1
|
Santanatoglia A, Angeloni S, Caprioli G, Fioretti L, Ricciutelli M, Vittori S, Alessandroni L. Comprehensive investigation of coffee acidity on eight different brewing methods through chemical analyses, sensory evaluation and statistical elaboration. Food Chem 2024; 454:139717. [PMID: 38810441 DOI: 10.1016/j.foodchem.2024.139717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Even if the acids composition and their role in coffee still need to be clarified, acidity is one of the main sought-after features in coffee and it is becoming one of the main quality markers. Hence, the aim of this paper was to evaluate the main parameters influencing coffee acidity with a focus on carboxylic acids. To the best of our knowledge, this is the first study regarding filter coffee prepared from specialty and mainstream coffee, differently roasted and through eight diverse extraction methods. Coffee cup chemical composition in terms of organic and chlorogenic acids, caffein and physicochemical parameters were correlated with perceived sourness and mouthfeel to better understand the influence of extracted compounds on the final beverage acidity. Statistical tools revealed that a major impact of chlorogenic acids emerged in pH and titratable acidity, while the sensorial sourness appeared more correlated with organic acids concentration. Thus, these findings suggests that organic acids could be potential predictors of beverage perceived acidity.
Collapse
Affiliation(s)
- Agnese Santanatoglia
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; Research and Innovation Coffee Hub, Via Emilio Betti 1, 62020 Belforte del Chienti, Italy
| | - Simone Angeloni
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| | - Lauro Fioretti
- Research and Innovation Coffee Hub, Via Emilio Betti 1, 62020 Belforte del Chienti, Italy
| | - Massimo Ricciutelli
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
| | - Sauro Vittori
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy; Research and Innovation Coffee Hub, Via Emilio Betti 1, 62020 Belforte del Chienti, Italy
| | - Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy.
| |
Collapse
|
2
|
Kasahara Y, Narukawa M, Saito Y, Abe K, Asakura T. The complexities of salt taste reception: insights into the role of TMC4 in chloride taste detection. Front Mol Neurosci 2024; 17:1468438. [PMID: 39386048 PMCID: PMC11461469 DOI: 10.3389/fnmol.2024.1468438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Although salt is an essential substance vital to life, excessive salt intake could cause various health issues. Therefore, new technologies and strategies should be developed to reduce salt intake without compromising taste. However, the underlying physiological mechanisms of salt taste reception is complex and not completely understood. Sodium chloride is a typical salty substance. It is widely believed that only sodium is important for the generation of salty taste. On the other hand, from a psychophysical perspective, the importance of chloride in salty taste has been indicated. Thus, understanding the mechanisms of both sodium- and chloride-tastes generation is necessary to completely comprehended the fundamentals of salt taste reception. However, the mechanism for detecting chloride taste has remained unclear for many years. Recently, we have identified transmembrane channel-like 4 (TMC4) as the first molecule that mediates the reception of chloride taste. TMC4 functions as a voltage-dependent chloride channel and plays an important role in the reception of the chloride taste by detecting chloride ions. In this mini-review, we first introduce the known reception mechanism of salty taste, and then discuss the roles of TMC4 in the salt taste reception. The finding of TMC4 may serve as a basis for developing new technologies and formulating strategies to reduce salt intake without compromising taste.
Collapse
Affiliation(s)
- Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Toyo Institute of Food Technology, Hyogo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| |
Collapse
|
3
|
Ross KG, Alvarez Zepeda S, Auwal MA, Garces AK, Roman S, Zayas RM. The Role of Polycystic Kidney Disease-Like Homologs in Planarian Nervous System Regeneration and Function. Integr Org Biol 2024; 6:obae035. [PMID: 39364443 PMCID: PMC11448475 DOI: 10.1093/iob/obae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Planarians are an excellent model for investigating molecular mechanisms necessary for regenerating a functional nervous system. Numerous studies have led to the generation of extensive genomic resources, especially whole-animal single-cell RNA-seq resources. These have facilitated in silico predictions of neuronal subtypes, many of which have been anatomically mapped by in situ hybridization. However, our knowledge of the function of dozens of neuronal subtypes remains poorly understood. Previous investigations identified that polycystic kidney disease (pkd)-like genes in planarians are strongly expressed in sensory neurons and have roles in mechanosensation. Here, we examine the expression and function of all the pkd genes found in the Schmidtea mediterranea genome and map their expression in the asexual and hermaphroditic strains. Using custom behavioral assays, we test the function of pkd genes in response to mechanical stimulation and in food detection. Our work provides insight into the physiological function of sensory neuron populations and protocols for creating inexpensive automated setups for acquiring and analyzing mechanosensory stimulation in planarians.
Collapse
Affiliation(s)
- K G Ross
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - S Alvarez Zepeda
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - M A Auwal
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - A K Garces
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - S Roman
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - R M Zayas
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| |
Collapse
|
4
|
Ross KG, Zepeda SA, Auwal MA, Garces AK, Roman S, Zayas RM. The role of polycystic kidney disease-like homologs in planarian nervous system regeneration and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603829. [PMID: 39091889 PMCID: PMC11291080 DOI: 10.1101/2024.07.17.603829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Planarians are an excellent model for investigating molecular mechanisms necessary for regenerating a functional nervous system. Numerous studies have led to the generation of extensive genomic resources, especially whole-animal single-cell RNA-seq resources. These have facilitated in silico predictions of neuronal subtypes, many of which have been anatomically mapped by in situ hybridization. However, our knowledge of the function of dozens of neuronal subtypes remains poorly understood. Previous investigations identified that polycystic kidney disease (pkd)-like genes in planarians are strongly expressed in sensory neurons and have roles in mechanosensation. Here, we examine the expression and function of all the pkd genes found in the Schmidtea mediterranea genome and map their expression in the asexual and hermaphroditic strains. Using custom behavioral assays, we test the function of pkd genes in response to mechanical stimulation and in food detection. Our work provides insight into the physiological function of sensory neuron populations and protocols for creating inexpensive automated setups for acquiring and analyzing mechanosensory stimulation in planarians.
Collapse
Affiliation(s)
- Kelly G. Ross
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Sarai Alvarez Zepeda
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Mohammad A. Auwal
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Audrey K. Garces
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Sydney Roman
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| | - Ricardo M. Zayas
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182-4614, USA
| |
Collapse
|
5
|
Zuluaga G. Potential of Bitter Medicinal Plants: A Review of Flavor Physiology. Pharmaceuticals (Basel) 2024; 17:722. [PMID: 38931389 PMCID: PMC11206615 DOI: 10.3390/ph17060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The function of the sense of taste is usually confined to the ability to perceive the flavor of food to assess and use the nutrients necessary for healthy survival and to discard those that may be harmful, toxic, or unpleasant. It is almost unanimously agreed that the perception of bitter taste prevents the consumption of toxins from plants, decaying foods, and drugs. Forty years ago, while practicing medicine in a rural area of the Colombian Amazon, I had an unexpected encounter with the Inga Indians. I faced the challenge of accepting that their traditional medicine was effective and that the medicinal plants they used had a real therapeutic effect. Wanting to follow a process of learning about medicinal plants on their terms, I found that, for them, the taste of plants is a primary and fundamental key to understanding their functioning. One of the most exciting results was discovering the therapeutic value of bitter plants. The present review aims to understand whether there is any scientific support for this hypothesis from the traditional world. Can the taste of plants explain their possible therapeutic benefit? In the last 20 years, we have made novel advances in the knowledge of the physiology of taste. Our purpose will be to explore these scientific advances to determine if the bitter taste of medicinal plants benefits human health.
Collapse
Affiliation(s)
- Germán Zuluaga
- Grupo de Estudios en Sistemas Tradicionales de Salud, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia; ; Tel.: +57-311-2179102
- Centro de Estudios Médicos Interculturales, Cota 250010, Colombia
| |
Collapse
|
6
|
Han X, Weng M, Shi W, Wen Y, Long Y, Hu X, Ji G, Zhu Y, Wen X, Zhang F, Wu S. The Neurotranscriptome of Monochamus alternatus. Int J Mol Sci 2024; 25:4553. [PMID: 38674138 PMCID: PMC11050616 DOI: 10.3390/ijms25084553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.
