1
|
Isola D, Elazar Z. Phospholipid Supply for Autophagosome Biogenesis. J Mol Biol 2024; 436:168691. [PMID: 38944336 DOI: 10.1016/j.jmb.2024.168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Autophagy is a cellular degradation pathway where double-membrane autophagosomes form de novo to engulf cytoplasmic material destined for lysosomal degradation. This process requires regulated membrane remodeling, beginning with the initial autophagosomal precursor and progressing to its elongation and maturation into a fully enclosed, fusion-capable vesicle. While the core protein machinery involved in autophagosome formation has been extensively studied over the past two decades, the role of phospholipids in this process has only recently been studied. This review focuses on the phospholipid composition of the phagophore membrane and the mechanisms that supply lipids to expand this unique organelle.
Collapse
Affiliation(s)
- Damilola Isola
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Departments of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
2
|
Nguyen TTM, Munkhzul C, Kim J, Kyoung Y, Vianney M, Shin S, Ju S, Pham-Bui HA, Kim J, Kim JS, Lee M. In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary. Development 2023; 150:286990. [PMID: 36762624 DOI: 10.1242/dev.201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are small RNAs that play a conserved role in genome defense. The piRNA processing pathway is dependent on the sequestration of RNA precursors and protein factors in specific subcellular compartments. Therefore, a highly resolved spatial proteomics approach can help identify the local interactions and elucidate the unknown aspects of piRNA biogenesis. Herein, we performed TurboID proximity labeling to investigate the interactome of Zucchini (Zuc), a key factor of piRNA biogenesis in germline cells and somatic follicle cells of the Drosophila ovary. Quantitative mass spectrometry analysis of biotinylated proteins defined the Zuc-proximal proteome, including the well-known partners of Zuc. Many of these were enriched in the outer mitochondrial membrane (OMM), where Zuc was specifically localized. The proximal proteome of Zuc showed a distinct set of proteins compared with that of Tom20, a representative OMM protein, indicating that chaperone function-related and endomembrane system/vesicle transport proteins are previously unreported interacting partners of Zuc. The functional relevance of several candidates in piRNA biogenesis was validated by derepression of transposable elements after knockdown. Our results present potential Zuc-interacting proteins, suggesting unrecognized biological processes.
Collapse
Affiliation(s)
- Thi Thanh My Nguyen
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Choijamts Munkhzul
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeonju Kyoung
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Michele Vianney
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Seonmin Ju
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Junhyung Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
3
|
Wolf A, Tanguy E, Wang Q, Gasman S, Vitale N. Phospholipase D and cancer metastasis: A focus on exosomes. Adv Biol Regul 2023; 87:100924. [PMID: 36272918 DOI: 10.1016/j.jbior.2022.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 03/01/2023]
Abstract
In mammals, phospholipase D (PLD) enzymes involve 6 isoforms, of which only three have established lipase activity to produce the signaling lipid phosphatidic acid (PA). This phospholipase activity has been postulated to contribute to cancer progression for over three decades now, but the exact mechanisms involved have yet to be uncovered. Indeed, using various models, an altered PLD activity has been proposed altogether to increase cell survival rate, promote angiogenesis, boost rapamycin resistance, and favor metastasis. Although for some part, the molecular pathways by which this increase in PA is pro-oncogenic are partially known, the pleiotropic functions of PA make it quite difficult to distinguish which among these simple signaling pathways is responsible for each of these PLD facets. In this review, we will describe an additional potential contribution of PA generated by PLD1 and PLD2 in the biogenesis, secretion, and uptake of exosomes. Those extracellular vesicles are now viewed as membrane vehicles that carry informative molecules able to modify the fate of receiving cells at distance from the original tumor to favor homing of metastasis. The perspectives for a better understanding of these complex role of PLDs will be discussed.
Collapse
Affiliation(s)
- Alexander Wolf
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Emeline Tanguy
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Qili Wang
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
4
|
Tanguy E, Wang Q, Vitale N. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handb Exp Pharmacol 2020; 259:115-130. [PMID: 30570690 DOI: 10.1007/164_2018_180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids play a vital role in numerous cellular functions starting from a structural role as major constituents of membranes to acting as signaling intracellular or extracellular entities. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. On the other side, the exact molecular nature of these beneficial or deleterious lipids, as well as their precise mode of action, is only starting to be unraveled. This recent improvement in our knowledge is largely resulting from novel pharmacological, molecular, cellular, and genetic tools to study lipids in vitro and in vivo. Among these important lipids, phosphatidic acid plays a unique and central role in a great variety of cellular functions. This review will focus on the proposed functions of phosphatidic acid generated by phospholipase D in the last steps of regulated exocytosis with a specific emphasis on hormonal and neurotransmitter release and its potential impact on different neurological diseases.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France.
- INSERM, Paris, Cedex 13, France.
| |
Collapse
|
5
|
Muñoz-Úbeda M, Tolosa-Díaz A, Bhattacharya S, Junquera E, Aicart E, Natale P, López-Montero I. Gemini-Based Lipoplexes Complement the Mitochondrial Phenotype in MFN1-Knockout Mouse Embryonic Fibroblasts. Mol Pharm 2019; 16:4787-4796. [PMID: 31609634 DOI: 10.1021/acs.molpharmaceut.9b00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria form a dynamic network of constantly dividing and fusing organelles. The balance between these antagonistic processes is crucial for normal cellular function and requires the action of specialized proteins. The mitochondrial membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) are responsible for the fusion of the outer membrane of adjacent mitochondria. Mutations within Mfn1 or Mfn2 impair mitochondrial fusion and lead to some severe mitochondrial dysfunctions and mitochondrial diseases (MDs). A characteristic phenotype of cells carrying defective Mfn1 or Mfn2 is the presence of a highly fragmented mitochondrial network. Here, we use a biocompatible mixture of lipids, consisting on synthetic gemini cationic lipids (GCLs) and the zwitterionic phospholipid (DOPE), to complex, transport, and deliver intact copies of MFN1 gene into MFN1-Knockout mouse embryonic fibroblasts (MFN1-KO MEFs). We demonstrate that the GCL/DOPE-DNA lipoplexes are able to introduce the intact MFN1 gene into the cells and ectopically produce functional Mfn1. A four-fold increase of the Mfn1 levels is necessary to revert the MFN1-KO phenotype and to partially restore a mitochondrial network. This phenotype complementation was correlated with the transfection of GCL/DOPE-MFN1 lipoplexes that exhibited a high proportion of highly packaged hexagonal phase. GCL/DOPE-DNA lipoplexes are formulated as efficient therapeutic agents against MDs.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Andrés Tolosa-Díaz
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Elena Junquera
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Emilio Aicart
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Paolo Natale
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
6
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
7
|
Starr ML, Fratti RA. The Participation of Regulatory Lipids in Vacuole Homotypic Fusion. Trends Biochem Sci 2018; 44:546-554. [PMID: 30587414 DOI: 10.1016/j.tibs.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022]
Abstract
In eukaryotes, organelles and vesicles modulate their contents and identities through highly regulated membrane fusion events. Membrane trafficking and fusion are carried out through a series of stages that lead to the formation of SNARE complexes between cellular compartment membranes to trigger fusion. Although the protein catalysts of membrane fusion are well characterized, their response to their surrounding microenvironment, provided by the lipid composition of the membrane, remains to be fully understood. Membranes are composed of bulk lipids (e.g., phosphatidylcholine), as well as regulatory lipids that undergo constant modifications by kinases, phosphatases, and lipases. These lipids include phosphoinositides, diacylglycerol, phosphatidic acid, and cholesterol/ergosterol. Here we describe the roles of these lipids throughout the stages of yeast vacuole homotypic fusion.
