1
|
Ren J, Xu G, Liu H, He N, Zhao Z, Wang M, Gu P, Chen Z, Deng Y, Wu D, Li S. A Chamber-Based Digital PCR Based on a Microfluidic Chip for the Absolute Quantification and Analysis of KRAS Mutation. BIOSENSORS 2023; 13:778. [PMID: 37622864 PMCID: PMC10452697 DOI: 10.3390/bios13080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
The Kirsten rat sarcoma virus gene (KRAS) is the most common tumor in human cancer, and KRAS plays an important role in the growth of tumor cells. Normal KRAS inhibits tumor cell growth. When mutated, it will continuously stimulate cell growth, resulting in tumor development. There are currently few drugs that target the KRAS gene. Here, we developed a microfluidic chip. The chip design uses parallel fluid channels combined with cylindrical chamber arrays to generate 20,000 cylindrical microchambers. The microfluidic chip designed by us can be used for the microsegmentation of KRAS gene samples. The thermal cycling required for the PCR stage is performed on a flat-panel instrument and detected using a four-color fluorescence system. "Glass-PDMS-glass" sandwich structure effectively reduces reagent volatilization; in addition, a valve is installed at the sample inlet and outlet on the upper layer of the chip to facilitate automatic control. The liquid separation performance of the chip was verified by an automated platform. Finally, using the constructed KRAS gene mutation detection system, it is verified that the chip has good application potential for digital polymerase chain reaction (dPCR). The experimental results show that the chip has a stable performance and can achieve a dynamic detection range of four orders of magnitude and a gene mutation detection of 0.2%. In addition, the four-color fluorescence detection system developed based on the chip can distinguish three different KRAS gene mutation types simultaneously on a single chip.
Collapse
Affiliation(s)
- Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Gangwei Xu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhehao Zhao
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Peipei Gu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
| | - Dongping Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
- Hunan Shengzhou Biotechnology Company Limited, Shanghai 200439, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (J.R.)
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
2
|
Xu D, Zhang W, Li H, Li N, Lin JM. Advances in droplet digital polymerase chain reaction on microfluidic chips. LAB ON A CHIP 2023; 23:1258-1278. [PMID: 36752545 DOI: 10.1039/d2lc00814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The PCR technique has been known to the general public since the pandemic outbreak of COVID-19. This technique has progressed through three stages: from simple PCR to real-time fluorescence PCR to digital PCR. Among them, the microfluidic-based droplet digital PCR technique has attracted much attention and has been widely applied due to its advantages of high throughput, high sensitivity, low reagent consumption, low cross-contamination, and absolute quantification ability. In this review, we introduce various designs of microfluidic-based ddPCR developed within the last decade. The microfluidic-based droplet generation methods, thermal cycle strategies, and signal counting approaches are described, and the applications in the fields of single-cell analysis, disease diagnosis, and pathogen detection are introduced. Further, the challenges and prospects of microfluidic-based ddPCR are discussed. We hope that this review can contribute to the further development of the microfluidic-based ddPCR technique.
Collapse
Affiliation(s)
- Danfeng Xu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Weifei Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China.
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), China.
| |
Collapse
|
3
|
Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci 2023; 24:ijms24032943. [PMID: 36769267 PMCID: PMC9918030 DOI: 10.3390/ijms24032943] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yang
- Correspondence: (B.Y.); (Y.-B.L.)
| | - Yu-Bo Li
- Correspondence: (B.Y.); (Y.-B.L.)
| |
Collapse
|
4
|
Loskyll M, Podbiel D, Guber A, Hoffmann J. Partitioning and subsampling statistics in compartment-based quantification methods. PLoS One 2023; 18:e0285784. [PMID: 37186607 PMCID: PMC10184943 DOI: 10.1371/journal.pone.0285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
The precision of compartment-based quantification methods is subject to multiple effects, of which partitioning and subsampling play a major role. Partitioning is the process of aliquoting the sample liquid and consequently the contained target molecules, whereas subsampling denotes the fact that usually only a portion of a sample is analyzed. In this work, we present a detailed statistical description comprising the effects of partitioning and subsampling on the relative uncertainty of the test result. We show that the state-of-the-art binomial model does not provide accurate results for the level of subsampling present when analyzing the nucleic acid content of single specific cells. Hence, in this work we address partitioning and subsampling effects separately and subsequently combine them to derive the relative uncertainty of a test system and compare it for single cell content analysis and body fluid analysis. In point-of-care test systems the area for partitioning and detection is usually limited, which means that a trade-off between the number of partitions (related to a partitioning uncertainty) and the amount of analyzed volume (related to a subsampling uncertainty) might be inevitable. In case of low target concentration, the subsampling uncertainty is dominant whereas for high target concentration, the partitioning uncertainty increases, and a larger number of partitions is beneficial to minimize the combined uncertainty. We show, that by minimizing the subsampling uncertainty in the test system, the quantification uncertainty of low target concentrations in single cell content analysis is much smaller than in body fluid analysis. In summary, the work provides the methodological basis for a profound statistical evaluation of partitioning and subsampling effects in compartment-based quantification methods and paves the way towards an improved design of future digital quantification devices for highly accurate molecular diagnostic analysis at the point-of-care.
Collapse
Affiliation(s)
- Manuel Loskyll
- Advanced Technologies and Microsystems, Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Renningen, Baden-Württemberg, Germany
| | - Daniel Podbiel
- Advanced Technologies and Microsystems, Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Renningen, Baden-Württemberg, Germany
| | - Andreas Guber
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Baden-Württemberg, Germany
- BioMEMS Consulting, Karlsruhe, Baden-Württemberg, Germany
| | - Jochen Hoffmann
- Advanced Technologies and Microsystems, Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Renningen, Baden-Württemberg, Germany
| |
Collapse
|
5
|
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a new quantitative PCR method based on water-oil emulsion droplet technology. ddPCR enables highly sensitive and accurate quantification of nucleic acid molecules, especially when their copy numbers are low. In ddPCR, a sample is fractionated into ~20,000 droplets, and every nanoliter-sized droplet undergoes PCR amplification of the target molecule. The fluorescence signals of droplets are then recorded by an automated droplet reader. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitously expressed in animals and plants. CircRNAs are promising as biomarkers for cancer diagnosis and prognosis and as therapeutic targets or agents to inhibit oncogenic microRNAs or proteins (Kristensen LS, Jakobsen T, Hager H, Kjems J, Nat Rev Clin Oncol 19:188-206, 2022). In this chapter, the procedures for the quantitation of a circRNA in single pancreatic cancer cells using ddPCR are described.
Collapse
Affiliation(s)
- Jiayi Peng
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Feng Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangdong Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Shen Hu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Shum EY, Lai JH, Li S, Lee HG, Soliman J, Raol VK, Lee CK, Fodor SP, Fan HC. Next-Generation Digital Polymerase Chain Reaction: High-Dynamic-Range Single-Molecule DNA Counting via Ultrapartitioning. Anal Chem 2022; 94:17868-17876. [PMID: 36508568 PMCID: PMC9798378 DOI: 10.1021/acs.analchem.2c03649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Digital PCR (dPCR) was first conceived for single-molecule quantitation. However, current dPCR systems often require DNA templates to share partitions due to limited partitioning capacities. Here, we introduce UltraPCR, a next-generation dPCR system where DNA counting is performed in a single-molecule regimen through a 6-log dynamic range using a swift and parallelized workflow. Each UltraPCR reaction is divided into >30 million partitions without microfluidics to achieve single template occupancy. Combined with a unique emulsion chemistry, partitions are optically clear, enabling the use of a three-dimensional imaging technique to rapidly detect DNA-positive partitions. Single-molecule occupancy also allows for more straightforward multiplex assay development due to the absence of partition-specific competition. As a proof of concept, we developed a 222-plex UltraPCR assay and demonstrated its potential use as a rapid, low-cost screening assay for noninvasive prenatal testing for as low as 4% trisomy fraction samples with high precision, accuracy, and reproducibility.