Collapse
Affiliation(s)
- Xiaohong Han
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenchao Shi
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingxin Wen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yirong Long
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinran Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoxi Ji
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yukun Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuanye Wen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.H.); (M.W.); (W.S.); (Y.W.); (Y.L.); (X.H.); (G.J.); (Y.Z.); (X.W.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Hossain KA, Akhter R, Rashid MHO, Akter L, Utsunomiya M, Kitab B, Ngwe Tun MM, Hishiki T, Kohara M, Morita K, Tsukiyama-Kohara K. Suppression of dengue virus replication by the French maritime pine extract Pycnogenol®. Virus Res 2024; 339:199244. [PMID: 37832653 PMCID: PMC10613901 DOI: 10.1016/j.virusres.2023.199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Dengue virus (DENV) is mainly found in the tropics and infects approximately 400 million people annually. However, no clinically available therapeutic agents specific to dengue have been developed. Here, we examined the potential antiviral effects of the French maritime pine extract Pycnogenol® (PYC) against DENV because we previously found that the extract exerts antiviral effects on hepatitis C virus, which belongs to the Flavivirus family. First, we examined the efficacy of PYC against DENV1, 2, 3, and 4 serotypes and determined that it had a dose-dependent suppressive effect on the viral load, especially in the supernatant. This inhibitory effect of PYC may target the late stages of infection such as maturation and secretion, but not replication. Next, we examined the efficacy of PYC against DENV infection in type I interferon (IFN) receptor knockout mice (A129). As the propagation of DENV2 was the highest among the four serotypes, we used this serotype in our murine model experiments. We found that PYC significantly inhibited DENV2 replication in mice on day 4 without significantly decreasing body weight or survival ratio. We further examined the mechanism of action of PYC in DENV2 infection by characterizing the main PYC targets among the host (viral) factors and silencing them using siRNA. Silencing long noncoding-interferon-induced protein (lnc-IFI)-44, polycystic kidney disease 1-like 3 (Pkd1l3), and ubiquitin-specific peptidase 31 (Usp31) inhibited the replication of DENV2. Thus, the results of this study shed light on the inhibitory effects of PYC on DENV replication and its underlying mechanisms.
Collapse
Affiliation(s)
- Kazi Anowar Hossain
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rupaly Akhter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Md Haroon Or Rashid
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Lipi Akter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Masashi Utsunomiya
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
8
|
Pandey P, Shrestha B, Lee Y. Acid and Alkali Taste Sensation. Metabolites 2023; 13:1131. [PMID: 37999227 PMCID: PMC10673112 DOI: 10.3390/metabo13111131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Living organisms rely on pH levels for a multitude of crucial biological processes, such as the digestion of food and the facilitation of enzymatic reactions. Among these organisms, animals, including insects, possess specialized taste organs that enable them to discern between acidic and alkaline substances present in their food sources. This ability is vital, as the pH of these compounds directly influences both the nutritional value and the overall health impact of the ingested substances. In response to the various chemical properties of naturally occurring compounds, insects have evolved peripheral taste organs. These sensory structures play a pivotal role in identifying and distinguishing between nourishing and potentially harmful foods. In this concise review, we aim to provide an in-depth examination of the molecular mechanisms governing pH-dependent taste responses, encompassing both acidic and alkaline stimuli, within the peripheral taste organs of the fruit fly, Drosophila melanogaster, drawing insights from a comprehensive analysis of existing research articles.
Collapse
Affiliation(s)
| | | | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea; (P.P.); (B.S.)
| |
Collapse
|
9
|
Liang Z, Wilson CE, Teng B, Kinnamon SC, Liman ER. The proton channel OTOP1 is a sensor for the taste of ammonium chloride. Nat Commun 2023; 14:6194. [PMID: 37798269 PMCID: PMC10556057 DOI: 10.1038/s41467-023-41637-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023] Open
Abstract
Ammonium (NH4+), a breakdown product of amino acids that can be toxic at high levels, is detected by taste systems of organisms ranging from C. elegans to humans and has been used for decades in vertebrate taste research. Here we report that OTOP1, a proton-selective ion channel expressed in sour (Type III) taste receptor cells (TRCs), functions as sensor for ammonium chloride (NH4Cl). Extracellular NH4Cl evoked large dose-dependent inward currents in HEK-293 cells expressing murine OTOP1 (mOTOP1), human OTOP1 and other species variants of OTOP1, that correlated with its ability to alkalinize the cell cytosol. Mutation of a conserved intracellular arginine residue (R292) in the mOTOP1 tm 6-tm 7 linker specifically decreased responses to NH4Cl relative to acid stimuli. Taste responses to NH4Cl measured from isolated Type III TRCs, or gustatory nerves were strongly attenuated or eliminated in an Otop1-/- mouse strain. Behavioral aversion of mice to NH4Cl, reduced in Skn-1a-/- mice lacking Type II TRCs, was entirely abolished in a double knockout with Otop1. These data together reveal an unexpected role for the proton channel OTOP1 in mediating a major component of the taste of NH4Cl and a previously undescribed channel activation mechanism.
Collapse
Affiliation(s)
- Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Program in Neuroscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Courtney E Wilson
- Department of Otolaryngology, University of Colorado Medical School, 12700 E 19(th) Avenue, MS 8606, Aurora, CO, 80045, USA
| | - Bochuan Teng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Program in Neuroscience, University of Southern California, Los Angeles, CA, 90089, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sue C Kinnamon
- Department of Otolaryngology, University of Colorado Medical School, 12700 E 19(th) Avenue, MS 8606, Aurora, CO, 80045, USA
| | - Emily R Liman
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
10
|
Kawabata Y, Takai S, Sanematsu K, Yoshida R, Kawabata F, Shigemura N. The Antiarrhythmic Drug Flecainide Enhances Aversion to HCl in Mice. eNeuro 2023; 10:ENEURO.0048-23.2023. [PMID: 37696662 PMCID: PMC10515741 DOI: 10.1523/eneuro.0048-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Drug-induced taste disorders reduce quality of life, but little is known about the molecular mechanisms by which drugs induce taste disturbances. In this study, we investigated the short-term and long-term effects of the antiarrhythmic drug flecainide, which is known to cause taste dysfunction. Analyses of behavioral responses (licking tests) revealed that mice given a single intraperitoneal injection of flecainide exhibited a significant reduction in preference for a sour tastant (HCl) but not for other taste solutions (NaCl, quinine, sucrose, KCl and monopotassium glutamate) when compared with controls. Mice administered a single dose of flecainide also had significantly higher taste nerve responses to HCl but not to other taste solutions. Compared with controls, mice administered flecainide once-daily for 30 d showed a reduced preference for HCl without any changes in the behavioral responses to other taste solutions. The electrophysiological experiments using HEK293T cells transiently expressing otopetrin-1 (Otop1; the mouse sour taste receptor) showed that flecainide did not alter the responses to HCl. Taken together, our results suggest that flecainide specifically enhances the response to HCl in mice during short-term and long-term administration. Although further studies will be needed to elucidate the molecular mechanisms, these findings provide new insights into the pathophysiology of drug-induced taste disorders.
Collapse
Affiliation(s)
- Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
- Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
12
|
He W, Liang L, Zhang Y. Pungency Perception and the Interaction with Basic Taste Sensations: An Overview. Foods 2023; 12:2317. [PMID: 37372528 DOI: 10.3390/foods12122317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The perception of pungency can be attributed to the combination of pain and heat, and it has critical impacts on food flavor and food consumption preferences. Many studies have reported a variety of pungent ingredients with different Scoville heat units (SHU), and the mechanism of pungent perception was revealed in vivo and in vitro. The worldwide use of spices containing pungent ingredients has led to an increasing awareness of their effects on basic tastes. However, the interaction between basic tastes and pungency perception based on structure-activity relationship, taste perception mechanism and neurotransmission lacks review and summary, considering its brighter prospects in food flavor. Thus, in this review, common pungency substances and pungency evaluation methods, and the mechanism of pungency perception is presented, and the interaction between basic tastes and pungency perception and the possible factors of their interaction are reviewed in detail. Pungent stimuli are mainly transduced through transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential fixed hormone isoform (TRPA1) activated by stimulants. Using modern detection techniques combined with sensory standards, different substances produce different degrees of pungent stimulation, ranging from 104 to 107 SHU/g. Pungent stimuli can affect taste receptor or channel protein conformation and regulate taste bud cell sensitivity by producing neurotransmission products. The products of neurotransmission and taste receptor cell activation in turn act on taste perception. When there are simultaneous effects of taste perception, pungency stimulation may enhance the perception of salty at a certain concentration, with a mutual inhibition effect with sour, sweet, and bitter taste, while its interaction with umami taste is not obvious. However, due to the complexity of perception and the uncertainty of many perceptual receptors or channels, the current studies of interactions are still controversial. Based on the understanding of the mechanism and influencing factors, the availability of pungency substances is proposed in the perspective of food industry in order to achieve new development.