Collapse
Affiliation(s)
- Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Miner GE, Starr ML, Hurst LR, Fratti RA. Deleting the DAG kinase Dgk1 augments yeast vacuole fusion through increased Ypt7 activity and altered membrane fluidity. Traffic 2017; 18:315-329. [PMID: 28276191 DOI: 10.1111/tra.12479] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Abstract
Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2 ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2 , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1 Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1 ; however, deleting both genes did not rescue the pah1 Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
9
|
Aufschnaiter A, Kohler V, Diessl J, Peselj C, Carmona-Gutierrez D, Keller W, Büttner S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res 2017; 367:125-140. [PMID: 27449929 PMCID: PMC5203858 DOI: 10.1007/s00441-016-2463-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Jutta Diessl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Didac Carmona-Gutierrez
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Bullen HE, Soldati-Favre D. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa. FEBS Lett 2016; 590:2469-81. [PMID: 27403735 DOI: 10.1002/1873-3468.12296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022]
Abstract
Lipids are commonly known for the structural roles they play, however, the specific contribution of different lipid classes to wide-ranging signalling pathways is progressively being unravelled. Signalling lipids and their associated effector proteins are emerging as significant contributors to a vast array of effector functions within cells, including essential processes such as membrane fusion and vesicle exocytosis. Many phospholipids have signalling capacity, however, this review will focus on phosphatidic acid (PA) and the enzymes implicated in its production from diacylglycerol (DAG) and phosphatidylcholine (PC): DGK and PLD respectively. PA is a negatively charged, cone-shaped lipid identified as a key mediator in specific membrane fusion and vesicle exocytosis events in a variety of mammalian cells, and has recently been implicated in specialised secretory organelle exocytosis in apicomplexan parasites. This review summarises the recent work implicating a role for PA regulation in exocytosis in various cell types. We will discuss how these signalling events are linked to pathogenesis in the phylum Apicomplexa.
Collapse
|
11
|
Starr ML, Hurst LR, Fratti RA. Phosphatidic Acid Sequesters Sec18p from cis-SNARE Complexes to Inhibit Priming. Traffic 2016; 17:1091-109. [PMID: 27364524 DOI: 10.1111/tra.12423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Yeast vacuole fusion requires the activation of cis-SNARE complexes through priming carried out by Sec18p/N-ethylmaleimide sensitive factor and Sec17p/α-SNAP. The association of Sec18p with vacuolar cis-SNAREs is regulated in part by phosphatidic acid (PA) phosphatase production of diacylglycerol (DAG). Inhibition of PA phosphatase activity blocks the transfer of membrane-associated Sec18p to SNAREs. Thus, we hypothesized that Sec18p associates with PA-rich membrane microdomains before transferring to cis-SNARE complexes upon PA phosphatase activity. Here, we examined the direct binding of Sec18p to liposomes containing PA or DAG. We found that Sec18p preferentially bound to liposomes containing PA compared with those containing DAG by approximately fivefold. Additionally, using a specific PA-binding domain blocked Sec18p binding to PA-liposomes and displaced endogenous Sec18p from isolated vacuoles. Moreover, the direct addition of excess PA blocked the priming activity of isolated vacuoles in a manner similar to chemically inhibiting PA phosphatase activity. These data suggest that the conversion of PA to DAG facilitates the recruitment of Sec18p to cis-SNAREs. Purified vacuoles from yeast lacking the PA phosphatase Pah1p showed reduced Sec18p association with cis-SNAREs and complementation with plasmid-encoded PAH1 or recombinant Pah1p restored the interaction. Taken together, this demonstrates that regulating PA concentrations by Pah1p activity controls SNARE priming by Sec18p.
Collapse
Affiliation(s)
- Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
12
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
13
|
Abstract
Mitochondria are highly dynamic organelles that are continuously shaped by the antagonistic fission and fusion processes. The major machineries of mitochondrial fission and fusion, as well as mechanisms that regulate the function of key players in these processes have been analyzed in different experimental systems. In plants however, the mitochondrial fusion machinery is still largely unknown, and the regulatory mechanisms of the fission machinery are just beginning to be elucidated. This review focuses on the molecular mechanisms underlying plant mitochondrial dynamics and regulation of some of the key factors, especially the roles of membrane lipids such as cardiolipin.
Collapse
Affiliation(s)
- Ronghui Pan
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| | - Jianping Hu
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Plant Biology; Michigan State University; East Lansing, MI USA
- Correspondence to: Jianping Hu;
| |
Collapse
|
14
|
Compeer EB, Boes M. MICAL-L1-related and unrelated mechanisms underlying elongated tubular endosomal network (ETEN) in human dendritic cells. Commun Integr Biol 2014; 7:e994969. [PMID: 26478765 PMCID: PMC4594581 DOI: 10.4161/19420889.2014.994969] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 01/03/2023] Open
Abstract
The endosomal pathway constitutes a highly dynamic intracellular transport system, which is composed of vesicular and tubular compartments. Endosomal tubules enable geometry-based discrimination between membrane and luminal content. Extended tubular endosomes were suggested to deliver a steady stream of membrane proteins to one location more reliable and effective than vesicular endosomes. Recently, we demonstrated that human dendritic cells (DCs) form a large elongated tubular endosomal network, e.g. ETEN, upon distinct triggers. LPS-stimulation triggered late endosomal tubulation. Additional clustering of class I MHC and ICAM-1 by a cognate interaction between antigen-laden DC and antigen-specific CD8+ T-cells induces formation of transferrin-positive tubules emanating from the endosomal recycling compartment (ERC). We here discuss cell-biological mechanisms that are involved in membrane bending and possibly underlie initiation, elongation, and stabilization of ETEN in human DCs. Using a knock-down approach we demonstrate that MICAL-L1 is necessary for ETEN remodeling originating from ERC in human DCs.
Collapse
Affiliation(s)
- Ewoud B Compeer
- Department of Pediatrics; Laboratory of Translational Immunology; University Medical Center Utrecht; Wilhelmina Children's Hospital ; Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics; Laboratory of Translational Immunology; University Medical Center Utrecht; Wilhelmina Children's Hospital ; Utrecht, The Netherlands
| |
Collapse
|
15
|
Frohman MA. Role of mitochondrial lipids in guiding fission and fusion. J Mol Med (Berl) 2014; 93:263-9. [PMID: 25471483 DOI: 10.1007/s00109-014-1237-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Clinically important links have been established between mitochondrial function and cardiac physiology and disease in the context of signaling mechanisms, energy production, and muscle cell development. The proteins and processes that drive mitochondrial fusion and fission are now known to have emergent functions in intracellular calcium homeostasis, apoptosis, vascular smooth muscle cell proliferation, myofibril organization, and Notch-driven cell differentiation, all key issues in cardiac disease. Moreover, decreasing fission may confer protection against ischemic heart disease, particularly in the setting of obesity, diabetes, and heart failure. The importance of lipids in controlling mitochondrial fission and fusion is increasingly becoming appreciated. Roles for the bulk and signaling lipids cardiolipin, phosphatidylethanolamine, phosphatidic acid, diacylglycerol, and lysophosphatidic acid and the enzymes that synthesize or metabolize them in the control of mitochondrial shape and function are reviewed here. A number of diseases have been linked to loss-of-function alleles for a subset of the enzymes, emphasizing the importance of the lipid environment in this context.