Collapse
|
7
|
Tiwari A, Ahmed W, Oikarinen S, Sherchan SP, Heikinheimo A, Jiang G, Simpson SL, Greaves J, Bivins A. Application of digital PCR for public health-related water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155663. [PMID: 35523326 DOI: 10.1016/j.scitotenv.2022.155663] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Digital polymerase chain reaction (dPCR) is emerging as a reliable platform for quantifying microorganisms in the field of water microbiology. This paper reviews the fundamental principles of dPCR and its application for health-related water microbiology. The relevant literature indicates increasing adoption of dPCR for measuring fecal indicator bacteria, microbial source tracking marker genes, and pathogens in various aquatic environments. The adoption of dPCR has accelerated recently due to increasing use for wastewater surveillance of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) - the virus that causes Coronavirus Disease 2019 (COVID-19). The collective experience in the scientific literature indicates that well-optimized dPCR assays can quantify genetic material from microorganisms without the need for a calibration curve and often with superior analytical performance (i.e., greater sensitivity, precision, and reproducibility) than quantitative polymerase chain reaction (qPCR). Nonetheless, dPCR should not be viewed as a panacea for the fundamental uncertainties and limitations associated with measuring microorganisms in water microbiology. With dPCR platforms, the sample analysis cost and processing time are typically greater than qPCR. However, if improved analytical performance (i.e., sensitivity and accuracy) is critical, dPCR can be an alternative option for quantifying microorganisms, including pathogens, in aquatic environments.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, Queensland, Australia
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA; Department of Biology, Morgan State University, Baltimore, MD 21251, USA; BioEnvironmental Science Program, Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| | | | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA.
| |
Collapse
|
8
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
9
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Glauche I, Marr C. Mechanistic models of blood cell fate decisions in the era of single-cell data. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:None. [PMID: 34950807 PMCID: PMC8660645 DOI: 10.1016/j.coisb.2021.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Billions of functionally distinct blood cells emerge from a pool of hematopoietic stem cells in our bodies every day. This progressive differentiation process is hierarchically structured and remarkably robust. We provide an introductory review to mathematical approaches addressing the functional aspects of how lineage choice is potentially implemented on a molecular level. Emerging from studies on the mutual repression of key transcription factors, we illustrate how those simple concepts have been challenged in recent years and subsequently extended. Especially, the analysis of omics data on the single-cell level with computational tools provides descriptive insights on a yet unknown level, while their embedding into a consistent mechanistic and mathematical framework is still incomplete.
Collapse
Affiliation(s)
- Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
11
|
Orekhov AN, Poznyak AV, Sobenin IA, Nikifirov NN, Ivanova EA. Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation. Curr Neuropharmacol 2021; 18:1064-1075. [PMID: 31744449 PMCID: PMC7709151 DOI: 10.2174/1570159x17666191118125018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory condition that affects different arteries in the human body and often leads to severe neurological complications, such as stroke and its sequelae. Affected blood vessels develop atherosclerotic lesions in the form of focal thickening of the intimal layer, so called atherosclerotic plaques. OBJECTIVES Despite the high priority of atherosclerosis research for global health and the numerous preclinical and clinical studies conducted, currently, there is no effective pharmacological treatment that directly impacts atherosclerotic plaques. Many knowledge gaps exist in our understanding of the mechanisms of plaque formation. In this review, we discuss the role of mitochondria in different cell types involved in atherogenesis and provide information about mtDNA mutations associated with the disease. RESULTS Mitochondria of blood and arterial wall cells appear to be one of the important factors in disease initiation and development. Significant experimental evidence connects oxidative stress associated with mitochondrial dysfunction and vascular disease. Moreover, mitochondrial DNA (mtDNA) deletions and mutations are being considered as potential disease markers. Further study of mtDNA damage and associated dysfunction may open new perspectives for atherosclerosis treatment. CONCLUSION Mitochondria can be considered as important disease-modifying factors in several chronic pathologies. Deletions and mutations of mtDNA may be used as potential disease markers. Mitochondria-targeting antioxidant therapies appear to be promising for the development of treatment of atherosclerosis and other diseases associated with oxidative stress and chronic inflammation.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Institute of Human Morphology, Moscow 117418, Russian Federation
| | - Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation
| | - Igor A Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russian Federation,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Nikita N Nikifirov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian, Federation,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia,Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow 119334, Russia
| | | |
Collapse
|
12
|
Karlsson G, Sommarin MNE, Böiers C. Defining the Emerging Blood System During Development at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:660350. [PMID: 34055791 PMCID: PMC8158578 DOI: 10.3389/fcell.2021.660350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Developmental hematopoiesis differs from adult and is far less described. In the developing embryo, waves of lineage-restricted blood precede the ultimate emergence of definitive hematopoietic stem cells (dHSCs) capable of maintaining hematopoiesis throughout life. During the last two decades, the advent of single-cell genomics has provided tools to circumvent previously impeding characteristics of embryonic hematopoiesis, such as cell heterogeneity and rare cell states, allowing for definition of lineage trajectories, cellular hierarchies, and cell-type specification. The field has rapidly advanced from microfluidic platforms and targeted gene expression analysis, to high throughput unbiased single-cell transcriptomic profiling, single-cell chromatin analysis, and cell tracing-offering a plethora of tools to resolve important questions within hematopoietic development. Here, we describe how these technologies have been implemented to address a wide range of aspects of embryonic hematopoiesis ranging from the gene regulatory network of dHSC formation via endothelial to hematopoietic transition (EHT) and how EHT can be recapitulated in vitro, to hematopoietic trajectories and cell fate decisions. Together, these studies have important relevance for regenerative medicine and for our understanding of genetic blood disorders and childhood leukemias.
Collapse
Affiliation(s)
| | | | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Song DH, Garcia G, Situ K, Chua BA, Hong MLO, Do EA, Ramirez CM, Harui A, Arumugaswami V, Morizono K. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 2021; 560:17-33. [PMID: 34020328 DOI: 10.1016/j.virol.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.
Collapse
Affiliation(s)
- Da-Hoon Song
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bernadette A Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Madeline Lauren O Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elyza A Do
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Airi Harui
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Ohnuki H, Venzon DJ, Lobanov A, Tosato G. Iterative epigenomic analyses in the same single cell. Genome Res 2021; 31:1819-1830. [PMID: 33627472 DOI: 10.1101/gr.269068.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022]
Abstract
Gene expression in individual cells is epigenetically regulated by DNA modifications, histone modifications, transcription factors, and other DNA-binding proteins. It has been shown that multiple histone modifications can predict gene expression and reflect future responses of bulk cells to extracellular cues. However, the predictive ability of epigenomic analysis is still limited for mechanistic research at a single cell level. To overcome this limitation, it would be useful to acquire reliable signals from multiple epigenetic marks in the same single cell. Here, we propose a new approach and a new method for analysis of several components of the epigenome in the same single cell. The new method allows reanalysis of the same single cell. We found that reanalysis of the same single cell is feasible, provides confirmation of the epigenetic signals, and allows application of statistical analysis to identify reproduced reads using data sets generated only from the single cell. Reanalysis of the same single cell is also useful to acquire multiple epigenetic marks from the same single cells. The method can acquire at least five epigenetic marks: H3K27ac, H3K27me3, mediator complex subunit 1, a DNA modification, and a DNA-interacting protein. We can predict active signaling pathways in K562 single cells using the epigenetic data and confirm that the predicted results strongly correlate with actual active signaling pathways identified by RNA-seq results. These results suggest that the new method provides mechanistic insights for cellular phenotypes through multilayered epigenome analysis in the same single cells.
