1
|
Liu Y, Guo P, Wang J, Xu ZY. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1122-1145. [PMID: 36582168 DOI: 10.1111/tpj.16090] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
2
|
Sun Y, Li H, Wu J, Zhang K, Tang W, Cong L, Xie H, Wang ZY, Chai M. Genome-wide identification of growth-regulating factor transcription factor family related to leaf and stem development in alfalfa. FRONTIERS IN PLANT SCIENCE 2022; 13:964604. [PMID: 36082290 PMCID: PMC9445573 DOI: 10.3389/fpls.2022.964604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Growth-regulating factors (GRFs) play crucial roles in plant growth and stress response. To date, there have been no reports of the analysis and identification of the GRF transcription factor family in alfalfa. In this study, we identified 27 GRF family members from alfalfa (Medicago sativa L.) "Xinjiang Daye", and analyzed their physicochemical properties. Based on phylogenetic analysis, these MsGRFs were divided into five subgroups, each with a similar gene structure and conserved motifs. MsGRFs genes are distributed on 23 chromosomes, and all contain QLQ and WRC conserved domains. The results of the collinearity analysis showed that all MsGRFs are involved in gene duplication, including multiple whole-genome duplication or segmental duplication and a set of tandem duplication, indicating that large-scale duplication is important for the expansion of the GRF family in alfalfa. Several hormone-related and stress-related cis-acting elements have been found in the promoter regions of MsGRFs. Some MsGRFs were highly expressed in young leaves and stems, and their expression decreased during development. In addition, the leaf size of different varieties was found to vary, and MsGRF1 to 4, MsGRF18 to 20, and MsGRF22 to 23 were differentially expressed in large and small leaf alfalfa varieties, suggesting that they are critical in the regulation of leaf size. The results of this study can benefit further exploration of the regulatory functions of MsGRFs in growth and development, and can identify candidate genes that control leaf size development.
Collapse
|
3
|
Davis RB, Moosa MM, Banerjee PR. Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends Cell Biol 2022; 32:681-695. [PMID: 35484036 PMCID: PMC9288518 DOI: 10.1016/j.tcb.2022.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that are enriched in specific proteins and nucleic acids, compartmentalized to perform biochemical functions. Such condensates are formed by phase separation (PS) enabled by protein domains that allow multivalent interactions. Chromosomal translocation-derived in-frame gene fusions often generate proteins with non-native domain combinations that rewire protein-protein interaction networks. Several recent studies have shown that, for a subset of these fusion proteins, pathogenesis can be driven by the ability of the fusion protein to undergo phase transitions at non-physiological cellular locations to form ectopic condensates. We highlight how such ectopic phase transitions can alter biological processes and posit that dysfunction via protein PS at non-physiological locations represents a generic route to oncogenic transformation.
Collapse
Affiliation(s)
- Richoo B Davis
- Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA
| | - Mahdi Muhammad Moosa
- Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.
| | - Priya R Banerjee
- Department of Physics, State University of New York (SUNY) at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
4
|
Phase transition and remodeling complex assembly are important for SS18-SSX oncogenic activity in synovial sarcomas. Nat Commun 2022; 13:2724. [PMID: 35585082 PMCID: PMC9117659 DOI: 10.1038/s41467-022-30447-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Oncoprotein SS18-SSX is a hallmark of synovial sarcomas. However, as a part of the SS18-SSX fusion protein, SS18’s function remains unclear. Here, we depict the structures of both human SS18/BRG1 and yeast SNF11/SNF2 subcomplexes. Both subcomplexes assemble into heterodimers that share a similar conformation, suggesting that SNF11 might be a homologue of SS18 in chromatin remodeling complexes. Importantly, our study shows that the self-association of the intrinsically disordered region, QPGY domain, leads to liquid-liquid phase separation (LLPS) of SS18 or SS18-SSX and the subsequent recruitment of BRG1 into phase-separated condensates. Moreover, our results show that the tyrosine residues in the QPGY domain play a decisive role in the LLPS of SS18 or SS18-SSX. Perturbations of either SS18-SSX LLPS or SS18-SSX’s binding to BRG1 impair NIH3T3 cell transformation by SS18-SSX. Our data demonstrate that both LLPS and assembling into chromatin remodelers contribute to the oncogenic activity of SS18-SSX in synovial sarcomas. Oncoprotein SS18-SSX is a hallmark of synovial sarcoma. Here the authors report phase separation of SS18-SSX and the binding of SS18-SSX to chromatin remodeling complex are important for the transformation activity of the oncoprotein SS18-SSX.
Collapse
|
5
|
Cyra M, Schulte M, Berthold R, Heinst L, Jansen EP, Grünewald I, Elges S, Larsson O, Schliemann C, Steinestel K, Hafner S, Simmet T, Wardelmann E, Kailayangiri S, Rossig C, Isfort I, Trautmann M, Hartmann W. SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr) 2022; 45:399-413. [PMID: 35556229 PMCID: PMC9187574 DOI: 10.1007/s13402-022-00673-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Synovial sarcoma (SySa) is a rare soft tissue tumor characterized by a reciprocal t(X;18) translocation. The chimeric SS18-SSX fusion protein represents the major driver of the disease, acting as aberrant transcriptional dysregulator. Oncogenic mechanisms whereby SS18-SSX mediates sarcomagenesis are incompletely understood, and strategies to selectively target SySa cells remain elusive. Based on results of Phospho-Kinase screening arrays, we here investigate the functional and therapeutic relevance of the transcription factor CREB in SySa tumorigenesis. Methods Immunohistochemistry of phosphorylated CREB and its downstream targets (Rb, Cyclin D1, PCNA, Bcl-xL and Bcl-2) was performed in a large cohort of SySa. Functional aspects of CREB activity, including SS18-SSX driven circuits involved in CREB activation, were analyzed in vitro employing five SySa cell lines and a mesenchymal stem cell model. CREB mediated transcriptional activity was modulated by RNAi-mediated knockdown and small molecule inhibitors (666-15, KG-501, NASTRp and Ro 31-8220). Anti-proliferative effects of the CREB inhibitor 666-15 were tested in SySa avian chorioallantoic membrane and murine xenograft models in vivo. Results We show that CREB is phosphorylated and activated in SySa, accompanied by downstream target expression. Human mesenchymal stem cells engineered to express SS18-SSX promote CREB expression and phosphorylation. Conversely, RNAi-mediated knockdown of SS18-SSX impairs CREB phosphorylation in SySa cells. Inhibition of CREB activity reduces downstream target expression, accompanied by suppression of SySa cell proliferation and induction of apoptosis invitro and in vivo. Conclusion In conclusion, our data underline an essential role of CREB in SySa tumorigenesis and provides evidence for molecular targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-022-00673-w.
Collapse
Affiliation(s)
- Magdalene Cyra
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Miriam Schulte
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Ruth Berthold
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Lorena Heinst
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Esther-Pia Jansen
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Inga Grünewald
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Sandra Elges
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Olle Larsson
- Departments of Oncology and Pathology, The Karolinska Institute, Stockholm, Sweden
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Respiratory Medicine, Münster University Hospital, Münster, Germany
| | - Konrad Steinestel
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ilka Isfort
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany. .,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany. .,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.
| |
Collapse
|
6
|
Davis RB, Kaur T, Moosa MM, Banerjee PR. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. Protein Sci 2021; 30:1454-1466. [PMID: 34018649 PMCID: PMC8197437 DOI: 10.1002/pro.4127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Fusion transcription factors generated by genomic translocations are common drivers of several types of cancers including sarcomas and leukemias. Oncofusions of the FET (FUS, EWSR1, and TAF15) family proteins result from the fusion of the prion-like domain (PLD) of FET proteins to the DNA-binding domain (DBD) of certain transcription regulators and are implicated in aberrant transcriptional programs through interactions with chromatin remodelers. Here, we show that FUS-DDIT3, a FET oncofusion protein, undergoes PLD-mediated phase separation into liquid-like condensates. Nuclear FUS-DDIT3 condensates can recruit essential components of the global transcriptional machinery such as the chromatin remodeler SWI/SNF. The recruitment of mammalian SWI/SNF (mSWI/SNF) is driven by heterotypic PLD-PLD interactions between FUS-DDIT3 and core subunits of SWI/SNF, such as the catalytic component BRG1. Further experiments with single-molecule correlative force-fluorescence microscopy support a model wherein the fusion protein forms condensates on DNA surface and enrich BRG1 to activate transcription by ectopic chromatin remodeling. Similar PLD-driven co-condensation of mSWI/SNF with transcription factors can be employed by other oncogenic fusion proteins with a generic PLD-DBD domain architecture for global transcriptional reprogramming.
