1
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
2
|
Rho SB, Byun HJ, Kim BR, Lee CH. Liver Kinase B1 Mediates Its Anti-Tumor Function by Binding to the N-Terminus of Malic Enzyme 3. Biomol Ther (Seoul) 2023; 31:330-339. [PMID: 37095735 PMCID: PMC10129855 DOI: 10.4062/biomolther.2023.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its functions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Additionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408
| | - Hyun Jung Byun
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Boh-Ram Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Kuttanamkuzhi A, Panda D, Malaviya R, Gaidhani G, Lahiri M. Altered expression of anti-apoptotic protein Api5 affects breast tumorigenesis. BMC Cancer 2023; 23:374. [PMID: 37095445 PMCID: PMC10127332 DOI: 10.1186/s12885-023-10866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Apoptosis or programmed cell death plays a vital role in maintaining homeostasis and, therefore, is a tightly regulated process. Deregulation of apoptosis signalling can favour carcinogenesis. Apoptosis inhibitor 5 (Api5), an inhibitor of apoptosis, is upregulated in cancers. Interestingly, Api5 is shown to regulate both apoptosis and cell proliferation. To address the precise functional significance of Api5 in carcinogenesis here we investigate the role of Api5 in breast carcinogenesis. METHODS Initially, we carried out in silico analyses using TCGA and GENT2 datasets to understand expression pattern of API5 in breast cancer patients followed by investigating the protein expression in Indian breast cancer patient samples. To investigate the functional importance of Api5 in breast carcinogenesis, we utilised MCF10A 3D breast acinar cultures and spheroid cultures of malignant breast cells with altered Api5 expression. Various phenotypic and molecular changes induced by altered Api5 expression were studied using these 3D culture models. Furthermore, in vivo tumorigenicity studies were used to confirm the importance of Api5 in breast carcinogenesis. RESULTS In-silico analysis revealed elevated levels of Api5 transcript in breast cancer patients which correlated with poor prognosis. Overexpression of Api5 in non-tumorigenic breast acinar cultures resulted in increased proliferation and cells exhibited a partial EMT-like phenotype with higher migratory potential and disruption in cell polarity. Furthermore, during acini development, the influence of Api5 is mediated via the combined action of FGF2 activated PDK1-Akt/cMYC signalling and Ras-ERK pathways. Conversely, Api5 knock-down downregulated FGF2 signalling leading to reduced proliferation and diminished in vivo tumorigenic potential of the breast cancer cells. CONCLUSION Taken together, our study identifies Api5 as a central player involved in regulating multiple events during breast carcinogenesis including proliferation, and apoptosis through deregulation of FGF2 signalling pathway.
Collapse
Affiliation(s)
- Abhijith Kuttanamkuzhi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Debiprasad Panda
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Radhika Malaviya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Gautami Gaidhani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
- The School of Chemistry and Molecular Biology, St. Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
4
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
5
|
Tzavlaki K, Ohata Y, Morén A, Watanabe Y, Eriksson J, Tsuchiya M, Kubo Y, Yamamoto K, Sellin ME, Kato M, Caja L, Heldin CH, Moustakas A. The liver kinase B1 supports mammary epithelial morphogenesis by inhibiting critical factors that mediate epithelial-mesenchymal transition. J Cell Physiol 2023; 238:790-812. [PMID: 36791282 DOI: 10.1002/jcp.30975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
The liver kinase B1 (LKB1) controls cellular metabolism and cell polarity across species. We previously established a mechanism for negative regulation of transforming growth factor β (TGFβ) signaling by LKB1. The impact of this mechanism in the context of epithelial polarity and morphogenesis remains unknown. After demonstrating that human mammary tissue expresses robust LKB1 protein levels, whereas invasive breast cancer exhibits significantly reduced LKB1 levels, we focused on mammary morphogenesis studies in three dimensional (3D) acinar organoids. CRISPR/Cas9-introduced loss-of-function mutations of STK11 (LKB1) led to profound defects in the formation of 3D organoids, resulting in amorphous outgrowth and loss of rotation of young organoids embedded in matrigel. This defect was associated with an enhanced signaling by TGFβ, including TGFβ auto-induction and induction of transcription factors that mediate epithelial-mesenchymal transition (EMT). Protein marker analysis confirmed a more efficient EMT response to TGFβ signaling in LKB1 knockout cells. Accordingly, chemical inhibition of the TGFβ type I receptor kinase largely restored the morphogenetic defect of LKB1 knockout cells. Similarly, chemical inhibition of the bone morphogenetic protein pathway or the TANK-binding kinase 1, or genetic silencing of the EMT factor SNAI1, partially restored the LKB1 knockout defect. Thus, LKB1 sustains mammary epithelial morphogenesis by limiting pathways that promote EMT. The observed downregulation of LKB1 expression in breast cancer is therefore predicted to associate with enhanced EMT induced by SNAI1 and TGFβ family members.
Collapse
Affiliation(s)
- Kalliopi Tzavlaki
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yae Ohata
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Anita Morén
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yukihide Watanabe
- Department of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jens Eriksson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Maiko Tsuchiya
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuki Kubo
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mitsuyasu Kato
- Department of Experimental Pathology and Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Song Y, Zhao F, Ma W, Li G. Hotspots and trends in liver kinase B1 research: A bibliometric analysis. PLoS One 2021; 16:e0259240. [PMID: 34735498 PMCID: PMC8568265 DOI: 10.1371/journal.pone.0259240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction In the past 22 years, a large number of publications have reported that liver kinase B1 (LKB1) can regulate a variety of cellular processes and play an important role in many diseases. However, there is no systematic bibliometric analysis on the publications of LKB1 to reveal the research hotspots and future direction. Methods Publications were retrieved from the Web of Science Core Collection (WoSCC), Scopus, and PubMed databases. CiteSpace and VOSviewer were used to analysis the top countries, institutions, authors, source journals, discipline categories, references, and keywords. Results In the past 22 years, the number of LKB1 publications has increased gradually by year. The country, institution, author, journals that have published the most articles and cited the most frequently were the United States, Harvard University, Prof. Benoit Viollet, Journal of Biochemistry and Plos One. The focused research hotspot was the molecular functions of LKB1. The emerging hotspots and future trends are the clinical studies about LKB1 and co-mutated genes as biomarkers in tumors, especially in lung adenocarcinoma. Conclusions Our research could provide knowledge base, frontiers, emerging hotspots and future trends associated with LKB1 for researchers in this field, and contribute to finding potential cooperation possibilities.