Collapse
Affiliation(s)
- Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Zhang Y, Zhang P, Chen L, Kaushik A, Hu K, Wang TH. ddRFC: A scalable multiplexed droplet digital nucleic acid amplification test platform. Biosens Bioelectron 2020; 167:112499. [PMID: 32846271 PMCID: PMC7534973 DOI: 10.1016/j.bios.2020.112499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/24/2023]
Abstract
Digital nucleic acid amplification tests (digital NAATs) have emerged as a popular tool for nucleic acid detection due to their high sensitivity and specificity. Most current digital NAAT platforms, however, are limited to a "one-color-one-target" approach wherein each target is encoded with a specific fluorescently-labeled probe for single-plex fluorometric detection. This approach is difficult to multiplex due to spectral overlap between any additional fluorophores, and multiplexability of digital NAATs has therefore been limited. As a means to scale multiplexability, we have developed a multiplexed digital NAAT platform, termed Droplet Digital Ratiometric Fluorescence Coding (ddRFC), via a padlock probe-based nucleic acid detection assay which encodes each nucleic acid target with a unique combination of 2 fluorophores. We detect this encoded two-color fluorescence signature of each target by performing digital amplification in microfluidic droplets. To demonstrate the utility of our platform, we have synthesized 6 distinct padlock probes, each rendering a unique two-color fluorescence signature to a nucleic acid target representing a clinically important sexually transmitted infection (STI). We proceed to demonstrate broad-based, two-plex, four-plex, and six-plex detection of the STI targets with single-molecule resolution. Our design offers a cost-effective approach to scale up multiplexability by simply tuning the number of molecular beacon binding sites on the padlock probe without redesigning amplification primers or fluorescent molecular beacons. With further development, our platform has the potential to enable highly multiplexed detection of nucleic acid targets, with potentially unrestricted multiplexability, and serve as a diagnostic tool for many more diseases in the future.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aniruddha Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katherine Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
16
|
Ahrberg CD, Choi JW, Lee JM, Lee KG, Lee SJ, Manz A, Chung BG. Plasmonic heating-based portable digital PCR system. LAB ON A CHIP 2020; 20:3560-3568. [PMID: 32844858 DOI: 10.1039/d0lc00788a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A miniaturized polymerase chain reaction (PCR) system is not only important for medical applications in remote areas of developing countries, but also important for testing at ports of entry during global epidemics, such as the current outbreak of the coronavirus. Although there is a large number of PCR sensor systems available for this purpose, there is still a lack of portable digital PCR (dPCR) heating systems. Here, we first demonstrated a portable plasmonic heating-based dPCR system. The device has total dimensions of 9.7 × 5.6 × 4.1 cm and a total power consumption of 4.5 W, allowing for up to 25 dPCR experiments to be conducted on a single charge of a 20 000 mAh external battery. The dPCR system has a maximum heating rate of 10.7 °C s-1 and maximum cooling rate of 8 °C s-1. Target DNA concentrations in the range from 101 ± 1.4 copies per μL to 260 000 ± 20 000 copies per μL could be detected using a poly(dimethylsiloxane) (PDMS) microwell membrane with 22 080 well arrays (20 μm diameter). Furthermore, the heating system was demonstrated using a mass producible poly(methyl methacrylate) PMMA microwell array with 8100 microwell arrays (80 μm diameter). The PMMA microwell array could detect a concentration from 12 ± 0.7 copies per μL to 25 889 ± 737 copies per μL.
Collapse
|
17
|
Januszyk M, Chen K, Henn D, Foster DS, Borrelli MR, Bonham CA, Sivaraj D, Wagh D, Longaker MT, Wan DC, Gurtner GC. Characterization of Diabetic and Non-Diabetic Foot Ulcers Using Single-Cell RNA-Sequencing. MICROMACHINES 2020; 11:mi11090815. [PMID: 32872278 PMCID: PMC7570277 DOI: 10.3390/mi11090815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Background: Recent advances in high-throughput single-cell sequencing technologies have led to their increasingly widespread adoption for clinical applications. However, challenges associated with tissue viability, cell yield, and delayed time-to-capture have created unique obstacles for data processing. Chronic wounds, in particular, represent some of the most difficult target specimens, due to the significant amount of fibrinous debris, extracellular matrix components, and non-viable cells inherent in tissue routinely obtained from debridement. Methods: Here, we examined the feasibility of single cell RNA sequencing (scRNA-seq) analysis to evaluate human chronic wound samples acquired in the clinic, subjected to prolonged cold ischemia time, and processed without FACS sorting. Wound tissue from human diabetic and non-diabetic plantar foot ulcers were evaluated using an optimized 10X Genomics scRNA-seq platform and analyzed using a modified data pipeline designed for low-yield specimens. Cell subtypes were identified informatically and their distributions and transcriptional programs were compared between diabetic and non-diabetic tissue. Results: 139,000 diabetic and non-diabetic wound cells were delivered for 10X capture after either 90 or 180 min of cold ischemia time. cDNA library concentrations were 858.7 and 364.7 pg/µL, respectively, prior to sequencing. Among all barcoded fragments, we found that 83.5% successfully aligned to the human transcriptome and 68% met the minimum cell viability threshold. The average mitochondrial mRNA fraction was 8.5% for diabetic cells and 6.6% for non-diabetic cells, correlating with differences in cold ischemia time. A total of 384 individual cells were of sufficient quality for subsequent analyses; from this cell pool, we identified transcriptionally-distinct cell clusters whose gene expression profiles corresponded to fibroblasts, keratinocytes, neutrophils, monocytes, and endothelial cells. Fibroblast subpopulations with differing fibrotic potentials were identified, and their distributions were found to be altered in diabetic vs. non-diabetic cells. Conclusions: scRNA-seq of clinical wound samples can be achieved using minor modifications to standard processing protocols and data analysis methods. This simple approach can capture widespread transcriptional differences between diabetic and non-diabetic tissue obtained from matched wound locations.
Collapse
Affiliation(s)
- Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Deshka S. Foster
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Mimi R. Borrelli
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Clark A. Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Dhananjay Wagh
- Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
| | - Geoffrey C. Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (K.C.); (D.H.); (D.S.F.); (M.R.B.); (C.A.B.); (D.S.); (M.T.L.); (D.C.W.)
- Correspondence: ; Tel.: +1-650-736-2776
| |
Collapse
|
18
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
19
|
Exclusive use of digital PCR allows an absolute assay of heat-killed Lactobacilli in foods targeting multiple copies of 16S rDNA. Sci Rep 2020; 10:12691. [PMID: 32728064 PMCID: PMC7391674 DOI: 10.1038/s41598-020-69206-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/09/2020] [Indexed: 11/15/2022] Open
Abstract
The real-time PCR (qPCR) and digital PCR (dPCR) to amplify a single-copy of house-keeping genes (i.e., hsp60, pheS or tuf) are used for the assay of limited microbial species. In general, with a single-copy gene, there are obviously varied DNA sequences for even the same microbial species, which could cause difficulties with design of primers and probes for PCR when targeting various single copy genes. In general, for identification by dPCR (as a representative case: Lactobacillus paracasei), accumulated DNA sequence information of 16S rDNA, which is much more frequently used, should be targeted. In contrast, next-generation sequencing revealed that there are five copies of 16S rDNA in a live L. paracasei MCC1849. Therefore, we aimed to reveal, if heat-killed L. paracasei supplemented in nutritional foods that aid the host immune system have the relevant five copies per chromosomal DNA, and if the relevant copies remain unchanged on the same chromosomal DNA or remain to be different chromosomal DNA fragments. So, we revealed the actual distribution of the potential original five copies of 16S rDNA using our innovative dPCR, in which both 16S rDNA and hsp60 genes were simultaneously elongated. The molecular ratios of 16S rDNA/hsp60 dispersed in the dPCR chip were then estimated. The 16S rDNA/hsp60 molecular ratios of the heat-killed L. paracasei in foods, resultantly ranged from 5.0 to 7.2, being the same or higher than that of the five copies determined by next-generation sequencing. The 16S rDNA copy number/ratio indicated the chromosomal DNA molecular number and the associated cell number. As significance, different nutritional foods could potentially cause the loss of chromosomal DNA of supplemented beneficial microbes to a much greater degree. Our absolute dPCR does not require standard correlative samples for the estimation of final products. The estimation principle of the ratio of 16S rDNA/a house-keeping single-copy gene by our absolute dPCR could lead to a useful and accurate assay for various nutritional foods.