Collapse
Affiliation(s)
- Richoo B. Davis
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | - Taranpreet Kaur
- Department of PhysicsUniversity at BuffaloBuffaloNew YorkUSA
| | | | | |
Collapse
|
7
|
Metabolic Control of Gametophore Shoot Formation through Arginine in the Moss Physcomitrium patens. Cell Rep 2021; 32:108127. [PMID: 32905770 DOI: 10.1016/j.celrep.2020.108127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Shoot formation is accompanied by active cell proliferation and expansion, requiring that metabolic state adapts to developmental control. Despite the importance of such metabolic reprogramming, it remains unclear how development and metabolism are integrated. Here, we show that disruption of ANGUSTIFOLIA3 orthologs (PpAN3s) compromises gametophore shoot formation in the moss Physcomitrium patens due to defective cell proliferation and expansion. Trans-omics analysis reveals that the downstream activity of PpAN3 is linked to arginine metabolism. Elevating arginine level by chemical treatment leads to stunted gametophores and causes Ppan3 mutant-like transcriptional changes in the wild-type plant. Furthermore, ectopic expression of AtAN3 from Arabidopsis thaliana ameliorates the defective arginine metabolism and promotes gametophore formation in Ppan3 mutants. Together, these findings indicate that arginine metabolism is a key pathway associated with gametophore formation and provide evolutionary insights into the establishment of the shoot system in land plants through the integration of developmental and metabolic processes.
Collapse
|
8
|
Abstract
The function of histone deacetylase 2 (HDAC2) in transcriptional regulation and its role in oncogenesis have been well established. Here we discuss a transcription-independent HDAC2 pathway controlling cancer-related protein stability via the mouse double minute 2 homolog (MDM2) ubiquitin ligase. In synovial sarcoma, HDAC2 inactivation demonstrates significant therapeutic effect by degradation of the SS18-SSX driver oncoprotein.
Collapse
Affiliation(s)
| | - Le Su
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- CONTACT Le Su HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL35806, USA
| |
Collapse
|
9
|
Blas L, Roberti J. Primary Renal Synovial Sarcoma and Clinical and Pathological Findings: a Systematic Review. Curr Urol Rep 2021; 22:25. [PMID: 33704587 DOI: 10.1007/s11934-021-01038-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW To update epidemiological, diagnostic, and therapeutic information on primary synovial sarcoma of the kidney. RECENT FINDINGS A total of 96 studies were analyzed; age at presentation was 38.6±14.2 years, predominant location of tumor was right kidney; frequent reported symptoms at diagnosis were hematuria and pain. For definitive diagnosis, cytogenetic technique was used. Detected oncogene was available in 37.8% cases with fusion of SS18-SSX in most patients. Surgery is treatment of choice, with adjuvant chemotherapy; most frequently ifosfamide-based associated with doxorubicin or epirubicin. Overall median survival was 34 months. Mortality was 29% of the cases which reported death and the recurrence rate was 39.8%. Risk of death was increased in patients with metastases at diagnosis Primary RSS occurs more often in young men. RSS often presents with symptoms and in an advanced stage. Surgical treatment is the most commonly used and chemotherapy for advanced or recurrent treatment.
Collapse
Affiliation(s)
- Leandro Blas
- Hospital Aleman de Buenos Aires, Buenos Aires, Argentina
| | - Javier Roberti
- National Scientific and Technical Research Council - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Boulay G, Cironi L, Garcia SP, Rengarajan S, Xing YH, Lee L, Awad ME, Naigles B, Iyer S, Broye LC, Keskin T, Cauderay A, Fusco C, Letovanec I, Chebib I, Nielsen PG, Tercier S, Cherix S, Nguyen-Ngoc T, Cote G, Choy E, Provero P, Suvà ML, Rivera MN, Stamenkovic I, Riggi N. The chromatin landscape of primary synovial sarcoma organoids is linked to specific epigenetic mechanisms and dependencies. Life Sci Alliance 2020; 4:4/2/e202000808. [PMID: 33361335 PMCID: PMC7768195 DOI: 10.26508/lsa.202000808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
We have addressed the mechanisms by which the fusion protein SS18-SSX modifies the epigenome toward the development of synovial sarcoma and the establishment of its potentially targetable vulnerabilities. Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene SS18 to one of three SSX genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces broad BAF domains at its binding sites, which oppose polycomb repressor complex (PRC) 2 activity, while facilitating recruitment of a non-canonical (nc)PRC1 variant. Along with the uncoupling of polycomb complexes, we observed H3K27me3 eviction, H2AK119ub deposition and the establishment of de novo active regulatory elements that drive SyS identity. These alterations are completely reversible upon SS18-SSX depletion and are associated with vulnerability to USP7 loss, a core member of ncPRC1.1. Using the power of primary tumor organoids, our work helps define the mechanisms of epigenetic dysregulation on which SyS cells are dependent.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luisa Cironi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sara P Garcia
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu-Hang Xing
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukuo Lee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliane C Broye
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tugba Keskin
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Cauderay
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carlo Fusco
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Petur Gunnalugur Nielsen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stéphane Tercier
- Department of Woman-Mother Child, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Cherix
- Department of Orthopedics, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gregory Cote
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Provero
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ivan Stamenkovic
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland .,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolò Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland .,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Synovial Sarcoma: A Complex Disease with Multifaceted Signaling and Epigenetic Landscapes. Curr Oncol Rep 2020; 22:124. [PMID: 33025259 DOI: 10.1007/s11912-020-00985-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Aside from a characteristic SS18-SSX translocation identified in almost all cases, no genetic anomalies have been reliably isolated yet to drive the pathogenesis of synovial sarcoma. In the following review, we explore the structural units of wild-type SS18 and SSX, particularly as they relate to the transcriptional alterations and cellular pathway changes imposed by SS18-SSX. RECENT FINDINGS Native SS18 and SSX contribute recognizable domains to the SS18-SSX chimeric proteins, which inflict transcriptional and epigenetic changes through selective protein interactions involving the SWI/SNF and Polycomb chromatin remodeling complexes. Multiple oncogenic and developmental pathways become altered, collectively reprogramming the cellular origin of synovial sarcoma and promoting its malignant transformation. Synovial sarcoma is characterized by complex epigenetic and signaling landscapes. Identifying the operational pathways and concomitant genetic changes induced by SS18-SSX fusions could help develop tailored therapeutic strategies to ultimately improve disease control and patient survivorship.
Collapse
|
12
|
Song Y, Liu X, Wang F, Wang X, Cheng G, Peng C. Identification of Metastasis-Associated Biomarkers in Synovial Sarcoma Using Bioinformatics Analysis. Front Genet 2020; 11:530892. [PMID: 33061942 PMCID: PMC7518102 DOI: 10.3389/fgene.2020.530892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/13/2020] [Indexed: 01/24/2023] Open
Abstract
Synovial sarcoma (SS) is a highly aggressive soft tissue tumor with high risk of local recurrence and metastasis. However, the mechanisms underlying SS metastasis are still largely unclear. The purpose of this study is to screen metastasis-associated biomarkers in SS by integrated bioinformatics analysis. Two mRNA datasets (GSE40018 and GSE40021) were selected to analyze the differentially expressed genes (DEGs). Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), functional and pathway enrichment analyses were performed for DEGs. Then, the protein-protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. The module analysis of the PPI network and hub genes validation were performed using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the hub genes were performed using WEB-based GEne SeT AnaLysis Toolkit (WebGestalt). The expression levels and survival analysis of hub genes were further assessed through Gene Expression Profiling Interactive Analysis (GEPIA) and the Kaplan-Meier plotter database. In total, 213 overlapping DEGs were identified, of which 109 were upregulated and 104 were downregulated. GO analysis revealed that the DEGs were predominantly involved in mitosis and cell division. KEGG pathways analysis demonstrated that most DEGs were significantly enriched in cell cycle pathway. GSEA revealed that the DEGs were mainly enriched in oocyte meiosis, cell cycle and DNA replication pathways. A key module was identified and 10 hub genes (CENPF, KIF11, KIF23, TTK, MKI67, TOP2A, CDC45, MELK, AURKB, and BUB1) were screened out. The expression and survival analysis disclosed that the 10 hub genes were upregulated in SS patients and could result in significantly reduced survival. Our study identified a series of metastasis-associated biomarkers involved in the progression of SS, and may provide novel therapeutic targets for SS metastasis.
Collapse
Affiliation(s)
- Yan Song
- Department of Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fang Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanghui Cheng
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changliang Peng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Fonini LS, Lazzarotto F, Barros PM, Cabreira-Cagliari C, Martins MAB, Saibo NJM, Turchetto-Zolet AC, Margis-Pinheiro M. Molecular evolution and diversification of the GRF transcription factor family. Genet Mol Biol 2020; 43:20200080. [PMID: 32706846 PMCID: PMC7380329 DOI: 10.1590/1678-4685-gmb-2020-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Abstract - Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta.