Collapse
Affiliation(s)
- Yaowen Song
- Department of Radiotherapy Oncology, The First Affiliated Hospital of China Medical University, Shenyan, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Ma
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiotherapy Oncology, The First Affiliated Hospital of China Medical University, Shenyan, China
- * E-mail:
| |
Collapse
|
7
|
Modulating Tumor Microenvironment: A Review on STK11 Immune Properties and Predictive vs Prognostic Role for Non-small-cell Lung Cancer Immunotherapy. Curr Treat Options Oncol 2021; 22:96. [PMID: 34524570 DOI: 10.1007/s11864-021-00891-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
OPINION STATEMENT The quest for immunotherapy (IT) biomarkers is an element of highest clinical interest in both solid and hematologic tumors. In non-small-cell lung cancer (NSCLC) patients, besides PD-L1 expression evaluation with its intrinsic limitations, tissue and circulating parameters, likely portraying the tumor and its stromal/immune counterparts, have been proposed as potential predictors of IT responsiveness. STK11 mutations have been globally labeled as markers of IT resistance. After a thorough literature review, STK11 mutations condition the prognosis of NSCLC patients receiving ICI-containing regimens, implying a relevant biological and clinical significance. On the other hand, waiting for prospective and solid data, the putative negative predictive value of STK11 inactivation towards IT is sustained by less evidence. The physiologic regulation of multiple cellular pathways performed by STK11 likely explains the multifaceted modifications in tumor cells, stroma, and tumor immune microenvironment (TIME) observed in STK11 mutant lung cancer, particularly explored in the molecular subgroup of KRAS co-mutation. IT approaches available thus far in NSCLC, mainly represented by anti-PD-1/PD-L1 inhibitors, are not promising in the case of STK11 inactivation. Perceptive strategies aimed at modulating the TIME, regardless of STK11 status or specifically addressed to STK11-mutated cases, will hopefully provide valid therapeutic options to be adopted in the clinical practice.
Collapse
|
8
|
Mergenthaler P, Hariharan S, Pemberton JM, Lourenco C, Penn LZ, Andrews DW. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning. PLoS Comput Biol 2021; 17:e1008630. [PMID: 33617523 PMCID: PMC7932518 DOI: 10.1371/journal.pcbi.1008630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/04/2021] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Phenotypic profiling of large three-dimensional microscopy data sets has not been widely adopted due to the challenges posed by cell segmentation and feature selection. The computational demands of automated processing further limit analysis of hard-to-segment images such as of neurons and organoids. Here we describe a comprehensive shallow-learning framework for automated quantitative phenotyping of three-dimensional (3D) image data using unsupervised data-driven voxel-based feature learning, which enables computationally facile classification, clustering and advanced data visualization. We demonstrate the analysis potential on complex 3D images by investigating the phenotypic alterations of: neurons in response to apoptosis-inducing treatments and morphogenesis for oncogene-expressing human mammary gland acinar organoids. Our novel implementation of image analysis algorithms called Phindr3D allowed rapid implementation of data-driven voxel-based feature learning into 3D high content analysis (HCA) operations and constitutes a major practical advance as the computed assignments represent the biology while preserving the heterogeneity of the underlying data. Phindr3D is provided as Matlab code and as a stand-alone program (https://github.com/DWALab/Phindr3D). Fluorescence microscopy is a fundamental technology for cell biology. However, unbiased quantitative phenotypic analysis of microscopy images of cells grown in 3D organoids or in dense culture conditions in large enough numbers to reach statistical clarity remains a fundamental challenge. Here, we report that using data-driven voxel-based features and machine learning it is possible to analyze complex 3D image data without compressing them to 2D, identifying individual cells or using computationally intensive deep learning techniques. Further, we present methods for analyzing this data by classification or clustering. Together these techniques provide the means for facile discovery and interpretation of meaningful patterns in a high dimensional feature space without complex image processing and prior knowledge or assumptions about the feature space. Our method enables novel opportunities for rapid large-scale multivariate phenotypic microscopy image analysis in 3D using a standard desktop computer.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Charité — Universitätsmedizin Berlin, Department of Experimental Neurology, Department of Neurology, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail: (PM); (DWA)
| | - Santosh Hariharan
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James M. Pemberton
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Linda Z. Penn
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David W. Andrews
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (PM); (DWA)
| |
Collapse
|
9
|
Abstract
It is suggested that evolution has equipped humans and other species with powerful and, largely non-immunological resistance mechanisms that can nip pre-neoplastic cells, as well as cells disseminating from established tumors in the bud. These mechanisms must operate while maintaining tissue structure, polarity and a large variety of cell-to-cell interactions. Altogether, they are essential for microenvironmental tissue integrity. It has further been postulated that the genes underpinning microenvironmental control are not merely alleles of known cancer susceptibility genes, but constitute sui generis systems.
Collapse
Affiliation(s)
- George Klein
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| |
Collapse
|
10
|
Tervonen TA, Pant SM, Belitškin D, Englund JI, Närhi K, Haglund C, Kovanen PE, Verschuren EW, Klefström J. Oncogenic Ras Disrupts Epithelial Integrity by Activating the Transmembrane Serine Protease Hepsin. Cancer Res 2021; 81:1513-1527. [PMID: 33461973 DOI: 10.1158/0008-5472.can-20-1760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Ras proteins play a causal role in human cancer by activating multiple pathways that promote cancer growth and invasion. However, little is known about how Ras induces the first diagnostic features of invasion in solid tumors, including loss of epithelial integrity and breaching of the basement membrane (BM). In this study, we found that oncogenic Ras strongly promotes the activation of hepsin, a member of the hepsin/TMPRSS type II transmembrane serine protease family. Mechanistically, the Ras-dependent hepsin activation was mediated via Raf-MEK-ERK signaling, which controlled hepsin protein stability through the heat shock transcription factor-1 stress pathway. In Ras-transformed three-dimensional mammary epithelial culture, ablation of hepsin restored desmosomal cell-cell junctions, hemidesmosomes, and BM integrity and epithelial cohesion. In tumor xenografts harboring mutant KRas, silencing of hepsin increased local invasion concomitantly with accumulation of collagen IV. These findings suggest that hepsin is a critical protease for Ras-dependent tumorigenesis, executing cell-cell and cell-matrix pathologies important for early tumor dissemination. SIGNIFICANCE: These findings identify the cell-surface serine protease hepsin as a potential therapeutic target for its role in oncogenic Ras-mediated deregulation of epithelial cell-cell and cell-matrix interactions and cohesion of epithelial structure.