Collapse
Affiliation(s)
- Wei He
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Kou X, Shi P, Gao C, Ma P, Xing H, Ke Q, Zhang D. Data-Driven Elucidation of Flavor Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6789-6802. [PMID: 37102791 PMCID: PMC10176570 DOI: 10.1021/acs.jafc.3c00909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flavor molecules are commonly used in the food industry to enhance product quality and consumer experiences but are associated with potential human health risks, highlighting the need for safer alternatives. To address these health-associated challenges and promote reasonable application, several databases for flavor molecules have been constructed. However, no existing studies have comprehensively summarized these data resources according to quality, focused fields, and potential gaps. Here, we systematically summarized 25 flavor molecule databases published within the last 20 years and revealed that data inaccessibility, untimely updates, and nonstandard flavor descriptions are the main limitations of current studies. We examined the development of computational approaches (e.g., machine learning and molecular simulation) for the identification of novel flavor molecules and discussed their major challenges regarding throughput, model interpretability, and the lack of gold-standard data sets for equitable model evaluation. Additionally, we discussed future strategies for the mining and designing of novel flavor molecules based on multi-omics and artificial intelligence to provide a new foundation for flavor science research.
Collapse
Affiliation(s)
- Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Peiqin Shi
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chukun Gao
- Laboratory for Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Peihua Ma
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Huadong Xing
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dachuan Zhang
- National Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Liu X, Wang Y, Weng Z, Xu Q, Zhou C, Tang J, Chen XZ. Inhibition of TRPP3 by calmodulin through Ca 2+/calmodulin-dependent protein kinase II. CELL INSIGHT 2023; 2:100088. [PMID: 37193065 PMCID: PMC10134200 DOI: 10.1016/j.cellin.2023.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/18/2023]
Abstract
Transient receptor potential (TRP) polycystin-3 (TRPP3) is a non-selective cation channel activated by Ca2+ and protons and is involved in regulating ciliary Ca2+ concentration, hedgehog signaling and sour tasting. The TRPP3 channel function and regulation are still not well understood. Here we investigated regulation of TRPP3 by calmodulin (CaM) by means of electrophysiology and Xenopus oocytes as an expression model. We found that TRPP3 channel function is enhanced by calmidazolium, a CaM antagonist, and inhibited by CaM through binding of the CaM N-lobe to a TRPP3 C-terminal domain not overlapped with the EF-hand. We further revealed that the TRPP3/CaM interaction promotes phosphorylation of TRPP3 at threonine 591 by Ca2+/CaM-dependent protein kinase II, which mediates the inhibition of TRPP3 by CaM.
Collapse
Affiliation(s)
- Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - Yifang Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ziyi Weng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qinyi Xu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - JingFeng Tang
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
- National “111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| |
Collapse
|
15
|
Shimizu T, Fujii T, Hanita K, Shinozaki R, Takamura Y, Suzuki Y, Kageyama T, Kato M, Nishijo H, Tominaga M, Sakai H. Polycystic kidney disease 2-like 1 channel contributes to the bitter aftertaste perception of quinine. Sci Rep 2023; 13:4271. [PMID: 36922541 PMCID: PMC10017821 DOI: 10.1038/s41598-023-31322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Bitterness is an important physiological function in the defense responses to avoid toxic foods. The taste receptor 2 family is well known to mediate bitter taste perception in Type II taste cells. Here, we report that the polycystic kidney disease 2-like 1 (PKD2L1) channel is a novel sensor for the bitter aftertaste in Type III taste cells. The PKD2L1 channel showed rebound activation after the washout of quinine, a bitter tastant, in electrophysiological whole-cell recordings of the PKD2L1-expressing HEK293T cells and Ca2+-imaging analysis of Type III taste cells isolated from wild-type PKD2L1 mice. In the short-term two-bottle preference and lick tests in vivo, the wild-type mice avoided normal water while the PKD2L1-knockout mice preferred normal water after they ingested the quinine-containing water. These results may explain the new mechanism of the quinine-triggered bitter aftertaste perception in Type III taste cells.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Keisuke Hanita
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Ryo Shinozaki
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yusaku Takamura
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, 444-8787, Japan
| | - Teppei Kageyama
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Mizuki Kato
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, 444-8787, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
16
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
17
|
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miytashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. eLife 2023; 12:83108. [PMID: 36805807 PMCID: PMC9943067 DOI: 10.7554/elife.83108] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) are enigmatic mechano- or chemosensory cells lying along the central canal of the spinal cord. Recent studies in zebrafish larvae and lampreys have shown that CSF-cNs control postures and movements via spinal connections. However, the structures, connectivity, and functions in mammals remain largely unknown. Here we developed a method to genetically target mouse CSF-cNs that highlighted structural connections and functions. We first found that intracerebroventricular injection of adeno-associated virus with a neuron-specific promoter and Pkd2l1-Cre mice specifically labeled CSF-cNs. Single-cell labeling of 71 CSF-cNs revealed rostral axon extensions of over 1800 μm in unmyelinated bundles in the ventral funiculus and terminated on CSF-cNs to form a recurrent circuitry, which was further determined by serial electron microscopy and electrophysiology. CSF-cNs were also found to connect with axial motor neurons and premotor interneurons around the central canal and within the axon bundles. Chemogenetic CSF-cNs inactivation reduced speed and step frequency during treadmill locomotion. Our data revealed the basic structures and connections of mouse CSF-cNs to control spinal motor circuits for proper locomotion. The versatile methods developed in this study will contribute to further understanding of CSF-cN functions in mammals.
Collapse
Affiliation(s)
- Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Miyuki Kurabe
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological SciencesOkazakiJapan,Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Satoshi Miytashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Hitoshi Matsuzawa
- Center for Advanced Medicine and Clinical Research, Kashiwaba Neurosurgical HospitalSapporoJapan,Center for Integrated Human Brain Science, Niigata UniversityNiigataJapan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of MedicineShimotsukeJapan,Division of Ultrastructural Research, National Institute for Physiological SciencesOkazakiJapan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| |
Collapse
|
18
|
Matsumoto K, Kamide M, Uchida K, Takahata M, Shichiri R, Hida Y, Taniguchi Y, Ohishi A, Tominaga M, Nagasawa K, Kato S. Transient Receptor Potential Ankyrin 1 in Taste Nerve Contributes to the Sense of Sweet Taste in Mice. Biol Pharm Bull 2023; 46:939-945. [PMID: 37394645 DOI: 10.1248/bpb.b23-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transient receptor potential (TRP) channels play a significant role in taste perception. TRP ankyrin 1 (TRPA1) is present in the afferent sensory neurons and is activated by food-derived ingredients, such as Japanese horseradish, cinnamon, and garlic. The present study aimed to investigate the expression of TRPA1 in taste buds, and determine its functional roles in taste perception using TRPA1-deficient mice. In circumvallate papillae, TRPA1 immunoreactivity colocalised with P2X2 receptor-positive taste nerves but not with type II or III taste cell markers. Behavioural studies showed that TRPA1 deficiency significantly reduced sensitivity to sweet and umami tastes, but not to salty, bitter, and sour tastes, compared to that in wild-type animals. Furthermore, administration of the TRPA1 antagonist HC030031 significantly decreased taste preference to sucrose solution compared to that in the vehicle-treated group in the two-bottle preference tests. TRPA1 deficiency did not affect the structure of circumvallate papillae or the expression of type II or III taste cell and taste nerve markers. Adenosine 5'-O-(3-thio)triphosphate evoked inward currents did not differ between P2X2- and P2X2/TRPA1-expressing human embryonic kidney 293T cells. TRPA1-deficient mice had significantly decreased c-fos expression in the nucleus of the solitary tract in the brain stem following sucrose stimulation than wild-type mice. Taken together, the current study suggested that TRPA1 in the taste nerve contributes to the sense of sweet taste in mice.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Mayu Kamide
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Kunitoshi Uchida
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
- Laboratory of Functional Physiology, Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka
| | - Mitsuki Takahata
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Runa Shichiri
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Yuka Hida
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Yumi Taniguchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Akihiro Ohishi
- Division of Biological Sciences, Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences)
| | - Kazuki Nagasawa
- Division of Biological Sciences, Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| |
Collapse
|
19
|
Localization of TRP Channels in Healthy Oral Mucosa from Human Donors. eNeuro 2022; 9:ENEURO.0328-21.2022. [PMID: 36635242 PMCID: PMC9797210 DOI: 10.1523/eneuro.0328-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity is exposed to a remarkable range of noxious and innocuous conditions, including temperature fluctuations, mechanical forces, inflammation, and environmental and endogenous chemicals. How such changes in the oral environment are sensed is not completely understood. Transient receptor potential (TRP) ion channels are a diverse family of molecular receptors that are activated by chemicals, temperature changes, and tissue damage. In non-neuronal cells, TRP channels play roles in inflammation, tissue development, and maintenance. In somatosensory neurons, TRP channels mediate nociception, thermosensation, and chemosensation. To assess whether TRP channels might be involved in environmental sensing in the human oral cavity, we investigated their distribution in human tongue and hard palate biopsies. TRPV3 and TRPV4 were expressed in epithelial cells with inverse expression patterns where they likely contribute to epithelial development and integrity. TRPA1 immunoreactivity was present in fibroblasts, immune cells, and neuronal afferents, consistent with known roles of TRPA1 in sensory transduction and response to damage and inflammation. TRPM8 immunoreactivity was found in lamina propria and neuronal subpopulations including within the end bulbs of Krause, consistent with a role in thermal sensation. TRPV1 immunoreactivity was identified in intraepithelial nerve fibers and end bulbs of Krause, consistent with roles in nociception and thermosensation. TRPM8 and TRPV1 immunoreactivity in end bulbs of Krause suggest that these structures contain a variety of neuronal afferents, including those that mediate nociception, thermosensation, and mechanotransduction. Collectively, these studies support the role of TRP channels in oral environmental surveillance and response.