Collapse
Affiliation(s)
- Michael A Frohman
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA,
| |
Collapse
|
16
|
Boutté Y, Moreau P. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:22-29. [PMID: 25233477 DOI: 10.1016/j.pbi.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 05/11/2023]
Abstract
Membrane lipids are crucial bricks for cell and organelle compartmentalization and their physical properties and interactions with other membrane partners (lipids or proteins) reveal lipids as key actors of the regulation of membrane morphodynamics in many cellular functions and especially in the secretory/retrograde pathways. Studies on membrane models have indicated diverse mechanisms by which membranes bend. Moreover, in vivo studies also indicate that membrane curvature can play crucial roles in the regulation of endomembrane morphodynamics, organelle morphology and transport vesicle formation. A role for enzymes of lipid metabolism and lipid-protein interactions will be discussed as crucial mechanisms in the regulation of membrane morphodynamics in the secretory/retrograde pathways.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, University of Bordeaux, France.
| |
Collapse
|
17
|
Teng S, Stegner D, Chen Q, Hongu T, Hasegawa H, Chen L, Kanaho Y, Nieswandt B, Frohman MA, Huang P. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Mol Biol Cell 2014; 26:506-17. [PMID: 25428992 PMCID: PMC4310741 DOI: 10.1091/mbc.e14-03-0802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phospholipase D1 and its product, phosphatidic acid, facilitate muscle fiber regeneration in vivo and are required by mononuclear myocytes to fuse with nascent myotubes during second-phase myoblast fusion in vitro. Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.
Collapse
Affiliation(s)
- Shuzhi Teng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - David Stegner
- University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Qin Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroshi Hasegawa
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Michael A Frohman
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
18
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Plant phosphoinositides-complex networks controlling growth and adaptation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:759-69. [PMID: 25280638 DOI: 10.1016/j.bbalip.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
Plants differ in many ways from mammals or yeast. However, plants employ phosphoinositides for the regulation of essential cellular functions as do all other eukaryotes. In recent years the plant phosphoinositide system has been linked to the control of cell polarity. Phosphoinositides are also implicated in plant adaptive responses to changing environmental conditions. The current understanding is that plant phosphoinositides control membrane trafficking, ion channels and the cytoskeleton in similar ways as in other eukaryotic systems, but adapted to meet plant cellular requirements and with some plant-specific features. In addition, the formation of soluble inositol polyphosphates from phosphoinositides is important for the perception of important phytohormones, as the relevant receptor proteins contain such molecules as structural cofactors. Overall, the essential nature of phosphoinositides in plants has been established. Still, the complexity of the phosphoinositide networks in plant cells is only emerging and invites further study of its molecular details. This article is part of a special issue entitled Phosphoinositides.
Collapse
|
20
|
Yu H, Rathore SS, Gulbranson DR, Shen J. The N- and C-terminal domains of tomosyn play distinct roles in soluble N-ethylmaleimide-sensitive factor attachment protein receptor binding and fusion regulation. J Biol Chem 2014; 289:25571-80. [PMID: 25063806 DOI: 10.1074/jbc.m114.591487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tomosyn negatively regulates SNARE-dependent exocytic pathways including insulin secretion, GLUT4 exocytosis, and neurotransmitter release. The molecular mechanism of tomosyn, however, has not been fully elucidated. Here, we reconstituted SNARE-dependent fusion reactions in vitro to recapitulate the tomosyn-regulated exocytic pathways. We then expressed and purified active full-length tomosyn and examined how it regulates the reconstituted SNARE-dependent fusion reactions. Using these defined fusion assays, we demonstrated that tomosyn negatively regulates SNARE-mediated membrane fusion by inhibiting the assembly of the ternary SNARE complex. Tomosyn recognizes the t-SNARE complex and prevents its pairing with the v-SNARE, therefore arresting the fusion reaction at a pre-docking stage. The inhibitory function of tomosyn is mediated by its C-terminal domain (CTD) that contains an R-SNARE-like motif, confirming previous studies carried out using truncated tomosyn fragments. Interestingly, the N-terminal domain (NTD) of tomosyn is critical (but not sufficient) to the binding of tomosyn to the syntaxin monomer, indicating that full-length tomosyn possesses unique features not found in the widely studied CTD fragment. Finally, we showed that the inhibitory function of tomosyn is dominant over the stimulatory activity of the Sec1/Munc18 protein in fusion. We suggest that tomosyn uses its CTD to arrest SNARE-dependent fusion reactions, whereas its NTD is required for the recruitment of tomosyn to vesicle fusion sites through syntaxin interaction.
Collapse
Affiliation(s)
- Haijia Yu
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Shailendra S Rathore
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jingshi Shen
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
21
|
Jović M, Kean MJ, Dubankova A, Boura E, Gingras AC, Brill JA, Balla T. Endosomal sorting of VAMP3 is regulated by PI4K2A. J Cell Sci 2014; 127:3745-56. [PMID: 25002402 DOI: 10.1242/jcs.148809] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Specificity of membrane fusion in vesicular trafficking is dependent on proper subcellular distribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNARE complexes are fairly promiscuous in vitro, substantial specificity is achieved in cells owing to the spatial segregation and shielding of SNARE motifs prior to association with cognate Q-SNAREs. In this study, we identified phosphatidylinositol 4-kinase IIα (PI4K2A) as a binding partner of vesicle-associated membrane protein 3 (VAMP3), a small R-SNARE involved in recycling and retrograde transport, and found that the two proteins co-reside on tubulo-vesicular endosomes. PI4K2A knockdown inhibited VAMP3 trafficking to perinuclear membranes and impaired the rate of VAMP3-mediated recycling of the transferrin receptor. Moreover, depletion of PI4K2A significantly decreased association of VAMP3 with its cognate Q-SNARE Vti1a. Although binding of VAMP3 to PI4K2A did not require kinase activity, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) on endosomes significantly delayed VAMP3 trafficking. Modulation of SNARE function by phospholipids had previously been proposed based on in vitro studies, and our study provides mechanistic evidence in support of these claims by identifying PI4K2A and PtdIns4P as regulators of an R-SNARE in intact cells.
Collapse
Affiliation(s)
- Marko Jović
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, NIH, Bethesda, MD 20892, USA
| | - Michelle J Kean
- Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Anne-Claude Gingras
- Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, ON, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada Program in Cell Biology, The Hospital for Sick Children, PGCRL, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Ha EEJ, Frohman MA. Regulation of mitochondrial morphology by lipids. Biofactors 2014; 40:419-24. [PMID: 24771456 PMCID: PMC4146713 DOI: 10.1002/biof.1169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/12/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022]
Abstract
Although great progress has been made in identifying key protein factors that regulate mitochondrial morphology through mediating fission and fusion, signaling lipids are increasingly being recognized as important in the process as well. We review here roles that have been proposed for the signaling and bulk lipids cardiolipin, phosphatidic acid, lysophosphatidic acid, diacylglycerol, and phosphatidylethanolamine and the enzymes that generate or catabolize them in the regulation of mitochondrial morphology in yeast and mammals. Mutations in some of these enzymes are causal in a number of disease settings, highlighting the significance of controlling the lipid environment in this setting.