Collapse
|
20
|
Dezan MR, Peron AC, Oliveira TGM, Oliveira VB, Gomes CN, Salles NA, Rocha V, Mendrone-Júnior A, Dinardo CL. Using droplet digital PCR to screen for rare blood donors: Proof of principle. Transfus Apher Sci 2020; 59:102882. [PMID: 32741734 DOI: 10.1016/j.transci.2020.102882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Digital droplet PCR (ddPCR) is a very sensitive high throughput genotyping methodology. To date, the use of ddPCR in immunohematology is restricted to fetal genotyping of red blood cell antigens. Our hypothesis is that this technology could be applied to screen for rare red blood cell genotypes, such as Di(b-). METHODS Nucleic acid of 3168 donors was extracted for viral screening routine in pools of 6, which were converted into three types of 48-donor pools: control pools (only DI*B/*B samples), pools with varying amount of DI*A/*B samples (n = 1-5) and a pool with one rare DI*A/*A sample. Pools were genotyped using ddPCR to detect and quantify DI*A and DI*B alleles. RESULTS DI*A allele was accurately detected in all pools containing Di(a + b+) samples and in the pool containing one Di(a + b-) sample. No copies were detected in the control pools (n = 60). The ratio between the number of DI*A and DI*B copies varied significantly between the pools and the triplicates. CONCLUSION The proposed ddPCR assay was accurate in identifying the rare DI*A allele in large pools of donors and can be applied to screen for Di(b-) phenotype. The strategy can potentially be extended to search for other rare RBC phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Nanci A Salles
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Disciplina de Hematologia, Universidade de São Paulo, São Paulo, Brazil; Churchill Hospital, NHSBT, Oxford University, Oxford, UK
| | | | - Carla Luana Dinardo
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Xing QR, Cipta NO, Hamashima K, Liou YC, Koh CG, Loh YH. Unraveling Heterogeneity in Transcriptome and Its Regulation Through Single-Cell Multi-Omics Technologies. Front Genet 2020; 11:662. [PMID: 32765578 PMCID: PMC7380244 DOI: 10.3389/fgene.2020.00662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular heterogeneity plays a pivotal role in tissue homeostasis and the disease development of multicellular organisms. To deconstruct the heterogeneity, a multitude of single-cell toolkits measuring various cellular contents, including genome, transcriptome, epigenome, and proteome, have been developed. More recently, multi-omics single-cell techniques enable the capture of molecular footprints with a higher resolution by simultaneously profiling various cellular contents within an individual cell. Integrative analysis of multi-omics datasets unravels the relationships between cellular modalities, builds sophisticated regulatory networks, and provides a holistic view of the cell state. In this review, we summarize the major developments in the single-cell field and review the current state-of-the-art single-cell multi-omic techniques and the bioinformatic tools for integrative analysis.
Collapse
Affiliation(s)
- Qiao Rui Xing
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nadia Omega Cipta
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kiyofumi Hamashima
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cheng Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, ASTAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Zhang Y, Sesen M, de Marco A, Neild A. Capacitive Sensing for Monitoring of Microfluidic Protocols Using Nanoliter Dispensing and Acoustic Mixing. Anal Chem 2020; 92:10725-10732. [DOI: 10.1021/acs.analchem.0c01906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yaqi Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
24
|
Nagarajan MB, Tentori AM, Zhang WC, Slack FJ, Doyle PS. Spatially resolved and multiplexed MicroRNA quantification from tissue using nanoliter well arrays. MICROSYSTEMS & NANOENGINEERING 2020; 6:51. [PMID: 32419951 PMCID: PMC7211184 DOI: 10.1038/s41378-020-0169-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023]
Abstract
Spatially resolved gene expression patterns are emerging as a key component of medical studies, including companion diagnostics, but technologies for quantification and multiplexing are limited. We present a method to perform spatially resolved and multiplexed microRNA (miRNA) measurements from formalin-fixed, paraffin-embedded (FFPE) tissue. Using nanoliter well arrays to pixelate the tissue section and photopatterned hydrogels to quantify miRNA, we identified differentially expressed miRNAs in tumors from a genetically engineered mouse model for non-small cell lung cancer (K-rasLSL-G12D/+; p53fl/fl). This technology could be used to quantify heterogeneities in tissue samples and lead to informed, biomarker-based diagnostics.
Collapse
Affiliation(s)
- Maxwell B. Nagarajan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Augusto M. Tentori
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wen Cai Zhang
- HMS Initiative for RNA Medicine, Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Frank J. Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
25
|
Ho D, Quake SR, McCabe ERB, Chng WJ, Chow EK, Ding X, Gelb BD, Ginsburg GS, Hassenstab J, Ho CM, Mobley WC, Nolan GP, Rosen ST, Tan P, Yen Y, Zarrinpar A. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol 2020; 38:497-518. [PMID: 31980301 PMCID: PMC7924935 DOI: 10.1016/j.tibtech.2019.12.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection. This work highlights key breakthroughs in the development of enabling technologies that further the goal of personalized and precision medicine, and remaining challenges that, when addressed, may forge unprecedented capabilities in realizing truly individualized patient care.
Collapse
Affiliation(s)
- Dean Ho
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, CA, USA; Department of Applied Physics, Stanford University, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Wee Joo Chng
- Department of Haematology and Oncology, National University Cancer Institute, National University Health System, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Edward K Chow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Xianting Ding
- Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University, NC, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Chih-Ming Ho
- Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - William C Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University, CA, USA
| | - Steven T Rosen
- Comprehensive Cancer Center and Beckman Research Institute, City of Hope, CA, USA
| | - Patrick Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yun Yen
- College of Medical Technology, Center of Cancer Translational Research, Taipei Cancer Center of Taipei Medical University, Taipei, Taiwan
| | - Ali Zarrinpar
- Department of Surgery, Division of Transplantation & Hepatobiliary Surgery, University of Florida, FL, USA
| |
Collapse
|
26
|
Husseiny MI, Fahmy A, Du W, Gu A, Garcia P, Ferreri K, Kandeel F. Development of Quantitative Methylation-Specific Droplet Digital PCR (ddMSP) for Assessment of Natural Tregs. Front Genet 2020; 11:300. [PMID: 32318096 PMCID: PMC7154152 DOI: 10.3389/fgene.2020.00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Tregs) suppress immune responses in vivo in an antigen-specific manner. Of clinical relevance, Tregs can be isolated and expanded in vitro while maintaining immunoregulatory function. Tregs are classified as CD4+CD25highCD127low FOXP3+ cells. Demethylation of the Treg-specific demethylation region (TSDR) of FOXP3 is found in natural Tregs (nTregs). We report a method for the characterization of the differential methylation pattern of the FOXP3 TSDR in patient-derived and expanded nTregs. Human TSDR sequences from nTregs (unmethylated sequence) and pancreatic (methylated sequence) cells were amplified and cloned into plasmids. A droplet digital TaqMan probe-based qPCR (ddPCR) assay using methylation-specific primers and probes was employed to quantify unmethylated and methylated sequences. The methylation-specific droplet digital PCR (ddMSP) assay was specific and selective for unmethylated DNA in mixtures with methylated DNA in the range of 5000 copies/μL to less than 1 copy/μL (R 2 = 0.99) even in the presence of non-selective gDNAs. CD4+CD25highCD127lowFOXP3+ human nTregs, in the presence of Dynabeads or activators, were expanded for 21 days. There was a decrease in the unmethylated ratio of Tregs after expansion with essentially the same ratio at days 10, 14, and 17. However, the activator expanded group showed a significant decrease in unmethylated targets at day 21. The suppression activity of activator-expanded nTregs at day 21 was decreased compared to cells expanded with Dynabeads. These data suggest that the ddMSP can quantitatively monitor nTreg expansion in vitro. These data also indicate that the assay is sensitive and specific at differentiating nTregs from other cells and may be useful for rapid screening of nTregs in clinical protocols.