Collapse
Affiliation(s)
- Leila Spagnolo Fonini
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Pedro M Barros
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Caroline Cabreira-Cagliari
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Affonso Begossi Martins
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Nelson J M Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Abstract
GROWTH-REGULATING FACTORs (GRFs) are sequence-specific DNA-binding transcription factors that regulate various aspects of plant growth and development. GRF proteins interact with a transcription cofactor, GRF-INTERACTING FACTOR (GIF), to form a functional transcriptional complex. For its activities, the GRF-GIF duo requires the SWITCH2/SUCROSE NONFERMENTING2 chromatin remodeling complex. One of the most conspicuous roles of the duo is conferring the meristematic potential on the proliferative and formative cells during organogenesis. GRF expression is post-transcriptionally down-regulated by microRNA396 (miR396), thus constructing the GRF-GIF-miR396 module and fine-tuning the duo’s action. Since the last comprehensive review articles were published over three years ago, many studies have added further insight into its action and elucidated new biological roles. The current review highlights recent advances in our understanding of how the GRF-GIF-miR396 module regulates plant growth and development. In addition, I revise the previous view on the evolutionary origin of the GRF gene family.
Collapse
Affiliation(s)
- Jeong Hoe Kim
- Department of Biology, School of Biological Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
15
|
Zhang F, Wang H, Kalve S, Wolabu TW, Nakashima J, Golz JF, Tadege M. Control of leaf blade outgrowth and floral organ development by LEUNIG, ANGUSTIFOLIA3 and WOX transcriptional regulators. THE NEW PHYTOLOGIST 2019; 223:2024-2038. [PMID: 31087654 DOI: 10.1111/nph.15921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 05/27/2023]
Abstract
Plant lateral organ development is a complex process involving both transcriptional activation and repression mechanisms. The WOX transcriptional repressor WOX1/STF, the LEUNIG (LUG) transcriptional corepressor and the ANGUSTIFOLIA3 (AN3) transcriptional coactivator play important roles in leaf blade outgrowth and flower development, but how these factors coordinate their activities remains unclear. Here we report physical and genetic interactions among these key regulators of leaf and flower development. We developed a novel in planta transcriptional activation/repression assay and suggest that LUG could function as a transcriptional coactivator during leaf blade development. MtLUG physically interacts with MtAN3, and this interaction appears to be required for leaf and flower development. A single amino acid substitution at position 61 in the SNH domain of MtAN3 protein abolishes its interaction with MtLUG, and its transactivation activity and biological function. Mutations in lug and an3 enhanced each other's mutant phenotypes. Both the lug and the an3 mutations enhanced the wox1 prs leaf and flower phenotypes in Arabidopsis. Our findings together suggest that transcriptional repression and activation mediated by the WOX, LUG and AN3 regulators function in concert to promote leaf and flower development, providing novel mechanistic insights into the complex regulation of plant lateral organ development.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Hui Wang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Shweta Kalve
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Tezera W Wolabu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jin Nakashima
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - John F Golz
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Vic, 3010, Australia
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| |
Collapse
|
16
|
Perry JA, Seong BKA, Stegmaier K. Biology and Therapy of Dominant Fusion Oncoproteins Involving Transcription Factor and Chromatin Regulators in Sarcomas. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A third of soft tissue sarcomas have been shown to carry recurrent, characteristic chromosomal translocations, many of which generate fusion proteins that act as dominant transcription factors or as chromatin regulators. With routine use of massively parallel sequencing and advances in technology for the study of epigenetics and protein complexes, the last decade has seen a marked advancement in the identification of novel fusions and in our understanding of the mechanisms by which they contribute to the malignant state. Moreover, with new approaches in chemistry, such as the strategy of targeted protein degradation, we are now better poised to address these previously intractable targets. In this review, we describe three of the most common fusion-driven sarcomas (Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma), mechanistic themes emerging across these diseases, and novel approaches to their targeting.
Collapse
Affiliation(s)
- Jennifer A. Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Bo Kyung Alex Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
17
|
Patel N, Wang J, Shiozawa K, Jones KB, Zhang Y, Prokop JW, Davenport GG, Nihira NT, Hao Z, Wong D, Brandsmeier L, Meadows SK, Sampaio AV, Werff RV, Endo M, Capecchi MR, McNagny KM, Mak TW, Nielsen TO, Underhill TM, Myers RM, Kondo T, Su L. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience 2019; 13:43-54. [PMID: 30818224 PMCID: PMC6393697 DOI: 10.1016/j.isci.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) are promising targets for cancer therapy, although their individual actions remain incompletely understood. Here, we identify a role for HDAC2 in the regulation of MDM2 acetylation at previously uncharacterized lysines. Upon inactivation of HDAC2, this acetylation creates a structural signal in the lysine-rich domain of MDM2 to prevent the recognition and degradation of its downstream substrate, MCL-1 ubiquitin ligase E3 (MULE). This mechanism further reveals a therapeutic connection between the MULE ubiquitin ligase function and tumor suppression. Specifically, we show that HDAC inhibitor treatment promotes the accumulation of MULE, which diminishes the t(X; 18) translocation-associated synovial sarcomagenesis by directly targeting the fusion product SS18-SSX for degradation. These results uncover a new HDAC2-dependent pathway that integrates reversible acetylation signaling to the anticancer ubiquitin response.
Collapse
Affiliation(s)
- Nikita Patel
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Juehong Wang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center, Tokyo 104-0045, Japan
| | - Kevin B Jones
- Department of Orthopaedics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yanfeng Zhang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | | | - Naoe T Nihira
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Derek Wong
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Arthur V Sampaio
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ryan Vander Werff
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Makoto Endo
- Genetic Pathology Evaluation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kelly M McNagny
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - T Michael Underhill
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center, Tokyo 104-0045, Japan
| | - Le Su
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
18
|
Ishii M, Suehara Y, Sano K, Kohsaka S, Hayashi T, Kazuno S, Akaike K, Mukaihara K, Kim Y, Okubo T, Takamochi K, Takahashi F, Kaneko K, Saito T. Proteomic signatures corresponding to the SS18/SSX fusion gene in synovial sarcoma. Oncotarget 2018; 9:37509-37519. [PMID: 30680066 PMCID: PMC6331019 DOI: 10.18632/oncotarget.26493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023] Open
Abstract
Synovial sarcoma (SS) is a malignant soft tissue lesion and most commonly arises in young adults. Chromosomal translocation t(X;18)(p11;q11) results in the formation of SS18/SSX by gene fusion of the SS18 gene on chromosome 18 to either SSX1, SSX2, or SSX4 gene located on chromosome X, which is detected in more than 95% of SSs. Although multiple lines of evidence suggest that the SS18/SSX fusion is the oncogene in this tumor, the protein expression profiles associated with SS18/SSX have yet to be elucidated. In this study, we conducted proteomic studies using SS18/SSX knockdown in three SS cell lines to identify the regulated proteins associated with SS18/SSX in SS. Isobaric tags for relative and absolute quantitation (i-TRAQ) analyses identified approximate 1700–2,000 proteins regulated by the SS18/SSX fusion in each SS cell line. We also analyzed the three profiles to identify proteins that were similarly altered in all 3 cell lines and found 17 consistently upregulated and 18 consistently downregulated proteins, including TAGLN and ACTN4. In addition, network analyses identified several critical pathways including RUNX2 and SMARCA4. RUNX2 and SMARCA4 had the highest ranking in these identified pathways. In addition, we found that expression of TAGLN inhibited cell viability in SS cell lines. Our data suggest that the differentiation and cell growth of SS may be enhanced by the identified proteins induced by SS18/SSX. We believe that the findings obtained in the present functional analyses will help to improve our understanding of the relationship between SS18/SSX and malignant behavior in SS.
Collapse
Affiliation(s)
- Midori Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Xing Z, Wei L, Jiang X, Conroy J, Glenn S, Bshara W, Yu T, Pao A, Tanaka S, Kawai A, Choi C, Wang J, Liu S, Morrison C, Yu YE. Analysis of mutations in primary and metastatic synovial sarcoma. Oncotarget 2018; 9:36878-36888. [PMID: 30627328 PMCID: PMC6305143 DOI: 10.18632/oncotarget.26416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Synovial sarcoma is the most common pediatric non-rhabdomyosarcoma soft tissue sarcoma and accounts for about 8-10% of all soft tissue sarcoma in childhood and adolescence. The presence of a chromosomal translocation-associated SS18-SSX-fusion gene is causally linked to development of primary synovial sarcoma. Metastases occur in approximately 50-70% of synovial sarcoma cases with yet unknown mechanisms, which led to about 70-80% mortality rate in five years. To explore the possibilities to investigate metastatic mechanisms of synovial sarcoma, we carried out the first genome-wide search for potential genetic biomarkers and drivers associated with metastasis by comparative mutational profiling of 18 synovial sarcoma samples isolated from four patients carrying the primary tumors and another four patients carrying the metastatic tumors through whole exome sequencing. Selected from the candidates yielded from this effort, we examined the effect of the multiple missense mutations of ADAM17, which were identified solely in metastatic synovial sarcoma. The mutant alleles as well as the wild-type control were expressed in the mammalian cells harboring the SS18-SSX1 fusion gene. The ADAM17-P729H mutation was shown to enhance cell migration, a phenotype associated with metastasis. Therefore, like ADAM17-P729H, other mutations we identified solely in metastatic synovial sarcoma may also have the potential to serve as an entry point for unraveling the metastatic mechanisms of synovial sarcoma.