Collapse
Affiliation(s)
- Topi A Tervonen
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shishir M Pant
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna I Englund
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katja Närhi
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit/Translational Cancer Medicine Research Program and Department of Surgery, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Panu E Kovanen
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Emmy W Verschuren
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine and Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Finnish Cancer Institute, FICAN South, Helsinki University Hospital and Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
The AMPK-PP2A axis in insect fat body is activated by 20-hydroxyecdysone to antagonize insulin/IGF signaling and restrict growth rate. Proc Natl Acad Sci U S A 2020; 117:9292-9301. [PMID: 32277029 DOI: 10.1073/pnas.2000963117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.
Collapse
|
12
|
Park S, Brugiolo M, Akerman M, Das S, Urbanski L, Geier A, Kesarwani AK, Fan M, Leclair N, Lin KT, Hu L, Hua I, George J, Muthuswamy SK, Krainer AR, Anczuków O. Differential Functions of Splicing Factors in Mammary Transformation and Breast Cancer Metastasis. Cell Rep 2019; 29:2672-2688.e7. [PMID: 31775037 PMCID: PMC6936330 DOI: 10.1016/j.celrep.2019.10.110] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Misregulation of alternative splicing is a hallmark of human tumors, yet to what extent and how it contributes to malignancy are only beginning to be unraveled. Here, we define which members of the splicing factor SR and SR-like families contribute to breast cancer and uncover differences and redundancies in their targets and biological functions. We identify splicing factors frequently altered in human breast tumors and assay their oncogenic functions using breast organoid models. We demonstrate that not all splicing factors affect mammary tumorigenesis in MCF-10A cells. Specifically, the upregulation of SRSF4, SRSF6, or TRA2β disrupts acinar morphogenesis and promotes cell proliferation and invasion in MCF-10A cells. By characterizing the targets of these oncogenic splicing factors, we identify shared spliced isoforms associated with well-established cancer hallmarks. Finally, we demonstrate that TRA2β is regulated by the MYC oncogene, plays a role in metastasis maintenance in vivo, and its levels correlate with breast cancer patient survival.
Collapse
Affiliation(s)
- SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Mattia Brugiolo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,These authors contributed equally
| | - Martin Akerman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Envisagenics Inc., New York, NY, USA,These authors contributed equally
| | - Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,These authors contributed equally
| | - Laura Urbanski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | | | | | - Martin Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nathan Leclair
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Graduate Program in Genetics and Development, UConn Health, Farmington, CT, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Leo Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ian Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA,Institute for Systems Genomics, UConn Health, Farmington, CT, USA
| | - Senthil K. Muthuswamy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA,Correspondence: (O.A.), (A.R.K.)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Institute for Systems Genomics, UConn Health, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
13
|
Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 2019; 19:495-509. [PMID: 31406302 PMCID: PMC7043073 DOI: 10.1038/s41568-019-0179-8] [Citation(s) in RCA: 586] [Impact Index Per Article: 117.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
The impressive clinical activity of small-molecule receptor tyrosine kinase inhibitors for oncogene-addicted subgroups of non-small-cell lung cancer (for example, those driven by activating mutations in the gene encoding epidermal growth factor receptor (EGFR) or rearrangements in the genes encoding the receptor tyrosine kinases anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 (ROS1) and rearranged during transfection (RET)) has established an oncogene-centric molecular classification paradigm in this disease. However, recent studies have revealed considerable phenotypic diversity downstream of tumour-initiating oncogenes. Co-occurring genomic alterations, particularly in tumour suppressor genes such as TP53 and LKB1 (also known as STK11), have emerged as core determinants of the molecular and clinical heterogeneity of oncogene-driven lung cancer subgroups through their effects on both tumour cell-intrinsic and non-cell-autonomous cancer hallmarks. In this Review, we discuss the impact of co-mutations on the pathogenesis, biology, microenvironmental interactions and therapeutic vulnerabilities of non-small-cell lung cancer and assess the challenges and opportunities that co-mutations present for personalized anticancer therapy, as well as the expanding field of precision immunotherapy.
Collapse
Affiliation(s)
- Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Li R, Wang Z, Liu S, Wu B, Zeng D, Zhang Y, Gong L, Deng F, Zheng H, Wang Y, Chen C, Chen J, Jiang B. Two novel STK11 missense mutations induce phosphorylation of S6K and promote cell proliferation in Peutz-Jeghers syndrome. Oncol Lett 2017; 15:717-726. [PMID: 29399144 DOI: 10.3892/ol.2017.7436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 01/19/2017] [Indexed: 01/23/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS) is a rare hereditary disease caused by mutations in serine threonine kinase 11 (STK11) and characterized by an increased risk of developing cancer. Inactivation of STK11 has been associated with the mammalian target of rapamycin (mTOR) pathway. Hyperactivation and phosphorylation of the key downstream target genes ribosomal protein S6 kinase 1 (S6K1) and S6 promote protein synthesis and cell proliferation. To better understand the effects of STK11 dysfunction in the pathogenesis of PJS, genomic DNA samples from 21 patients with PJS from 11 unrelated families were investigated for STK11 mutations in the present study. The results revealed 6 point mutations and 2 large deletions in 8 (72.7%, 8/11) of the unrelated families. Notably, 3 novel mutations were identified, which included 2 missense mutations [c.88G>A (p.Asp30Asn) and c.869T>C (p.Leu290Pro)]. Subsequent immunohistochemical analysis revealed staining for phosphorylated-S6 protein in colonic hamartoma and breast benign tumor tissues from patients with PJS carrying the two respective missense mutations. Additionally, the novel missense STK11 mutants induced phosphorylation of S6K1 and S6, determined using western blot analysis, and promoted the proliferation of HeLa and SW1116 cells, determined using Cell Counting Kit-8 and colony formation assays. Collectively, these findings extend the STK11 mutation spectrum and confirm the pathogenicity of two novel missense mutations. This study represents a valuable insight into the molecular mechanisms implicated in the pathogenesis of PJS.