Collapse
Affiliation(s)
| | - Michael A. Frohman
- Corresponding author: Michael A. Frohman, 438 Center for Molecular Medicine, Stony Brook University, Stony Brook, NY, 11794, , Phone: 631-632-1476, Fax: 631-632-1692
| |
Collapse
|
23
|
Oblozinsky M, Bezakova L, Mansfeld J, Heilmann I, Ulbrich-Hofmann R. Differences in the effect of phosphatidylinositol 4,5-bisphosphate on the hydrolytic and transphosphatidylation activities of membrane-bound phospholipase D from poppy seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 69:39-42. [PMID: 23712013 DOI: 10.1016/j.plaphy.2013.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
The hydrolytic activity of phospholipase D (PLD) yielding phosphatidic acid from phosphatidylcholine and other glycerophospholipids is known to be involved in many cellular processes. In contrast, it is not clear whether the competitive transphosphatidylation activity of PLD catalyzing the head group exchange of phospholipids has a natural function. In poppy seedlings (Papaver somniferum L.) where lipid metabolism and alkaloid synthesis are closely linked, five isoenzymes with different substrate and hydrolysis/transphosphatidylation selectivities have been detected hitherto. A membrane-bound PLD, found in microsomal fractions of poppy seedlings, is active at micromolar concentrations of Ca(2+) ions and needs phosphatidylinositol 4,5-bisphosphate (PIP2) as effector in the hydrolysis of phosphatidylcholine (PC). The optimum PIP2 concentration at 1.2 mol% of the concentration of the substrate PC indicates a specific activation effect. Transphosphatidylation with glycerol, ethanolamine, l-serine, or myo-inositol as acceptor alcohols is also activated by PIP2, however, with an optimum concentration at 0.6-0.9 mol%. In contrast to hydrolysis, a basic transphosphatidylation activity occurs even in the absence of PIP2, suggesting a different fine-tuning of the two competing reactions.
Collapse
Affiliation(s)
- Marek Oblozinsky
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Kalinciakova 8, SK-83232 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
24
|
Yu H, Rathore SS, Shen J. Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor. J Biol Chem 2013; 288:18885-93. [PMID: 23665562 DOI: 10.1074/jbc.m113.465450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
25
|
Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 2013; 24:1176-84. [PMID: 23427263 PMCID: PMC3623638 DOI: 10.1091/mbc.e12-11-0810] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reconstitution of GLUT4 vesicle fusion in a defined fusion system shows that the C2-domain factor Doc2b activates the SNARE-dependent fusion reaction by a calcium- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic release. The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca2+. The stimulatory activity of Doc2b requires intact Ca2+-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca2+- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca2+ sensors may possess divergent mechanisms in regulating vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
26
|
Eaton JM, Mullins GR, Brindley DN, Harris TE. Phosphorylation of lipin 1 and charge on the phosphatidic acid head group control its phosphatidic acid phosphatase activity and membrane association. J Biol Chem 2013; 288:9933-9945. [PMID: 23426360 DOI: 10.1074/jbc.m112.441493] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The lipin gene family encodes a class of Mg(2+)-dependent phosphatidic acid phosphatases involved in the de novo synthesis of phospholipids and triglycerides. Unlike other enzymes in the Kennedy pathway, lipins are not integral membrane proteins, and they need to translocate from the cytosol to intracellular membranes to participate in glycerolipid synthesis. The movement of lipin 1 within the cell is closely associated with its phosphorylation status. Although cellular analyses have demonstrated that highly phosphorylated lipin 1 is enriched in the cytosol and dephosphorylated lipin 1 is found on membranes, the effects of phosphorylation on lipin 1 activity and binding to membranes has not been recapitulated in vitro. Herein we describe a new biochemical assay for lipin 1 using mixtures of phosphatidic acid (PA) and phosphatidylethanolamine that reflects its physiological activity and membrane interaction. This depends on our observation that lipin 1 binding to PA in membranes is highly responsive to the electrostatic charge of PA. The studies presented here demonstrate that phosphorylation regulates the ability of the polybasic domain of lipin 1 to recognize di-anionic PA and identify mTOR as a crucial upstream signaling component regulating lipin 1 phosphorylation. These results demonstrate how phosphorylation of lipin 1 together with pH and membrane phospholipid composition play important roles in the membrane association of lipin 1 and thus the regulation of its enzymatic activity.
Collapse
Affiliation(s)
- James M Eaton
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Garrett R Mullins
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
27
|
Ali WH, Chen Q, Delgiorno KE, Su W, Hall JC, Hongu T, Tian H, Kanaho Y, Di Paolo G, Crawford HC, Frohman MA. Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment. PLoS One 2013; 8:e55325. [PMID: 23383154 PMCID: PMC3557251 DOI: 10.1371/journal.pone.0055325] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/21/2012] [Indexed: 01/01/2023] Open
Abstract
Cell migration and phagocytosis ensue from extracellular-initiated signaling cascades that orchestrate dynamic reorganization of the actin cytoskeleton. The reorganization is mediated by effector proteins recruited to the site of activity by locally-generated lipid second messengers. Phosphatidic acid (PA), a membrane phospholipid generated by multiple enzyme families including Phospholipase D (PLD), has been proposed to function in this role. Here, we show that macrophages prepared from mice lacking either of the classical PLD isoforms PLD1 or PLD2, or wild-type macrophages whose PLD activity has been pharmacologically inhibited, display isoform-specific actin cytoskeleton abnormalities that likely underlie decreases observed in phagocytic capacity. Unexpectedly, PA continued to be detected on the phagosome in the absence of either isoform and even when all PLD activity was eliminated. However, a disorganized phagocytic cup was observed as visualized by imaging PA, F-actin, Rac1, an organizer of the F-actin network, and DOCK2, a Rac1 activator, suggesting that PLD-mediated PA production during phagocytosis is specifically critical for the integrity of the process. The abnormal F-actin reorganization additionally impacted neutrophil migration and extravasation from the vasculature into interstitial tissues. Although both PLD1 and PLD2 were important in these processes, we also observed isoform-specific functions. PLD1-driven processes in particular were observed to be critical in transmigration of macrophages exiting the vasculature during immune responses such as those seen in acute pancreatitis or irritant-induced skin vascularization.
Collapse
Affiliation(s)
- Wahida H. Ali
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Qin Chen
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathleen E. Delgiorno
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Wenjuan Su
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason C. Hall
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Tsunaki Hongu
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Huasong Tian
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Howard C. Crawford
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Frohman
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Tjondrokoesoemo A, Li N, Lin PH, Pan Z, Ferrante CJ, Shirokova N, Brotto M, Weisleder N, Ma J. Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult mammalian skeletal muscle. J Biol Chem 2012; 288:2103-9. [PMID: 23223241 DOI: 10.1074/jbc.m112.425975] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional coupling between inositol (1,4,5)-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) represents a critical component of intracellular Ca(2+) signaling in many excitable cells; however, the role of this mechanism in skeletal muscle remains elusive. In skeletal muscle, RyR-mediated Ca(2+) sparks are suppressed in resting conditions, whereas application of transient osmotic stress can trigger activation of Ca(2+) sparks that are restricted to the periphery of the fiber. Here we show that onset of these spatially confined Ca(2+) sparks involves interaction between activation of IP(3)R and RyR near the sarcolemmal membrane. Pharmacological prevention of IP(3) production or inhibition of IP(3)R channel activity abolishes stress-induced Ca(2+) sparks in skeletal muscle. Although genetic ablation of the type 2 IP(3)R does not appear to affect Ca(2+) sparks in skeletal muscle, specific silencing of the type 1 IP(3)R leads to ablation of stress-induced Ca(2+) sparks. Our data indicate that membrane-delimited signaling involving cross-talk between IP(3)R1 and RyR1 contributes to Ca(2+) spark activation in skeletal muscle.