Collapse
Affiliation(s)
- Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jeffrey Conroy
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Sean Glenn
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Christopher Choi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Carl Morrison
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,OmniSeq Inc., Buffalo, NY, USA.,Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
20
|
Natarajan V, Ramanathan P, Gopisetty G, Ramachandran B, Thangarajan R, Kesavan S. In silico and in vitro screening of small molecule Inhibitors against SYT-SSX1 fusion protein in synovial sarcoma. Comput Biol Chem 2018; 77:36-43. [PMID: 30219714 DOI: 10.1016/j.compbiolchem.2018.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
Abstract
Synovial sarcoma (SS) is characterized by a tumour specific chromosomal translocation t(X;18) (p11;q11) which results in the formation of SYT-SSX1 fusion protein. This fusion protein represents a clear therapeutic target and molecules specifically targeting SYT-SSX1 fusion protein are currently not available. In this study, SYT-SSX1 fusion protein sequence was retrieved from Uniprot and 3D structure was generated using I-TASSER modeling program. A structure based computational screening approach has been employed using Glide docking software to identify potential SYT-SSX1 small molecule inhibitors that bind to the junction region of the fusion protein. The obtained inhibitors were further filtered based on the docking score and ADME/T properties. Ten best fit compounds were chosen for in vitro studies. The anti-proliferative activities of these 10 compounds were screened in Yamato, ASKA (carries SYT-SSX1 fusion protein) and other sarcoma cell lines such as A673, 143B to understand the specificity of inhibition of the chosen compounds. The in vitro activity was compared against HEK293 cell lines. The compound 5-fluoro-3-(1-phenyl-1H-tetraazol-5-yl)-1H-indole (FPTI) was found to be selectively cytotoxic in synovial sarcoma cell lines (Yamato and ASKA) and this compound also showed insignificant anti proliferative activity on other cell lines. Further, target gene expression study confirmed that FPTI treatment down-regulated SYT-SSX1 and modulated its downstream target genes. Cell cycle analysis revealed the involvement of an apoptotic mechanism of cell death. Further experimental validations may elucidate the therapeutic potentials of FPTI against SYT-SSX1 fusion protein.
Collapse
Affiliation(s)
- Valliyammai Natarajan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Priya Ramanathan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Gopal Gopisetty
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Balaji Ramachandran
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Rajkumar Thangarajan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India
| | - Sabitha Kesavan
- Dept of Molecular Oncology, Dr. S. Krishnamurthi Campus, Cancer Institute (WIA), Guindy, Chennai, 600036, India.
| |
Collapse
|
21
|
Meng LS, Li C, Xu MK, Sun XD, Wan W, Cao XY, Zhang JL, Chen KM. Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light-mediated stomatal development. PLANT, CELL & ENVIRONMENT 2018; 41:1645-1656. [PMID: 29645276 DOI: 10.1111/pce.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss-of-function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light-signaling mutant, and that AN3 protein is light regulated. Self-activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target-gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light-controlling stomatal development. Together, these components for regulating stomatal development form an AN3-COP1-E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Cong Li
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, People's Republic of China
| | - Meng-Ke Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Xu-Dong Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan, 650201, People's Republic of China
| | - Wen Wan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Xiao-Ying Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Jin-Lin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou City, 730020, People's Republic of China
| | - Kun-Ming Chen
- School of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shanxi, 712100, People's Republic of China
| |
Collapse
|
22
|
Banito A, Li X, Laporte AN, Roe JS, Sanchez-Vega F, Huang CH, Dancsok AR, Hatzi K, Chen CC, Tschaharganeh DF, Chandwani R, Tasdemir N, Jones KB, Capecchi MR, Vakoc CR, Schultz N, Ladanyi M, Nielsen TO, Lowe SW. The SS18-SSX Oncoprotein Hijacks KDM2B-PRC1.1 to Drive Synovial Sarcoma. Cancer Cell 2018; 33:527-541.e8. [PMID: 29502955 PMCID: PMC5881394 DOI: 10.1016/j.ccell.2018.01.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/14/2017] [Accepted: 01/27/2018] [Indexed: 12/25/2022]
Abstract
Synovial sarcoma is an aggressive cancer invariably associated with a chromosomal translocation involving genes encoding the SWI-SNF complex component SS18 and an SSX (SSX1 or SSX2) transcriptional repressor. Using functional genomics, we identify KDM2B, a histone demethylase and component of a non-canonical polycomb repressive complex 1 (PRC1.1), as selectively required for sustaining synovial sarcoma cell transformation. SS18-SSX1 physically interacts with PRC1.1 and co-associates with SWI/SNF and KDM2B complexes on unmethylated CpG islands. Via KDM2B, SS18-SSX1 binds and aberrantly activates expression of developmentally regulated genes otherwise targets of polycomb-mediated repression, which is restored upon KDM2B depletion, leading to irreversible mesenchymal differentiation. Thus, SS18-SSX1 deregulates developmental programs to drive transformation by hijacking a transcriptional repressive complex to aberrantly activate gene expression.
Collapse
Affiliation(s)
- Ana Banito
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang Li
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jae-Seok Roe
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Francisco Sanchez-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Amanda R Dancsok
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Katerina Hatzi
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Chi-Chao Chen
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Darjus F Tschaharganeh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Rohit Chandwani
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Nilgun Tasdemir
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kevin B Jones
- Department of Orthopedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84103, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Nikolaus Schultz
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
23
|
Ercoli MF, Ferela A, Debernardi JM, Perrone AP, Rodriguez RE, Palatnik JF. GIF Transcriptional Coregulators Control Root Meristem Homeostasis. THE PLANT CELL 2018; 30:347-359. [PMID: 29352064 PMCID: PMC5868699 DOI: 10.1105/tpc.17.00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/02/2018] [Accepted: 01/18/2018] [Indexed: 05/02/2023]
Abstract
In the root meristem, the quiescent center (QC) is surrounded by stem cells, which in turn generate the different cell types of the root. QC cells rarely divide under normal conditions but can replenish damaged stem cells. In the proximal meristem, the daughters of stem cells, which are referred to as transit-amplifying cells, undergo additional rounds of cell division prior to differentiation. Here, we describe the functions of GRF-INTERACTING FACTORs (GIFs), including ANGUSTIFOLIA3 (AN3), in Arabidopsis thaliana roots. GIFs have been shown to interact with GRF transcription factors and SWI/SNF chromatin remodeling complexes. We found that combinations of GIF mutants cause the loss of QC identity. However, despite their QC impairment, GIF mutants have a significantly enlarged root meristem with additional lateral root cap layers. We show that the increased expression of PLETHORA1 (PLT1) is at least partially responsible for the large root meristems of an3 mutants. Furthermore, we found that GIFs are necessary for maintaining the precise expression patterns of key developmental regulators and that AN3 complexes bind directly to the promoter regions of PLT1 as well as SCARECROW We propose that AN3/GIFs participate in different pathways that control QC organization and the size of the meristem.
Collapse
Affiliation(s)
- María Florencia Ercoli
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Antonella Ferela
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Juan Manuel Debernardi
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Ana Paula Perrone
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Javier F Palatnik
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
24
|
Jones SE, Fleuren EDG, Frankum J, Konde A, Williamson CT, Krastev DB, Pemberton HN, Campbell J, Gulati A, Elliott R, Menon M, Selfe JL, Brough R, Pettitt SJ, Niedzwiedz W, van der Graaf WTA, Shipley J, Ashworth A, Lord CJ. ATR Is a Therapeutic Target in Synovial Sarcoma. Cancer Res 2017; 77:7014-7026. [PMID: 29038346 PMCID: PMC6155488 DOI: 10.1158/0008-5472.can-17-2056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023]
Abstract
Synovial sarcoma (SS) is an aggressive soft-tissue malignancy characterized by expression of SS18-SSX fusions, where treatment options are limited. To identify therapeutically actionable genetic dependencies in SS, we performed a series of parallel, high-throughput small interfering RNA (siRNA) screens and compared genetic dependencies in SS tumor cells with those in >130 non-SS tumor cell lines. This approach revealed a reliance of SS tumor cells upon the DNA damage response serine/threonine protein kinase ATR. Clinical ATR inhibitors (ATRi) elicited a synthetic lethal effect in SS tumor cells and impaired growth of SS patient-derived xenografts. Oncogenic SS18-SSX family fusion genes are known to alter the composition of the BAF chromatin-remodeling complex, causing ejection and degradation of wild-type SS18 and the tumor suppressor SMARCB1. Expression of oncogenic SS18-SSX fusion proteins caused profound ATRi sensitivity and a reduction in SS18 and SMARCB1 protein levels, but an SSX18-SSX1 Δ71-78 fusion containing a C-terminal deletion did not. ATRi sensitivity in SS was characterized by an increase in biomarkers of replication fork stress (increased γH2AX, decreased replication fork speed, and increased R-loops), an apoptotic response, and a dependence upon cyclin E expression. Combinations of cisplatin or PARP inhibitors enhanced the antitumor cell effect of ATRi, suggesting that either single-agent ATRi or combination therapy involving ATRi might be further assessed as candidate approaches for SS treatment. Cancer Res; 77(24); 7014-26. ©2017 AACR.
