1
|
Zhang X, Wang Y, Wang J, Zhang Y, Li R, Wang X, Ge X, Ye Q, Ji J, Fei D, Wang Q. Impaired stemness in aging periodontal ligament stem cells is mediated by the progerin/endoplasmic reticulum stress/p53 axis. J Adv Res 2024:S2090-1232(24)00484-3. [PMID: 39490613 DOI: 10.1016/j.jare.2024.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Decreased periodontal ligament stem cells (PDLSCs) stemness is a key factor in age-related alveolar bone loss. Endoplasmic reticulum (ER) stress is closely related to age-related diseases and the mesenchymal stem cell (MSC) stemness. However, the role of ER stress in regulating the stemness of senescent PDLSCs and its potential mechanism remain unclear. OBJECTIVES To investigate the detailed effect and mechanism of ER stress on impaired stemness in old periodontal ligament stem cells (OPDLSCs). METHODS The level of ER stress of Young PDLSCs (YPDLSCs) and OPDLSCs were detected, and ER stress was regulated to observe its effect on PDLSCs stemness. The expression levels of ER stress sensors (protein kinase R-like ER kinase (PERK), activating transcription factor 6 (ATF6), inositol requiring enzyme 1 (IRE1)) were upregulated in YPDLSCs and downregulated in OPDLSCs by transfection experiments to verify the detailed unfolded protein response (UPR) pathway. Mechanismly, the regulatory effect of UPR pathway on p53/p21 pathway was explored. Further study was performed to investigated the important role of progerin accumulation during aging process on ER stress, UPR and p53/p21 pathway. RESULTS Decreased stemness and ER stress activation were found in OPDLSCs. ER stress activation resulted in decreased stemness of YPDLSCs, while ER stress inhibition rescued compromised stemness of OPDLSCs. Mechanismly, ATF6 pathway regulated the OPDLSC stemness via the p53/p21 signaling as confirmed by transfection assay. Further study showed that progerin was accumulated in PDLSCs and progerin overexpression could resulted in ER stress activation, activating the ATF6/p53/p21 axis, leading to decreased stemness of aging PDLSCs. CONCLUSIONS Progerin accumulation during the aging process can lead to ER stress activation, which can suppress OPDLSC stemness via the ATF6/p53/p21 axis.
Collapse
Affiliation(s)
- Xige Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Yazheng Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Jinjin Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Yang Zhang
- Department of Stomatology, the Air Force Hospital from Eastern Theater, Nanjing, 210001, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Xiaoyu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Xiaotong Ge
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases& Shaanxi Clinical Research Center for Oral Diseases, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiyun Ji
- Department of Stomatology, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572000, Hainan, China
| | - Dongdong Fei
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700, China.
| | - Qintao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University.
| |
Collapse
|
2
|
Labade AS, Chiang ZD, Comenho C, Reginato PL, Payne AC, Earl AS, Shrestha R, Duarte FM, Habibi E, Zhang R, Church GM, Boyden ES, Chen F, Buenrostro JD. Expansion in situ genome sequencing links nuclear abnormalities to hotspots of aberrant euchromatin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614614. [PMID: 39386718 PMCID: PMC11463693 DOI: 10.1101/2024.09.24.614614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microscopy and genomics are both used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. While emerging multiplexed imaging methods can simultaneously localize genomic regions and nuclear proteins, their ability to accurately measure DNA-protein interactions is constrained by the diffraction limit of optical microscopy. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. We applied ExIGS to fibroblast cells derived from an individual with Hutchinson-Gilford progeria syndrome to characterize how variation in nuclear morphology affects spatial chromatin organization. Using this data, we discovered that lamin abnormalities are linked to hotspots of aberrant euchromatin repression that may erode cell identity. Further, we show that lamin abnormalities heterogeneously increase the repressive environment of the nucleus in tissues and aged cells. These results demonstrate that ExIGS may serve as a generalizable platform for connecting nuclear abnormalities to changes in gene regulation across disease contexts.
Collapse
|
3
|
Yu R, Xue H, Lin W, Collins F, Mount S, Cao K. Progerin mRNA expression in non-HGPS patients is correlated with widespread shifts in transcript isoforms. NAR Genom Bioinform 2024; 6:lqae115. [PMID: 39211333 PMCID: PMC11358823 DOI: 10.1093/nargab/lqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease caused primarily by a C1824T mutation in LMNA. This mutation activates a cryptic splice donor site, producing a lamin variant called progerin. Interestingly, progerin has also been detected in cells and tissues of non-HGPS patients. Here, we investigated progerin expression using publicly available RNA-seq data from non-HGPS patients in the GTEx project. We found that progerin expression is present across all tissue types in non-HGPS patients and correlated with telomere shortening in the skin. Transcriptome-wide correlation analyses suggest that the level of progerin expression is correlated with switches in gene isoform expression patterns. Differential expression analyses show that progerin expression is correlated with significant changes in genes involved in splicing regulation and mitochondrial function. Interestingly, 5' splice sites whose use is correlated with progerin expression have significantly altered frequencies of consensus trinucleotides within the core 5' splice site. Furthermore, introns whose alternative splicing correlates with progerin have reduced GC content. Our study suggests that progerin expression in non-HGPS patients is part of a global shift in splicing patterns.
Collapse
Affiliation(s)
- Reynold Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Wanru Lin
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Francis S Collins
- Molecular Genetics Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| |
Collapse
|
4
|
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Long lifetime and tissue-specific accumulation of lamin A/C in Hutchinson-Gilford progeria syndrome. J Cell Biol 2024; 223:e202307049. [PMID: 37966721 PMCID: PMC10651395 DOI: 10.1083/jcb.202307049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
LMNA mutations cause laminopathies that afflict the cardiovascular system and include Hutchinson-Gilford progeria syndrome. The origins of tissue specificity in these diseases are unclear as the lamin A/C proteins are broadly expressed. We show that LMNA transcript levels are not predictive of lamin A/C protein levels across tissues and use quantitative proteomics to discover that tissue context and disease mutation each influence lamin A/C protein's lifetime. Lamin A/C's lifetime is an order of magnitude longer in the aorta, heart, and fat, where laminopathy pathology is apparent, than in the liver and intestine, which are spared from the disease. Lamin A/C is especially insoluble in cardiovascular tissues, which may limit degradation and promote protein stability. Progerin is even more long lived than lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation is associated with impaired turnover of hundreds of abundant proteins in progeroid tissues. These findings identify impaired lamin A/C protein turnover as a novel feature of laminopathy syndromes.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Jennifer Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Odinammadu KO, Shilagardi K, Tuminelli K, Judge DP, Gordon LB, Michaelis S. The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B. Nucleus 2023; 14:2288476. [PMID: 38050983 PMCID: PMC10730222 DOI: 10.1080/19491034.2023.2288476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Several related progeroid disorders are caused by defective post-translational processing of prelamin A, the precursor of the nuclear scaffold protein lamin A, encoded by LMNA. Prelamin A undergoes farnesylation and additional modifications at its C-terminus. Subsequently, the farnesylated C-terminal segment is cleaved off by the zinc metalloprotease ZMPSTE24. The premature aging disorder Hutchinson Gilford progeria syndrome (HGPS) and a related progeroid disease, mandibuloacral dysplasia (MAD-B), are caused by mutations in LMNA and ZMPSTE24, respectively, that result in failure to process the lamin A precursor and accumulate permanently farnesylated forms of prelamin A. The farnesyl transferase inhibitor (FTI) lonafarnib is known to correct the aberrant nuclear morphology of HGPS patient cells and improves lifespan in children with HGPS. Importantly, and in contrast to a previous report, we show here that FTI treatment also improves the aberrant nuclear phenotypes in MAD-B patient cells with mutations in ZMPSTE24 (P248L or L425P). As expected, lonafarnib does not correct nuclear defects for cells with lamin A processing-proficient mutations. We also examine prelamin A processing in fibroblasts from two individuals with a prevalent laminopathy mutation LMNA-R644C. Despite the proximity of residue R644 to the prelamin A cleavage site, neither R644C patient cell line shows a prelamin A processing defect, and both have normal nuclear morphology. This work clarifies the prelamin A processing status and role of FTIs in a variety of laminopathy patient cells and supports the FDA-approved indication for the FTI Zokinvy for patients with processing-deficient progeroid laminopathies, but not for patients with processing-proficient laminopathies.