Collapse
Affiliation(s)
- Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States.,Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ahmed Fahmy
- East Lancashire Hospitals NHS Trust, Blackburn, United Kingdom
| | - Weiting Du
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Angel Gu
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Pablo Garcia
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Kevin Ferreri
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
27
|
Yuda J, Odawara J, Minami M, Muta T, Kohno K, Tanimoto K, Eto T, Shima T, Kikushige Y, Kato K, Takenaka K, Iwasaki H, Minami Y, Ohkawa Y, Akashi K, Miyamoto T. Tyrosine kinase inhibitors induce alternative spliced BCR-ABL Ins35bp variant via inhibition of RNA polymerase II on genomic BCR-ABL. Cancer Sci 2020; 111:2361-2373. [PMID: 32314454 PMCID: PMC7385367 DOI: 10.1111/cas.14424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022] Open
Abstract
To elucidate dynamic changes in native BCR-ABL and alternatively spliced tyrosine kinase inhibitor (TKI)-resistant but function-dead BCR-ABLIns35bp variant, following commencement or discontinuation of TKI therapy, each transcript was serially quantified in patients with chronic myeloid leukemia (CML) by deep sequencing. Because both transcripts were amplified together using conventional PCR system for measuring International Scale (IS), deep sequencing method was used for quantifying such BCR-ABL variants. At the initial diagnosis, 7 of 9 patients presented a small fraction of cells possessing BCR-ABLIns35bp , accounting for 0.8% of the total IS BCR-ABL, corresponding to actual BCR-ABLIns35bp value of 1.1539% IS. TKI rapidly decreased native BCR-ABL but not BCR-ABLIns35bp , leading to the initial increase in the proportion of BCR-ABLIns35bp . Thereafter, both native BCR-ABL and BCR-ABLIns35bp gradually decreased in the course of TKI treatment, whereas small populations positive for TKI-resistant BCR-ABLIns35bp continued fluctuating at low levels, possibly underestimating the molecular response (MR). Following TKI discontinuation, sequencing analysis of 54 patients revealed a rapid relapse, apparently derived from native BCR-ABL+ clones. However, IS fluctuating at low levels around MR4.0 marked a predominant persistence of cells expressing function-dead BCR-ABLIns35bp , suggesting that TKI resumption was unnecessary. We clarified the possible mechanism underlying mis-splicing BCR-ABLIns35bp , occurring at the particular pseudo-splice site within intron8, which can be augmented by TKI treatment through inhibition of RNA polymerase II phosphorylation. No mutations were found in spliceosomal genes. Therefore, monitoring IS functional BCR-ABL extracting BCR-ABLIns35bp would lead us to a correct evaluation of MR status, thus determining the adequate therapeutic intervention.
Collapse
Affiliation(s)
- Junichiro Yuda
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Jun Odawara
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Mariko Minami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Tsuyoshi Muta
- Department of Hematology and Oncology, Japan Community Health Care Organization Kyushu Hospital, Fukuoka, Japan
| | - Kentaro Kohno
- Department of Hematology and Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kazuki Tanimoto
- Department of Haematology and Oncology, Japanese Red Cross Society Fukuoka Red Cross Hospital, Fukuoka, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Takahiro Shima
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Katsuto Takenaka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Hiromi Iwasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| |
Collapse
|
28
|
Xhani S, Lee S, Kim HM, Wang S, Esaki S, Ha VLT, Khanezarrin M, Fernandez GL, Albrecht AV, Aramini JM, Germann MW, Poon GMK. Intrinsic disorder controls two functionally distinct dimers of the master transcription factor PU.1. SCIENCE ADVANCES 2020; 6:eaay3178. [PMID: 32128405 PMCID: PMC7034988 DOI: 10.1126/sciadv.aay3178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
Transcription factors comprise a major reservoir of conformational disorder in the eukaryotic proteome. The hematopoietic master regulator PU.1 presents a well-defined model of the most common configuration of intrinsically disordered regions (IDRs) in transcription factors. We report that the structured DNA binding domain (DBD) of PU.1 regulates gene expression via antagonistic dimeric states that are reciprocally controlled by cognate DNA on the one hand and by its proximal anionic IDR on the other. The two conformers are mediated by distinct regions of the DBD without structured contributions from the tethered IDRs. Unlike DNA-bound complexes, the unbound dimer is markedly destabilized. Dimerization without DNA is promoted by progressive phosphomimetic substitutions of IDR residues that are phosphorylated in immune activation and stimulated by anionic crowding agents. These results suggest a previously unidentified, nonstructural role for charged IDRs in conformational control by mitigating electrostatic penalties that would mask the interactions of highly cationic DBDs.
Collapse
Affiliation(s)
- Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Sangchoon Lee
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Mi Kim
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Shingo Esaki
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Van L. T. Ha
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Mahtab Khanezarrin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | - Amanda V. Albrecht
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - James M. Aramini
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Markus W. Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory M. K. Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
29
|
Ha SD, Cho W, DeKoter RP, Kim SO. The transcription factor PU.1 mediates enhancer-promoter looping that is required for IL-1β eRNA and mRNA transcription in mouse melanoma and macrophage cell lines. J Biol Chem 2019; 294:17487-17500. [PMID: 31586032 DOI: 10.1074/jbc.ra119.010149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
The DNA-binding protein PU.1 is a myeloid lineage-determining and pioneering transcription factor due to its ability to bind "closed" genomic sites and maintain "open" chromatin state for myeloid lineage-specific genes. The precise mechanism of PU.1 in cell type-specific programming is yet to be elucidated. The melanoma cell line B16BL6, although it is nonmyeloid lineage, expressed Toll-like receptors and activated the transcription factor NF-κB upon stimulation by the bacterial cell wall component lipopolysaccharide. However, it did not produce cytokines, such as IL-1β mRNA. Ectopic PU.1 expression induced remodeling of a novel distal enhancer (located ∼10 kbp upstream of the IL-1β transcription start site), marked by nucleosome depletion, enhancer-promoter looping, and histone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhancer-promoter looping and H3K27ac through two distinct PU.1 regions. These PU.1-dependent events were independently required for subsequent signal-dependent and co-dependent events: NF-κB recruitment and further H3K27ac, both of which were required for enhancer RNA (eRNA) transcription. In murine macrophage RAW264.7 cells, these PU.1-dependent events were constitutively established and readily expressed eRNA and subsequently IL-1β mRNA by lipopolysaccharide stimulation. In summary, this study showed a sequence of epigenetic events in programming IL-1β transcription by the distal enhancer priming and eRNA production mediated by PU.1 and the signal-dependent transcription factor NF-κB.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Woohyun Cho
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Infectious Diseases Research Group, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G 2V4, Canada
| |
Collapse
|
30
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
31
|
Yu L, Li J, Minami I, Qu X, Miyagawa S, Fujimoto N, Hasegawa K, Chen Y, Sawa Y, Kotera H, Liu L. Clonal Isolation of Human Pluripotent Stem Cells on Nanofibrous Substrates Reveals an Advanced Subclone for Cardiomyocyte Differentiation. Adv Healthc Mater 2019; 8:e1900165. [PMID: 31087474 DOI: 10.1002/adhm.201900165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Indexed: 11/06/2022]
Abstract
Human pluripotent stem cells (hPSCs) have been widely used for various applications including disease modeling and regenerative medicine, among others. Recently, an increasing number of studies has focused on heterogeneity among hPSCs, which could affect cell quality and subsequent applications. In this study, a nanofibrous platform is developed for single human induced pluripotent stem cell isolation and culture. One type of single cell-derived subclone is established and found to have a distinct morphology compared to other subclones. When used for differentiation toward cardiomyocytes, this type of subclone demonstrates higher differentiation efficiency, increased maturation, and stronger beating compared to those derived from the other subclones. The findings provide a convenient method for single-cell isolation and culture, and demonstrate that variations in differentiation tendencies exist among subclones from the same cell line. This substrate adhesion-based selection process could be used to obtain cell lines with improved differentiation efficiency toward cardiomyocytes and other cell types, which would be advantageous for studies in various fields.