Collapse
Affiliation(s)
- Samuel E Jones
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
- Sarcoma Molecular Pathology Laboratory, The Institute of Cancer Research, London, UK
| | - Emmy D G Fleuren
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
- Clinical and Translational Sarcoma Research, The Institute of Cancer Research, London, UK
| | - Jessica Frankum
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Asha Konde
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Chris T Williamson
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Helen N Pemberton
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - James Campbell
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Aditi Gulati
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Richard Elliott
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Malini Menon
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Joanna L Selfe
- Sarcoma Molecular Pathology Laboratory, The Institute of Cancer Research, London, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Wojciech Niedzwiedz
- Cancer and Genome Instability Laboratory, The Institute of Cancer Research, London, UK
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Laboratory, The Institute of Cancer Research, London, UK.
| | - Alan Ashworth
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK.
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK.
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, London, UK
| |
Collapse
|
25
|
First cloned human immortalized adipose derived mesenchymal stem-cell line with chimeric SS18-SSX1 gene (SS-iASC). Cancer Genet 2017; 216-217:52-60. [DOI: 10.1016/j.cancergen.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 01/02/2023]
|
26
|
Shen JK, Cote GM, Gao Y, Choy E, Mankin HJ, Hornicek FJ, Duan Z. Targeting EZH2-mediated methylation of H3K27 inhibits proliferation and migration of Synovial Sarcoma in vitro. Sci Rep 2016; 6:25239. [PMID: 27125524 PMCID: PMC4850444 DOI: 10.1038/srep25239] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/13/2016] [Indexed: 02/02/2023] Open
Abstract
Synovial sarcoma is an aggressive soft tissue sarcoma genetically defined by the fusion oncogene SS18-SSX. It is hypothesized that either SS18-SSX disrupts SWI/SNF complex inhibition of the polycomb complex 2 (PRC2) methyltransferase Enhancer of Zeste Homologue 2 (EZH2), or that SS18-SSX is able to directly recruit PRC2 to aberrantly silence target genes. This is of potential therapeutic value as several EZH2 small molecule inhibitors are entering early phase clinical trials. In this study, we first confirmed EZH2 expression in the 76% of human synovial sarcoma samples. We subsequently investigated EZH2 as a therapeutic target in synovial sarcoma in vitro. Knockdown of EZH2 by shRNA or siRNA resulted in inhibition of cell growth and migration across a series of synovial sarcoma cell lines. The EZH2 selective small-molecule inhibitor EPZ005687 similarly suppressed cell proliferation and migration. These data support the hypothesis that targeting EZH2 may be a promising therapeutic strategy in the treatment of synovial sarcoma; clinical trials are initiating enrollment currently.
Collapse
Affiliation(s)
- Jacson K. Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, United States
| | - Gregory M. Cote
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, United States
| | - Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, United States
| | - Edwin Choy
- Division of Hematology and Oncology, Massachusetts General Hospital, Boston, United States
| | - Henry J. Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, United States
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, United States
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
27
|
The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma. Sci Rep 2016; 6:22113. [PMID: 26905812 PMCID: PMC4764983 DOI: 10.1038/srep22113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation.
Collapse
|
28
|
Kasaian K, Wiseman SM, Walker BA, Schein JE, Zhao Y, Hirst M, Moore RA, Mungall AJ, Marra MA, Jones SJM. The genomic and transcriptomic landscape of anaplastic thyroid cancer: implications for therapy. BMC Cancer 2015; 15:984. [PMID: 26680454 PMCID: PMC4683857 DOI: 10.1186/s12885-015-1955-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anaplastic thyroid carcinoma is the most undifferentiated form of thyroid cancer and one of the deadliest of all adult solid malignancies. Here we report the first genomic and transcriptomic profile of anaplastic thyroid cancer including those of several unique cell lines and outline novel potential drivers of malignancy and targets of therapy. METHODS We describe whole genomic and transcriptomic profiles of 1 primary anaplastic thyroid tumor and 3 authenticated cell lines. Those profiles augmented by the transcriptomes of 4 additional and unique cell lines were compared to 58 pairs of papillary thyroid carcinoma and matched normal tissue transcriptomes from The Cancer Genome Atlas study. RESULTS The most prevalent mutations were those of TP53 and BRAF; repeated alterations of the epigenetic machinery such as frame-shift deletions of HDAC10 and EP300, loss of SMARCA2 and fusions of MECP2, BCL11A and SS18 were observed. Sequence data displayed aneuploidy and large regions of copy loss and gain in all genomes. Common regions of gain were however evident encompassing chromosomes 5p and 20q. We found novel anaplastic gene fusions including MKRN1-BRAF, FGFR2-OGDH and SS18-SLC5A11, all expressed in-frame fusions involving a known proto-oncogene. Comparison of the anaplastic thyroid cancer expression datasets with the papillary thyroid cancer and normal thyroid tissue transcriptomes suggested several known drug targets such as FGFRs, VEGFRs, KIT and RET to have lower expression levels in anaplastic specimens compared with both papillary thyroid cancers and normal tissues, confirming the observed lack of response to therapies targeting these pathways. Further integrative data analysis identified the mTOR signaling pathway as a potential therapeutic target in this disease. CONCLUSIONS Anaplastic thyroid carcinoma possessed heterogeneous and unique profiles revealing the significance of detailed molecular profiling of individual tumors and the treatment of each as a unique entity; the cell line sequence data promises to facilitate the more accurate and intentional drug screening studies for anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Katayoon Kasaian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Sam M Wiseman
- Department of Surgery, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada.
| | - Blair A Walker
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jacqueline E Schein
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. .,, 570 West 7th Ave, Vancouver, British Columbia, V5Z 4S6, Canada.
| |
Collapse
|
29
|
Kimura T, Wang L, Tabu K, Tsuda M, Tanino M, Maekawa A, Nishihara H, Hiraga H, Taga T, Oda Y, Tanaka S. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene 2015; 35:3932-43. [DOI: 10.1038/onc.2015.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/21/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
|
30
|
Tamaki S, Fukuta M, Sekiguchi K, Jin Y, Nagata S, Hayakawa K, Hineno S, Okamoto T, Watanabe M, Woltjen K, Ikeya M, Kato T, Toguchida J. SS18-SSX, the Oncogenic Fusion Protein in Synovial Sarcoma, Is a Cellular Context-Dependent Epigenetic Modifier. PLoS One 2015; 10:e0142991. [PMID: 26571495 PMCID: PMC4646489 DOI: 10.1371/journal.pone.0142991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022] Open
Abstract
The prevalence and specificity of unique fusion oncogenes are high in a number of soft tissue sarcomas (STSs). The close relationship between fusion genes and clinicopathological features suggests that a correlation may exist between the function of fusion proteins and cellular context of the cell-of-origin of each tumor. However, most STSs are origin-unknown tumors and this issue has not yet been investigated in detail. In the present study, we examined the effects of the cellular context on the function of the synovial sarcoma (SS)-specific fusion protein, SS18-SSX, using human pluripotent stem cells (hPSCs) containing the drug-inducible SS18-SSX gene. We selected the neural crest cell (NCC) lineage for the first trial of this system, induced SS18-SSX at various differentiation stages from PSCs to NCC-derived mesenchymal stromal cells (MSCs), and compared its biological effects on each cell type. We found that the expression of FZD10, identified as an SS-specific gene, was induced by SS18-SSX at the PSC and NCC stages, but not at the MSC stage. This stage-specific induction of FZD10 correlated with stage-specific changes in histone marks associated with the FZD10 locus and also with the loss of the BAF47 protein, a member of the SWI/SNF chromatin-remodeling complex. Furthermore, the global gene expression profile of hPSC-derived NCCs was the closest to that of SS cell lines after the induction of SS18-SSX. These results clearly demonstrated that the cellular context is an important factor in the function of SS18-SSX as an epigenetic modifier.
Collapse
Affiliation(s)
- Sakura Tamaki
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Fukuta
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuya Sekiguchi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yonghui Jin
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kazuo Hayakawa
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sho Hineno
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Okamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Watanabe
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tomohisa Kato
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
31
|
Kim JH, Tsukaya H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6093-107. [PMID: 26160584 DOI: 10.1093/jxb/erv349] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.