Collapse
Affiliation(s)
- Kamsi O. Odinammadu
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Khurts Shilagardi
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Daniel P. Judge
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leslie B. Gordon
- The Progeria Research Foundation, Peabody, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Genetics, Hasbro Children’s Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Ferreira‐Marques M, Carvalho A, Franco AC, Leal A, Botelho M, Carmo‐Silva S, Águas R, Cortes L, Lucas V, Real AC, López‐Otín C, Nissan X, de Almeida LP, Cavadas C, Aveleira CA. Ghrelin delays premature aging in Hutchinson-Gilford progeria syndrome. Aging Cell 2023; 22:e13983. [PMID: 37858983 PMCID: PMC10726901 DOI: 10.1111/acel.13983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies.
Collapse
Affiliation(s)
- Marisa Ferreira‐Marques
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - André Carvalho
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Ana Catarina Franco
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Ana Leal
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Mariana Botelho
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Sara Carmo‐Silva
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
| | - Rodolfo Águas
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Luísa Cortes
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
| | - Vasco Lucas
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Ana Carolina Real
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de OncologíaUniversidad de OviedoOviedoSpain
| | - Xavier Nissan
- CECS, I‐StemCorbeil‐EssonnesFrance
- INSERM U861, I‐StemCorbeil‐EssonnesFrance
- UEVE U861, I‐StemCorbeil‐EssonnesFrance
| | - Luís Pereira de Almeida
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Cláudia Cavadas
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Célia A. Aveleira
- CNC – Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB – Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
- MIA‐Portugal – Multidisciplinar Institute of AgeingUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
7
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
8
|
Gregory EF, Kalra S, Brock T, Bonne G, Luxton GWG, Hopkins C, Starr DA. Caenorhabditis elegans models for striated muscle disorders caused by missense variants of human LMNA. PLoS Genet 2023; 19:e1010895. [PMID: 37624850 PMCID: PMC10484454 DOI: 10.1371/journal.pgen.1010895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Trisha Brock
- InVivo Biosystems, Eugene, Oregon, United States of America
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Hasper J, Welle K, Swovick K, Hryhorenko J, Ghaemmaghami S, Buchwalter A. Long lifetime and selective accumulation of the A-type lamins accounts for the tissue specificity of Hutchinson-Gilford progeria syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.04.527139. [PMID: 37162946 PMCID: PMC10168242 DOI: 10.1101/2023.02.04.527139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations to the LMNA gene cause laminopathies including Hutchinson-Gilford progeria syndrome (HGPS) that severely affect the cardiovascular system. The origins of tissue specificity in these diseases are unclear, as the A-type Lamins are abundant and broadly expressed proteins. We show that A-type Lamin protein and transcript levels are uncorrelated across tissues. As protein-transcript discordance can be caused by variations in protein lifetime, we applied quantitative proteomics to profile protein turnover rates in healthy and progeroid tissues. We discover that tissue context and disease mutation each influence A-type Lamin protein lifetime. Lamin A/C has a weeks-long lifetime in the aorta, heart, and fat, where progeroid pathology is apparent, but a days-long lifetime in the liver and gastrointestinal tract, which are spared from disease. The A-type Lamins are insoluble and densely bundled in cardiovascular tissues, which may present an energetic barrier to degradation and promote long protein lifetime. Progerin is even more long-lived than Lamin A/C in the cardiovascular system and accumulates there over time. Progerin accumulation interferes broadly with protein homeostasis, as hundreds of abundant proteins turn over more slowly in progeroid tissues. These findings indicate that potential gene therapy interventions for HGPS will have significant latency and limited potency in disrupting the long-lived Progerin protein. Finally, we reveal that human disease alleles are significantly over-represented in the long-lived proteome, indicating that long protein lifetime may influence disease pathology and present a significant barrier to gene therapies for numerous human diseases.
Collapse
Affiliation(s)
- John Hasper
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Kevin Welle
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
| | - Kyle Swovick
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
| | - Jennifer Hryhorenko
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
| | - Sina Ghaemmaghami
- University of Rochester Mass Spectrometry Resource Laboratory, Rochester, NY
- Department of Biology, University of Rochester, Rochester, NY
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Physiology, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
10
|
Kim J, Hwang Y, Kim S, Chang Y, Kim Y, Kwon Y, Kim J. Transcriptional activation of endogenous Oct4 via the CRISPR/dCas9 activator ameliorates Hutchinson-Gilford progeria syndrome in mice. Aging Cell 2023:e13825. [PMID: 36964992 DOI: 10.1111/acel.13825] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/27/2023] Open
Abstract
Partial cellular reprogramming via transient expression of Oct4, Sox2, Klf4, and c-Myc induces rejuvenation and reduces aged-cell phenotypes. In this study, we found that transcriptional activation of the endogenous Oct4 gene by using the CRISPR/dCas9 activator system can efficiently ameliorate hallmarks of aging in a mouse model of Hutchinson-Gilford progeria syndrome (HGPS). We observed that the dCas9-Oct4 activator induced epigenetic remodeling, as evidenced by increased H3K9me3 and decreased H4K20me3 levels, without tumorization. Moreover, the progerin accumulation in HGPS aorta was significantly suppressed by the dCas9 activator-mediated Oct4 induction. Importantly, CRISPR/dCas9-activated Oct4 expression rescued the HGPS-associated vascular pathological features and lifespan shortening in the mouse model. These results suggest that partial rejuvenation via CRISPR/dCas9-mediated Oct4 activation can be used as a novel strategy in treating geriatric diseases.
Collapse
Affiliation(s)
- Junyeop Kim
- Laboratory of Stem Cells & Cell reprogramming, Department of Chemistry, Dongguk University, 100-715, Seoul, Korea
| | - Yerim Hwang
- Laboratory of Stem Cells & Cell reprogramming, Department of Chemistry, Dongguk University, 100-715, Seoul, Korea
| | - Sumin Kim
- Laboratory of Stem Cells & Cell reprogramming, Department of Chemistry, Dongguk University, 100-715, Seoul, Korea
| | - Yujung Chang
- Laboratory of Stem Cells & Cell reprogramming, Department of Chemistry, Dongguk University, 100-715, Seoul, Korea
| | - Yunkyung Kim
- Laboratory of Stem Cells & Cell reprogramming, Department of Chemistry, Dongguk University, 100-715, Seoul, Korea
| | - Youngeun Kwon
- Laboratory of Protein Engineering, Department of Biomedical Engineering, Dongguk University, 04620, Seoul, Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell reprogramming, Department of Chemistry, Dongguk University, 100-715, Seoul, Korea
| |
Collapse
|
11
|
Zhang N, Hu Q, Sui T, Fu L, Zhang X, Wang Y, Zhu X, Huang B, Lu J, Li Z, Zhang Y. Unique progerin C-terminal peptide ameliorates Hutchinson-Gilford progeria syndrome phenotype by rescuing BUBR1. NATURE AGING 2023; 3:185-201. [PMID: 36743663 PMCID: PMC10154249 DOI: 10.1038/s43587-023-00361-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/04/2023] [Indexed: 04/30/2023]
Abstract
An accumulating body of evidence indicates an association between mitotic defects and the aging process in Hutchinson-Gilford progeria syndrome (HGPS), which is a premature aging disease caused by progerin accumulation. Here, we found that BUBR1, a core component of the spindle assembly checkpoint, was downregulated during HGPS cellular senescence. The remaining BUBR1 was anchored to the nuclear membrane by binding with the C terminus of progerin, thus further limiting the function of BUBR1. Based on this, we established a unique progerin C-terminal peptide (UPCP) that effectively blocked the binding of progerin and BUBR1 and enhanced the expression of BUBR1 by interfering with the interaction between PTBP1 and progerin. Finally, UPCP significantly inhibited HGPS cellular senescence and ameliorated progeroid phenotypes, extending the lifespan of LmnaG609G/G609G mice. Our findings reveal an essential role for the progerin-PTBP1-BUBR1 axis in HGPS. Therapeutics designed around UPCP may be a beneficial strategy for HGPS treatment.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Qianying Hu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Tingting Sui
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Lu Fu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xinglin Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Yu Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Baiqu Huang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jun Lu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China.
| | - Yu Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE), Northeast Normal University, Changchun, China.