Collapse
|
20
|
Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci 2022; 9:1035507. [PMID: 36406261 PMCID: PMC9672506 DOI: 10.3389/fmolb.2022.1035507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1) is an 11-transmembrane (TM) domain-containing protein encoded by the PKD1 gene, the most frequently mutated gene leading to autosomal dominant polycystic kidney disease (ADPKD). This large (> 462 kDal) protein has a complex posttranslational maturation process, with over five proteolytic cleavages having been described, and is found at multiple cellular locations. The initial description of the binding and activation of heterotrimeric Gαi/o by the juxtamembrane region of the PC1 cytosolic C-terminal tail (C-tail) more than 20 years ago opened the door to investigations, and controversies, into PC1's potential function as a novel G protein-coupled receptor (GPCR). Subsequent biochemical and cellular-based assays supported an ability of the PC1 C-tail to bind numerous members of the Gα protein family and to either inhibit or activate G protein-dependent pathways involved in the regulation of ion channel activity, transcription factor activation, and apoptosis. More recent work has demonstrated an essential role for PC1-mediated G protein regulation in preventing kidney cyst development; however, the mechanisms by which PC1 regulates G protein activity continue to be discovered. Similarities between PC1 and the adhesion class of 7-TM GPCRs, most notably a conserved GPCR proteolysis site (GPS) before the first TM domain, which undergoes autocatalyzed proteolytic cleavage, suggest potential mechanisms for PC1-mediated regulation of G protein signaling. This article reviews the evidence supporting GPCR-like functions of PC1 and their relevance to cystic disease, discusses the involvement of GPS cleavage and potential ligands in regulating PC1 GPCR function, and explores potential connections between PC1 GPCR-like activity and regulation of the channel properties of the polycystin receptor-channel complex.
Collapse
Affiliation(s)
- Robin L. Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
21
|
Shi Y, Pu D, Zhou X, Zhang Y. Recent Progress in the Study of Taste Characteristics and the Nutrition and Health Properties of Organic Acids in Foods. Foods 2022; 11:3408. [PMID: 36360025 PMCID: PMC9654595 DOI: 10.3390/foods11213408] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/11/2023] Open
Abstract
Organic acids could improve the food flavor, maintain the nutritional value, and extend the shelf life of food. This review summarizes the detection methods and concentrations of organic acids in different foods, as well as their taste characteristics and nutritional properties. The composition of organic acids varies in different food. Fruits and vegetables often contain citric acid, creatine is a unique organic acid found in meat, fermented foods have a high content of acetic acid, and seasonings have a wide range of organic acids. Determination of the organic acid contents among different food matrices allows us to monitor the sensory properties, origin identification, and quality control of foods, and further provides a basis for food formulation design. The taste characteristics and the acid taste perception mechanisms of organic acids have made some progress, and binary taste interaction is the key method to decode multiple taste perception. Real food and solution models elucidated that the organic acid has an asymmetric interaction effect on the other four basic taste attributes. In addition, in terms of nutrition and health, organic acids can provide energy and metabolism regulation to protect the human immune and myocardial systems. Moreover, it also exhibited bacterial inhibition by disrupting the internal balance of bacteria and inhibiting enzyme activity. It is of great significance to clarify the synergistic dose-effect relationship between organic acids and other taste sensations and further promote the application of organic acids in food salt reduction.
Collapse
Affiliation(s)
- Yige Shi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
22
|
The roles of two extracellular loops in proton sensing and permeation in human Otop1 proton channel. Commun Biol 2022; 5:1110. [PMID: 36266567 PMCID: PMC9585144 DOI: 10.1038/s42003-022-04085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
Abstract
Otopetrin (Otop) proteins were recently found to function as proton channels, with Otop1 revealed to be the sour taste receptor in mammals. Otop proteins contain twelve transmembrane segments (S1-S12) which are divided into structurally similar N and C domains. The mechanisms by which Otop channels sense extracellular protons to initiate gating and conduct protons once the channels are activated remains largely elusive. Here we show that two extracellular loops are playing key roles in human Otop1 channel function. We find that residue H229 in the S5-S6 loop is critical for proton sensing of Otop1. Further, our data reveal that the S11-12 loop is structurally and functionally essential for the Otop1 channel and that residue D570 in this loop regulates proton permeation into the pore formed by the C domain. This study sheds light on the molecular mechanism behind the structure and function of this newly identified ion channel family. Electrophysiology experiments, mutagenesis, and structural modelling provide insights into the structure and function of the sour taste receptor Otopetrin 1.
Collapse
|
23
|
Ohmoto M, Nakamura S, Wang H, Jiang P, Hirota J, Matsumoto I. Maintenance and turnover of Sox2+ adult stem cells in the gustatory epithelium. PLoS One 2022; 17:e0267683. [PMID: 36054203 PMCID: PMC9439239 DOI: 10.1371/journal.pone.0267683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Continuous turnover of taste bud cells in the oral cavity underlies the homeostasis of taste tissues. Previous studies have demonstrated that Sox2+ stem cells give rise to all types of epithelial cells including taste bud cells and non-gustatory epithelial cells in the oral epithelium, and Sox2 is required for generating taste bud cells. Here, we show the dynamism of single stem cells through multicolor lineage tracing analyses in Sox2-CreERT2; Rosa26-Confetti mice. In the non-gustatory epithelium, unicolored areas populated by a cluster of cells expressing the same fluorescent protein grew over time, while epithelial cells were randomly labeled with multiple fluorescent proteins by short-term tracing. Similar phenomena were observed in gustatory epithelia. These results suggest that the Sox2+ stem cell population is maintained by balancing the increase of certain stem cells with the reduction of the others. In the gustatory epithelia, many single taste buds contained cells labeled with different fluorescent proteins, indicating that a single taste bud is composed of cells derived from multiple Sox2+ stem cells. Our results reveal the characteristics of Sox2+ stem cells underlying the turnover of taste bud cells and the homeostasis of taste tissues.
Collapse
Affiliation(s)
- Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- * E-mail: (MO); (IM)
| | - Shugo Nakamura
- Faculty of Information Networking for Innovation and Design (INIAD), Toyo University, Kita, Tokyo, Japan
| | - Hong Wang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Junji Hirota
- Department of Life Science and Technology, Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MO); (IM)
| |
Collapse
|
24
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
25
|
Liu L, Megens HJ, Crooijmans RP, Bosse M, Huang Q, Sonsbeek GBV, Groenen MA, Madsen O. The Visayan warty pig (Sus cebifrons) genome provides insight into chromosome evolution and sensory adaptation in pigs. Mol Biol Evol 2022; 39:6596366. [PMID: 35642310 PMCID: PMC9178973 DOI: 10.1093/molbev/msac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks post-zygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent post-divergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.
Collapse
Affiliation(s)
- Langqing Liu
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| | | | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| | - Qitong Huang
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands.,Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | | | - Martien Am Groenen
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, The Netherlands
| |
Collapse
|
26
|
Beppu K, Kawakami A, Mishima Y, Tsutsumi R, Kuroda M, Mori H, Kuroda A, Matsuhisa M, Sakaue H. Taste receptor gene expression is associated with decreased eGFR in patients with diabetes. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:120-126. [PMID: 35466133 DOI: 10.2152/jmi.69.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Dysgeusia is not only associated with zinc deficiency but also with certain drugs or diseases, including diabetes and renal failure. It often lowers the patient's quality of life and hinders access to proper nutrition. The underlying mechanism is unclear and there is a lack of awareness among patients. Here, we focused on lingual taste receptor gene expression in diabetes and elucidated the relationship between taste receptor gene expression and renal function. Forty-seven patients with diabetes and 10 healthy subjects (control group) were enrolled. Lingual foliate papillae were scraped and the derived cDNA was quantified by real-time polymerase chain reaction. Dysgeusia was assessed using SALSAVE?. All statistical analyses were performed using JMP? software 13. The expression of T1R1 and T1R2 was significantly upregulated in type 2 diabetes patients as compared with that in healthy subjects (P<0.01) but did not change in type 1 diabetes patients. T1R3 expression positively correlated and Scnn1 expression negatively correlated with estimated glomerular filtration rate, suggesting that altered taste receptor gene expression could reflect impaired renal function. Thus, alterations in T1R3 and Scnn1 expression in diabetes correlated with renal function. Taste receptor gene expression dysregulation could indicate dysgeusia associated with impaired renal function in patients with diabetes. J. Med. Invest. 69 : 120-126, February, 2022.