Collapse
Affiliation(s)
- Jeong Hoe Kim
- Department of Biology, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
32
|
Meng LS, Yao SQ. Transcription co-activator Arabidopsis ANGUSTIFOLIA3 (AN3) regulates water-use efficiency and drought tolerance by modulating stomatal density and improving root architecture by the transrepression of YODA (YDA). PLANT BIOTECHNOLOGY JOURNAL 2015; 13:893-902. [PMID: 25599980 DOI: 10.1111/pbi.12324] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 05/09/2023]
Abstract
One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development. BR-INSENSITIVE 2 interacts with phosphorylates and inhibits YDA. However, whether YDA is modulated in the transcriptional level is still unclear. Plants lacking ANGUSTIFOLIA3 (AN3) activity have high drought stress tolerance because of low stomatal densities and improved root architecture. Such plants also exhibit enhanced WUE through declining transpiration without a demonstrable reduction in biomass accumulation. AN3 negatively regulated YDA expression at the transcriptional level by target-gene analysis. Chromatin immunoprecipitation analysis indicated that AN3 was associated with a region of the YDA promoter in vivo. YDA mutation significantly decreased the stomatal density and root length of an3 mutant, thus proving the participation of YDA in an3 drought tolerance and WUE enhancement. These components form an AN3-YDA complex, which allows the integration of water deficit stress signalling into the production or spacing of stomata and cell proliferation, thus leading to drought tolerance and enhanced WUE.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shun-Qiao Yao
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
33
|
|
34
|
Meng LS. Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic1. PLANT, CELL & ENVIRONMENT 2015; 38:838-51. [PMID: 25256341 DOI: 10.1111/pce.12456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 05/08/2023]
Abstract
ANGUSTIFOLIA3 (AN3), a transcription coactivator, is implicated in modulating cell proliferation. In this study, I found that AN3 is a novel regulator of anthocyanin biosynthesis and light-induced root elongation. Seedlings and seeds lacking AN3 activity presented significantly reduced anthocyanin accumulation and light-induced root elongation, whereas those of transgenic plants harbouring the 35S:AN3 construct exhibited increased anthocyanin accumulation. AN3 is required for the proper expression of other genes that affect anthocyanin accumulation and light-induced root elongation, Constitutive Photomorphogenic1 (COP1), encoding a RING motif - containing E3 ubiquitin ligase. AN3 was associated with COP1 promoter in vivo. Thus, AN3 may act with other proteins that bind to COP1 promoter to promote anthocyanin accumulation and inhibit light-induced root elongation.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
35
|
McGrath J, Trojer P. Targeting histone lysine methylation in cancer. Pharmacol Ther 2015; 150:1-22. [PMID: 25578037 DOI: 10.1016/j.pharmthera.2015.01.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
Within the vast landscape of histone modifications lysine methylation has gained increasing attention because of its profound regulatory potential. The methylation of lysine residues on histone proteins modulates chromatin structure and thereby contributes to the regulation of DNA-based nuclear processes such as transcription, replication and repair. Protein families with opposing catalytic activities, lysine methyltransferases (KMTs) and demethylases (KDMs), dynamically control levels of histone lysine methylation and individual enzymes within these families have become candidate oncology targets in recent years. A number of high quality small molecule inhibitors of these enzymes have been identified. Several of these compounds elicit selective cancer cell killing in vitro and robust efficacy in vivo, suggesting that targeting 'histone lysine methylation pathways' may be a relevant, emerging cancer therapeutic strategy. Here, we discuss individual histone lysine methylation pathway targets, the properties of currently available small molecule inhibitors and their application in the context of cancer.
Collapse
Affiliation(s)
- John McGrath
- Constellation Pharmaceuticals, 215 1st Street Suite 200, Cambridge, MA, 02142, USA
| | - Patrick Trojer
- Constellation Pharmaceuticals, 215 1st Street Suite 200, Cambridge, MA, 02142, USA.
| |
Collapse
|
36
|
Morgan SS, Cranmer LD. Vorinostat synergizes with ridaforolimus and abrogates the ridaforolimus-induced activation of AKT in synovial sarcoma cells. BMC Res Notes 2014; 7:812. [PMID: 25406429 PMCID: PMC4247709 DOI: 10.1186/1756-0500-7-812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/31/2014] [Indexed: 11/13/2022] Open
Abstract
Background Curative treatments for patients with metastatic synovial sarcoma (SS) do not exist, and such patients have a poor prognosis. We explored combinations of molecularly-targeted and cytotoxic agents to identify synergistic treatment combinations in SS cells. Methods Two SS cell lines (HS-SY-II and SYO-I) were treated with single agents or combinations of molecularly targeted therapies (HDAC inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and cytotoxic agents. After 72 hours, cell viability was measured using the MTS cell proliferation assay. Combination Indices (CI) were calculated to determine whether each combination was synergistic, additive, or antagonistic. Western Blot analysis assessed alterations in total and phospho-AKT protein levels in response to drug treatment. Results We determined the single-agent IC50 for ridaforolimus, vorinostat, doxorubicin, and melphalan in HS-SY-II and SYO-I. Synergism was apparent in cells co-treated with ridaforolimus and vorinostat: CI was 0.28 and 0.63 in HS-SY-II and SYO-I, respectively. Ridaforolimus/doxorubicin and ridaforolimus/melphalan exhibited synergism in both cell lines. An additive effect was observed with combination of vorinostat/doxorubicin in both cell lines. Vorinostat/melphalan was synergistic in HS-SY-II and additive in SYO-I. Western blot analysis demonstrated that ridaforolimus increased pAKT-ser473 levels; this effect was abrogated by vorinostat co-treatment. Conclusions The combination of ridaforolimus and vorinostat demonstrates in vitro synergism in SS. Addition of vorinostat abrogated ridaforolimus-induced AKT activation. Since AKT activation is a possible mechanism of resistance to mTOR inhibitors, adding vorinostat (or another HDAC inhibitor) may be a route to circumvent AKT-mediated resistance to mTOR inhibitors.
Collapse
Affiliation(s)
| | - Lee D Cranmer
- The University of Arizona Cancer Center, 1515 N, Campbell Avenue, Tucson, AZ 85724-5024, USA.
| |
Collapse
|
37
|
Minami Y, Kohsaka S, Tsuda M, Yachi K, Hatori N, Tanino M, Kimura T, Nishihara H, Minami A, Iwasaki N, Tanaka S. SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1. Cancer Sci 2014; 105:1152-9. [PMID: 24989082 PMCID: PMC4462386 DOI: 10.1111/cas.12479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) can function as tumor suppressors or oncogenes, and also as potential specific cancer biomarkers; however, there are few published studies on miRNA in synovial sarcomas, and their function remains unclear. We transfected the OncomiR miRNA Precursor Virus Library into synovial sarcoma Fuji cells followed by a colony formation assay to identify miRNAs to confer an aggressive tumorigenicity, and identified miR-17-5p from the large colonies. MiR-17 was found to be induced by a chimeric oncoprotein SS18-SSX specific for synovial sarcoma, and all examined cases of human synovial sarcoma expressed miR-17, even at high levels in several cases. Overexpression of miR-17 in synovial sarcoma cells, Fuji and HS-SYII, increased colony forming ability in addition to cell growth, but not cell motility and invasion. Tumor volume formed in mice in vivo was significantly increased by miR-17 overexpression with a marked increase of MIB-1 index. According to PicTar and Miranda algorithms, which predicted CDKN1A (p21) as a putative target of miR-17, a luciferase assay was performed and revealed that miR-17 directly targets the 3′-UTR of p21 mRNA. Indeed, p21 protein level was remarkably decreased by miR-17 overexpression in a p53-independent manner. It is noteworthy that miR-17 succeeded in suppressing doxorubicin-evoked higher expression of p21 and conferred the drug resistance. Meanwhile, introduction of anti-miR-17 in Fuji and HS-SYII cells significantly decreased cell growth, consistent with rescued expression of p21. Taken together, miR-17 promotes the tumor growth of synovial sarcomas by post-transcriptional suppression of p21, which may be amenable to innovative therapeutic targeting in synovial sarcoma.