| |
Collapse
|
12
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Elekhnawy E. SIRT1 pathway in Parkinson's disease: a faraway snapshot but so close. Inflammopharmacology 2023; 31:37-56. [PMID: 36580159 PMCID: PMC9957916 DOI: 10.1007/s10787-022-01125-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Silent information regulator (SIRT) has distinctive enzymatic activities and physiological functions to control cell-cycle progression, gene expression, and DNA stability by targeting histone and non-histone proteins. SIRT1 enhances synaptic formation and synaptic activity, and therefore, can reduce the progression of various degenerative brain diseases including Parkinson's disease (PD). SIRT1 activity is decreased by aging with a subsequent increased risk for the development of degenerative brain diseases. Inhibition of SIRT1 promotes inflammatory reactions since SIRT1 inhibits transcription of nuclear factor kappa B (NF-κB) which also inhibits SIRT1 activation via activation of microRNA and miR-34a which reduce NAD synthesis. SIRT1 is highly expressed in microglia as well as neurons, and has antioxidant and anti-inflammatory effects. Therefore, this review aimed to find the possible role of SIRT1 in PD neuropathology. SIRT1 has neuroprotective effects; therefore, downregulation of SIRT1 during aging promotes p53 expression and may increase the vulnerability of neuronal cell deaths. PD neuropathology is linked with the sequence of inflammatory changes and the release of pro-inflammatory cytokines due to the activation of inflammatory signaling pathways. In addition, oxidative stress, inflammatory disorders, mitochondrial dysfunction, and apoptosis contribute mutually to PD neuropathology. Thus, SIRT1 and SIRT1 activators play a crucial role in the mitigation of PD neuropathology through the amelioration of oxidative stress, inflammatory disorders, mitochondrial dysfunction, apoptosis, and inflammatory signaling pathways.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
13
|
Xue H, Cao K. Missing checkpoints in premature aging. NATURE AGING 2023; 3:146-147. [PMID: 37118120 DOI: 10.1038/s43587-022-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
14
|
Primmer SR, Liao CY, Kummert OMP, Kennedy BK. Lamin A to Z in normal aging. Aging (Albany NY) 2022; 14:8150-8166. [PMID: 36260869 DOI: 10.18632/aging.204342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Almost since the discovery that mutations in the LMNA gene, encoding the nuclear structure components lamin A and C, lead to Hutchinson-Gilford progeria syndrome, people have speculated that lamins may have a role in normal aging. The most common HPGS mutation creates a splice variant of lamin A, progerin, which promotes accelerated aging pathology. While some evidence exists that progerin accumulates with normal aging, an increasing body of work indicates that prelamin A, a precursor of lamin A prior to C-terminal proteolytic processing, accumulates with age and may be a driver of normal aging. Prelamin A shares properties with progerin and is also linked to a rare progeroid disease, restrictive dermopathy. Here, we describe mechanisms underlying changes in prelamin A with aging and lay out the case that this unprocessed protein impacts normative aging. This is important since intervention strategies can be developed to modify this pathway as a means to extend healthspan and lifespan.
Collapse
Affiliation(s)
| | - Chen-Yu Liao
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Longevity, National University Health System, Singapore.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Structural basis for the interaction between unfarnesylated progerin and the Ig-like domain of lamin A/C in premature aging disorders. Biochem Biophys Res Commun 2022; 637:210-217. [DOI: 10.1016/j.bbrc.2022.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022]
|
16
|
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus 2022; 14:e28629. [PMID: 36196312 PMCID: PMC9524302 DOI: 10.7759/cureus.28629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging condition that involves genetic mutations, resulting in debilitating phenotypic features. The present state of knowledge on the molecular pathways that contribute to the pathophysiology of HGPS and the techniques being tested in vitro and in vivo to combat progerin toxicity have been discussed here. Nuclear morphological abnormalities, dysregulated gene expression, DNA repair deficiencies, telomere shortening, and genomic instability are all caused by progerin accumulation, all of which impair cellular proliferative capability. In addition, HGPS cells and preclinical animal models have revealed new information about the disease's molecular and cellular pathways and putative mechanisms involved in normal aging. This article has discussed the understanding of the molecular pathways by which progerin expression leads to HGPS and how the advanced therapy options for HGPS patients can help us understand and treat the condition.
Collapse
|
17
|
Jiang B, Wu X, Meng F, Si L, Cao S, Dong Y, Sun H, Lv M, Xu H, Bai N, Guo Q, Song X, Yu Y, Guo W, Yi F, Zhou T, Li X, Feng Y, Wang Z, Zhang D, Guan Y, Ma M, Liu J, Li X, Zhao W, Liu B, Finkel T, Cao L. Progerin modulates the IGF-1R/Akt signaling involved in aging. SCIENCE ADVANCES 2022; 8:eabo0322. [PMID: 35857466 PMCID: PMC9269893 DOI: 10.1126/sciadv.abo0322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Progerin, a product of LMNA mutation, leads to multiple nuclear abnormalities in patients with Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disorder. Progerin also accumulates during physiological aging. Here, we demonstrate that impaired insulin-like growth factor 1 receptor (IGF-1R)/Akt signaling pathway results in severe growth retardation and premature aging in Zmpste24-/- mice, a mouse model of progeria. Mechanistically, progerin mislocalizes outside of the nucleus, interacts with the IGF-1R, and down-regulates its expression, leading to inhibited mitochondrial respiration, retarded cell growth, and accelerated cellular senescence. Pharmacological treatment with the PTEN (phosphatase and tensin homolog deleted on chromosome 10) inhibitor bpV (HOpic) increases Akt activity and improves multiple abnormalities in Zmpste24-deficient mice. These findings provide previously unidentified insights into the role of progerin in regulating the IGF-1R/Akt signaling in HGPS and might be useful for treating LMNA-associated progeroid disorders.
Collapse
Affiliation(s)
- Bo Jiang
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xuan Wu
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Fang Meng
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Limiao Si
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Sunrun Cao
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuqing Dong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huayi Sun
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hongde Xu
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ning Bai
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiqiang Guo
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaoyu Song
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Wendong Guo
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Fei Yi
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Tingting Zhou
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaoman Li
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanling Feng
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Zhuo Wang
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Dan Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Guan
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mengtao Ma
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jingwei Liu
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xining Li
- Department of Pathology, School of Medicine, Huzhou University, Zhejiang Province, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Baohua Liu
- Center for Anti-Aging and Regenerative Medicine, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Toren Finkel
- Aging Institute, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Corresponding author. (T.F.); (L.C.)
| | - Liu Cao
- College of Basic Medical Sciences, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
- Institute of Health Sciences, China Medical University, Shenyang, China
- Corresponding author. (T.F.); (L.C.)
| |
Collapse
|
18
|
Transient expression of an adenine base editor corrects the Hutchinson-Gilford progeria syndrome mutation and improves the skin phenotype in mice. Nat Commun 2022; 13:3068. [PMID: 35654881 PMCID: PMC9163128 DOI: 10.1038/s41467-022-30800-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature ageing disorder caused by a point mutation in the LMNA gene (LMNA c.1824 C > T), resulting in the production of a detrimental protein called progerin. Adenine base editors recently emerged with a promising potential for HGPS gene therapy. However adeno-associated viral vector systems currently used in gene editing raise concerns, and the long-term effects of heterogeneous mutation correction in highly proliferative tissues like the skin are unknown. Here we use a non-integrative transient lentiviral vector system, expressing an adenine base editor to correct the HGPS mutation in the skin of HGPS mice. Transient adenine base editor expression corrected the mutation in 20.8-24.1% of the skin cells. Four weeks post delivery, the HGPS skin phenotype was improved and clusters of progerin-negative keratinocytes were detected, indicating that the mutation was corrected in both progenitor and differentiated skin cells. These results demonstrate that transient non-integrative viral vector mediated adenine base editor expression is a plausible approach for future gene-editing therapies.