Collapse
Affiliation(s)
- Ran Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiqing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shu Liu
- Medical Genetics Center, Guangdong Women and Children's Hospital, Guangzhou, Guangdong 510010, P.R. China
| | - Baoping Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Di Zeng
- Department of Gastroenterology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P.R. China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lanbo Gong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Feihong Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haoxuan Zheng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yadong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chudi Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junsheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bo Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, Beijing 102218, P.R. China
| |
Collapse
|
15
|
Guo W, Shen F, Xiao W, Chen J, Pan F. Wnt inhibitor XAV939 suppresses the viability of small cell lung cancer NCI-H446 cells and induces apoptosis. Oncol Lett 2017; 14:6585-6591. [PMID: 29344117 PMCID: PMC5754901 DOI: 10.3892/ol.2017.7100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive type of lung cancer due to a fast tumor doubling time and early hematogenous spread. Advances in the treatment of non-small cell lung cancer using targeted therapies having been made, but no targeted drugs for SCLC have been approved. The Wnt signaling pathway is associated with tumor progression and metastasis; therefore, the inhibition of Wnt/β-catenin signaling is a strategy for anticancer drugs. Tankyrase 1 (TNKS1) is overexpressed in a number of types of cancer and XAV939 is a small molecule inhibitor of TNKS1 which may inhibit tumor growth. The present study aimed to investigate the potential molecular mechanisms underlying XAV939-induced suppression of the viability of SCLC cells. MTT assays were used to determine the viability-inhibition rate of cells and to identify the drug concentration which optimally inhibited cell viability. Flow cytometry was used to determine whether XAV939 induced apoptosis of SCLC cells, and to analyze the effect of the drug on the cell cycle. The results of the present study identified that XAV939 inhibited the viability of NCI-H446 cells in a dose-dependent manner, but cisplatin inhibited NCI-H446 cell viability in a time- and dose-dependent manner. The combination of XAV939 and cisplatin exhibited a slightly more pronounced inhibition of cell viability at an increased dose of XAV939. In addition, XAV939 markedly induced cell apoptosis of the SCLC cell line H446 by increasing the proportion of cells in the G0/G1 phase, leading to inhibition of the cell cycle. The results of the present study indicated that XAV939 inhibited the viability of the NCI-H446 SCLC cell line by inducing cell apoptosis through the Wnt signaling pathway. Therefore, XAV939 may be useful for the treatment of SCLC.
Collapse
Affiliation(s)
- Wenxuan Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fangzhen Shen
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenjing Xiao
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Chen
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fei Pan
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
16
|
Zhang K, Myllymäki SM, Gao P, Devarajan R, Kytölä V, Nykter M, Wei GH, Manninen A. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene 2017; 36:5681-5694. [PMID: 28604746 PMCID: PMC5658677 DOI: 10.1038/onc.2017.177] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
In many cancer types, integrin-mediated signaling regulates proliferation, survival and invasion of tumorigenic cells. However, it is still unclear how integrins crosstalk with oncogenes to regulate tumorigenesis and metastasis. Here we show that oncogenic K-RasV12 upregulates α6-integrin expression in Madin–Darby canine kidney (MDCK) cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)/Fos-related antigen 1-signaling cascade. Activated α6-integrins promoted metastatic capacity and anoikis resistance, and led to perturbed growth of MDCK cysts. Transcriptomic analysis of K-RasV12-transformed MDCK cells also revealed robust downregulation of αV-class integrins. Re-expression of αV-integrin in K-RasV12-transformed MDCK cells synergistically upregulated the expression of Zinc finger E-box-binding homeobox 1 and Twist-related protein 1 and triggered epithelial-mesenchymal transition leading to induced cell motility and invasion. These results delineate the signaling cascades connecting oncogenic K-RasV12 with α6- and αV-integrin functions to modulate cancer cell survival and tumorigenesis, and reveal new possible strategies to target highly oncogenic K-RasV12 mutants.
Collapse
Affiliation(s)
- K Zhang
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - S-M Myllymäki
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - P Gao
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - R Devarajan
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - V Kytölä
- Prostate Cancer Research Center, Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - M Nykter
- Prostate Cancer Research Center, Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - G-H Wei
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - A Manninen
- Biocenter Oulu, Centre of Excellence in Cell-Extracellular Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Haikala HM, Anttila JM, Klefström J. MYC and AMPK-Save Energy or Die! Front Cell Dev Biol 2017; 5:38. [PMID: 28443281 PMCID: PMC5386972 DOI: 10.3389/fcell.2017.00038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
MYC sustains non-stop proliferation by altering metabolic machinery to support growth of cell mass. As part of the metabolic transformation MYC promotes lipid, nucleotide and protein synthesis by hijacking citric acid cycle to serve biosynthetic processes, which simultaneously exhausts ATP production. This leads to the activation of cellular energy sensing protein, AMP-activated protein kinase (AMPK). Cells with normal growth control can stop cell proliferation machinery to replenish ATP reservoirs whereas MYC prevents such break by blocking the cell cycle exit. The relentless cell cycle activation, accompanied by sustained metabolic stress and AMPK activity, switches the energy-saving AMPK to pro-apoptotic AMPK. The AMPK-involving metabolic side of MYC apoptosis may provide novel avenues for therapeutic development. Here we first review the role of anabolic MYC and catabolic AMPK pathways in context of cancer and then discuss how the concomitant activity of both pathways in tumor cells may result in targetable synthetic lethal vulnerabilities.