Collapse
Affiliation(s)
- Leqian Yu
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Micro EngineeringKyoto University Kyoto 615‐8540 Japan
| | - Junjun Li
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Itsunari Minami
- Department of Cell Design for Tissue ConstructionFaculty of MedicineOsaka University Osaka 565‐0871 Japan
| | - Xiang Qu
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Nanae Fujimoto
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Kouichi Hasegawa
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
| | - Yong Chen
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- PASTEURDépartement de chimieécole normale supérieurePSL Research UniversitySorbonne UniversitésUPMC Université Paris 06 CNRS Paris 75005 France
| | - Yoshiki Sawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| | - Hidetoshi Kotera
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Micro EngineeringKyoto University Kyoto 615‐8540 Japan
| | - Li Liu
- Institutes for Integrated Cell‐Material Sciences (WPI‐iCeMS)Kyoto University Kyoto 606‐8501 Japan
- Department of Cardiovascular SurgeryOsaka University Graduate School of Medicine Osaka 565‐0871 Japan
| |
Collapse
|
32
|
Psaila B, Mead AJ. Single-cell approaches reveal novel cellular pathways for megakaryocyte and erythroid differentiation. Blood 2019; 133:1427-1435. [PMID: 30728145 PMCID: PMC6443046 DOI: 10.1182/blood-2018-11-835371] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The classical model of hematopoiesis proposes a hierarchy in which a small number of multipotent hematopoietic stem cells (HSCs) maintain all blood lineages by giving rise to progeny that pass through discrete progenitor stages. At each stage, lineage differentiation potential is restricted, coupled with the loss of ability to self-renew. Recently, single-cell approaches have been used to test certain assumptions made by this model, in particular relating to megakaryocyte (Mk) and erythroid (E) development. An alternative model has emerged in which substantial heterogeneity and lineage-priming exists within the HSC compartment, including the existence of multipotent but megakaryocyte/platelet-biased HSCs. Hematopoietic differentiation follows a hierarchical continuum, passing through cellular nodes and branch points. Megakaryocytes are produced via a shared pathway with the erythroid lineage, also shared in its early stages with mast cells, eosinophils, and basophils, but separate from other myeloid and lymphoid lineages. In addition, distinct pathways for direct differentiation of Mk from HSCs may coexist and could be important in situations of increased physiological requirements or in malignancies. Further work at single-cell resolution using multiomic approaches and examining Mk-E biased subsets within their physiological context will undoubtedly improve our understanding of normal hematopoiesis and ability to manipulate this in pathology.
Collapse
Affiliation(s)
- Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine (WIMM). University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Molecular Haematology Unit, WIMM, University of Oxford, Oxford, OX3 9DS, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine (WIMM). University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Molecular Haematology Unit, WIMM, University of Oxford, Oxford, OX3 9DS, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Yin K, Zeng X, Liu W, Xue Y, Li X, Wang W, Song Y, Zhu Z, Yang C. Stable Colloidosomes Formed by Self-Assembly of Colloidal Surfactant for Highly Robust Digital PCR. Anal Chem 2019; 91:6003-6011. [DOI: 10.1021/acs.analchem.9b00470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kun Yin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xi Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Weizhi Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yakun Xue
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xingrui Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
34
|
KRAS genotyping by digital PCR combined with melting curve analysis. Sci Rep 2019; 9:2626. [PMID: 30796246 PMCID: PMC6384904 DOI: 10.1038/s41598-019-38822-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023] Open
Abstract
Digital PCR (dPCR) has been developed as a method that can quantify nucleic acids more sensitively than real-time PCR. However, dPCR exhibits large fluctuations in the fluorescence intensity of the compartment, resulting in low accuracy. The main cause is most likely due to insufficient PCR. In this study, we proposed a new method that combines dPCR with melting curve analysis and applied that method to KRAS genotyping. Since the melting temperature (Tm) of the PCR product hardly depends on the amplification efficiency, genotyping accuracy is improved by using the Tm value. The results showed that the peaks of the distribution of the Tm values of DNA in the wells were 68.7, 66.3, and 62.6 °C for wild-type KRAS, the G12R mutant, and the G12D mutant, respectively, and the standard deviation of the Tm values was 0.2 °C for each genotype. This result indicates that the proposed method is capable of discriminating between the wild-type sequence and the two mutants. To the best of our knowledge, this is the first demonstration of the genotyping of single mutations by combining melting curve analysis and dPCR. The application of this approach could be useful for the quantification and genotyping of cancer-related genes in low-abundance samples.
Collapse
|
35
|
Tajer P, Pike-Overzet K, Arias S, Havenga M, Staal FJT. Ex Vivo Expansion of Hematopoietic Stem Cells for Therapeutic Purposes: Lessons from Development and the Niche. Cells 2019; 8:cells8020169. [PMID: 30781676 PMCID: PMC6407064 DOI: 10.3390/cells8020169] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
Expansion of hematopoietic stem cells (HSCs) for therapeutic purposes has been a “holy grail” in the field for many years. Ex vivo expansion of HSCs can help to overcome material shortage for transplantation purposes and genetic modification protocols. In this review, we summarize improved understanding in blood development, the effect of niche and conservative signaling pathways on HSCs in mice and humans, and also advances in ex vivo culturing protocols of human HSCs with cytokines or small molecule compounds. Different expansion protocols have been tested in clinical trials. However, an optimal condition for ex vivo expansion of human HSCs still has not been found yet. Translating and implementing new findings from basic research (for instance by using genetic modification of human HSCs) into clinical protocols is crucial to improve ex vivo expansion and eventually boost stem cell gene therapy.
Collapse
Affiliation(s)
- Parisa Tajer
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Karin Pike-Overzet
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| | - Sagrario Arias
- Batavia Biosciences, Zernikedreef 16, 2333 CL Leiden, The Netherlands.
| | - Menzo Havenga
- Batavia Biosciences, Zernikedreef 16, 2333 CL Leiden, The Netherlands.
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, L3-Q Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
36
|
A highly integrated real-time digital PCR device for accurate DNA quantitative analysis. Biosens Bioelectron 2019; 128:151-158. [PMID: 30660930 DOI: 10.1016/j.bios.2018.12.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 11/23/2022]
Abstract
Misclassification of positive partitions in microfluidic digital polymerase chain reaction (dPCR) can cause the false positives and false negatives, which significantly alter the resulting estimate of target DNA molecules. To address this issue, establishing real-time fluorescence interrogation of each partition in microfluidic arrays is an effective way in which false positive and false negative partitions can be eliminated. However, currently available devices for real-time fluorescence interrogation are either not competent for microfluidic digital array, or they are bulky, expensive and entail peripheral equipment due to low integration. Therefore, in this study, a Raspberry Pi based, low-cost and highly integrated device is presented to achieve real-time fluorescence detection for microfluidic digital array, termed real-time dPCR device. In the device, uniform thermocycler, streamlined real-time fluorescence imaging setup, and compact data processing system are all integrated to undergo on-chip dPCR amplification, real-time fluorescence detection, and data analysis. Using this real-time dPCR device, the accuracy of DNA absolute quantification by dPCR is improved, since the misclassification of positive partitions is efficiently reduced based on the characteristic real-time fluorescence curves of positive partitions in a self-priming microfluidic chip. Compared with end-point dPCR on our device and commercialized QuantStudio™ 3D dPCR system, the real-time dPCR on our device exhibits a higher accuracy for DNA quantification. In addition, this real-time dPCR device is much smaller and cheaper than the commercialized Digital PCR system, but not sacrificing the capability of error correction for absolute quantitation analysis. Conclusively, this highly integrated real-time dPCR device is very beneficial for DNA quantitative analysis where the determination accuracy is pivotal.
Collapse
|
37
|
Chimeric RNA in Cancer and Stem Cell Differentiation. Stem Cells Int 2018; 2018:3178789. [PMID: 30510584 PMCID: PMC6230395 DOI: 10.1155/2018/3178789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
Gene fusions are considered hallmarks of cancer which can be produced by chromosomal rearrangements. These DNA-level fusion events may result in the expression of chimeric RNAs; however, chimeric RNAs can be also produced by intergenic splicing events. Chimeric transcripts created by the latter mechanism are regulated at the transcriptional level and thus present additional modes of action and regulation. They have demonstrated importance in normal cell physiology, and their dysregulation can induce oncogenesis and impact cell differentiation. In this review, we outline proven mechanisms through which intergenically spliced chimeric RNAs are involved in carcinogenesis. We highlight their similarity to canonical chimeric RNAs resulting from gene fusions as well as their unique qualities. Additionally, we review known roles of chimeric RNA in cell differentiation and propose means through which chimeric RNAs may be valuable as stage-specific markers or as targets for expression profiling.