Collapse
|
19
|
Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2022; 23:ijms23105499. [PMID: 35628310 PMCID: PMC9141373 DOI: 10.3390/ijms23105499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in HGPS patients, severe skin phenotypes such as alopecia and sclerotic skins always develop with the disease progression. Here, we studied the HGPS molecular mechanisms focusing on early skin development by differentiating patient-derived induced pluripotent stem cells (iPSCs) to a keratinocyte lineage. Interestingly, HGPS iPSCs showed an accelerated commitment to the keratinocyte lineage than the normal control. To study potential signaling pathways that accelerated skin development in HGPS, we investigated the WNT pathway components during HGPS iPSCs-keratinocytes induction. Surprisingly, despite the unaffected β-catenin activity, the expression of a critical WNT transcription factor LEF1 was diminished from an early stage in HGPS iPSCs-keratinocytes differentiation. A chromatin immunoprecipitation (ChIP) experiment further revealed strong bindings of LEF1 to the early-stage epithelial developmental markers K8 and K18 and that the LEF1 silencing by siRNA down-regulates the K8/K18 transcription. During the iPSCs-keratinocytes differentiation, correction of HGPS mutation by Adenine base editing (ABE), while in a partial level, rescued the phenotypes for accelerated keratinocyte lineage-commitment. ABE also reduced the cell death in HGPS iPSCs-derived keratinocytes. These findings brought new insight into the molecular basis and therapeutic application for the skin abnormalities in HGPS.
Collapse
|
20
|
Jiang Y, Ji JY. Progerin-Induced Impairment in Wound Healing and Proliferation in Vascular Endothelial Cells. FRONTIERS IN AGING 2022; 3:844885. [PMID: 35821855 PMCID: PMC9261432 DOI: 10.3389/fragi.2022.844885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Progerin as a mutated isoform of lamin A protein was first known to induce premature atherosclerosis progression in patients with Hutchinson-Gilford progeria syndrome (HGPS), and its role in provoking an inflammatory response in vascular cells and accelerating cell senescence has been investigated recently. However, how progerin triggers endothelial dysfunction that often occurs at the early stage of atherosclerosis in a mechanical environment has not been studied intensively. Here, we generated a stable endothelial cell line that expressed progerin and examined its effects on endothelial wound repair under laminar flow. We found decreased wound healing rate in progerin-expressing ECs under higher shear stress compared with those under low shear. Furthermore, the decreased wound recovery could be due to reduced number of cells at late mitosis, suggesting potential interference by progerin with endothelial proliferation. These findings provided insights into how progerin affects endothelial mechanotransduction and may contribute to the disruption of endothelial integrity in HGPS vasculature, as we continue to examine the mechanistic effect of progerin in shear-induced endothelial functions.
Collapse
|
21
|
Mechanisms of A-Type Lamin Targeting to Nuclear Ruptures Are Disrupted in LMNA- and BANF1-Associated Progerias. Cells 2022; 11:cells11050865. [PMID: 35269487 PMCID: PMC8909658 DOI: 10.3390/cells11050865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations in the genes LMNA and BANF1 can lead to accelerated aging syndromes called progeria. The protein products of these genes, A-type lamins and BAF, respectively, are nuclear envelope (NE) proteins that interact and participate in various cellular processes, including nuclear envelope rupture and repair. BAF localizes to sites of nuclear rupture and recruits NE-repair machinery, including the LEM-domain proteins, ESCRT-III complex, A-type lamins, and membranes. Here, we show that it is a mobile, nucleoplasmic population of A-type lamins that is rapidly recruited to ruptures in a BAF-dependent manner via BAF’s association with the Ig-like β fold domain of A-type lamins. These initially mobile lamins become progressively stabilized at the site of rupture. Farnesylated prelamin A and lamin B1 fail to localize to nuclear ruptures, unless that farnesylation is inhibited. Progeria-associated LMNA mutations inhibit the recruitment affected A-type lamin to nuclear ruptures, due to either permanent farnesylation or inhibition of BAF binding. A progeria-associated BAF mutant targets to nuclear ruptures but is unable to recruit A-type lamins. Together, these data reveal the mechanisms that determine how lamins respond to nuclear ruptures and how progeric mutations of LMNA and BANF1 impair recruitment of A-type lamins to nuclear ruptures.
Collapse
|
22
|
Kim BH, Woo TG, Kang SM, Park S, Park BJ. Splicing Variants, Protein-Protein Interactions, and Drug Targeting in Hutchinson-Gilford Progeria Syndrome and Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13020165. [PMID: 35205210 PMCID: PMC8871687 DOI: 10.3390/genes13020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is a biological operation that enables a messenger RNA to encode protein variants (isoforms) that give one gene several functions or properties. This process provides one of the major sources of use for understanding the proteomic diversity of multicellular organisms. In combination with post-translational modifications, it contributes to generating a variety of protein–protein interactions (PPIs) that are essential to cellular homeostasis or proteostasis. However, cells exposed to many kinds of stresses (aging, genetic changes, carcinogens, etc.) sometimes derive cancer or disease onset from aberrant PPIs caused by DNA mutations. In this review, we summarize how splicing variants may form a neomorphic protein complex and cause diseases such as Hutchinson-Gilford progeria syndrome (HGPS) and small cell lung cancer (SCLC), and we discuss how protein–protein interfaces obtained from the variants may represent efficient therapeutic target sites to treat HGPS and SCLC.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46241, Korea; (B.-H.K.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46274, Korea; (S.-M.K.); (S.P.)
- Correspondence:
| |
Collapse
|
23
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. The role of inner nuclear membrane proteins in tumourigenesis and as potential targets for cancer therapy. Cancer Metastasis Rev 2022; 41:953-963. [PMID: 36205821 PMCID: PMC9758098 DOI: 10.1007/s10555-022-10065-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/18/2022] [Indexed: 01/25/2023]
Abstract
Despite significant advances in our understanding of tumourigenesis and cancer therapeutics, cancer continues to account for 30% of worldwide deaths. Therefore, there remains an unmet need for the development of cancer therapies to improve patient quality of life and survival outcomes. The inner nuclear membrane has an essential role in cell division, cell signalling, transcription, cell cycle progression, chromosome tethering, cell migration and mitosis. Furthermore, expression of several inner nuclear membrane proteins has been shown to be frequently altered in tumour cells, resulting in the dysregulation of cellular pathways to promote tumourigenesis. However, to date, minimal research has been conducted to investigate how targeting these dysregulated and variably expressed proteins may provide a novel avenue for cancer therapies. In this review, we present an overview of the involvement of the inner nuclear membrane proteins within the hallmarks of cancer and how they may be exploited as potent anti-cancer therapeutics.
Collapse
Affiliation(s)
- Maddison Rose
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Joshua T. Burgess
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Kenneth O’Byrne
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia ,grid.412744.00000 0004 0380 2017Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD 4102 Australia
| | - Derek J. Richard
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Emma Bolderson
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| |
Collapse
|
24
|
Efficacy of Cord Blood Cell Therapy for Hutchinson-Gilford Progeria Syndrome-A Case Report. Int J Mol Sci 2021; 22:ijms222212316. [PMID: 34830197 PMCID: PMC8619635 DOI: 10.3390/ijms222212316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is an extremely rare premature aging disorder characterized by short stature and atherosclerosis-induced death within teenage years. A 13-year-old male diagnosed with HGPS was administered three intravenous infusions of allogeneic cord blood (CB) cells from unrelated donors at four-month intervals to evaluate the safety and its therapeutic efficacy. Adverse events were monitored in addition to height, weight, laboratory blood tests, joint range of motion (ROM), and carotid Doppler. Cytokine and receptor assays were also performed. The patient exhibited an increase in growth rate for both height and weight. One year after therapy initiation, evident amelioration in pulse wave velocity, bilateral maximal intima-media thickness, and dyslipidemic status were observed, which were in abrupt aggravation prior to treatment. Further, an increase in flexibility occurred in some joints of the upper extremities. No serious adverse events were observed throughout the study period and one year beyond. A molecular assay revealed downregulation of proinflammatory and atherosclerosis, representing cytokine expressions following the administration of CB cells. This is the first reported case of an allogeneic CB trial in a patient with HGPS showing therapeutic effects of CB with improvements in anthropometric measures, joint ROM with amelioration of atherosclerosis, and dyslipidemia induced by anti-inflammatory and anti-atherosclerotic responses.