Collapse
Affiliation(s)
- Andoria Tjondrokoesoemo
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shin J, Zhang P, Wang S, Wu J, Guan Z, Zhong XP. Negative control of mast cell degranulation and the anaphylactic response by the phosphatase lipin1. Eur J Immunol 2012; 43:240-8. [PMID: 23065777 DOI: 10.1002/eji.201242571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/14/2012] [Accepted: 10/10/2012] [Indexed: 11/11/2022]
Abstract
Mast cells play a critical role in the pathogenesis of allergic diseases; however, how mast cell function is regulated is still not well understood. Both phosphatidic acid (PA) and diacylglycerol (DAG) are important secondary messengers involved in mast cell activ-ation. Lipin1 is a phosphatidate phosphatase that hydrolyzes PA to produce DAG, but the role of lipin1 in mast cell function has been thus far unknown. Here we show that lipin1 is an important and selective inhibitor of mast cell degranulation. Lipin1 deficiency enhanced FcεRI-mediated β-hexosaminidase and prostaglandin D2 release from mast cells in vitro and exacerbated the passive systemic anaphylaxis reaction in vivo. Lipin1 deficiency, however, did not exert obvious effects on IL-6 or TNF-α production following FcεRI engagement. FcεRI-induced PKC and SNAP-23 phosphorylation were augmented in the lipin1-deficient mast cells. Moreover, inhibition of PKC activity reduced SNAP-23 phosphorylation and mast cell degranulation in lipin1-deficient mast cells. Together, our findings suggest that lipin1 may negatively control mast cell degranulation and the anaphylactic response through inhibiting the PKC-SNAP-23 pathway.
Collapse
Affiliation(s)
- Jinwook Shin
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
30
|
Thielmann I, Stegner D, Kraft P, Hagedorn I, Krohne G, Kleinschnitz C, Stoll G, Nieswandt B. Redundant functions of phospholipases D1 and D2 in platelet α-granule release. J Thromb Haemost 2012; 10:2361-72. [PMID: 22974101 DOI: 10.1111/j.1538-7836.2012.04924.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet activation and aggregation are crucial for primary hemostasis, but can also result in occlusive thrombus formation. Agonist-induced platelet activation involves different signaling pathways leading to the activation of phospholipases, which produce second messengers. The role of phospholipase C (PLC) in platelet activation is well established, but less is known about the relevance of phospholipase D (PLD). OBJECTIVE AND METHODS The aim of this study was to determine a potential function of PLD2 in platelet physiology. Thus, we investigated the function of PLD2 in platelet signaling and thrombus formation, by generating mice lacking PLD2 or both PLD1 and PLD2. Adhesion, activation and aggregation of PLD-deficient platelets were analyzed in vitro and in vivo. RESULTS Whereas the absence of PLD2 resulted in reduced PLD activity in platelets, it had no detectable effect on the function of the cells in vitro and in vivo. However, the combined deficiency of both PLD isoforms resulted in defective α-granule release and protection in a model of FeCl3 -induced arteriolar thrombosis, effects that were not observed in mice lacking only one PLD isoform. CONCLUSION These results reveal redundant roles of PLD1 and PLD2 in platelet α-granule secretion, and indicate that this may be relevant for pathologic thrombus formation.
Collapse
Affiliation(s)
- I Thielmann
- Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg Department of Neurology, University of Würzburg, Würzburg Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Saito T, Okada S, Nohara A, Tagaya Y, Osaki A, Oh-I S, Takahashi H, Tsuchiya T, Hashimoto K, Satoh T, Yamada M, Pessin JE, Mori M. Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate. PLoS One 2012; 7:e42782. [PMID: 22880106 PMCID: PMC3411842 DOI: 10.1371/journal.pone.0042782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022] Open
Abstract
The insulin responsive Glut4 transport vesicles contain the v-SNARE protein Vamp2 that associate with the plasma membrane t-SNARE protein Syntaxin 4 to drive insulin-stimulated Glut4 translocation in skeletal muscle and adipocytes. The syntaxin 4 interacting protein (Synip) binds to syntaxin 4 in the basal state and dissociates in the insulin-stimulated state allowing for the subsequent binding of Vamp2 containing Glut4 vesicles and fusion with the plasma membrane. In this study, we have found that Synip binds phosphatidylinositol 3,4,5-triphosphate (PIP3), but not phosphatidylinositol 3 phosphate (PIP) or phosphatidylinositol 3,4-biphosphate (PIP2) through the Synip WW domain as deletion of this domain (Synip ΔWW) failed to bind PIP3. Over-expressed Synip ΔWW in 3T3L1 adipocytes reduced the basal levels of Glut4 at the plasma membrane with no effect on the binding to syntaxin 4 in vitro. Subcellular fractionation demonstrated that the amount of Synip ΔWW at the PM was decreased in response to insulin in 3T3L1 adipocytes whereas the amount of Synip WT increased. These data suggest that in the presence of insulin, the dissociated Synip remains anchored to the plasma membrane by binding to PIP3.
Collapse
Affiliation(s)
- Tsugumichi Saito
- Department of Medicine and Molecular science, Gunma University School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Putz EM, Prchal-Murphy M, Simma OA, Forster F, Koenig X, Stockinger H, Piekorz RP, Freissmuth M, Müller M, Sexl V, Zebedin-Brandl E. PI3Kδ is essential for tumor clearance mediated by cytotoxic T lymphocytes. PLoS One 2012; 7:e40852. [PMID: 22808277 PMCID: PMC3396622 DOI: 10.1371/journal.pone.0040852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background PI3Kδ is a lipid kinase of the phosphoinositide 3-kinase class 1A family and involved in early signaling events of leukocytes regulating proliferation, differentiation and survival. Currently, several inhibitors of PI3Kδ are under investigation for the treatment of hematopoietic malignancies. In contrast to the beneficial effect of inhibiting PI3Kδ in tumor cells, several studies reported the requirement of PI3Kδ for the function of immune cells, such as natural killer and T helper cells. Cytotoxic T lymphocytes (CTLs) are essential for tumor surveillance. The scope of this study is to clarify the potential impact of PI3Kδ inhibition on the function of CTLs with emphasis on tumor surveillance. Principal Findings PI3Kδ-deficient mice develop significantly bigger tumors when challenged with MC38 colon adenocarcinoma cells. This defect is accounted for by the fact that PI3Kδ controls the secretory perforin-granzyme pathway as well as the death-receptor pathway of CTL-mediated cytotoxicity, leading to severely diminished cytotoxicity against target cells in vitro and in vivo in the absence of PI3Kδ expression. PI3Kδ-deficient CTLs express low mRNA levels of important components of the cytotoxic machinery, e.g. prf1, grzmA, grzmB, fasl and trail. Accordingly, PI3Kδ-deficient tumor-infiltrating CTLs display a phenotype reminiscent of naïve T cells (CD69lowCD62Lhigh). In addition, electrophysiological capacitance measurements confirmed a fundamental degranulation defect of PI3Kδ−/− CTLs. Conclusion Our results demonstrate that CTL-mediated tumor surveillance is severely impaired in the absence of PI3Kδ and predict that impaired immunosurveillance may limit the effectiveness of PI3Kδ inhibitors in long-term treatment.