Collapse
Affiliation(s)
- Kana Beppu
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ayuka Kawakami
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yuna Mishima
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroyasu Mori
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akio Kuroda
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Munehisa Matsuhisa
- Diabetes Therapeutics and Research Center, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
27
|
Ide Y, Kitab B, Ito N, Okamoto R, Tamura Y, Matsui T, Sakoda Y, Tsukiyama-Kohara K. Characterization of host factors associated with the internal ribosomal entry sites of foot-and-mouth disease and classical swine fever viruses. Sci Rep 2022; 12:6709. [PMID: 35468926 PMCID: PMC9039067 DOI: 10.1038/s41598-022-10437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) and classical swine fever virus (CSFV) possess positive-sense single-stranded RNA genomes and an internal ribosomal entry site (IRES) element within their 5′-untranslated regions. To investigate the common host factors associated with these IRESs, we established cell lines expressing a bicistronic luciferase reporter plasmid containing an FMDV-IRES or CSFV-IRES element between the Renilla and firefly luciferase genes. First, we treated FMDV-IRES cells with the French maritime pine extract, Pycnogenol (PYC), and examined its suppressive effect on FMDV-IRES activity, as PYC has been reported to have antiviral properties. Next, we performed microarray analysis to identify the host factors that modified their expression upon treatment with PYC, and confirmed their function using specific siRNAs. We found that polycystic kidney disease 1-like 3 (PKD1L3) and ubiquitin-specific peptidase 31 (USP31) were associated with FMDV-IRES activity. Moreover, silencing of these factors significantly suppressed CSFV-IRES activity. Thus, PKD1L3 and USP31 are host factors associated with the functions of FMDV- and CSFV-IRES elements.
Collapse
Affiliation(s)
- Yutaro Ide
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Bouchra Kitab
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Nobumasa Ito
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Riai Okamoto
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yui Tamura
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takafumi Matsui
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Disease Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. .,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
28
|
Abstract
Sour taste, the taste of acids, is one of the most enigmatic of the five basic taste qualities; its function is unclear and its receptor was until recently unknown. Sour tastes are transduced in taste buds on the tongue and palate epithelium by a subset of taste receptor cells, known as type III cells. Type III cells express a number of unique markers, including the PKD2L1 gene, which allow for their identification and manipulation. These cells respond to acid stimuli with action potentials and release neurotransmitters onto afferent nerve fibers, with cell bodies in geniculate and petrosal ganglia. Here, we review classical studies of sour taste leading up to the identification of the sour receptor as the proton channel, OTOP1. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Heather N Turner
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, USA; ,
| | - Emily R Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, California, USA; ,
| |
Collapse
|
29
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Gutierrez R, Simon SA. Physiology of Taste Processing in the Tongue, Gut, and Brain. Compr Physiol 2021; 11:2489-2523. [PMID: 34558667 DOI: 10.1002/cphy.c210002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gustatory system detects and informs us about the nature of various chemicals we put in our mouth. Some of these have nutritive value (sugars, amino acids, salts, and fats) and are appetitive and avidly ingested, whereas others (atropine, quinine, nicotine) are aversive and rapidly rejected. However, the gustatory system is mainly responsible for evoking the perception of a limited number of qualities that humans taste as sweet, umami, bitter, sour, salty, and perhaps fat [free fatty acids (FFA)] and starch (malto-oligosaccharides). The complex flavors and mouthfeel that we experience while eating food result from the integration of taste, odor, texture, pungency, and temperature. The latter three arise primarily from the somatosensory (trigeminal) system. The sensory organs used for detecting and transducing many chemicals are found in taste buds (TBs) located throughout the tongue, soft palate esophagus, and epiglottis. In parallel with the taste system, the trigeminal nerve innervates the peri-gemmal epithelium to transmit temperature, mechanical stimuli, and painful or cooling sensations such as those produced by changes in temperature as well as from chemicals like capsaicin and menthol, respectively. This article gives an overview of the current knowledge about these TB cells' anatomy and physiology and their trigeminal induced sensations. We then discuss how taste is represented across gustatory cortices using an intermingled and spatially distributed population code. Finally, we review postingestion processing (interoception) and central integration of the tongue-gut-brain interaction, ultimately determining our sensations as well as preferences toward the wholesomeness of nutritious foods. © 2021 American Physiological Society. Compr Physiol 11:1-35, 2021.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
31
|
Ferraris C, Turner A, Scarlett CJ, Veysey M, Lucock M, Bucher T, Beckett EL. Sour Taste SNP KCNJ2-rs236514 and Differences in Nutrient Intakes and Metabolic Health Markers in the Elderly. Front Nutr 2021; 8:701588. [PMID: 34485363 PMCID: PMC8415820 DOI: 10.3389/fnut.2021.701588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in taste receptors influence dietary choices that contribute to health and quality of life. Individual differences in sour taste perception and preference have been linked to heritable genetics, yet the impact of sour taste receptor SNPs on sour taste is under-researched, and studies on sour taste SNP associations to diet and health are lacking. Therefore, this study explored the relationships between the sour taste SNP KCNJ2-rs236514 and estimated macronutrient, vitamin and mineral intakes, and markers of metabolic health. Associations were explored in 523 participants aged 65 years and older with data analysed using standard least squares and nominal logistic regression modelling with post hoc student's t-tests and Tukey's HSD. Associations were found between the presence of the KCNJ2-rs236514 variant allele (A) and lower intakes of energy, total fat, monounsaturated fat and saturated fat. The lower fat intakes were significant in female carriers of the variant allele (A), along with lower water intake. Lower retinol, riboflavin, folate, calcium and sodium intakes were found in the KCNJ2-A allele carriers. In females, the variant allele was associated with lower sodium intake before and after Bonferroni adjustment. Higher body mass index, waist and waist-to-hip ratio measures were found in males carrying the variant allele. Lower levels of liver function biomarkers were associated with the presence of the KCNJ2-A allele. Overall and in males, the variant's association to lower gamma-glutamyl transferase (GGT) levels remained significant after Bonferroni adjustments. These novel findings suggest the sour taste SNP, KCNJ2-rs236514, may be modifying macronutrient, vitamin and mineral intakes, and markers of metabolic health. Research on the extra-oral functions of this SNP may improve health outcomes for those with overweight, obesity and liver disease.
Collapse
Affiliation(s)
- Celeste Ferraris
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Alexandria Turner
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Christopher J Scarlett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Martin Veysey
- School of Medicine & Public Health, The University of Newcastle, Gosford, NSW, Australia.,Hull York Medical School, University of Hull, Cottingham, United Kingdom
| | - Mark Lucock
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Tamara Bucher
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia.,Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Emma L Beckett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia.,Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
32
|
Structural basis for Ca 2+ activation of the heteromeric PKD1L3/PKD2L1 channel. Nat Commun 2021; 12:4871. [PMID: 34381056 PMCID: PMC8357825 DOI: 10.1038/s41467-021-25216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
The heteromeric complex between PKD1L3, a member of the polycystic kidney disease (PKD) protein family, and PKD2L1, also known as TRPP2 or TRPP3, has been a prototype for mechanistic characterization of heterotetrametric TRP-like channels. Here we show that a truncated PKD1L3/PKD2L1 complex with the C-terminal TRP-fold fragment of PKD1L3 retains both Ca2+ and acid-induced channel activities. Cryo-EM structures of this core heterocomplex with or without supplemented Ca2+ were determined at resolutions of 3.1 Å and 3.4 Å, respectively. The heterotetramer, with a pseudo-symmetric TRP architecture of 1:3 stoichiometry, has an asymmetric selectivity filter (SF) guarded by Lys2069 from PKD1L3 and Asp523 from the three PKD2L1 subunits. Ca2+-entrance to the SF vestibule is accompanied by a swing motion of Lys2069 on PKD1L3. The S6 of PKD1L3 is pushed inward by the S4-S5 linker of the nearby PKD2L1 (PKD2L1-III), resulting in an elongated intracellular gate which seals the pore domain. Comparison of the apo and Ca2+-loaded complexes unveils an unprecedented Ca2+ binding site in the extracellular cleft of the voltage-sensing domain (VSD) of PKD2L1-III, but not the other three VSDs. Structure-guided mutagenic studies support this unconventional site to be responsible for Ca2+-induced channel activation through an allosteric mechanism.