Collapse
|
25
|
Ryan SM, Almassey M, Burch AM, Ngo G, Martin JM, Myers D, Compton D, Archie S, Cross M, Naeger L, Salzman A, Virola‐Iarussi A, Barbee SA, Mortimer NT, Sanyal S, Vrailas‐Mortimer AD. Drosophila p38 MAPK interacts with BAG-3/starvin to regulate age-dependent protein homeostasis. Aging Cell 2021; 20:e13481. [PMID: 34674371 PMCID: PMC8590102 DOI: 10.1111/acel.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
Collapse
Affiliation(s)
- Sarah M. Ryan
- Department of Biological Sciences University of Denver Denver CO USA
| | - Michael Almassey
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Gia Ngo
- Department of Biological Sciences University of Denver Denver CO USA
| | - Julia M. Martin
- School of Biological Sciences Illinois State University Normal IL USA
| | - David Myers
- School of Biological Sciences Illinois State University Normal IL USA
| | - Devin Compton
- School of Biological Sciences Illinois State University Normal IL USA
| | - Shira Archie
- School of Biological Sciences Illinois State University Normal IL USA
| | - Megan Cross
- School of Biological Sciences Illinois State University Normal IL USA
| | - Lauren Naeger
- School of Biological Sciences Illinois State University Normal IL USA
| | - Ashley Salzman
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Scott A. Barbee
- Department of Biological Sciences University of Denver Denver CO USA
| | | | - Subhabrata Sanyal
- Department of Cell Biology Emory University Atlanta GA USA
- Calico San Francisco CA USA
| | - Alysia D. Vrailas‐Mortimer
- Department of Biological Sciences University of Denver Denver CO USA
- School of Biological Sciences Illinois State University Normal IL USA
- Department of Cell Biology Emory University Atlanta GA USA
| |
Collapse
|
26
|
Galal MA, Abdel Jabar M, Zhra M, Abdel Rahman AM, Aljada A. Absolute quantification of senescence mediators in cells using multiple reaction monitoring liquid chromatography-Tandem mass spectrometry. Anal Chim Acta 2021; 1184:339009. [PMID: 34625254 DOI: 10.1016/j.aca.2021.339009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The identification of unique senescence markers remains challenging. Current hallmarks of senescent cells, including increased senescence-associated β-galactosidase activity, increased levels of cell cycle regulators such as p16INK4a, p27, and p53, and altered levels of sirtuins and lamins, are detected commonly by Western blot and immunohistochemistry methods. Mass spectrometry outperforms these conventional quantification methods in terms of high throughput, specificity, and reproducibility. OBJECTIVES To develop multiple reaction monitoring-based tandem mass spectrometric senescence assay for simultaneous measuring of p16INK4a, p27, p53, p53-β, the seven proteins of the sirtuins family and the four transcript variants of lamins proteins in aging cell model and cancerous cell lines. METHODOLOGY Multiple reaction monitoring-tandem mass transitions per protein were developed for each signature peptide(s) and stable isotope-labeled internal standard. The developed assay was validated in a matrix using breast cancer MCF7 cell lines according to the US-FDA guidelines for bioanalytical assays. RESULTS The analytes chromatographic peaks were baseline separated and showed linear behavior in a wide dynamic range with r2 ≥ 0.98. The method for all proteins has passed the inter/intra-day precision and accuracy validation using three levels of quality control samples. The accuracy and the precision for most analytes were 80-120% and ≤20%, respectively. The method's sensitivity for the panels' signature peptides ranged from 1 ng μL-1 to 1 μg mL-1. Extraction recovery assessed in two quality control levels was >60% for most analytes. This LC-MS-MS validated senescence assay showed reduced lamin A, lamin A△10, lamin A△50, SIRT1, SIRT3, SIRT5, p53, and p16INK4a, as well as p53-β induction, are implicated in replicative senescence. Meanwhile, increased lamin C: lamin A ratio was evident and can diagnose breast carcinogenesis. Moreover, in breast cancer metastasis, reduced SIRT2 and p27 and elevated levels of lamin A△50, SIRT5, SIRT7, and p53-β are evident. CONCLUSION LC-MS/MS is a potent alternative tool to the currently available assays. The high throughput method established can study senescence's role in different pathophysiological processes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, 11211, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia; Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, 11211, Saudi Arabia.
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
27
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
28
|
Mehrabi M, Morris TA, Cang Z, Nguyen CHH, Sha Y, Asad MN, Khachikyan N, Greene TL, Becker DM, Nie Q, Zaragoza MV, Grosberg A. A Study of Gene Expression, Structure, and Contractility of iPSC-Derived Cardiac Myocytes from a Family with Heart Disease due to LMNA Mutation. Ann Biomed Eng 2021; 49:3524-3539. [PMID: 34585335 PMCID: PMC8671287 DOI: 10.1007/s10439-021-02850-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Genetic mutations to the Lamin A/C gene (LMNA) can cause heart disease, but the mechanisms making cardiac tissues uniquely vulnerable to the mutations remain largely unknown. Further, patients with LMNA mutations have highly variable presentation of heart disease progression and type. In vitro patient-specific experiments could provide a powerful platform for studying this phenomenon, but the use of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) introduces heterogeneity in maturity and function thus complicating the interpretation of the results of any single experiment. We hypothesized that integrating single cell RNA sequencing (scRNA-seq) with analysis of the tissue architecture and contractile function would elucidate some of the probable mechanisms. To test this, we investigated five iPSC-CM lines, three controls and two patients with a (c.357-2A>G) mutation. The patient iPSC-CM tissues had significantly weaker stress generation potential than control iPSC-CM tissues demonstrating the viability of our in vitro approach. Through scRNA-seq, differentially expressed genes between control and patient lines were identified. Some of these genes, linked to quantitative structural and functional changes, were cardiac specific, explaining the targeted nature of the disease progression seen in patients. The results of this work demonstrate the utility of combining in vitro tools in exploring heart disease mechanics.
Collapse
Affiliation(s)
- Mehrsa Mehrabi
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Tessa A Morris
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA.,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zixuan Cang
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Cecilia H H Nguyen
- Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Yutong Sha
- Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Mira N Asad
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Nyree Khachikyan
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Taylor L Greene
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Danielle M Becker
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.,Department of Mathematics and Developmental & Cell Biology, University of California, Irvine, CA, 92697, USA.,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Michael V Zaragoza
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA.,Genetics & Genomics Division, Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA. .,UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California, Irvine, CA, 92697, USA. .,Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA. .,The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA. .,The Henry Samueli School of Engineering, University of California, Irvine, 2418 Engineering Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
29
|
Kato H, Maezawa Y. Atherosclerosis and Cardiovascular Diseases in Progeroid Syndromes. J Atheroscler Thromb 2021; 29:439-447. [PMID: 34511576 PMCID: PMC9100459 DOI: 10.5551/jat.rv17061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the representative genetic progeroid syndromes and have been widely studied in the field of aging research. HGPS is a pediatric disease in which premature aging symptoms appear in early childhood, and death occurs at an average age of 14.5 years, mainly due to cardiovascular disease (CVD). Conversely, WS patients exhibit accelerated aging phenotypes after puberty and die in their 50s due to CVD and malignant tumors. Both diseases are models of human aging, leading to a better understanding of the aging-associated development of CVD. In this review, we discuss the pathogenesis and treatment of atherosclerotic diseases presented by both progeroid syndromes with the latest findings.
Collapse
Affiliation(s)
- Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| |
Collapse
|
30
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
31
|
Takahashi Y, Hiratsuka S, Machida N, Takahashi D, Matsushita J, Hozak P, Misteli T, Miyamoto K, Harata M. Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in Hutchinson-Gilford progeria syndrome. Nucleus 2021; 11:250-263. [PMID: 32954953 PMCID: PMC7529414 DOI: 10.1080/19491034.2020.1815395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by a mutation of lamin A, which contributes to nuclear architecture and the spatial organization of chromatin in the nucleus. The expression of a lamin A mutant, named progerin, leads to functional and structural disruption of nuclear organization. Since progerin lacks a part of the actin-binding site of lamin A, we hypothesized that nuclear actin dynamics and function are altered in HGPS cells. Nuclear F-actin is required for the organization of nuclear shape, transcriptional regulation, DNA damage repair, and activation of Wnt/β-catenin signaling. Here we show that the expression of progerin decreases nuclear F-actin and impairs F-actin-regulated transcription. When nuclear F-actin levels are increased by overexpression of nuclear-targeted actin or by using jasplakinolide, a compound that stabilizes F-actin, the irregularity of nuclear shape and defects in gene expression can be reversed. These observations provide evidence for a novel relationship between nuclear actin and the etiology of HGPS.