Collapse
|
38
|
Lee DH, Li X, Jiang A, Lee AP. An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood. BIOMICROFLUIDICS 2018; 12:054104. [PMID: 30271519 PMCID: PMC6145860 DOI: 10.1063/1.5049149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/03/2018] [Indexed: 05/08/2023]
Abstract
Reliable separation and isolation of target single cells from bodily fluids with high purity is of great significance for an accurate and quantitative understanding of the cellular heterogeneity. Here, we describe a fully integrated single-blood-cell analysis platform capable of size-selective cell separation from a population containing a wide distribution of sizes such as diluted blood sample and highly efficient entrapment of single monocytes. The spiked single U937 cells (human monocyte cell line) are separated in sequence by two different-sized microfilters for removing large cell clumps, white blood cells, and red blood cells and then discriminated by dielectrophoretic force and isolated individually by downstream single-cell trapping arrays. When 2% hematocrit blood cells with a final ratio of 1:1000 U937 cells were introduced under the flow rate of 0.2 ml/h, 400 U937 cells were trapped sequentially and deterministically within 40 s with single-cell occupancy of up to 85%. As a proof-of-concept, we also demonstrated single monocyte isolation from diluted blood using the integrated microfluidic device. This size-selective, label-free, and live-cell enrichment microfluidic single blood-cell isolation platform for the processing of cancer and blood cells has a myriad of applications in areas such as single-cell genetic analysis, stem cell biology, point-of-care diagnostics, and cancer diagnostics.
Collapse
Affiliation(s)
| | - Xuan Li
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | - Alan Jiang
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | | |
Collapse
|
39
|
Tentori AM, Nagarajan MB, Kim JJ, Zhang WC, Slack FJ, Doyle PS. Quantitative and multiplex microRNA assays from unprocessed cells in isolated nanoliter well arrays. LAB ON A CHIP 2018; 18:2410-2424. [PMID: 29998262 PMCID: PMC6081239 DOI: 10.1039/c8lc00498f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) have recently emerged as promising biomarkers for the profiling of diseases. Translation of miRNA biomarkers to clinical practice, however, remains a challenge due to the lack of analysis platforms for sensitive, quantitative, and multiplex miRNA assays that have simple and robust workflows suitable for translation. The platform we present here utilizes functionalized hydrogel posts contained within isolated nanoliter well reactors for quantitative and multiplex assays directly from unprocessed cell samples without the need of prior nucleic acid extraction. Simultaneous reactor isolation and delivery of miRNA extraction reagents is achieved by sealing an array of wells containing the functionalized hydrogel posts and cells against another array of wells containing lysis and extraction reagents. The nanoliter well array platform features >100× better sensitivity compared to previous technology utilizing hydrogel particles without relying on signal amplification and enables >100 parallel assays in a single device. These advances provided by this platform lay the groundwork for translatable and robust analysis technologies for miRNA expression profiling in samples with small populations of cells and in precious, material-limited samples.
Collapse
Affiliation(s)
- Augusto M. Tentori
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Maxwell B. Nagarajan
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Jae Jung Kim
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| | - Wen Cai Zhang
- Department of Pathology
, Beth Israel Deaconess Medical Center/Harvard Medical School
,
Boston
, USA
| | - Frank J. Slack
- Department of Pathology
, Beth Israel Deaconess Medical Center/Harvard Medical School
,
Boston
, USA
| | - Patrick S. Doyle
- Department of Chemical Engineering
, Massachusetts Institute of Technology
,
Cambridge
, USA
.
; Tel: +1 617 253 4534
| |
Collapse
|
40
|
de Boer CG, Regev A. BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization. BMC Bioinformatics 2018; 19:253. [PMID: 29970004 PMCID: PMC6029352 DOI: 10.1186/s12859-018-2255-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 06/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background Variation in chromatin organization across single cells can help shed important light on the mechanisms controlling gene expression, but scale, noise, and sparsity pose significant challenges for interpretation of single cell chromatin data. Here, we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-Associated Nucleotides), an approach to infer variation in transcription factor (TF) activity across samples through unsupervised analysis of the variation in DNA sequences associated with an epigenomic mark. Results BROCKMAN represents each sample as a vector of epigenomic-mark-associated DNA word frequencies, and decomposes the resulting matrix to find hidden structure in the data, followed by unsupervised grouping of samples and identification of the TFs that distinguish groups. Applied to single cell ATAC-seq, BROCKMAN readily distinguished cell types, treatments, batch effects, experimental artifacts, and cycling cells. We show that each variable component in the k-mer landscape reflects a set of co-varying TFs, which are often known to physically interact. For example, in K562 cells, AP-1 TFs were central determinant of variability in chromatin accessibility through their variable expression levels and diverse interactions with other TFs. We provide a theoretical basis for why cooperative TF binding – and any associated epigenomic mark – is inherently more variable than non-cooperative binding. Conclusions BROCKMAN and related approaches will help gain a mechanistic understanding of the trans determinants of chromatin variability between cells, treatments, and individuals. Electronic supplementary material The online version of this article (10.1186/s12859-018-2255-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carl G de Boer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02140, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
41
|
Kolodziejczyk AA, Lönnberg T. Global and targeted approaches to single-cell transcriptome characterization. Brief Funct Genomics 2018; 17:209-219. [PMID: 29028866 PMCID: PMC6063303 DOI: 10.1093/bfgp/elx025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Analysing transcriptomes of cell populations is a standard molecular biology approach to understand how cells function. Recent methodological development has allowed performing similar experiments on single cells. This has opened up the possibility to examine samples with limited cell number, such as cells of the early embryo, and to obtain an understanding of heterogeneity within populations such as blood cell types or neurons. There are two major approaches for single-cell transcriptome analysis: quantitative reverse transcription PCR (RT-qPCR) on a limited number of genes of interest, or more global approaches targeting entire transcriptomes using RNA sequencing. RT-qPCR is sensitive, fast and arguably more straightforward, while whole-transcriptome approaches offer an unbiased perspective on a cell's expression status.
Collapse
Affiliation(s)
| | - Tapio Lönnberg
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
42
|
Renand A, Shamji MH, Harris KM, Qin T, Wambre E, Scadding GW, Wurtzen PA, Till SJ, Togias A, Nepom GT, Kwok WW, Durham SR. Synchronous immune alterations mirror clinical response during allergen immunotherapy. J Allergy Clin Immunol 2018; 141:1750-1760.e1. [PMID: 29128670 PMCID: PMC5938141 DOI: 10.1016/j.jaci.2017.09.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Three years of treatment with either sublingual or subcutaneous allergen immunotherapy has been shown to be effective and to induce long-term tolerance. The Gauging Response in Allergic Rhinitis to Sublingual and Subcutaneous Immunotherapy (GRASS) trial demonstrated that 2 years of treatment through either route was effective in suppressing the response to nasal allergen challenge, although it was insufficient for inhibition 1 year after discontinuation. OBJECTIVE We sought to examine in the GRASS trial the time course of immunologic changes during 2 years of sublingual and subcutaneous immunotherapy and for 1 year after treatment discontinuation. METHODS We performed multimodal immunomonitoring to assess allergen-specific CD4 T-cell properties in parallel with analysis of local mucosal cytokine responses induced by nasal allergen exposure and humoral immune responses that included IgE-dependent basophil activation and measurement of serum inhibitory activity for allergen-IgE binding to B cells (IgE-facilitated allergen binding). RESULTS All 3 of these distinct arms of the immune response displayed significant and coordinate alterations during 2 years of allergen desensitization, followed by reversal at 3 years, reflecting a lack of a durable immunologic effect. Although frequencies of antigen-specific TH2 cells in peripheral blood determined by using HLA class II tetramer analysis most closely paralleled clinical outcomes, IgE antibody-dependent functional assays remained inhibited in part 1 year after discontinuation. CONCLUSION Two years of allergen immunotherapy were effective but insufficient for long-term tolerance. Allergen-specific TH2 cells most closely paralleled the transient clinical outcome, and it is likely that recurrence of the T-cell drivers of allergic immunity abrogated the potential for durable tolerance. On the other hand, the persistence of IgE blocking antibody 1 year after discontinuation might be an early indicator of a protolerogenic mechanism.