Collapse
Affiliation(s)
- Eva Maria Putz
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim JY, Choi BK, Choi MG, Kim SA, Lai Y, Shin YK, Lee NK. Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO J 2012; 31:2144-55. [PMID: 22407297 DOI: 10.1038/emboj.2012.57] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/08/2012] [Indexed: 12/20/2022] Open
Abstract
Synaptotagmin-1 (Syt1) is a major Ca(2+) sensor for synchronous neurotransmitter release, which requires vesicle fusion mediated by SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors). Syt1 utilizes its diverse interactions with target membrane (t-) SNARE, SNAREpin, and phospholipids, to regulate vesicle fusion. To dissect the functions of Syt1, we apply a single-molecule technique, alternating-laser excitation (ALEX), which is capable of sorting out subpopulations of fusion intermediates and measuring their kinetics in solution. The results show that Syt1 undergoes at least three distinct steps prior to lipid mixing. First, without Ca(2+), Syt1 mediates vesicle docking by directly binding to t-SNARE/phosphatidylinositol 4,5-biphosphate (PIP(2)) complex and increases the docking rate by 10(3) times. Second, synaptobrevin-2 binding to t-SNARE displaces Syt1 from SNAREpin. Third, with Ca(2+), Syt1 rebinds to SNAREpin, which again requires PIP(2). Thus without Ca(2+), Syt1 may bring vesicles to the plasma membrane in proximity via binding to t-SNARE/PIP(2) to help SNAREpin formation and then, upon Ca(2+) influx, it may rebind to SNAREpin, which may trigger synchronous fusion. The results show that ALEX is a powerful method to dissect multiple kinetic steps in the vesicle fusion pathway.
Collapse
Affiliation(s)
- Jae-Yeol Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Žárský V, Potocký M. Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco. FRONTIERS IN PLANT SCIENCE 2012; 3:54. [PMID: 22639652 PMCID: PMC3355619 DOI: 10.3389/fpls.2012.00054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/29/2012] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an important intermediate in membrane lipid metabolism that acts as a key component of signaling networks, regulating the spatio-temporal dynamics of the endomembrane system and the cytoskeleton. Using tobacco pollen tubes as a model, we addressed the signaling effects of PA by probing the functions of three most relevant enzymes that regulate the production and degradation of PA, namely, phospholipases D (PLD), diacylglycerol kinases (DGKs), and lipid phosphate phosphatases (LPPs). Phylogenetic analysis indicated a highly dynamic evolution of all three lipid-modifying enzymes in land plants, with many clade-specific duplications or losses and massive diversification of the C2-PLD family. In silico transcriptomic survey revealed increased levels of expression of all three PA-regulatory genes in pollen development (particularly the DGKs). Using specific inhibitors we were able to distinguish the contributions of PLDs, DGKs, and LPPs into PA-regulated processes. Thus, suppressing PA production by inhibiting either PLD or DGK activity compromised membrane trafficking except early endocytosis, disrupted tip-localized deposition of cell wall material, especially pectins, and inhibited pollen tube growth. Conversely, suppressing PA degradation by inhibiting LPP activity using any of three different inhibitors significantly stimulated pollen tube growth, and similar effect was achieved by suppressing the expression of tobacco pollen LPP4 using antisense knock-down. Interestingly, inhibiting specifically DGK changed vacuolar dynamics and the morphology of pollen tubes, whereas inhibiting specifically PLD disrupted the actin cytoskeleton. Overall, our results demonstrate the critical importance of all three types of enzymes involved in PA production and degradation, with strikingly different roles of PA produced by the PLD and DGK pathways, in pollen tube growth.
Collapse
Affiliation(s)
- Roman Pleskot
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Radek Bezvoda
- Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Irene K. Lichtscheidl
- Core Facility of Cell Imaging and Ultrastructure Research, University of ViennaVienna, Austria
| | - Mieke Wolters-Arts
- Department of Molecular Plant Physiology, Institute for Wetland and Water Research, Radboud University NijmegenNijmegen, Netherlands
| | - Jan Marc
- School of Biological Sciences, University of SydneySydney, NSW, Australia
| | - Viktor Žárský
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech RepublicPrague, Czech Republic
- *Correspondence: Martin Potocký, Laboratory of Cell Biology, Institute of Experimental Botany AS CR, v.v.i., Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Lysolaje, Czech Republic. e-mail:
| |
Collapse
|
35
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
36
|
Abstract
Mitochondria are dynamic organelles that frequently undergo fusion and fission, the balance of which is critical for proper cellular functioning and viability. Most studies on mitochondrial fusion and fission mechanisms have focused on proteins thought to physically mediate the events. However, dynamic changes in membrane phospholipids also play roles in facilitating the fusion and fission events. This chapter will review the importance of lipids in mitochondrial dynamics and some of the methods that can be used to study the function of lipids in mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
37
|
Abstract
A role for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in membrane fusion was originally identified for regulated dense-core vesicle exocytosis in neuroendocrine cells. Subsequent studies demonstrated essential roles for PI(4,5)P(2) in regulated synaptic vesicle and constitutive vesicle exocytosis. For regulated dense-core vesicle exocytosis, PI(4,5)P(2) appears to be primarily required for priming, a stage in vesicle exocytosis that follows vesicle docking and precedes Ca(2) (+)-triggered fusion. The priming step involves the organization of SNARE protein complexes for fusion. A central issue concerns the mechanisms by which PI(4,5)P(2) exerts an essential role in membrane fusion events at the plasma membrane. The observed microdomains of PI(4,5)P(2) in the plasma membrane of neuroendocrine cells at fusion sites has suggested possible direct effects of the phosphoinositide on membrane curvature and tension. More likely, PI(4,5)P(2) functions in vesicle exocytosis as in other cellular processes to recruit and activate PI(4,5)P(2)-binding proteins. CAPS and Munc13 proteins, which bind PI(4,5)P(2) and function in vesicle priming to organize SNARE proteins, are key candidates as effectors for the role of PI(4,5)P(2) in vesicle priming. Consistent with roles prior to fusion that affect SNARE function, subunits of the exocyst tethering complex involved in constitutive vesicle exocytosis also bind PI(4,5)P(2). Additional roles for PI(4,5)P(2) in fusion pore dilation have been described, which may involve other PI(4,5)P(2)-binding proteins such as synaptotagmin. Lastly, the SNARE proteins that mediate exocytic vesicle fusion contain highly basic membrane-proximal domains that interact with acidic phospholipids that likely affect their function.
Collapse
Affiliation(s)
- Thomas F J Martin
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, 53706, Madison, WI, U.S.A,
| |
Collapse
|
38
|
Abstract
All cells complete cell division by the process of cytokinesis. At the end of mitosis, eukaryotic cells accurately mark the site of division between the replicated genetic material and assemble a contractile ring comprised of myosin II, actin filaments and other proteins, which is attached to the plasma membrane. The myosin-actin interaction drives constriction of the contractile ring, forming a cleavage furrow (the so-called 'purse-string' model of cytokinesis). After furrowing is completed, the cells remain attached by a thin cytoplasmic bridge, filled with two anti-parallel arrays of microtubules with their plus-ends interdigitating in the midbody region. The cell then assembles the abscission machinery required for cleavage of the intercellular bridge, and so forms two genetically identical daughter cells. We now know much of the molecular detail of cytokinesis, including a list of potential genes/proteins involved, analysis of the function of some of these proteins, and the temporal order of their arrival at the cleavage site. Such studies reveal that membrane trafficking and/or remodelling appears to play crucial roles in both furrowing and abscission. In the present review, we assess studies of vesicular trafficking during cytokinesis, discuss the role of the lipid components of the plasma membrane and endosomes and their role in cytokinesis, and describe some novel molecules implicated in cytokinesis. The present review covers experiments performed mainly on tissue culture cells. We will end by considering how this mechanistic insight may be related to cytokinesis in other systems, and how other forms of cytokinesis may utilize similar aspects of the same machinery.