Collapse
Affiliation(s)
- Heidi M Haikala
- Research Programs Unit/Translational Cancer Biology, Cancer Cell Circuitry Laboratory, Institute of Biomedicine, University of HelsinkiHelsinki, Finland
| | - Johanna M Anttila
- Research Programs Unit/Translational Cancer Biology, Cancer Cell Circuitry Laboratory, Institute of Biomedicine, University of HelsinkiHelsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Biology, Cancer Cell Circuitry Laboratory, Institute of Biomedicine, University of HelsinkiHelsinki, Finland
| |
Collapse
|
18
|
Mo X, Qi Q, Ivanov AA, Niu Q, Luo Y, Havel J, Goetze R, Bell S, Moreno CS, Cooper LAD, Johns MA, Khuri FR, Du Y, Fu H. AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay. Mol Pharmacol 2017; 91:339-347. [PMID: 28087810 DOI: 10.1124/mol.116.107623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/09/2017] [Indexed: 01/07/2023] Open
Abstract
The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. In this study, we report the development of a NanoLuc-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells. The NanoPCA system was configured to enable detection of protein-protein interactions (PPI) at the endogenous level, as shown with PRAS40 dimerization, and detection of weak interactions, such as PINCH1-NCK2. Importantly, NanoPCA allows the study of PPI dynamics with reversible interactions. To demonstrate its utility for large-scale PPI detection in mammalian intracellular environment, we have used NanoPCA to examine MYC interaction with 83 cancer-associated proteins in live cancer cell lines. Our new MYC PPI data confirmed known MYC-interacting proteins, such as MAX, GSK3A, and SMARCA4, and revealed a panel of novel MYC interaction partners, such as RAC-α serine/threonine-protein kinase (AKT)1, liver kinase B (LKB)1, and Yes-associated protein (YAP)1. The MYC interactions with AKT1, LKB1, and YAP1 were confirmed by coimmunoprecipitation of endogenous proteins. Importantly, AKT1, LKB1, and YAP1 were able to activate MYC in a transcriptional reporter assay. Thus, these vital growth control proteins may represent promising MYC regulators, suggesting new mechanisms that couple energetic and metabolic pathways and developmental signaling to MYC-regulated cellular programs.
Collapse
Affiliation(s)
- Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Qi Qi
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Qiankun Niu
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Yin Luo
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Jonathan Havel
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Russell Goetze
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Sydney Bell
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Carlos S Moreno
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Lee A D Cooper
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Margaret A Johns
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Fadlo R Khuri
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Yuhong Du
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center (X.M., Q.Q., A.A.I., Q.N., Y.L., J.H., R.G., S.B., M.A.J., Y.D., H.F.) and Department of Biomedical Informatics (L.A.D.C.), Emory University School of Medicine, Atlanta, Georgia; Departments of Hematology and Medical Oncology (F.R.K., H.F.) and Pathology and Laboratory Medicine (C.S.M.) and Winship Cancer Institute, Emory University, Atlanta, Georgia; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China (Y.L.); and Department of Biomedical Engineering, Emory University School of Medicine/Georgia Institute of Technology, Atlanta, Georgia (L.A.D.C.)
| |
Collapse
|
19
|
Okon IS, Ding Y, Coughlan KA, Wang Q, Song P, Benbrook DM, Zou MH. Aberrant NRP-1 expression serves as predicator of metastatic endometrial and lung cancers. Oncotarget 2016; 7:7970-8. [PMID: 26701889 PMCID: PMC4884968 DOI: 10.18632/oncotarget.6699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1 (NRP-1) has emerged as an important driver of tumor-promoting phenotypes of human malignancies. However, incomplete knowledge exists as to how this single-pass transmembrane receptor mediates pleiotropic tumor-promoting functions. The purpose of this study was to evaluate NRP-1 expression and metastatic properties in 94 endometrial cancer and matching serum specimens and in a lung cancer cell line. We found that NRP-1 expression significantly correlated with increased tumoral expression of vascular endothelial growth factor 2 (VEGFR2) and serum levels of hepatocyte growth factor (HGF) and cell growth-stimulating factor (C-GSF). Tumoral NRP-1 also was positively associated with expression of NEDD9, a pro-metastatic protein. In the highly metastatic lung cancer cell line (H1792), stable LKB1 depletion caused increased migration in vitro and accentuated NRP-1 and NEDD9 expression in vivo. Our findings demonstrate that perturbed expression of these targets correlate with metastatic potential of endometrial and lung tumors, providing clinically-relevant biomarker applications for diagnostic and therapeutic targeting.
Collapse
Affiliation(s)
- Imoh S Okon
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| | | | - Qiongxin Wang
- Section of Molecular Medicine, Oklahoma City, OK 73104, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| | - Doris M Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK 73104, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
20
|
Zeng Q, Chen J, Li Y, Werle KD, Zhao RX, Quan CS, Wang YS, Zhai YX, Wang JW, Youssef M, Cui R, Liang J, Genovese N, Chow LT, Li YL, Xu ZX. LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism. Oncogene 2016; 36:1245-1255. [PMID: 27546620 PMCID: PMC5322260 DOI: 10.1038/onc.2016.290] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Liver kinase B1 (LKB1) is mutationally inactivated in Peutz-Jeghers syndrome and in a variety of cancers including human papillomavirus (HPV)-caused cervical cancer. However, the significance of LKB1 mutations in cervical cancer initiation and progress has not been examined. Herein, we demonstrated that, in mouse embryonic fibroblasts, loss of LKB1 and transduction of HPV16 E6/E7 had an additive effect on constraining cell senescence while promoting cell proliferation and increasing glucose consumption, lactate production, and ATP generation. Knock-down of LKB1 increased and ectopic expression of LKB1 decreased glycolysis, anchorage-independent cell growth, and cell migration and invasion in HPV transformed cells. In the tumorigenesis and lung metastasis model in syngeneic mice, depletion of LKB1 markedly increased tumor metastatic colonies in lungs without affecting subcutaneous tumor growth. We showed that HPV16 E6/E7 enhanced the expression of hexokinase-ll (HK-II) in the glycolytic pathway through elevated c-MYC. Ectopic LKB1 reduced HK-II along with glycolysis. The inverse relationship between HK-II and LKB1 was also observed in normal and HPV-associated cervical lesions. We propose that LKB1 acts as a safeguard against HPV-stimulated aerobic glycolysis and tumor progression. These findings may eventually aid in the development of therapeutic strategy for HPV-associated malignancies by targeting cell metabolism.