Collapse
Affiliation(s)
- Yuto Takahashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| | - Shogo Hiratsuka
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| | - Nanako Machida
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| | - Daisuke Takahashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| | - Junpei Matsushita
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| | - Pavel Hozak
- Institute of Molecular Genetics of the Czech Academy of Sciences , Prague, Czech Republic
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University , Wakayama, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University , Sendai, Japan
| |
Collapse
|
32
|
Danielsson BE, Tieu KV, Bathula K, Armiger TJ, Vellala PS, Taylor RE, Dahl KN, Conway DE. Lamin microaggregates lead to altered mechanotransmission in progerin-expressing cells. Nucleus 2021; 11:194-204. [PMID: 32816594 PMCID: PMC7529416 DOI: 10.1080/19491034.2020.1802906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear lamina is a meshwork of intermediate filament proteins, and lamin A is the primary mechanical protein. An altered splicing of lamin A, known as progerin, causes the disease Hutchinson-Gilford progeria syndrome. Progerin-expressing cells have altered nuclear shapes and stiffened nuclear lamina with microaggregates of progerin. Here, progerin microaggregate inclusions in the lamina are shown to lead to cellular and multicellular dysfunction. We show with Comsol simulations that stiffened inclusions causes redistribution of normally homogeneous forces, and this redistribution is dependent on the stiffness difference and relatively independent of inclusion size. We also show mechanotransmission changes associated with progerin expression in cells under confinement and cells under external forces. Endothelial cells expressing progerin do not align properly with patterning. Fibroblasts expressing progerin do not align properly to applied cyclic force. Combined, these studies show that altered nuclear lamina mechanics and microstructure impacts cytoskeletal force transmission through the cell.
Collapse
Affiliation(s)
- Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Katie V Tieu
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Kranthidhar Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| | - Travis J Armiger
- Chemical Engineering, Carnegie Mellon University , Pittsburgh, PA, USA
| | - Pragna S Vellala
- Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , USA
| | - Rebecca E Taylor
- Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , USA.,Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, PA, USA
| | - Kris Noel Dahl
- Chemical Engineering, Carnegie Mellon University , Pittsburgh, PA, USA.,Department of Biomedical Engineering, Carnegie Mellon University , Pittsburgh, PA , USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, USA
| |
Collapse
|
33
|
Molecular and Cellular Mechanisms Driving Cardiovascular Disease in Hutchinson-Gilford Progeria Syndrome: Lessons Learned from Animal Models. Cells 2021; 10:cells10051157. [PMID: 34064612 PMCID: PMC8151355 DOI: 10.3390/cells10051157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that recapitulates many symptoms of physiological aging and precipitates death. Patients develop severe vascular alterations, mainly massive vascular smooth muscle cell loss, vessel stiffening, calcification, fibrosis, and generalized atherosclerosis, as well as electrical, structural, and functional anomalies in the heart. As a result, most HGPS patients die of myocardial infarction, heart failure, or stroke typically during the first or second decade of life. No cure exists for HGPS, and therefore it is of the utmost importance to define the mechanisms that control disease progression in order to develop new treatments to improve the life quality of patients and extend their lifespan. Since the discovery of the HGPS-causing mutation, several animal models have been generated to study multiple aspects of the syndrome and to analyze the contribution of different cell types to the acquisition of the HGPS-associated cardiovascular phenotype. This review discusses current knowledge about cardiovascular features in HGPS patients and animal models and the molecular and cellular mechanisms through which progerin causes cardiovascular disease.
Collapse
|
34
|
Xiang Y, Qin Z, Guo C, He T, Liu Y, Quan T. Progerin mRNA expression is elevated in aged human dermis and impairs TGF-β/Smad signaling. J Dermatol Sci 2021; 103:49-52. [PMID: 33985864 DOI: 10.1016/j.jdermsci.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Yaping Xiang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhaoping Qin
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chunfang Guo
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tianyuan He
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yingchun Liu
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
35
|
Dantas M, Lima JT, Ferreira JG. Nucleus-Cytoskeleton Crosstalk During Mitotic Entry. Front Cell Dev Biol 2021; 9:649899. [PMID: 33816500 PMCID: PMC8014196 DOI: 10.3389/fcell.2021.649899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022] Open
Abstract
In preparation for mitosis, cells undergo extensive reorganization of the cytoskeleton and nucleus, so that chromosomes can be efficiently segregated into two daughter cells. Coordination of these cytoskeletal and nuclear events occurs through biochemical regulatory pathways, orchestrated by Cyclin-CDK activity. However, recent studies provide evidence that physical forces are also involved in the early steps of spindle assembly. Here, we will review how the crosstalk of physical forces and biochemical signals coordinates nuclear and cytoplasmic events during the G2-M transition, to ensure efficient spindle assembly and faithful chromosome segregation.
Collapse
Affiliation(s)
- Margarida Dantas
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,BiotechHealth Ph.D. Programme, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Joana T Lima
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| | - Jorge G Ferreira
- Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Aveleira CA, Ferreira-Marques M, Cortes L, Valero J, Pereira D, Pereira de Almeida L, Cavadas C. Neuropeptide Y Enhances Progerin Clearance and Ameliorates the Senescent Phenotype of Human Hutchinson-Gilford Progeria Syndrome Cells. J Gerontol A Biol Sci Med Sci 2021; 75:1073-1078. [PMID: 32012215 PMCID: PMC7243588 DOI: 10.1093/gerona/glz280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, or classical progeria) is a rare genetic disorder, characterized by premature aging, and caused by a de novo point mutation (C608G) within the lamin A/C gene (LMNA), producing an abnormal lamin A protein, termed progerin. Accumulation of progerin causes nuclear abnormalities and cell cycle arrest ultimately leading to cellular senescence. Autophagy impairment is a hallmark of cellular aging, and the rescue of this proteostasis mechanism delays aging progression in HGPS cells. We have previously shown that the endogenous Neuropeptide Y (NPY) increases autophagy in hypothalamus, a brain area already identified as a central regulator of whole-body aging. We also showed that NPY mediates caloric restriction-induced autophagy. These results are in accordance with other studies suggesting that NPY may act as a caloric restriction mimetic and plays a role as a lifespan and aging regulator. The aim of the present study was, therefore, to investigate if NPY could delay HGPS premature aging phenotype. Herein, we report that NPY increases autophagic flux and progerin clearance in primary cultures of human dermal fibroblasts from HGPS patients. NPY also rescues nuclear morphology and decreases the number of dysmorphic nuclei, a hallmark of HGPS cells. In addition, NPY decreases other hallmarks of aging as DNA damage and cellular senescence. Altogether, these results show that NPY rescues several hallmarks of cellular aging in HGPS cells, suggesting that NPY can be considered a promising strategy to delay or block the premature aging of HGPS.
Collapse
Affiliation(s)
- Célia A Aveleira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luísa Cortes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Dina Pereira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research , University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
The flavonoid morin alleviates nuclear deformation in aged cells by disrupting progerin-lamin A/C binding. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Pongbangli N, Pitipakorn K, Jai-aue S, Sirijanchune P, Pongpittayut S, Wongcharoen W. A 13-Year-Old Boy from Thailand with Hutchinson-Gilford Progeria Syndrome with Coronary Artery and Aortic Calcification and Non-ST-Segment Elevation Myocardial Infarction (NSTEMI). AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e928969. [PMID: 33414362 PMCID: PMC7805248 DOI: 10.12659/ajcr.928969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/03/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS), also known as progeria, is due to a mutation in the LMNA gene, resulting in a life expectancy of no more than 13 years, and a high mortality rate due to cardiovascular disease. We report the case of a 13-year-old boy from Thailand with Hutchinson-Gilford progeria syndrome with coronary artery and aortic calcification and non-ST-segment elevation myocardial infarction (NSTEMI). CASE REPORT A 13-year-old Thai boy was diagnosed with progeria. His physical appearance included short stature and thin limbs with prominent joint stiffness. He had craniofacial disproportion, with the absence of earlobes and with micrognathia. His skin had a generalized scleroderma-like lesion and hair loss with prominent scalp veins. His mental and cognitive functions were normal. Unfortunately, the mutation status in the LMNA gene was not available for testing in Thailand. He was diagnosed as having NSTEMI based on clinical chest pain, 12-lead ECG, and elevated cardiac troponin level. The coronary calcium score reflected severe calcification of the aortic valve and coronary artery disease along the left main and left anterior descending arteries. The patient received treatment with medication and aggressive risk factor control. After 3 months of follow-up, the patient reported no recurrence of symptoms. CONCLUSIONS This case of Hutchinson-Gilford progeria syndrome is rare in that most patients do not live beyond 13 years of age. This patient presented with typical accelerated degenerative changes of the cardiovascular system, including NSTEMI.