Collapse
|
39
|
Holden NJ, Savage COS, Young SP, Wakelam MJ, Harper L, Williams JM. A dual role for diacylglycerol kinase generated phosphatidic acid in autoantibody-induced neutrophil exocytosis. Mol Med 2011; 17:1242-52. [PMID: 21833457 DOI: 10.2119/molmed.2011.00028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Dysregulated release of neutrophil azurophilic granules causes increased tissue damage and amplified inflammation during autoimmune disease. Antineutrophil cytoplasmic antibodies (ANCAs) are implicated in the pathogenesis of small vessel vasculitis and promote adhesion and exocytosis in neutrophils. ANCAs activate specific signal transduction pathways in neutrophils that have the potential to be modulated therapeutically to prevent neutrophil activation by ANCAs. We have investigated a role for diacylglycerol kinase (DGK) and its downstream product phosphatidic acid (PA) in ANCA-induced neutrophil exocytosis. Neutrophils incubated with the DGK inhibitor R59022, before treatment with ANCAs, exhibited a reduced capacity to release their azurophilic granules, demonstrated by a component release assay and flow cytometry. PA restored azurophilic granule release in DGK-inhibited neutrophils. Confocal microscopy revealed that R59022 did not inhibit translocation of granules, indicating a role for DGK during the process of granule fusion at the plasma membrane. In investigating possible mechanisms by which PA promotes neutrophil exocytosis, we demonstrated that exocytosis can only be restored in R59022-treated cells through simultaneous modulation of membrane fusion and increasing cytosolic calcium. PA and its associated pathways may represent viable drug targets to reduce tissue injury associated with ANCA-associated vasculitic diseases and other neutrophilic inflammatory disorders.
Collapse
Affiliation(s)
- Neil J Holden
- Renal Immunobiology, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Neumann S, Langosch D. Conserved conformational dynamics of membrane fusion protein transmembrane domains and flanking regions indicated by sequence statistics. Proteins 2011; 79:2418-27. [DOI: 10.1002/prot.23063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/26/2011] [Accepted: 04/19/2011] [Indexed: 11/07/2022]
|
41
|
Rathore SS, Ghosh N, Ouyang Y, Shen J. Topological arrangement of the intracellular membrane fusion machinery. Mol Biol Cell 2011; 22:2612-9. [PMID: 21633111 PMCID: PMC3135485 DOI: 10.1091/mbc.e11-03-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The topology of the SNARE complex is strictly restricted: of all the possible topological combinations, only one is fusogenic—the topology compatible with both the basal fusion and the SM activation. A fusogenic SNARE complex must contain a complete set of the QabcR SNARE helices. Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.
Collapse
Affiliation(s)
- Shailendra S Rathore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
42
|
Moss TJ, Daga A, McNew JA. Fusing a lasting relationship between ER tubules. Trends Cell Biol 2011; 21:416-23. [PMID: 21550242 DOI: 10.1016/j.tcb.2011.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
Abstract
Atlastin is an integral membrane GTPase localized to the endoplasmic reticulum (ER). In vitro and in vivo analyses indicate that atlastin is a membrane fusogen capable of driving membrane fusion, suggesting a role in ER structure and maintenance. Interestingly, mutations in the human atlastin-1 gene, SPG3A, cause a form of autosomal dominant hereditary spastic paraplegia (HSP). The etiology of HSP is unclear, but two predominant forms of the disorder are caused by mutant proteins that affect ER structure, formation and maintenance in motor neurons. In this review, we describe the current knowledge about the molecular mechanism of atlastin function and its potential role in HSP. Greater understanding of the function of atlastin and associated proteins should provide important insight into normal ER biogenesis and maintenance, as well as the pathology of disease.
Collapse
Affiliation(s)
- Tyler J Moss
- Department of Biochemistry and Cell Biology, Rice University, MS601, Houston, TX 77005, USA
| | | | | |
Collapse
|
43
|
Ul-Rehman R, Silva PA, Malhó R. Localization of Arabidopsis SYP125 syntaxin in the plasma membrane sub-apical and distal zones of growing pollen tubes. PLANT SIGNALING & BEHAVIOR 2011; 6:665-70. [PMID: 21499026 PMCID: PMC3172833 DOI: 10.4161/psb.6.5.14423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 05/07/2023]
Abstract
Tip growth in pollen tubes occurs by continuous vesicle secretion and delivery of new wall material, but the exact sub-cellular location of endocytic and exocytic domains remains unclear. Here we studied the localization of the Arabidopsis thaliana pollen specific syntaxin SYP125 using GFP-fusion constructs expressed in Nicotiana tobaccum pollen tubes. In agreement with the predicted role for syntaxins, SYP125 was found to be associated with the plasma membrane and apical vesicles in growing cells. At the plasma membrane, SYP125 was asymmetrically localized with a higher labeling 20-35 μm behind the apex, a distribution which is distinct from SYP124, another pollen-specific syntaxin. Competition with a related dominant negative mutant affected the specific distribution of SYP125 but not tip growth. Co-expression of the phosphatidylinositol-4-monophosphate-5-kinase 4 (PIP5K4) or of the small GTPase Rab11 perturbed polarity and the normal distribution of GFP-SYP but did not inhibit the accumulation in vesicles or at the plasma membrane. Taken together, our results corroborates previous observations that in normal growing pollen tubes, the asymmetric distribution of syntaxins helps to define exocytic sub-domains but requires the involvement of additional signaling and functional mechanisms, namely phosphoinositides and small GTPases. The localization of syntaxins at different membrane domains likely depends on the interaction with specific partners not yet identified.
Collapse
Affiliation(s)
- Reiaz Ul-Rehman
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Lisbon, Portugal
| | | | | |
Collapse
|
44
|
Huang P, Yeku O, Zong H, Tsang P, Su W, Yu X, Teng S, Osisami M, Kanaho Y, Pessin JE, Frohman MA. Phosphatidylinositol-4-phosphate-5-kinase alpha deficiency alters dynamics of glucose-stimulated insulin release to improve glucohomeostasis and decrease obesity in mice. Diabetes 2011; 60:454-63. [PMID: 21270258 PMCID: PMC3028345 DOI: 10.2337/db10-0614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Phosphatidylinositol-4-phosphate-5-kinase (PI4P5K) has been proposed to facilitate regulated exocytosis and specifically insulin secretion by generating phosphatidylinositol-4,5-bisphosphate (PIP(2)). We sought to examine the role of the α isoform of PI4P5K in glucohomeostasis and insulin secretion. RESEARCH DESIGN AND METHODS The response of PI4P5Kα(-/-) mice to glucose challenge and a type 2-like diabetes-inducing high-fat diet was examined in vivo. Glucose-stimulated responses and PI4P5Kα(-/-) pancreatic islets and β-cells were characterized in culture. RESULTS We show that PI4P5Kα(-/-) mice exhibit increased first-phase insulin release and improved glucose clearance, and resist high-fat diet-induced development of type 2-like diabetes and obesity. PI4P5Kα(-/-) pancreatic islets cultured in vitro exhibited decreased numbers of insulin granules docked at the plasma membrane and released less insulin under quiescent conditions, but then secreted similar amounts of insulin on glucose stimulation. Stimulation-dependent PIP(2) depletion occurred on the plasma membrane of the PI4P5Kα(-/-) pancreatic β-cells, accompanied by a near-total loss of cortical F-actin, which was already decreased in the PI4P5Kα(-/-) β-cells under resting conditions. CONCLUSIONS Our findings suggest that PI4P5Kα plays a complex role in restricting insulin release from pancreatic β-cells through helping to maintain plasma membrane PIP(2) levels and integrity of the actin cytoskeleton under both basal and stimulatory conditions. The increased first-phase glucose-stimulated release of insulin observed on the normal diet may underlie the partial protection against the elevated serum glucose and obesity seen in type 2 diabetes-like model systems.