Collapse
Affiliation(s)
- Q Zeng
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Chen
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Y Li
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K D Werle
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R-X Zhao
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C-S Quan
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Y-S Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Y-X Zhai
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - J-W Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - M Youssef
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R Cui
- Department of Dermatology, Boston University, School of Medicine, Boston, MA, USA
| | - J Liang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - N Genovese
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Y-L Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Z-X Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.,Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Haikala HM, Klefström J, Eilers M, Wiese KE. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle 2016; 15:316-23. [PMID: 26873145 DOI: 10.1080/15384101.2015.1121351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis caused by deregulated MYC expression is a prototype example of intrinsic tumor suppression. However, it is still unclear how supraphysiological MYC expression levels engage specific sets of target genes to promote apoptosis. Recently, we demonstrated that repression of SRF target genes by MYC/MIZ1 complexes limits AKT-dependent survival signaling and contributes to apoptosis induction. Here we report that supraphysiological levels of MYC repress gene sets that include markers of basal-like breast cancer cells, but not luminal cancer cells, in a MIZ1-dependent manner. Furthermore, repressed genes are part of a conserved gene signature characterizing the basal subpopulation of both murine and human mammary gland. These repressed genes play a role in epithelium and mammary gland development and overlap with genes mediating cell adhesion and extracellular matrix organization. Strikingly, acute activation of oncogenic MYC in basal mammary epithelial cells is sufficient to induce luminal cell identity markers. We propose that supraphysiological MYC expression impacts on mammary epithelial cell identity by repressing lineage-specific target genes. Such abrupt cell identity switch could interfere with adhesion-dependent survival signaling and thus promote apoptosis in pre-malignant epithelial tissue.
Collapse
Affiliation(s)
- Heidi M Haikala
- a Translational cancer biology, Research Programs Unit and Institute of Biomedicine, University of Helsinki , Helsinki , Finland
| | - Juha Klefström
- a Translational cancer biology, Research Programs Unit and Institute of Biomedicine, University of Helsinki , Helsinki , Finland
| | - Martin Eilers
- b Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland , Würzburg , Germany.,c Comprehensive Cancer Center Mainfranken, University of Würzburg , Würzburg , Germany
| | - Katrin E Wiese
- b Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland , Würzburg , Germany.,d Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
22
|
Marques E, Klefström J. Lentiviral shRNA Screen to Identify Epithelial Integrity Regulating Genes in MCF10A 3D Culture. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.2050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
23
|
Marques E, Klefström J. Par6 family proteins in cancer. Oncoscience 2015; 2:894-5. [PMID: 26697513 PMCID: PMC4675776 DOI: 10.18632/oncoscience.255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/27/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Elsa Marques
- Research Programs Unit/Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 2015; 35:2711-22. [PMID: 26364601 PMCID: PMC4893635 DOI: 10.1038/onc.2015.332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022]
Abstract
Structural centrosome aberrations are frequently observed in early stage carcinomas, but their role in malignant transformation is poorly understood. Here, we examined the impact of overexpression of Ninein-like protein (Nlp) on the architecture of polarized epithelia in three-dimensional mammospheres. When Nlp was overexpressed to levels resembling those seen in human tumors, it formed striking centrosome-related bodies (CRBs), which sequestered Ninein and affected the kinetics of microtubule (MT) nucleation and release. In turn, the profound reorganization of the MT cytoskeleton resulted in mislocalization of several adhesion and junction proteins as well as the tumor suppressor Scribble, resulting in the disruption of epithelial polarity, cell-cell interactions and mammosphere architecture. Remarkably, cells harboring Nlp-CRBs displayed an enhanced proliferative response to epidermal growth factor. These results demonstrate that structural centrosome aberrations cause not only the disruption of epithelial polarity but also favor overproliferation, two phenotypes typically associated with human carcinomas.
Collapse
|
25
|
Tervonen TA, Belitškin D, Pant SM, Englund JI, Marques E, Ala-Hongisto H, Nevalaita L, Sihto H, Heikkilä P, Leidenius M, Hewitson K, Ramachandra M, Moilanen A, Joensuu H, Kovanen PE, Poso A, Klefström J. Deregulated hepsin protease activity confers oncogenicity by concomitantly augmenting HGF/MET signalling and disrupting epithelial cohesion. Oncogene 2015; 35:1832-46. [DOI: 10.1038/onc.2015.248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/14/2015] [Accepted: 05/10/2015] [Indexed: 12/22/2022]
|
26
|
Par6G suppresses cell proliferation and is targeted by loss-of-function mutations in multiple cancers. Oncogene 2015; 35:1386-98. [PMID: 26073086 PMCID: PMC4800288 DOI: 10.1038/onc.2015.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/25/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Differentiated epithelial structure communicates with individual constituent epithelial cells to suppress their proliferation activity. However, the pathways linking epithelial structure to cessation of the cell proliferation machinery or to unscheduled proliferation in the context of tumorigenesis are not well defined. Here we demonstrate the strong impact of compromised epithelial integrity on normal and oncogenic Myc-driven proliferation in three-dimensional mammary epithelial organoid culture. Systematic silencing of 34 human homologs of Drosophila genes, with previously established functions in control of epithelial integrity, demonstrates a role for human genes of apico-basal polarity, Wnt and Hippo pathways and actin dynamics in regulation of the size, integrity and cell proliferation in organoids. Perturbation of these pathways leads to diverse functional interactions with Myc: manifested as a RhoA-dependent synthetic lethality and Par6-dependent effects on the cell cycle. Furthermore, we show a role for Par6G as a negative regulator of the phosphatidylinositol 3′-kinase/phosphoinositide-dependent protein kinase 1/Akt pathway and epithelial cell proliferation and evidence for frequent inactivation of Par6G gene in epithelial cancers. The findings demonstrate that determinants of epithelial structure regulate the cell proliferation activity via conserved and cancer-relevant regulatory circuitries, which are important for epithelial cell cycle restriction and may provide new targets for therapeutic intervention.
Collapse
|
27
|
Wiese KE, Haikala HM, von Eyss B, Wolf E, Esnault C, Rosenwald A, Treisman R, Klefström J, Eilers M. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells. EMBO J 2015; 34:1554-71. [PMID: 25896507 PMCID: PMC4474530 DOI: 10.15252/embj.201490467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
Abstract
Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells.