Collapse
|
33
|
Kavaliauskienė I, Domarkienė I, Ambrozaitytė L, Barauskienė L, Meškienė R, Arasimavičius J, Irnius A, Kučinskas V. Association study of taste preference: Analysis in the Lithuanian population. Food Sci Nutr 2021; 9:4310-4321. [PMID: 34401081 PMCID: PMC8358374 DOI: 10.1002/fsn3.2401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Taste has strong evolutionary basis in the sense of survival by influencing our behavior to obtain food/medicine or avoid poisoning. It is a complex trait and varies among individuals and distinct populations. We aimed to investigate the association between known genetic factors (673 SNPs) and taste preference in the Lithuanian population, as well as to determine a reasonable method for qualitative evaluation of a specific taste phenotype for further genetic analysis. Study group included individuals representing six ethnolinguistic regions of Lithuania. Case and control groups for each taste were determined according to the answers selected to the taste-specific and frequency of specific food consumption questions. Sample sizes (case/control) for each taste are as follows: sweetness (55/179), bitterness (82/208), sourness (32/259), saltiness (42/249), and umami (96/190). Genotypes were extracted from the Illumina HumanOmniExpress-12v1.1 arrays' genotyping data. Analysis was performed using PLINK v1.9. We found associations between the main known genetic factors and four taste preferences in the Lithuanian population: sweetness-genes TAS1R3, TAS1R2, and GNAT3 (three SNPs); bitterness-genes CA6 and TAS2R38 (six SNPs); sourness-genes PKD2L1, ACCN2, PKD1L3, and ACCN1 (48 SNPs); and saltiness-genes SCNN1B and TRPV1 (five SNPs). We found our questionnaire as a beneficial aid for qualitative evaluation of taste preference. This was the first initiative to analyze genetic factors related to taste preference in the Lithuanian population. Besides, this study reproduces, supports, and complements results of previous limited taste genetic studies or ones that lack comprehensive results concerning distinct (ethnic) human populations.
Collapse
Affiliation(s)
- Ingrida Kavaliauskienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Ingrida Domarkienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Lina Barauskienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Raimonda Meškienė
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Justas Arasimavičius
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Algimantas Irnius
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical GeneticsInstitute of Biomedical ScienceFaculty of MedicineVilnius UniversityVilniusLithuania
| |
Collapse
|
34
|
Wang Y, Sun Y, Joseph PV. Contrasting Patterns of Gene Duplication, Relocation, and Selection Among Human Taste Genes. Evol Bioinform Online 2021; 17:11769343211035141. [PMID: 34366662 PMCID: PMC8312168 DOI: 10.1177/11769343211035141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/08/2021] [Indexed: 11/15/2022] Open
Abstract
In humans, taste genes are responsible for perceiving at least 5 different taste qualities. Human taste genes’ evolutionary mechanisms need to be explored. We compiled a list of 69 human taste-related genes and divided them into 7 functional groups. We carried out comparative genomic and evolutionary analyses for these taste genes based on 8 vertebrate species. We found that relative to other groups of human taste genes, human TAS2R genes have a higher proportion of tandem duplicates, suggesting that tandem duplications have contributed significantly to the expansion of the human TAS2R gene family. Human TAS2R genes tend to have fewer collinear genes in outgroup species and evolve faster, suggesting that human TAS2R genes have experienced more gene relocations. Moreover, human TAS2R genes tend to be under more relaxed purifying selection than other genes. Our study sheds new insights into diverse and contrasting evolutionary patterns among human taste genes.
Collapse
Affiliation(s)
- Yupeng Wang
- BDX Research & Consulting LLC, Herndon, VA, USA
| | - Ying Sun
- BDX Research & Consulting LLC, Herndon, VA, USA
| | - Paule Valery Joseph
- Division of Intramural Research, National Institute on Alcohol Abuse and Alcoholism and National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Gaudel F, Guiraudie-Capraz G, Féron F. Limbic Expression of mRNA Coding for Chemoreceptors in Human Brain-Lessons from Brain Atlases. Int J Mol Sci 2021; 22:ijms22136858. [PMID: 34202385 PMCID: PMC8267617 DOI: 10.3390/ijms22136858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Animals strongly rely on chemical senses to uncover the outside world and adjust their behaviour. Chemical signals are perceived by facial sensitive chemosensors that can be clustered into three families, namely the gustatory (TASR), olfactory (OR, TAAR) and pheromonal (VNR, FPR) receptors. Over recent decades, chemoreceptors were identified in non-facial parts of the body, including the brain. In order to map chemoreceptors within the encephalon, we performed a study based on four brain atlases. The transcript expression of selected members of the three chemoreceptor families and their canonical partners was analysed in major areas of healthy and demented human brains. Genes encoding all studied chemoreceptors are transcribed in the central nervous system, particularly in the limbic system. RNA of their canonical transduction partners (G proteins, ion channels) are also observed in all studied brain areas, reinforcing the suggestion that cerebral chemoreceptors are functional. In addition, we noticed that: (i) bitterness-associated receptors display an enriched expression, (ii) the brain is equipped to sense trace amines and pheromonal cues and (iii) chemoreceptor RNA expression varies with age, but not dementia or brain trauma. Extensive studies are now required to further understand how the brain makes sense of endogenous chemicals.
Collapse
|
36
|
Mi T, Mack JO, Lee CM, Zhang YV. Molecular and cellular basis of acid taste sensation in Drosophila. Nat Commun 2021; 12:3730. [PMID: 34140480 PMCID: PMC8211824 DOI: 10.1038/s41467-021-23490-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/03/2021] [Indexed: 11/28/2022] Open
Abstract
Acid taste, evoked mainly by protons (H+), is a core taste modality for many organisms. The hedonic valence of acid taste is bidirectional: animals prefer slightly but avoid highly acidic foods. However, how animals discriminate low from high acidity remains poorly understood. To explore the taste perception of acid, we use the fruit fly as a model organism. We find that flies employ two competing taste sensory pathways to detect low and high acidity, and the relative degree of activation of each determines either attractive or aversive responses. Moreover, we establish one member of the fly Otopetrin family, Otopetrin-like a (OtopLa), as a proton channel dedicated to the gustatory detection of acid. OtopLa defines a unique subset of gustatory receptor neurons and is selectively required for attractive rather than aversive taste responses. Loss of otopla causes flies to reject normally attractive low-acid foods. Therefore, the identification of OtopLa as a low-acid sensor firmly supports our competition model of acid taste sensation. Altogether, we have discovered a binary acid-sensing mechanism that may be evolutionarily conserved between insects and mammals. Many animals, including mammals and insects, like slightly acidic yet dislike highly acidic foods, but how animals discriminate low from high acidity is unclear. Here the authors demonstrate that the fruit fly uses an evolutionarily conserved taste receptor to distinguish low from high concentrations of acid.
Collapse
Affiliation(s)
- Tingwei Mi
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - John O Mack
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Christopher M Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yali V Zhang
- Monell Chemical Senses Center, Philadelphia, PA, USA. .,Department of Physiology, The Diabetes Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Zhu Z, Mei J, Sun S, Lu S, Li M, Guan Y, Chen Y, Xu Y, Zhang T, Shi F, Li X, Miao M, Zhao S, Gao Q, Mi Q, Tang P, Yao J. Nutrigenomics reveals potential genetic underpinning of diverse taste preference of Chinese men. Genes Genomics 2021; 43:689-699. [PMID: 33843022 DOI: 10.1007/s13258-021-01079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Taste preference varies geographically in China. However, studies on Chinese people's taste preference in different regions of China are limited, and are lack of research on the mechanism of differences in taste preference, especially in genetics. OBJECTIVE This study aims to investigate the characteristics of taste preference of Chinese men, and estimate whether diverse taste preference in Chinese have genetic underpinning. METHODS We conducted a questionnaire survey on taste preferences on 1076 males from 10 regions of China, and collected another 1427 males from the same regions which genotyped by microarray. We compared the correlation between different taste preference, and evaluated the correlation between the mutation frequency of inhouse database and different taste preference. The putative taste-preference-related genes were further utilized to estimate the candidate relationship on gene and gene network in different taste preference. RESULTS There was a correlation between different taste preferences in Chinese men. We found 31 SNPs associated with 6 kind of taste preferences. These SNPs located within or nearby 36 genes, and the tastes associated with 4 of these genes (TRPV1, AGT, ASIC2 and GLP1R) are consistent with the previous studies. Moreover, in different tastes which were suggested to be associated with each other, some putative related genes were the same or in the same gene network, such as pathways related with blood pressure, response to stimulus and nervous system. CONCLUSIONS This study indicates that the diverse taste preference of Chinese men may have genetic underpinning.