Collapse
Affiliation(s)
- Ping Huang
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Oladapo Yeku
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York
- Medical Scientist Training Program, Stony Brook University, Stony Brook, New York
| | - Haihong Zong
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Phyllis Tsang
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Wenjuan Su
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York
| | - Xiao Yu
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Shuzhi Teng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mary Osisami
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jeffrey E. Pessin
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
| | - Michael A. Frohman
- Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Department of Pharmacology, Stony Brook University, Stony Brook, New York
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York
- Program in Genetics, Stony Brook University, Stony Brook, New York
- Corresponding author: Michael A. Frohman,
| |
Collapse
|
45
|
Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. PLANT CELL REPORTS 2011; 30:177-193. [PMID: 21120657 DOI: 10.1007/s00299-010-0954-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The role of lipids as molecular actors of protein transport and organelle morphology in plant cells has progressed over the last years through pharmacological and genetic investigations. The manuscript is reviewing the roles of various lipid families in membrane dynamics and trafficking in eukaryotic cells, and summarizes some of the related physicochemical properties of the lipids involved. The article also focuses on the specific requirements of the sphingolipid glucosylceramide (GlcCer) in Golgi morphology and protein transport through the plant secretory pathway. The use of a specific inhibitor of plant glucosylceramide synthase and selected Arabidopsis thaliana RNAi lines stably expressing several markers of the plant secretory pathway, establishes specific steps sensitive to GlcCer biosynthesis. Collectively, data of the literature demonstrate the existence of links between protein trafficking, organelle morphology, and lipid metabolism/homeostasis in eukaryotic cells including plant cells.
Collapse
Affiliation(s)
- Su Melser
- Laboratoire de Biogenèse Membranaire, UMR 5200 Université Bordeaux 2-CNRS, Université Bordeaux 2, case 92, 146 rue Léo-Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nikolaus J, Warner JM, O'Shaughnessy B, Herrmann A. The pathway to membrane fusion through hemifusion. CURRENT TOPICS IN MEMBRANES 2011; 68:1-32. [PMID: 21771493 DOI: 10.1016/b978-0-12-385891-7.00001-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jörg Nikolaus
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt-University Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
47
|
Lorente-Rodríguez A, Barlowe C. Requirement for Golgi-localized PI(4)P in fusion of COPII vesicles with Golgi compartments. Mol Biol Cell 2010; 22:216-29. [PMID: 21119004 PMCID: PMC3020917 DOI: 10.1091/mbc.e10-04-0317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The role of specific membrane lipids in ER-Golgi transport is unclear. Using cell-free assays that measure stages in ER-Golgi transport, a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands were screened. The results indicate that PI(4)P is required for SNARE-dependent fusion of COPII vesicles with the Golgi complex. The role of specific membrane lipids in transport between endoplasmic reticulum (ER) and Golgi compartments is poorly understood. Using cell-free assays that measure stages in ER-to-Golgi transport, we screened a variety of enzyme inhibitors, lipid-modifying enzymes, and lipid ligands to investigate requirements in yeast. The pleckstrin homology (PH) domain of human Fapp1, which binds phosphatidylinositol-4-phosphate (PI(4)P) specifically, was a strong and specific inhibitor of anterograde transport. Analysis of wild type and mutant PH domain proteins in addition to recombinant versions of the Sac1p phosphoinositide-phosphatase indicated that PI(4)P was required on Golgi membranes for fusion with coat protein complex II (COPII) vesicles. PI(4)P inhibition did not prevent vesicle tethering but significantly reduced formation of soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes between vesicle and Golgi SNARE proteins. Moreover, semi-intact cell membranes containing elevated levels of the ER-Golgi SNARE proteins and Sly1p were less sensitive to PI(4)P inhibitors. Finally, in vivo analyses of a pik1 mutant strain showed that inhibition of PI(4)P synthesis blocked anterograde transport from the ER to early Golgi compartments. Together, the data presented here indicate that PI(4)P is required for the SNARE-dependent fusion stage of COPII vesicles with the Golgi complex.
Collapse
|
48
|
Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N. Lipid dynamics in exocytosis. Cell Mol Neurobiol 2010; 30:1335-42. [PMID: 21080057 DOI: 10.1007/s10571-010-9577-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/02/2010] [Indexed: 11/27/2022]
Abstract
Regulated exocytosis of neurotransmitter- and hormone-containing vesicles underpins neuronal and hormonal communication and relies on a well-orchestrated series of molecular interactions. This in part involves the upstream formation of a complex of SNAREs and associated proteins leading to the eventual fusion of the vesicle membrane with the plasma membrane, a process that enables content release. Although the role of lipids in exocytosis is intuitive, it has long been overlooked at least compared to the extensive work on SNAREs. Here, we will present the latest advances in this rapidly developing field revealing that lipids actually play an active role in exocytosis by focusing on cholesterol, 3'-phosphorylated phosphoinositides and phosphatidic acid.
Collapse
Affiliation(s)
- S Chasserot-Golaz
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR-3212), Centre National de Recherche Scientifique, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
49
|
Ji H, Coleman J, Yang R, Melia TJ, Rothman JE, Tareste D. Protein determinants of SNARE-mediated lipid mixing. Biophys J 2010; 99:553-60. [PMID: 20643074 DOI: 10.1016/j.bpj.2010.04.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 01/14/2023] Open
Abstract
Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE)-mediated lipid mixing can be efficiently recapitulated in vitro by the incorporation of purified vesicle membrane (-v) SNARE and target membrane (t-) SNARE proteins into separate liposome populations. Despite the strong correlation between the observed activities in this system and the known SNARE physiology, some recent works have suggested that SNARE-mediated lipid mixing may be limited to circumstances where membrane defects arise from artifactual reconstitution conditions (such as nonphysiological high-protein concentrations or unrealistically small liposome populations). Here, we show that the previously published strategies used to reconstitute SNAREs into liposomes do not significantly affect either the physical parameters of the proteoliposomes or the ability of SNAREs to drive lipid mixing in vitro. The surface density of SNARE proteins turns out to be the most critical parameter, which controls both the rate and the extent of SNARE-mediated liposome fusion. In addition, the specific activity of the t-SNARE complex is significantly influenced by expression and reconstitution protocols, such that we only observe optimal lipid mixing when the t-SNARE proteins are coexpressed before purification.
Collapse
Affiliation(s)
- Hong Ji
- Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
50
|
Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 2010; 26:115-36. [PMID: 20521906 DOI: 10.1146/annurev-cellbio-100109-104131] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although fusion mechanisms are highly conserved in evolution and among organelles of the exocytic and endocytic pathways, yeast vacuole homotypic fusion offers unique technical advantages: excellent genetics, clear organelle cytology, in vitro colorimetric fusion assays, and reconstitution of fusion from all-pure components, including a Rab GTPase, HOPS (homotypic fusion and vacuole protein sorting complex), four SNAREs [soluble N-ethylmaleimide-sensitive factor (NSF) attachment receptors] that snare (bind) each other, SNARE-complex disassembly chaperones, and vacuolar lipids. Vacuole fusion studies offer paradigms of the interdependence of lipids and fusion proteins to assemble a fusion microdomain, distinct lipid functions, SNARE complex proofreading through the synergy between HOPS and the SNARE disassembly chaperones, and the role of each fusion protein in promoting radical bilayer restructuring for fusion without lysis.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA.
| |
Collapse
|