Collapse
Affiliation(s)
- Yusuke Minami
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF. Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:413-26. [PMID: 24888433 DOI: 10.1111/tpj.12567] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 05/20/2023]
Abstract
The growth-regulating factors (GRFs) are plant-specific transcription factors. They form complexes with GRF-interacting factors (GIFs), a small family of transcriptional co-activators. In Arabidopsis thaliana, seven out of the nine GRFs are controlled by microRNA miR396. Analysis of Arabidopsis plants carrying a GRF3 allele insensitive to miR396 revealed a strong boost in the number of cells in leaves, which was further enhanced synergistically by an additional increase of GIF1 levels. Genetic experiments revealed that GRF3 can still increase cell number in gif1 mutants, albeit to a much lesser extent. Genome-wide transcript profiling indicated that the simultaneous increase of GRF3 and GIF1 levels causes additional effects in gene expression compared to either of the transgenes alone. We observed that GIF1 interacts in vivo with GRF3, as well as with chromatin-remodeling complexes, providing a mechanistic explanation for the synergistic activities of a GRF3-GIF1 complex. Interestingly, we found that, in addition to the leaf size, the GRF system also affects the organ longevity. Genetic and molecular analysis revealed that the functions of GRFs in leaf growth and senescence can be uncoupled, demonstrating that the miR396-GRF-GIF network impinges on different stages of leaf development. Our results integrate the post-transcriptional control of the GRF transcription factors with the progression of leaf development.
Collapse
Affiliation(s)
- Juan M Debernardi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Eid JE, Garcia CB. Reprogramming of mesenchymal stem cells by oncogenes. Semin Cancer Biol 2014; 32:18-31. [PMID: 24938913 DOI: 10.1016/j.semcancer.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) originate from embryonic mesoderm and give rise to the multiple lineages of connective tissues. Transformed MSCs develop into aggressive sarcomas, some of which are initiated by specific chromosomal translocations that generate fusion proteins with potent oncogenic properties. The sarcoma oncogenes typically prime MSCs through aberrant reprogramming. They dictate commitment to a specific lineage but prevent mature differentiation, thus locking the cells in a state of proliferative precursors. Deregulated expression of lineage-specific transcription factors and controllers of chromatin structure play a central role in MSC reprogramming and sarcoma pathogenesis. This suggests that reversing the epigenetic aberrancies created by the sarcoma oncogenes with differentiation-related reagents holds great promise as a beneficial addition to sarcoma therapies.
Collapse
Affiliation(s)
- Josiane E Eid
- Department of Cancer Biology, Vanderbilt University Medical Center, 771 Preston, Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Christina B Garcia
- Department of Pediatrics-Nutrition, Baylor College of Medicine, BCM320, Huston, TX 77030, USA
| |
Collapse
|
40
|
Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han SK, Jégu T, Archacki R, Van Leene J, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inzé D. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. THE PLANT CELL 2014; 26:210-29. [PMID: 24443518 PMCID: PMC3963571 DOI: 10.1105/tpc.113.115907] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 05/18/2023]
Abstract
The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
Collapse
Affiliation(s)
- Liesbeth Vercruyssen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Aurine Verkest
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ken S. Heyndrickx
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Soon-Ki Han
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Teddy Jégu
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris-Sud XI, 91405 Orsay, France
| | - Rafal Archacki
- Laboratory of Plant Molecular Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Megan Andriankaja
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stefanie De Bodt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Thomas Abeel
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Katrien Maleux
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research and Biochemistry, VIB, 90 00 Ghent, Belgium
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Andrzej Jerzmanowski
- Laboratory of Plant Molecular Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618, Université Paris-Sud XI, 91405 Orsay, France
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
41
|
Parker BC, Zhang W. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. CHINESE JOURNAL OF CANCER 2013; 32:594-603. [PMID: 24206917 PMCID: PMC3845546 DOI: 10.5732/cjc.013.10178] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/12/2023]
Abstract
Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.
Collapse
Affiliation(s)
- Brittany C Parker
- Department of Pathology, Unit 85, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
42
|
Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, Renner M, Kirfel J, Steiner S, Huss S, Koch A, Penzel R, Larsson O, Kawai A, Tanaka S, Sonobe H, Waha A, Schirmacher P, Mechtersheimer G, Wardelmann E, Büttner R, Hartmann W. SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene 2013; 33:5006-16. [PMID: 24166495 DOI: 10.1038/onc.2013.443] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
Synovial sarcoma is a high-grade soft tissue malignancy characterized by a specific reciprocal translocation t(X;18), which leads to the fusion of the SS18 (SYT) gene to one of three SSX genes (SSX1, SSX2 or SSX4). The resulting chimeric SS18-SSX protein is suggested to act as an oncogenic transcriptional regulator. Despite multimodal therapeutic approaches, metastatic disease is often lethal and the development of novel targeted therapeutic strategies is required. Several expression-profiling studies identified distinct gene expression signatures, implying a consistent role of Wnt/β-catenin signaling in synovial sarcoma tumorigenesis. Here we investigate the functional and therapeutic relevance of Wnt/β-catenin pathway activation in vitro and in vivo. Immunohistochemical analyses of nuclear β-catenin and Wnt downstream targets revealed activation of canonical Wnt signaling in a significant subset of 30 primary synovial sarcoma specimens. Functional aspects of Wnt signaling including dependence of Tcf/β-catenin complex activity on the SS18-SSX fusion proteins were analyzed. Efficient SS18-SSX-dependent activation of the Tcf/β-catenin transcriptional complex was confirmed by TOPflash reporter luciferase assays and immunoblotting. In five human synovial sarcoma cell lines, inhibition of the Tcf/β-catenin protein-protein interaction significantly blocked the canonical Wnt/β-catenin signaling cascade, accompanied by the effective downregulation of Wnt targets (AXIN2, CDC25A, c-MYC, DKK1, CyclinD1 and Survivin) and the specific suppression of cell viability associated with the induction of apoptosis. In SYO-1 synovial sarcoma xenografts, administration of small molecule Tcf/β-catenin complex inhibitors significantly reduced tumor growth, associated with diminished AXIN2 protein levels. In summary, SS18-SSX-induced Wnt/β-catenin signaling appears to be of crucial biological importance in synovial sarcoma tumorigenesis and progression, representing a potential molecular target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- M Trautmann
- 1] Department of Pathology, University Hospital Cologne, Cologne, Germany [2] Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - E Sievers
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - S Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - D Kindler
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - S Michels
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - N Friedrichs
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - M Renner
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Kirfel
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - S Steiner
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - S Huss
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - A Koch
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - R Penzel
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - O Larsson
- Departments of Oncology & Pathology, The Karolinska Institute, Stockholm, Sweden
| | - A Kawai
- Division of Orthopaedic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - S Tanaka
- Laboratory of Molecular & Cellular Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Sonobe
- Department of Laboratory Medicine, Chungoku Central Hospital, Fukuyama, Hiroshima, Japan
| | - A Waha
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - P Schirmacher
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - G Mechtersheimer
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - E Wardelmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - R Büttner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - W Hartmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
43
|
Yoneda Y, Ito S, Kunisada T, Morimoto Y, Kanzaki H, Yoshida A, Shimizu K, Ozaki T, Ouchida M. Truncated SSX protein suppresses synovial sarcoma cell proliferation by inhibiting the localization of SS18-SSX fusion protein. PLoS One 2013; 8:e77564. [PMID: 24130893 PMCID: PMC3793959 DOI: 10.1371/journal.pone.0077564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/03/2013] [Indexed: 01/12/2023] Open
Abstract
Synovial sarcoma is a relatively rare high-grade soft tissue sarcoma that often develops in the limbs of young people and induces the lung and the lymph node metastasis resulting in poor prognosis. In patients with synovial sarcoma, specific chromosomal translocation of t(X; 18) (p11.2;q11.2) is observed, and SS18-SSX fusion protein expressed by this translocation is reported to be associated with pathogenesis. However, role of the fusion protein in the pathogenesis of synovial sarcoma has not yet been completely clarified. In this study, we focused on the localization patterns of SS18-SSX fusion protein. We constructed expression plasmids coding for the full length SS18-SSX, the truncated SS18 moiety (tSS18) and the truncated SSX moiety (tSSX) of SS18-SSX, tagged with fluorescent proteins. These plasmids were transfected in synovial sarcoma SYO-1 cells and we observed the expression of these proteins using a fluorescence microscope. The SS18-SSX fusion protein showed a characteristic speckle pattern in the nucleus. However, when SS18-SSX was co-expressed with tSSX, localization of SS18-SSX changed from speckle patterns to the diffused pattern similar to the localization pattern of tSSX and SSX. Furthermore, cell proliferation and colony formation of synovial sarcoma SYO-1 and YaFuSS cells were suppressed by exogenous tSSX expression. Our results suggest that the characteristic speckle localization pattern of SS18-SSX is strongly involved in the tumorigenesis through the SSX moiety of the SS18-SSX fusion protein. These findings could be applied to further understand the pathogenic mechanisms, and towards the development of molecular targeting approach for synovial sarcoma.