Collapse
Affiliation(s)
- Katrin E Wiese
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Heidi M Haikala
- Faculty of Medicine, Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine Biomedicum Helsinki University of Helsinki, Helsinki, Finland
| | - Björn von Eyss
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany
| | - Cyril Esnault
- Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories Transcription Laboratory, London, UK
| | - Andreas Rosenwald
- Institute of Pathology University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| | - Richard Treisman
- Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories Transcription Laboratory, London, UK
| | - Juha Klefström
- Faculty of Medicine, Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine Biomedicum Helsinki University of Helsinki, Helsinki, Finland
| | - Martin Eilers
- Biocenter Theodor Boveri Institute University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Werner S, Brors B, Eick J, Marques E, Pogenberg V, Parret A, Kemming D, Wood AW, Edgren H, Neubauer H, Streichert T, Riethdorf S, Bedi U, Baccelli I, Jücker M, Eils R, Fehm T, Trumpp A, Johnsen SA, Klefström J, Wilmanns M, Müller V, Pantel K, Wikman H. Suppression of early hematogenous dissemination of human breast cancer cells to bone marrow by retinoic Acid-induced 2. Cancer Discov 2015; 5:506-19. [PMID: 25716347 DOI: 10.1158/2159-8290.cd-14-1042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Regulatory pathways that drive early hematogenous dissemination of tumor cells are insufficiently defined. Here, we used the presence of disseminated tumor cells (DTC) in the bone marrow to define patients with early disseminated breast cancer and identified low retinoic acid-induced 2 (RAI2) expression to be significantly associated with DTC status. Low RAI2 expression was also shown to be an independent poor prognostic factor in 10 different cancer datasets. Depletion of RAI2 protein in luminal breast cancer cell lines resulted in dedifferentiation marked by downregulation of ERα, FOXA1, and GATA3, together with increased invasiveness and activation of AKT signaling. Functional analysis of the previously uncharacterized RAI2 protein revealed molecular interaction with CtBP transcriptional regulators and an overlapping function in controlling the expression of a number of key target genes involved in breast cancer. These results suggest that RAI2 is a new metastasis-associated protein that sustains differentiation of luminal breast epithelial cells. SIGNIFICANCE We identified downregulation of RAI2 as a novel metastasis-associated genetic alteration especially associated with early occurring bone metastasis in ERα-positive breast tumors. We specified the role of the RAI2 protein to function as a transcriptional regulator that controls the expression of several key regulators of breast epithelial integrity and cancer.
Collapse
Affiliation(s)
- Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics (G200), German Cancer Research Center (DKFZ), Heidelberg, Germany. National Center for Tumor Diseases (NCT), Heidelberg, Germany. German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Julia Eick
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elsa Marques
- Translational Cancer Biology Research Program and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | - Dirk Kemming
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. European Laboratory Association, Ibbenbüren, Germany
| | - Antony W Wood
- Cell Signaling Technology, Inc., Danvers, Massachusetts
| | - Henrik Edgren
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf, Germany. Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Upasana Bedi
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irène Baccelli
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany. Institute of Pharmacy and Molecular Biotechnology, and Bioquant Center, University of Heidelberg, Heidelberg, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf, Germany. Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steven A Johnsen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juha Klefström
- Translational Cancer Biology Research Program and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
29
|
Kocher BA, White LS, Piwnica-Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res 2014; 13:358-67. [PMID: 25304685 DOI: 10.1158/1541-7786.mcr-14-0333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Death-associated protein kinase (DAPK3) is a serine/threonine kinase involved in various signaling pathways important to tissue homeostasis and mammalian biology. Considered to be a putative tumor suppressor, the molecular mechanism by which DAPK3 exerts its suppressive function is not fully understood and the field lacks an appropriate mouse model. To address these gaps, an in vitro three-dimensional tumorigenesis model was used and a constitutive DAPK3-knockout mouse was generated. In the 3D morphogenesis model, loss of DAPK3 through lentiviral-mediated knockdown enlarged acinar size by accelerated acini proliferation and apoptosis while maintaining acini polarity. Depletion of DAPK3 enhanced growth factor-dependent mTOR activation and, furthermore, enlarged DAPK3 acini structures were uniquely sensitive to low doses of rapamycin. Simultaneous knockdown of RAPTOR, a key mTORC1 component, reversed the augmented acinar size in DAPK3-depleted structures indicating an epistatic interaction. Using a validated gene trap strategy to generate a constitutive DAPK3-knockout mouse, it was demonstrated that DAPK3 is vital for early mouse development. The Dapk3 promoter exhibits spatiotemporal activity in developing mice and is actively expressed in normal breast epithelia of adult mice. Importantly, reduction of DAPK3 expression correlates with the development of ductal carcinoma in situ (DCIS) and more aggressive breast cancer as observed in the Oncomine database of clinical breast cancer specimens. IMPLICATIONS Novel cellular and mouse modeling studies of DAPK3 shed light on its tumor-suppressive mechanisms and provide direct evidence that DAPK3 has relevance in early development.
Collapse
Affiliation(s)
- Brandon A Kocher
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lynn S White
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri. Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
30
|
Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 2014; 12:113-29. [DOI: 10.1586/17434440.2014.953058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Okon IS, Coughlan KA, Zhang C, Moriasi C, Ding Y, Song P, Zhang W, Li G, Zou MH. Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis. J Clin Invest 2014; 124:4590-602. [PMID: 25180605 DOI: 10.1172/jci75371] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/25/2014] [Indexed: 12/16/2022] Open
Abstract
After internalization, transmembrane receptors (TMRs) are typically recycled back to the cell surface or targeted for degradation. Efficient TMR trafficking is critical for regulation of several processes, including signal transduction pathways, development, and disease. Here, we determined that trafficking of the angiogenic receptor neuropilin-1 (NRP-1) is abrogated by the liver kinase B1 (LKB1), a serine-threonine kinase of the calcium calmodulin family. We found that aberrant NRP-1 expression in tumor cells from patients with lung adenocarcinoma is associated with decreased levels of LKB1. In cultured lung cells, LKB1 accentuated formation of a complex between NRP-1 and RAB7 in late endosomes. LKB1 specifically bound GTP-bound RAB7, but not a dominant-negative GDP-bound form of RAB7, promoting rapid transfer and lysosome degradation of NRP-1. siRNA-mediated depletion of RAB7 disrupted the transfer of NRP-1 to the lysosome, resulting in recovery of the receptor as well as increased tumor growth and angiogenesis. Together, our findings indicate that LKB1 functions as a RAB7 effector and suppresses angiogenesis by promoting the cellular trafficking of NRP-1 from RAB7 vesicles to the lysosome for degradation. Furthermore, these data suggest that LKB1 and NRP-1 have potential as therapeutic targets for limiting tumorigenesis.