Collapse
Affiliation(s)
- Amedee Renand
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Section of Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC and Asthma UK, Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | | | | | - Erik Wambre
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Guy W Scadding
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Section of Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Stephen J Till
- Asthma, Allergy and Lung Biology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom; MRC and Asthma UK, Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Wash; Immune Tolerance Network, Bethesda, Md
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Wash
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Section of Inflammation Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; MRC and Asthma UK, Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
43
|
Zhang W, Li N, Koga D, Zhang Y, Zeng H, Nakajima H, Lin JM, Uchiyama K. Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction. Anal Chem 2018; 90:5329-5334. [DOI: 10.1021/acs.analchem.8b00463] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weifei Zhang
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Daisuke Koga
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yong Zhang
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Hulie Zeng
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Katsumi Uchiyama
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
44
|
Chang CH, Mau-Hsu D, Chen KC, Wei CW, Chiu CY, Young TH. Evaluation of digital real-time PCR assay as a molecular diagnostic tool for single-cell analysis. Sci Rep 2018; 8:3432. [PMID: 29467444 PMCID: PMC5821883 DOI: 10.1038/s41598-018-21041-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
In a single-cell study, isolating and identifying single cells are essential, but these processes often require a large investment of time or money. The aim of this study was to isolate and analyse single cells using a novel platform, the PanelChip™ Analysis System, which includes 2500 microwells chip and a digital real-time polymerase chain reaction (dqPCR) assay, in comparison with a standard PCR (qPCR) assay. Through the serial dilution of a known concentration standard, namely pUC19, the accuracy and sensitivity levels of two methodologies were compared. The two systems were tested on the basis of expression levels of the genetic markers vimentin, E-cadherin, N-cadherin and GAPDH in A549 lung carcinoma cells at two known concentrations. Furthermore, the influence of a known PCR inhibitor commonly found in blood samples, heparin, was evaluated in both methodologies. Finally, mathematical models were proposed and separation method of single cells was verified; moreover, gene expression levels during epithelial-mesenchymal transition in single cells under TGFβ1 treatment were measured. The drawn conclusion is that dqPCR performed using PanelChip™ is superior to the standard qPCR in terms of sensitivity, precision, and heparin tolerance. The dqPCR assay is a potential tool for clinical diagnosis and single-cell applications.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Daxen Mau-Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan
- National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Cheng-Wey Wei
- Quark Biosciences, Inc., Hsinchu County, 302, Taiwan
| | | | - Tai-Horng Young
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan.
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
45
|
Ma KY, He C, Wendel BS, Williams CM, Xiao J, Yang H, Jiang N. Immune Repertoire Sequencing Using Molecular Identifiers Enables Accurate Clonality Discovery and Clone Size Quantification. Front Immunol 2018; 9:33. [PMID: 29467754 PMCID: PMC5808239 DOI: 10.3389/fimmu.2018.00033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 11/13/2022] Open
Abstract
Unique molecular identifiers (MIDs) have been demonstrated to effectively improve immune repertoire sequencing (IR-seq) accuracy, especially to identify somatic hypermutations in antibody repertoire sequencing. However, evaluating the sensitivity to detect rare T cells and the degree of clonal expansion in IR-seq has been difficult due to the lack of knowledge of T cell receptor (TCR) RNA molecule copy number and a generalized approach to estimate T cell clone size from TCR RNA molecule quantification. This limited the application of TCR repertoire sequencing (TCR-seq) in clinical settings, such as detecting minimal residual disease in lymphoid malignancies after treatment, evaluating effectiveness of vaccination and assessing degree of infection. Here, we describe using an MID Clustering-based IR-Seq (MIDCIRS) method to quantitatively study TCR RNA molecule copy number and clonality in T cells. First, we demonstrated the necessity of performing MID sub-clustering to eliminate erroneous sequences. Further, we showed that MIDCIRS enables a sensitive detection of a single cell in as many as one million naïve T cells and an accurate estimation of the degree of T cell clonal expression. The demonstrated accuracy, sensitivity, and wide dynamic range of MIDCIRS TCR-seq provide foundations for future applications in both basic research and clinical settings.
Collapse
Affiliation(s)
- Ke-Yue Ma
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Chenfeng He
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Ben S Wendel
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Chad M Williams
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Jun Xiao
- ImmuDX, LLC, Austin, TX, United States
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Xi'an, Shaanxi, China
| | - Ning Jiang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
46
|
Tang JH, Chia D. Liquid Biopsies in the Screening of Oncogenic Mutations in NSCLC and its Application in Targeted Therapy. Crit Rev Oncog 2018; 20:357-71. [PMID: 27279235 DOI: 10.1615/critrevoncog.v20.i5-6.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) still dominates cancer-related deaths in America. Despite this, new discoveries and advancements in technology are helping with the detection and treatment of NSCLC. The discovery of circulating tumor DNA in blood and other biofluids is essential for the creation of a DNA biomarker. Limitations in technology and sequencing have stunted assay development, but with recent advancements in the next-generation sequencing, droplet digital PCR, and EFIRM, the detection of mutations in biofluids has become possible with reasonable sensitivity and specificity. These methods have been applied to the detection of mutations in NSCLC by measuring the levels of circulating tumor DNA. ALK fusion genes along with mutations in EGFR and KRAS have been shown to correlate to tumor size and metastasis. These methods allow for noninvasive, affordable, and efficient diagnoses of oncogenic mutations that overcome the issues of traditional biopsies. These issues include tumor heterogeneity and early detection of cancers with asymptomatic early stages. Early detection and treatment remain the best way to ensure survival. This review aims to describe these new technologies along with their application in mutation detection in NSCLC in order to proactively utilize targeted anticancer therapy.
Collapse
Affiliation(s)
- Jason H Tang
- Department of Pathology, UCLA David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - David Chia
- Department of Pathology, UCLA David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
47
|
VanInsberghe M, Zahn H, White AK, Petriv OI, Hansen CL. Highly multiplexed single-cell quantitative PCR. PLoS One 2018; 13:e0191601. [PMID: 29377915 PMCID: PMC5788347 DOI: 10.1371/journal.pone.0191601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
We present a microfluidic device for rapid gene expression profiling in single cells using multiplexed quantitative polymerase chain reaction (qPCR). This device integrates all processing steps, including cell isolation and lysis, complementary DNA synthesis, pre-amplification, sample splitting, and measurement in twenty separate qPCR reactions. Each of these steps is performed in parallel on up to 200 single cells per run. Experiments performed on dilutions of purified RNA establish assay linearity over a dynamic range of at least 104, a qPCR precision of 15%, and detection sensitivity down to a single cDNA molecule. We demonstrate the application of our device for rapid profiling of microRNA expression in single cells. Measurements performed on a panel of twenty miRNAs in two types of cells revealed clear cell-to-cell heterogeneity, with evidence of spontaneous differentiation manifested as distinct expression signatures. Highly multiplexed microfluidic RT-qPCR fills a gap in current capabilities for single-cell analysis, providing a rapid and cost-effective approach for profiling panels of marker genes, thereby complementing single-cell genomics methods that are best suited for global analysis and discovery. We expect this approach to enable new studies requiring fast, cost-effective, and precise measurements across hundreds of single cells.
Collapse
Affiliation(s)
- Michael VanInsberghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hans Zahn
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam K. White
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oleh I. Petriv
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl L. Hansen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
48
|
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553:418-426. [PMID: 29364285 PMCID: PMC6555401 DOI: 10.1038/nature25022] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Collapse
Affiliation(s)
- Elisa Laurenti
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| |
Collapse
|
49
|
Abstract
Use of digital polymerase chain reaction (dPCR) technology is rapidly growing and diversifying into a range of areas in life science. The release of dPCR commercial systems has facilitated access, leading to recognition of the potential advantages compared to previous quantitative PCR technologies, and the scope for novel applications. The capability of dPCR to deliver unprecedented levels of precision, accuracy, and resolution in quantification of nucleic acids has triggered a strong interest by academia and the life sciences industry in use of this technology as a molecular diagnostic tool. However, the performance of dPCR, as for a "classical" PCR assay, essentially still relies on enzyme-based amplification of nucleic acid using specific reagents and instrumentation. This chapter describes basic concepts, key properties, and important factors to consider for the verification and validation of dPCR measurements.
Collapse
Affiliation(s)
| | - Kerry R Emslie
- National Measurement Institute, Lindfield, NSW, Australia
| |
Collapse
|
50
|
Abstract
The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the common myeloid progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands and then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue-resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs toward myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases.
Collapse
|