Collapse
Affiliation(s)
- Yasushi Yoneda
- Department of Orthopedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sachio Ito
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Morimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirotaka Kanzaki
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenji Shimizu
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mamoru Ouchida
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
44
|
Saito T. The SYT-SSX fusion protein and histological epithelial differentiation in synovial sarcoma: relationship with extracellular matrix remodeling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2272-2279. [PMID: 24228088 PMCID: PMC3816795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
Synovial sarcoma (SS) tumor cells, which have the chromosomal translocation t(X;18)(p11.2;q11.2), have an inherently greater propensity for epithelial differentiation than other mesenchymal tumors, especially spindle cell sarcomas. This is caused by de-repression of the transcription of E-cadherin by SYT-SSX1 and SYT-SSX2, which dissociate Snail or Slug, respectively, from the E-cadherin promoter. However, a subset of SS with SYT-SSX1 loses E-cadherin expression despite adequate de-repression because of mutations in E-cadherin, resulting in monophasic histology. The ratio of the expression levels of SYT-SSX1 and Snail is also associated with E-cadherin expression: the lower the SYT-SSX1/Snail ratio, the lower the level of E-cadherin expression, and vice versa, thus affecting tumor histology. In addition, Wnt signal activation caused by mutation of β-catenin, APC, or Axin 1 and 2 is associated with monophasic histology. Remodeling of the extracellular matrix is also important. Only cells that survive all of these steps can finally exhibit biphasic histology. On the other hand, the SYT-SSX2 fusion has a weaker de-repression effect on the E-cadherin promoter than does SYT-SSX1, so it is difficult for SYT-SSX2-expressing tumors to achieve sufficient capacity for epithelial differentiation to form glandular structures. This review provides an interesting model for this epithelial differentiation that shows a possible mechanism for the aberrant mesenchymal to epithelial transition of SS and suggests that it might better be considered an epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Tsuyoshi Saito
- Department of Human Pathology, Juntendo University, School of Medicine Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
45
|
Barham W, Frump AL, Sherrill TP, Garcia CB, Saito-Diaz K, VanSaun MN, Fingleton B, Gleaves L, Orton D, Capecchi MR, Blackwell TS, Lee E, Yull F, Eid JE. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov 2013; 3:1286-301. [PMID: 23921231 DOI: 10.1158/2159-8290.cd-13-0138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Synovial sarcoma is an aggressive soft-tissue malignancy of children and young adults, with no effective systemic therapies. Its specific oncogene, SYT-SSX (SS18-SSX), drives sarcoma initiation and development. The exact mechanism of SYT-SSX oncogenic function remains unknown. In an SYT-SSX2 transgenic model, we show that a constitutive Wnt/β-catenin signal is aberrantly activated by SYT-SSX2, and inhibition of Wnt signaling through the genetic loss of β-catenin blocks synovial sarcoma tumor formation. In a combination of cell-based and synovial sarcoma tumor xenograft models, we show that inhibition of the Wnt cascade through coreceptor blockade and the use of small-molecule CK1α activators arrests synovial sarcoma tumor growth. We find that upregulation of the Wnt/β-catenin cascade by SYT-SSX2 correlates with its nuclear reprogramming function. These studies reveal the central role of Wnt/β-catenin signaling in SYT-SSX2-induced sarcoma genesis, and open new venues for the development of effective synovial sarcoma curative agents. SIGNIFICANCE Synovial sarcoma is an aggressive soft-tissue cancer that afflicts children and young adults, and for which there is no effective treatment. The current studies provide critical insight into our understanding of the pathogenesis of SYT–SSX-dependent synovial sarcoma and pave the way for the development of effective therapeutic agents for the treatment of the disease in humans.
Collapse
Affiliation(s)
- Whitney Barham
- 1Department of Cancer Biology, 2Division of Hepatobiliary Surgery, Department of Surgery, 3Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, and 4Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center; 5Department of Cell and Developmental Biology, Vanderbilt University; 6StemSynergy Therapeutics, Inc., Nashville, Tennessee; 7Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston, Texas; and 8Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Michels S, Trautmann M, Sievers E, Kindler D, Huss S, Renner M, Friedrichs N, Kirfel J, Steiner S, Endl E, Wurst P, Heukamp L, Penzel R, Larsson O, Kawai A, Tanaka S, Sonobe H, Schirmacher P, Mechtersheimer G, Wardelmann E, Büttner R, Hartmann W. SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res 2013; 73:2518-28. [PMID: 23580575 DOI: 10.1158/0008-5472.can-12-3023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synovial sarcoma is a soft-tissue malignancy characterized by a reciprocal t(X;18) translocation encoding a chimeric transcriptional modifier. Several receptor tyrosine kinases have been found activated in synovial sarcoma; however, no convincing therapeutic concept has emerged from these findings. On the basis of the results of phosphokinase screening arrays, we here investigate the functional and therapeutic relevance of the SRC kinase in synovial sarcoma. Immunohistochemistry of phosphorylated SRC and its regulators CSK and PTP1B (PTPN1) was conducted in 30 synovial sarcomas. Functional aspects of SRC, including dependence of SRC activation on the SS18/SSX fusion proteins, were analyzed in vitro. Eventually, synovial sarcoma xenografts were treated with the SRC inhibitor dasatinib in vivo. Activated phospho (p)-(Tyr416)-SRC was detected in the majority of tumors; dysregulation of CSK or PTP1B was excluded as the reason for the activation of the kinase. Expression of the SS18/SSX fusion proteins in T-REx-293 cells was associated with increased p-(Tyr416)-SRC levels, linked with an induction of the insulin-like growth factor pathway. Treatment of synovial sarcoma cells with dasatinib led to apoptosis and inhibition of cellular proliferation, associated with reduced phosphorylation of FAK (PTK2), STAT3, IGF-IR, and AKT. Concurrent exposure of cells to dasatinib and chemotherapeutic agents resulted in additive effects. Cellular migration and invasion were dependent on signals transmitted by SRC involving regulation of the Rho GTPases Rac and RhoA. Treatment of nude mice with SYO-1 xenografts with dasatinib significantly inhibited tumor growth in vivo. In summary, SRC is of crucial biologic importance and represents a promising therapeutic target in synovial sarcoma.
Collapse
Affiliation(s)
- Sebastian Michels
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 2013; 153:71-85. [PMID: 23540691 PMCID: PMC3655887 DOI: 10.1016/j.cell.2013.02.036] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/18/2012] [Accepted: 02/13/2013] [Indexed: 01/05/2023]
Abstract
Recent exon sequencing studies have revealed that over 20% of human tumors have mutations in subunits of mSWI/SNF (BAF) complexes. To investigate the underlying mechanism, we studied human synovial sarcoma (SS), in which transformation results from the translocation of exactly 78 amino acids of SSX to the SS18 subunit of BAF complexes. We demonstrate that the SS18-SSX fusion protein competes for assembly with wild-type SS18, forming an altered complex lacking the tumor suppressor BAF47 (hSNF5). The altered complex binds the Sox2 locus and reverses polycomb-mediated repression, resulting in Sox2 activation. Sox2 is uniformly expressed in SS tumors and is essential for proliferation. Increasing the concentration of wild-type SS18 leads to reassembly of wild-type complexes retargeted away from the Sox2 locus, polycomb-mediated repression of Sox2, and cessation of proliferation. This mechanism of transformation depends on only two amino acids of SSX, providing a potential foundation for therapeutic intervention.
Collapse
Affiliation(s)
- Cigall Kadoch
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gerald R. Crabtree
- Howard Hughes Medical Institute and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
48
|
Abstract
Human synovial sarcoma is caused by a chromosome translocation, which fuses DNA encoding SSX to that encoding the SS18 protein. Kadoch and Crabtree now show that the resulting cellular transformation stems from disruption of the normal architecture and function of the human SWI/SNF (BAF) complex.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
49
|
Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells. Biochem Biophys Res Commun 2013; 432:713-9. [DOI: 10.1016/j.bbrc.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/03/2013] [Indexed: 02/06/2023]
|
50
|
Rota R, Ciarapica R, Miele L, Locatelli F. Notch signaling in pediatric soft tissue sarcomas. BMC Med 2012; 10:141. [PMID: 23158439 PMCID: PMC3520771 DOI: 10.1186/1741-7015-10-141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/16/2012] [Indexed: 02/07/2023] Open
Abstract
Pediatric soft tissue sarcomas are rare tumors of childhood, frequently characterized by specific chromosome translocations. Despite improvements in treatment, their clinical management is often challenging due to the low responsiveness of metastatic forms and aggressive variants to conventional therapeutic approaches, which leads to poor overall survival. It is widely thought that soft tissue sarcomas derive from mesenchymal progenitor cells that, during embryonic life, have developed chromosomal aberrations with de-regulation of the main pathways governing tissue morphogenesis. The Notch signaling pathway is one of the most important molecular networks involved in differentiation processes. Emerging evidence highlights the role of Notch signaling de-regulation in the biology of these pediatric sarcomas. In this review, we present an outline of recently gathered evidence on the role of Notch signaling in soft tissue sarcomas, highlighting its importance in tumor cell biology. The potential challenges and opportunities of targeting Notch signaling in the treatment of pediatric soft tissue sarcomas are also discussed.
Collapse
Affiliation(s)
- Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant'Onofrio 4, Roma, 00165, Italy.
| | | | | | | |
Collapse
|