Collapse
Affiliation(s)
- Natnicha Pongbangli
- Division of Cardiology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Kannika Pitipakorn
- Division of Cardiology, Department of Pediatric, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Sasivimon Jai-aue
- Division of Cardiology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Piyaporn Sirijanchune
- Division of Pulmonology, Department of Internal Medicine, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Sorawit Pongpittayut
- Division of Cardiology, Department of Pediatric, Chiang-Rai Prachanukroh Hospital, Chiang-Rai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
39
|
Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J 2020; 288:2757-2772. [PMID: 32799420 DOI: 10.1111/febs.15526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
40
|
Köhler F, Bormann F, Raddatz G, Gutekunst J, Corless S, Musch T, Lonsdorf AS, Erhardt S, Lyko F, Rodríguez-Paredes M. Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Med 2020; 12:46. [PMID: 32450911 PMCID: PMC7249329 DOI: 10.1186/s13073-020-00749-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid disease characterized by the early onset of age-related phenotypes including arthritis, loss of body fat and hair, and atherosclerosis. Cells from affected individuals express a mutant version of the nuclear envelope protein lamin A (termed progerin) and have previously been shown to exhibit prominent histone modification changes. METHODS Here, we analyze the possibility that epigenetic deregulation of lamina-associated domains (LADs) is involved in the molecular pathology of HGPS. To do so, we studied chromatin accessibility (Assay for Transposase-accessible Chromatin (ATAC)-see/-seq), DNA methylation profiles (Infinium MethylationEPIC BeadChips), and transcriptomes (RNA-seq) of nine primary HGPS fibroblast cell lines and six additional controls, two parental and four age-matched healthy fibroblast cell lines. RESULTS Our ATAC-see/-seq data demonstrate that primary dermal fibroblasts from HGPS patients exhibit chromatin accessibility changes that are enriched in LADs. Infinium MethylationEPIC BeadChip profiling further reveals that DNA methylation alterations observed in HGPS fibroblasts are similarly enriched in LADs and different from those occurring during healthy aging and Werner syndrome (WS), another premature aging disease. Moreover, HGPS patients can be stratified into two different subgroups according to their DNA methylation profiles. Finally, we show that the epigenetic deregulation of LADs is associated with HGPS-specific gene expression changes. CONCLUSIONS Taken together, our results strongly implicate epigenetic deregulation of LADs as an important and previously unrecognized feature of HGPS, which contributes to disease-specific gene expression. Therefore, they not only add a new layer to the study of epigenetic changes in the progeroid syndrome, but also advance our understanding of the disease's pathology at the cellular level.
Collapse
Affiliation(s)
- Florian Köhler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Felix Bormann
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Samuel Corless
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
- DKFZ-ZMBH-Alliance, 69120, Heidelberg, Germany
- CellNetworks Excellence Cluster, Heidelberg University, 69120, Heidelberg, Germany
| | - Tanja Musch
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Anke S Lonsdorf
- Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
- DKFZ-ZMBH-Alliance, 69120, Heidelberg, Germany
- CellNetworks Excellence Cluster, Heidelberg University, 69120, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
41
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
42
|
Isaev NK, Stelmashook EV, Genrikhs EE. Neurogenesis and brain aging. Rev Neurosci 2020; 30:573-580. [PMID: 30763272 DOI: 10.1515/revneuro-2018-0084] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
Human aging affects the entire organism, but aging of the brain must undoubtedly be different from that of all other organs, as neurons are highly differentiated postmitotic cells, for the majority of which the lifespan in the postnatal period is equal to the lifespan of the entire organism. In this work, we examine the distinctive features of brain aging and neurogenesis during normal aging, pathological aging (Alzheimer's disease), and accelerated aging (Hutchinson-Gilford progeria syndrome and Werner syndrome).
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
43
|
Pan X, Jiang B, Wu X, Xu H, Cao S, Bai N, Li X, Yi F, Guo Q, Guo W, Song X, Meng F, Li X, Liu Y, Cao L. Accumulation of prelamin A induces premature aging through mTOR overactivation. FASEB J 2020; 34:7905-7914. [PMID: 32282093 DOI: 10.1096/fj.201903048rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) arises when a truncated form of farnesylated prelamin A accumulates at the nuclear envelope, leading to misshapen nuclei. Previous studies of adult Zmpste24-deficient mice, a mouse model of progeria, have reported a metabolic response involving inhibition of the mTOR (mammalian target of rapamycin) kinase and activation of autophagy. However, exactly how mTOR or autophagy is involved in progeria remains unclear. Here, we investigate this question by crossing Zmpste24+/- mice with mice hypomorphic in mTOR (mTOR△/+ ), or mice heterozygous in autophagy-related gene 7 (Atg7+/- ). We find that accumulation of prelamin A induces premature aging through mTOR overactivation and impaired autophagy in newborn Zmpste24-/- mice. Zmpste24-/- mice with genetically reduced mTOR activity, but not heterozygosity in Atg7, show extended lifespan. Moreover, mTOR inhibition partially restores autophagy and S6K1 activity. We also show that progerin interacts with the Akt phosphatase to promote full activation of the Akt/mTOR signaling pathway. Finally, although we find that genetic reduction of mTOR postpones premature aging in Zmpste24 KO mice, frequent embryonic lethality occurs. Together, our findings show that over-activated mTOR contributes to premature aging in Zmpste24-/- mice, and suggest a potential strategy in treating HGPS patients with mTOR inhibitors.
Collapse
Affiliation(s)
- Xumeng Pan
- School of Stomatology, China Medical University, Shenyang, China
| | - Bo Jiang
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Xuan Wu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Hongde Xu
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Sunrun Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Ning Bai
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Xiaoman Li
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Fei Yi
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Qiqiang Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Wendong Guo
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Xiaoyu Song
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Fang Meng
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| | - Xining Li
- Department of Pathology, Huzhou University, Huzhou, China
| | - Yi Liu
- School of Stomatology, China Medical University, Shenyang, China
| | - Liu Cao
- Institute of Translational Medicine, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Mao X, Bharti P, Thaivalappil A, Cao K. Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford Progeria Syndrome. Aging (Albany NY) 2020; 12:5195-5208. [PMID: 32186522 PMCID: PMC7138560 DOI: 10.18632/aging.102941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 12/01/2022]
Abstract
Peroxisomes are small, membrane-enclosed eukaryotic organelles that house various enzymes with metabolic functions. One important feature in both Hutchinson-Gilford Progeria Syndrome (HGPS) and normal aging is the elevated levels of Reactive Oxygen Species (ROS), which are generated from metabolic pathways with the capacity to cause oxidative damage to macromolecules within the cells. Although peroxisomal bioreactions can generate free radicals as their byproducts, many metabolic enzymes within the peroxisomes play critical roles as ROS scavengers, in particular, catalase. Here, we observed impaired peroxisomes-targeting protein trafficking, which suggested that the poorly assembled peroxisomes might cause high oxidative stress, contributing to the premature senescent phenotype in HGPS. We then investigated the ROS clearance efficiency by peroxisomal enzymes and found a significantly decreased expression of catalase in HGPS. Furthermore, we evaluated the effects of two promising HGPS-treatment drugs Methylene Blue and RAD001 (Everolimus, a rapamycin analog) on catalase in HGPS fibroblasts. We found that both drugs effectively reduced cellular ROS levels. MB, as a well-known antioxidant, did not affect catalase expression or activity. Interestingly, RAD001 treatment significantly upregulated catalase activity in HGPS cells. Our study presents the first characterization of peroxisomal function in HGPS and provides new insights into the cellular aspects of HGPS and the ongoing clinical trial.