Collapse
Affiliation(s)
- Zhouhai Zhu
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Junpu Mei
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Silong Sun
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Sheming Lu
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Meng Li
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Ying Guan
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Ying Chen
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Yuqiong Xu
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Tao Zhang
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Fengxue Shi
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Xuemei Li
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Mingming Miao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Shancen Zhao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Qian Gao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Qili Mi
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Ping Tang
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China
| | - Jianhua Yao
- Department of Tobacco and Health, Joint Institute of Tobacco and Health, 41 Keyi Road, Wuhua District, Kunming, 650106, Yunnan, China.
| |
Collapse
|
38
|
Vandenbeuch A, Wilson CE, Kinnamon SC. Optogenetic Activation of Type III Taste Cells Modulates Taste Responses. Chem Senses 2021; 45:533-539. [PMID: 32582939 DOI: 10.1093/chemse/bjaa044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies have suggested that communication between taste cells shapes the gustatory signal before transmission to the brain. To further explore the possibility of intragemmal signal modulation, we adopted an optogenetic approach to stimulate sour-sensitive (Type III) taste cells using mice expressing Cre recombinase under a specific Type III cell promoter, Pkd2l1 (polycystic kidney disease-2-like 1), crossed with mice expressing Cre-dependent channelrhodopsin (ChR2). The application of blue light onto the tongue allowed for the specific stimulation of Type III cells and circumvented the nonspecific effects of chemical stimulation. To understand whether taste modality information is preprocessed in the taste bud before transmission to the sensory nerves, we recorded chorda tympani nerve activity during light and/or chemical tastant application to the tongue. To assess intragemmal modulation, we compared nerve responses to various tastants with or without concurrent light-induced activation of the Type III cells. Our results show that light significantly decreased taste responses to sweet, bitter, salty, and acidic stimuli. On the contrary, the light response was not consistently affected by sweet or bitter stimuli, suggesting that activation of Type II cells does not affect nerve responses to stimuli that activate Type III cells.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Courtney E Wilson
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sue C Kinnamon
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
39
|
Type II/III cell composition and NCAM expression in taste buds. Cell Tissue Res 2021; 385:557-570. [PMID: 33942154 DOI: 10.1007/s00441-021-03452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Taste buds are localized in fungiform (FF), foliate (FL), and circumvallate (CV) papillae on the tongue, and taste buds also occur on the soft palate (SP). Mature elongate cells within taste buds are constantly renewed from stem cells and classified into three cell types, Types I, II, and III. These cell types are generally assumed to reside in respective taste buds in a particular ratio corresponding to taste regions. A variety of cell-type markers were used to analyze taste bud cells. NCAM is the first established marker for Type III cells and is still often used. However, NCAM was examined mainly in the CV, but not sufficiently in other regions. Furthermore, our previous data suggested that NCAM may be transiently expressed in the immature stage of Type II cells. To precisely assess NCAM expression as a Type III cell marker, we first examined Type II and III cell-type markers, IP3R3 and CA4, respectively, and then compared NCAM with them using whole-mount immunohistochemistry. IP3R3 and CA4 were segregated from each other, supporting the reliability of these markers. The ratio between Type II and III cells varied widely among taste buds in the respective regions (Pearson's r = 0.442 [CV], 0.279 [SP], and - 0.011 [FF]), indicating that Type II and III cells are contained rather independently in respective taste buds. NCAM immunohistochemistry showed that a subset of taste bud cells were NCAM(+)CA4(-). While NCAM(+)CA4(-) cells were IP3R3(-) in the CV, the majority of them were IP3R3(+) in the SP and FF.
Collapse
|
40
|
Melis M, Haehner A, Mastinu M, Hummel T, Tomassini Barbarossa I. Molecular and Genetic Factors Involved in Olfactory and Gustatory Deficits and Associations with Microbiota in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22084286. [PMID: 33924222 PMCID: PMC8074606 DOI: 10.3390/ijms22084286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
Deficits in olfaction and taste are among the most frequent non-motor manifestations in Parkinson’s disease (PD) that start very early and frequently precede the PD motor symptoms. The limited data available suggest that the basis of the olfactory and gustatory dysfunction related to PD are likely multifactorial and may include the same determinants responsible for other non-motor symptoms of PD. This review describes the most relevant molecular and genetic factors involved in the PD-related smell and taste impairments, and their associations with the microbiota, which also may represent risk factors associated with the disease.
Collapse
Affiliation(s)
- Melania Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, 01307 Dresden, Germany; (A.H.); (T.H.)
| | - Mariano Mastinu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, 01307 Dresden, Germany; (A.H.); (T.H.)
| | - Iole Tomassini Barbarossa
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy; (M.M.); (M.M.)
- Correspondence: ; Tel.: +39-070-675-4144
| |
Collapse
|
41
|
Abstract
Sour taste, which is evoked by low pH, is one of the original four fundamental taste qualities, recognized as a distinct taste sensation for centuries, and universally aversive across diverse species. It is generally assumed to have evolved for detection of acids in unripe fruit and spoiled food. But despite decades of study, only recently have the receptor, the neurotransmitter, and the circuits for sour taste been identified. In this review, we describe studies leading up to the identification of the sour receptor as OTOP1, an ion channel that is selectively permeable to protons. We also describe advances in our understanding of how information is transmitted from the taste receptor cells to gustatory neurons, leading to behavioral aversion to acids.
Collapse
Affiliation(s)
- Emily R Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, 3641 Watt Way, Los Angeles, CA 90089, USA
| | - Sue C Kinnamon
- Department of Otolaryngology and Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, 12700 E 19(th) Avenue, Aurora, CO 80045, USA
| |
Collapse
|
42
|
Abstract
All organisms have the ability to detect chemicals in the environment, which likely evolved out of organisms' needs to detect food sources and avoid potentially harmful compounds. The taste system detects chemicals and is used to determine whether potential food items will be ingested or rejected. The sense of taste detects five known taste qualities: bitter, sweet, salty, sour, and umami, which is the detection of amino acids, specifically glutamate. These different taste qualities encompass a wide variety of chemicals that differ in their structure and as a result, the peripheral taste utilizes numerous and diverse mechanisms to detect these stimuli. In this chapter, we will summarize what is currently known about the signaling mechanisms used by taste cells to transduce stimulus signals.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
43
|
Walsh S, Izquierdo-Serra M, Acosta S, Edo A, Lloret M, Moret R, Bosch E, Oliva B, Bertranpetit J, Fernández-Fernández JM. Adaptive selection drives TRPP3 loss-of-function in an Ethiopian population. Sci Rep 2020; 10:20999. [PMID: 33268808 PMCID: PMC7710729 DOI: 10.1038/s41598-020-78081-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/20/2020] [Indexed: 11/15/2022] Open
Abstract
TRPP3 (also called PKD2L1) is a nonselective, cation-permeable channel activated by multiple stimuli, including extracellular pH changes. TRPP3 had been considered a candidate for sour sensor in humans, due to its high expression in a subset of tongue receptor cells detecting sour, along with its membership to the TRP channel family known to function as sensory receptors. Here, we describe the functional consequences of two non-synonymous genetic variants (R278Q and R378W) found to be under strong positive selection in an Ethiopian population, the Gumuz. Electrophysiological studies and 3D modelling reveal TRPP3 loss-of-functions produced by both substitutions. R278Q impairs TRPP3 activation after alkalinisation by mislocation of H+ binding residues at the extracellular polycystin mucolipin domain. R378W dramatically reduces channel activity by altering conformation of the voltage sensor domain and hampering channel transition from closed to open state. Sour sensitivity tests in R278Q/R378W carriers argue against both any involvement of TRPP3 in sour detection and the role of such physiological process in the reported evolutionary positive selection past event.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Mercè Izquierdo-Serra
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Sandra Acosta
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Albert Edo
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - María Lloret
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Roser Moret
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain
| | - Baldo Oliva
- Structural Bioinformatics Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain.
