin-1, we studied schizophrenia relevant behaviors in adult male Sandy homozygous (sdy/sdy) and heterozygous (sdy/+) mice that have a natural mutation in dysbindin-1 gene (on a DBA/2J background) resulting in loss of protein expression. Spontaneous locomotor activity of sdy/sdy and sdy/+ mice in novel environment was not significantly different from DBA/2J controls. However, on repeated testing in the same environment for 7 days, sdy/sdy mice, in contrast to DBA/2J controls showed a lack of locomotor habituation. Locomotor activating effect of a low dose of d-amphetamine (2.5 mg/kg i.p.), a behavioral measure of mesolimbic dopamine activity, was significantly reduced in the mutant mice. Interestingly, sdy/sdy mice showed enhanced locomotor sensitization to repeated five daily injection of amphetamine. Possible cognitive impairment in Sandy mutants was revealed in novel object recognition test as sdy/sdy and sdy/+ mice spent significantly less time exploring novel objects compared to DBA/2J. Sdy/sdy mice also showed deficits in emotionally motivated learning and memory showing greater freezing response to auditory conditioned stimulus (CS) in fear conditioning paradigm. In thermal nociceptive test, the latency of paw withdrawal in sdy/sdy and sdy/+ animals was significantly higher compared to DBA/2J indicating hypoalgesia in the mutants. Taken together, these data suggest that dysbindin-1 gene deficiency leads to significant changes in cognition and altered responses to psychostimulants.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Boul, Montreal H4H 1R3, QC, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Wang YY, Legendre P, Huang J, Wang W, Wu SX, Li YQ. The effect of serotonin on GABA synthesis in cultured rat spinal dorsal horn neurons. J Chem Neuroanat 2008; 36:150-9. [PMID: 18672053 DOI: 10.1016/j.jchemneu.2008.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 01/24/2023]
Abstract
The spinal dorsal horn (SDH) is the first step in the integration of primary nociceptive information, which is controlled by the descending serotonin (5-HT) system as well as the principal inhibitory neurotransmitter gamma-aminobutyric acid (GABA). However, the influence exerted by 5-HT on GABA synthesis remains poorly understood. The major pathway for GABA synthesis is the enzymatic decarboxylation of glutamate by glutamic acid decarboxylase (GAD) 65 and 67. In the present research, western blotting results show a time- and dose-dependent enhancement of GAD65 and GAD67 expression induced by 5-HT treatment and a concentration of 100nM 5-HT applied for 3 days is shown to be the optimal condition for maximal expression of GAD67 and a significant expression of GAD65. Under the stimulation of such 5-HT application the phosphorylation of Akt and p42/p44 mitogen-activated protein (MAP) kinase is activated and specifically blocked by inhibitors of phosphatidylinositol 3-kinase (PI3-K) (LY294002) or the p42/p44 MAP kinase (PD98059 and U0126) pathways. Moreover, LY294002, or PD98059, or U0126 partially inhibit 5-HT-stimulated increases in GAD67 or GAD65 expression. Further, 5-HT application has no effect on the number of GAD65/GAD67-immunopositive neuronal cells; but it can induce an increase in the total area, process length and number of primary neurites of GAD65/67-positive neurons, an increase that appears to involve LY294002 and PD98059. The results of this study provide an in vitro model of the regulation of 5-HT on synthesis of GABA in the SDH that is putatively thought to occur in vivo as a result of excitatory neural activity.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No. 17 West Changle Road, Xi'an 710032, PR China
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Sugimoto K, Rashid IB, Shoji M, Suda T, Yasujima M. Early changes in insulin receptor signaling and pain sensation in streptozotocin-induced diabetic neuropathy in rats. THE JOURNAL OF PAIN 2007; 9:237-45. [PMID: 18331706 DOI: 10.1016/j.jpain.2007.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED The objective of the present study was to evaluate the time course of changes in peripheral nerve insulin receptor (IR) signaling and compare observed findings with behavioral responses to noxious mechanical and thermal stimuli in streptozotocin (STZ)-diabetic rats over 12 weeks of diabetes. Diabetic rats developed mechanical hyperalgesia, as indicated by decreased paw withdrawal thresholds to mechanical stimuli that were detectable after 2 weeks of diabetes; they also developed thermal hypoalgesia, as indicated by increased tail flick latencies to thermal stimuli that were detectable at 1 week of diabetes. Western blot analysis revealed decreased phosphorylated: total IR protein ratio that was detectable as early as 2 weeks of diabetes, whereas phosphorylated:total Akt protein ratio was decreased at 2 weeks and increased at 12 weeks of diabetes with unchanged PI-3K protein levels. To our knowledge, the present study is the first to demonstrate that impaired peripheral nerve IR signaling, as indicated by decreased phosphorylated:total IR protein ratio, coincides with early mechanical hyperalgesia and thermal hypoalgesia in STZ-diabetic rats. This finding may improve understanding of how altered pain sensation develops rapidly in this model. PERSPECTIVE This study examined peripheral nerve IR signaling during the early course of altered nociception in STZ-diabetic rats. In diabetic rats, impaired peripheral nerve IR signaling is observed shortly after STZ injection, as is altered nociception. This finding suggests a possible role of impaired IR signaling in diabetic sensory neuropathy.
Collapse
Affiliation(s)
- Kazuhiro Sugimoto
- Department of Laboratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | | | | | |
Collapse
|