Collapse
Affiliation(s)
- Xiaojing Mao
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Pratima Bharti
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Abhirami Thaivalappil
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
45
|
Chojnowski A, Ong PF, Foo MXR, Liebl D, Hor L, Stewart CL, Dreesen O. Heterochromatin loss as a determinant of progerin-induced DNA damage in Hutchinson-Gilford Progeria. Aging Cell 2020; 19:e13108. [PMID: 32087607 PMCID: PMC7059134 DOI: 10.1111/acel.13108] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hutchinson-Gilford progeria is a premature aging syndrome caused by a truncated form of lamin A called progerin. Progerin expression results in a variety of cellular defects including heterochromatin loss, DNA damage, impaired proliferation and premature senescence. It remains unclear how these different progerin-induced phenotypes are temporally and mechanistically linked. To address these questions, we use a doxycycline-inducible system to restrict progerin expression to different stages of the cell cycle. We find that progerin expression leads to rapid and widespread loss of heterochromatin in G1-arrested cells, without causing DNA damage. In contrast, progerin triggers DNA damage exclusively during late stages of DNA replication, when heterochromatin is normally replicated, and preferentially in cells that have lost heterochromatin. Importantly, removal of progerin from G1-arrested cells restores heterochromatin levels and results in no permanent proliferative impediment. Taken together, these results delineate the chain of events that starts with progerin expression and ultimately results in premature senescence. Moreover, they provide a proof of principle that removal of progerin from quiescent cells restores heterochromatin levels and their proliferative capacity to normal levels.
Collapse
Affiliation(s)
- Alexandre Chojnowski
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Peh Fern Ong
- Cell Ageing, Skin Research Institute SingaporeSingaporeSingapore
| | | | - David Liebl
- A*STAR Microscopy PlatformSingaporeSingapore
| | - Louis‐Peter Hor
- Cell Ageing, Skin Research Institute SingaporeSingaporeSingapore
| | - Colin L. Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute SingaporeSingaporeSingapore
| |
Collapse
|
46
|
Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford Progeria Syndrome. Nat Commun 2019; 10:4990. [PMID: 31740672 PMCID: PMC6861280 DOI: 10.1038/s41467-019-13018-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder characterized by premature aging features. Cells from HGPS patients express progerin, a truncated form of Lamin A, which perturbs cellular homeostasis leading to nuclear shape alterations, genome instability, heterochromatin loss, telomere dysfunction and premature entry into cellular senescence. Recently, we reported that telomere dysfunction induces the transcription of telomeric non-coding RNAs (tncRNAs) which control the DNA damage response (DDR) at dysfunctional telomeres. Here we show that progerin-induced telomere dysfunction induces the transcription of tncRNAs. Their functional inhibition by sequence-specific telomeric antisense oligonucleotides (tASOs) prevents full DDR activation and premature cellular senescence in various HGPS cell systems, including HGPS patient fibroblasts. We also show in vivo that tASO treatment significantly enhances skin homeostasis and lifespan in a transgenic HGPS mouse model. In summary, our results demonstrate an important role for telomeric DDR activation in HGPS progeroid detrimental phenotypes in vitro and in vivo.
Collapse
|
47
|
Sleiman S, Dragon F. Recent Advances on the Structure and Function of RNA Acetyltransferase Kre33/NAT10. Cells 2019; 8:cells8091035. [PMID: 31491951 PMCID: PMC6770127 DOI: 10.3390/cells8091035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis is one of the most energy demanding processes in the cell. In eukaryotes, the main steps of this process occur in the nucleolus and include pre-ribosomal RNA (pre-rRNA) processing, post-transcriptional modifications, and assembly of many non-ribosomal factors and ribosomal proteins in order to form mature and functional ribosomes. In yeast and humans, the nucleolar RNA acetyltransferase Kre33/NAT10 participates in different maturation events, such as acetylation and processing of 18S rRNA, and assembly of the 40S ribosomal subunit. Here, we review the structural and functional features of Kre33/NAT10 RNA acetyltransferase, and we underscore the importance of this enzyme in ribosome biogenesis, as well as in acetylation of non-ribosomal targets. We also report on the role of human NAT10 in Hutchinson-Gilford progeria syndrome.
Collapse
Affiliation(s)
- Sophie Sleiman
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| | - Francois Dragon
- Département des Sciences Biologiques and Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada.
| |
Collapse
|
48
|
Xu X, Wang D, Zheng C, Gao B, Fan J, Cheng P, Liu B, Yang L, Luo Z. Progerin accumulation in nucleus pulposus cells impairs mitochondrial function and induces intervertebral disc degeneration and therapeutic effects of sulforaphane. Theranostics 2019; 9:2252-2267. [PMID: 31149042 PMCID: PMC6531300 DOI: 10.7150/thno.30658] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/10/2019] [Indexed: 01/18/2023] Open
Abstract
Progerin, a truncated unprocessed lamin A protein, causes tissue aging and degeneration. In this study we explored the role of progerin in the pathogenesis of intervertebral disc degeneration (IDD). We also examined the effect of sulforaphane (SFN) on progerin accumulation and mitochondrial dysfunction in IDD. Methods: The role of progerin in IDD was explored using human nucleus pulposus (NP) tissues, rat NP cells, and Lmna G609G knock-in mice. Immunostaining, X-ray imaging, and Western blotting were performed to assess the phenotypes of intervertebral discs. Alterations in senescence and apoptosis were evaluated by SA-β-galactosidase, immunofluorescence, flow cytometry, and TUNEL assays. Mitochondrial function was investigated by JC-1 staining, transmission electron microscopy, and determination of the level of ATP and the activities of mitochondrial enzymes. Results: The progerin level was elevated in degenerated human NP tissues. Lmna G609G/G609G mice displayed IDD, as evidenced by increased matrix metalloproteinase-13 expression and decreased collagen II and aggrecan expression and disc height. Furthermore, progerin overexpression in rat NP cells induced mitochondrial dysfunction (decreased ATP synthesis, mitochondrial membrane potential, and activities of mitochondrial complex enzymes), morphologic abnormalities, and disrupted mitochondrial dynamic (abnormal expression of proteins involved in fission and fusion), resulting in apoptosis and senescence. SFN ameliorated the progerin-induced aging defects and mitochondrial dysfunction in NP cells and IDD in Lmna G609G/G609G mice. Conclusions: Progerin is involved in the pathogenesis of IDD. Also, SFN alleviates progerin‑induced IDD, which is associated with amelioration of aging defects and mitochondrial dysfunction. Thus, SFN shows promise for the treatment of IDD.
Collapse
|
49
|
Serebryannyy LA, Ball DA, Karpova TS, Misteli T. Single molecule analysis of lamin dynamics. Methods 2019; 157:56-65. [PMID: 30145357 PMCID: PMC6387858 DOI: 10.1016/j.ymeth.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
The nuclear envelope (NE) is an essential cellular structure that contributes to nuclear stability, organization, and function. Mutations in NE-associated proteins result in a myriad of pathologies with widely diverse clinical manifestations, ages of onsets, and affected tissues. Notably, several hundred disease-causing mutations have been mapped to the LMNA gene, which encodes the intermediate filament proteins lamin A and C, two of the major architectural components of the nuclear envelope. However, how NE dysfunction leads to the highly variable pathologies observed in patient cells and tissues remains poorly understood. One model suggests alterations in the dynamic properties of the nuclear lamina and its associated proteins contribute to disease phenotype. Here, we describe the application of single molecule tracking (SMT) methodology to characterize the behavior of nuclear envelope transmembrane proteins and nuclear lamins in their native cellular environment at the single molecule level. As proof-of-concept, we demonstrate by SMT that Halo-tagged lamin B1, Samp1, lamin A, and lamin AΔ50 have distinct binding and kinetic properties, and we identify several disease-relevant mutants which exhibit altered binding dynamics. SMT is also able to separately probe the dynamics of the peripheral and the nucleoplasmic populations of lamin A mutants. We suggest that SMT is a robust and sensitive method to investigate the relationship between pathogenic mutations or cellular processes and protein dynamics at the NE.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA
| | - David A Ball
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tatiana S Karpova
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, MD 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Hah J, Kim DH. Deciphering Nuclear Mechanobiology in Laminopathy. Cells 2019; 8:E231. [PMID: 30862117 PMCID: PMC6468464 DOI: 10.3390/cells8030231] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy.
Collapse
Affiliation(s)
- Jungwon Hah
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.
| |
Collapse
|