| | - José Manuel Fernández-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
44
|
Ha K, Nobuhara M, Wang Q, Walker RV, Qian F, Schartner C, Cao E, Delling M. The heteromeric PC-1/PC-2 polycystin complex is activated by the PC-1 N-terminus. eLife 2020; 9:60684. [PMID: 33164752 PMCID: PMC7728438 DOI: 10.7554/elife.60684] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Mutations in the polycystin proteins, PC-1 and PC-2, result in autosomal dominant polycystic kidney disease (ADPKD) and ultimately renal failure. PC-1 and PC-2 enrich on primary cilia, where they are thought to form a heteromeric ion channel complex. However, a functional understanding of the putative PC-1/PC-2 polycystin complex is lacking due to technical hurdles in reliably measuring its activity. Here we successfully reconstitute the PC-1/PC-2 complex in the plasma membrane of mammalian cells and show that it functions as an outwardly rectifying channel. Using both reconstituted and ciliary polycystin channels, we further show that a soluble fragment generated from the N-terminal extracellular domain of PC-1 functions as an intrinsic agonist that is necessary and sufficient for channel activation. We thus propose that autoproteolytic cleavage of the N-terminus of PC-1, a hotspot for ADPKD mutations, produces a soluble ligand in vivo. These findings establish a mechanistic framework for understanding the role of PC-1/PC-2 heteromers in ADPKD and suggest new therapeutic strategies that would expand upon the limited symptomatic treatments currently available for this progressive, terminal disease. On the surface of most animal and other eukaryotic cells are small rod-like protrusions known as primary cilia. Each cilium is encased by a specialized membrane which is enriched in protein complexes that help the cell sense its local environment. Some of these complexes help transport ions in out of the cell, while others act as receptors that receive chemical signals called ligands. A unique ion channel known as the polycystin complex is able to perform both of these roles as it contains a receptor called PC-1 in addition to an ion channel called PC-2. Various mutations in the genes that code for PC-1 and PC-2 can result in autosomal dominant polycystic kidney disease (ADPKD), which is the most common monogenetic disease in humans. However, due to the small size of primary cilia – which are less than a thousandth of a millimeter thick – little is known about how polycystin complexes are regulated and how mutations lead to ADPKD. To overcome this barrier, Ha et al. modified kidney cells grown in the lab so that PC-1 and PC-2 form a working channel in the plasma membrane which surrounds the entire cell. As the body of a cell is around 10,000 times bigger than the cilium, this allowed the movement of ions across the polycystin complex to be studied using conventional techniques. Experiments using this newly developed assay revealed that a region at one of the ends of the PC-1 protein, named the C-type lectin domain, is essential for stimulating polycystin complexes. Ha et al. found that this domain of PC-1 is able to cut itself from the protein complex. Further experiments showed that when fragments of PC-1, which contain the C-type lectin domain, are no longer bound to the membrane, they can activate the polycystin channels in cilia as well as the plasma membrane. This suggests that this region of PC-1 may also act as a secreted ligand that can activate other polycystin channels. Some of the genetic mutations that cause ADPKD likely disrupt the activity of the polycystin complex and reduce its ability to transport ions across the cilia membrane. Therefore, the cell assay created in this study could be used to screen for small molecules that can restore the activity of these ion channels in patients with ADPKD.
Collapse
Affiliation(s)
- Kotdaji Ha
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Mai Nobuhara
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Qinzhe Wang
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Rebecca V Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, United States
| | - Christoph Schartner
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Markus Delling
- Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
45
|
Walsh S, Pagani L, Xue Y, Laayouni H, Tyler-Smith C, Bertranpetit J. Positive selection in admixed populations from Ethiopia. BMC Genet 2020; 21:108. [PMID: 33092534 PMCID: PMC7580818 DOI: 10.1186/s12863-020-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.
Collapse
Affiliation(s)
- Sandra Walsh
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010, Tartu, Estonia
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Yali Xue
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Barcelona, Catalonia, Spain
| | - Chris Tyler-Smith
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader, 88 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
46
|
Sjöstrand AE, Sjödin P, Hegay T, Nikolaeva A, Shayimkulov F, Blum MGB, Heyer E, Jakobsson M. Taste perception and lifestyle: insights from phenotype and genome data among Africans and Asians. Eur J Hum Genet 2020; 29:325-337. [PMID: 33005019 DOI: 10.1038/s41431-020-00736-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
Taste is essential for the interaction of animals with their food and has co-evolved with diet. Humans have peopled a large range of environments and present a wide range of diets, but little is known about the diversity and evolution of human taste perception. We measured taste recognition thresholds across populations differing in lifestyles (hunter gatherers and farmers from Central Africa, nomad herders, and farmers from Central Asia). We also generated genome-wide genotype data and performed association studies and selection scans in order to link the phenotypic variation in taste sensitivity with genetic variation. We found that hunter gatherers have lower overall sensitivity as well as lower sensitivity to quinine and fructose than their farming neighbors. In parallel, there is strong population divergence in genes associated with tongue morphogenesis and genes involved in the transduction pathway of taste signals in the African populations. We find signals of recent selection in bitter taste-receptor genes for all four populations. Enrichment analysis on association scans for the various tastes confirmed already documented associations and revealed novel GO terms that are good candidates for being involved in taste perception. Our framework permitted us to gain insight into the genetic basis of taste sensitivity variation across populations and lifestyles.
Collapse
Affiliation(s)
- Agnès E Sjöstrand
- Department Organismal Biology, EBC, Uppsala University, Uppsala, Sweden.,Université Grenoble Alpes, TIMC-IMAG UMR 5525, F-38000, Grenoble, France.,CNRS, TIMC-IMAG, F-38000, Grenoble, France.,Laboratoire d'Eco-Anthropologie UMR7206, CNRS, MNHN, Université de Paris, Paris, France
| | - Per Sjödin
- Department Organismal Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Tatyana Hegay
- Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Anna Nikolaeva
- Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | | | - Michael G B Blum
- Université Grenoble Alpes, TIMC-IMAG UMR 5525, F-38000, Grenoble, France. .,CNRS, TIMC-IMAG, F-38000, Grenoble, France.
| | - Evelyne Heyer
- Laboratoire d'Eco-Anthropologie UMR7206, CNRS, MNHN, Université de Paris, Paris, France.
| | - Mattias Jakobsson
- Department Organismal Biology, EBC, Uppsala University, Uppsala, Sweden. .,Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Abstract
Mouthfeel refers to the physical or textural sensations in the mouth caused by foods and beverages that are essential to the acceptability of many edible products. The sensory subqualities contributing to mouthfeel are often chemogenic in nature and include heat, burning, cooling, tingling, and numbing. These "chemesthetic" sensations are a result of the chemical activation of receptors that are associated with nerve fibers mediating pain and mechanotransduction. Each of these chemesthetic sensations in the oral cavity are transduced in the nervous system by a combination of different molecular channels/receptors expressed on trigeminal nerve fibers that innervate the mouth and tongue. The molecular profile of these channels and receptors involved in mouthfeel include many transient receptor potential channels, proton-sensitive ion channels, and potassium channels to name a few. During the last several years, studies using molecular and physiological approaches have significantly expanded and enhanced our understanding of the neurobiological basis for these chemesthetic sensations. The purpose of the current review is to integrate older and newer studies to present a comprehensive picture of the channels and receptors involved in mouthfeel. We highlight that there still continue to be important gaps in our overall knowledge on flavor integration and perception involving chemesthetic sensations, and these gaps will continue to drive future research direction and future investigation.
Collapse
Affiliation(s)
- Christopher T Simons
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| | - Earl Carstens
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| |
Collapse
|
48
|
Taruno A, Nomura K, Kusakizako T, Ma Z, Nureki O, Foskett JK. Taste transduction and channel synapses in taste buds. Pflugers Arch 2020; 473:3-13. [PMID: 32936320 DOI: 10.1007/s00424-020-02464-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The variety of taste sensations, including sweet, umami, bitter, sour, and salty, arises from diverse taste cells, each of which expresses specific taste sensor molecules and associated components for downstream signal transduction cascades. Recent years have witnessed major advances in our understanding of the molecular mechanisms underlying transduction of basic tastes in taste buds, including the identification of the bona fide sour sensor H+ channel OTOP1, and elucidation of transduction of the amiloride-sensitive component of salty taste (the taste of sodium) and the TAS1R-independent component of sweet taste (the taste of sugar). Studies have also discovered an unconventional chemical synapse termed "channel synapse" which employs an action potential-activated CALHM1/3 ion channel instead of exocytosis of synaptic vesicles as the conduit for neurotransmitter release that links taste cells to afferent neurons. New images of the channel synapse and determinations of the structures of CALHM channels have provided structural and functional insights into this unique synapse. In this review, we discuss the current view of taste transduction and neurotransmission with emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Chemosensory Ion Channels in Peripheral Swallowing-Related Regions for the Management of Oropharyngeal Dysphagia. Int J Mol Sci 2020; 21:E6214. [PMID: 32867366 PMCID: PMC7503421 DOI: 10.3390/ijms21176214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan;
| |
Collapse
|
50
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|