Collapse
|
32
|
Li J, Liu J, Li P, Mao X, Li W, Yang J, Liu P. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:70. [PMID: 25178656 PMCID: PMC4431490 DOI: 10.1186/s13046-014-0070-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
Background LKB1, also known as STK11, is a master kinase that serves as an energy metabolic sensor and is involved in cell polarity regulation. Recent studies have indicated that LKB1 is related to breast tumorigenesis and breast cancer progression. However, little work has been done on the roles of LKB1 in cell polarity and epithelial-mesenchymal transition in breast cancer. In this study, we tried to prove that loss of LKB1 disrupts breast epithelial cell polarity and causes tumor metastasis and invasion. Methods The relationships of LKB1 expression to clinic-pathological parameters and epithelial markers E-cadherin and high-molecular-weight -cytokeratin (HMW-CK) were investigated in 80 clinical breast cancer tissue samples and their paired normal control breast tissue samples by using immunohistochemistry. Then, the LKB1 expressions in metastatic and non-metastatic breast cancer cell lines were compared. The roles of LKB1 in cell polarity and epithelial-mesenchymal transition in breast cancer were determined by using immunofluorescence, western blot assay, and cell migration and invasive assays. Finally, the non-transformed human breast cell line MCF-10A was cultured in three dimensions to further reveal the role of LKB1 in breast epithelial cell polarity maintenance. Results Histopathological analysis showed that LKB1 expression level was significantly negatively correlated with breast cancer TNM stage, and positively correlated with ER/PR status and expression levels of E-cadherin and HMW-CK. Immunofluorescence staining showed that LKB1 was co-localized with E-cadherin at adheren junctions. In vitro analysis revealed that loss of LKB1 expression enhanced migration, invasion and the acquisition of mesenchymal phenotype, while LKB1 overexpression in MDA-MB-435 s cells, which have a low basal level of LKB1 expression, promoted the acquisition of epithelial phenotype. Finally, it was found for the first time that endogenous LKB1 knockdown resulted in abnormal cell polarity in acini formed by non-transformed breast epithelial cells grown in 3D culture. Conclusion Our data indicated that low expression of LKB1 was significantly associated with established markers of unfavorable breast cancer prognosis, such as loss of ER/PR, E-cadherin and HMW-CK. Knockdown of endogenous LKB1 gave rise to dysregulation of cell polarity and invasive phenotype of breast cancer cells.
Collapse
Affiliation(s)
- Juan Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Xiaona Mao
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Wenjie Li
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Jin Yang
- Department of Oncology, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital, Xian Jiaotong University College of Medicine, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
33
|
CRTC1/MAML2 gain-of-function interactions with MYC create a gene signature predictive of cancers with CREB-MYC involvement. Proc Natl Acad Sci U S A 2014; 111:E3260-8. [PMID: 25071166 DOI: 10.1073/pnas.1319176111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chimeric oncoproteins created by chromosomal translocations are among the most common genetic mutations associated with tumorigenesis. Malignant mucoepidermoid salivary gland tumors, as well as a growing number of solid epithelial-derived tumors, can arise from a recurrent t (11, 19)(q21;p13.1) translocation that generates an unusual chimeric cAMP response element binding protein (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind-like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcriptional coactivators, the CRTC1 and the NOTCH/RBPJ coactivator MAML2. Accordingly, the C1/M2 oncoprotein induces aberrant expression of CREB and NOTCH target genes. Surprisingly, here we report a gain-of-function activity of the C1/M2 oncoprotein that directs its interactions with myelocytomatosis oncogene (MYC) proteins and the activation of MYC transcription targets, including those involved in cell growth and metabolism, survival, and tumorigenesis. These results were validated in human mucoepidermoid tumor cells that harbor the t (11, 19)(q21;p13.1) translocation and express the C1/M2 oncoprotein. Notably, the C1/M2-MYC interaction is necessary for C1/M2-driven cell transformation, and the C1/M2 transcriptional signature predicts other human malignancies having combined involvement of MYC and CREB. These findings suggest that such gain-of-function properties may also be manifest in other oncoprotein fusions found in human cancer and that agents targeting the C1/M2-MYC interface represent an attractive strategy for the development of effective and safe anticancer therapeutics in tumors harboring the t (11, 19) translocation.
Collapse
|
34
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
35
|
Abstract
Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Jessica L Lee
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
36
|
Tsai LH, Wu JY, Cheng YW, Chen CY, Sheu GT, Wu TC, Lee H. The MZF1/c-MYC axis mediates lung adenocarcinoma progression caused by wild-type lkb1 loss. Oncogene 2014; 34:1641-9. [PMID: 24793789 DOI: 10.1038/onc.2014.118] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/02/2014] [Accepted: 03/26/2014] [Indexed: 12/26/2022]
Abstract
Liver kinase B1 (LKB1) loss in lung adenocarcinoma is commonly caused by genetic mutations, but these mutations rarely occur in Asian patients. We recently reported wild-type LKB1 loss via the alteration of NKX2-1/p53-axis-promoted tumor aggressiveness and predicted poor outcomes in cases of lung adenocarcinoma. The mechanistic action of wild-type LKB1 loss within tumor progression remains unknown. The suppression of MYC by LKB1 controls epithelial organization; therefore, we hypothesize that MYC expression can be increased via wild-type LKB1 loss and promotes tumor progression. Here, MYC transcription is upregulated by LKB1-loss-mediated MZF1 expression. The wild-type LKB1-loss-mediated MZF1/MYC axis is responsible for soft-agar growth, migration and invasion in lung adenocarcinoma cells. Moreover, wild-type LKB1 loss-induced cell invasiveness was markedly suppressed by MYC inhibitors (10058-F4 and JQ1). Patients with low-LKB1/high-MZF1 or low-LKB1/high-MYC tumors have shorter overall survival and relapse-free-survival periods than patients with high-LKB1/low-MZF1 or high-LKB1/low-MYC tumors. In summary, MZF1-mediated MYC expression may promote tumor progression, resulting in poor outcomes in cases of lung adenocarcinoma with low-wild-type-LKB1 tumors.
Collapse
Affiliation(s)
- L-H Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - J-Y Wu
- Department of Surgery, Buddhist Tzu Chi General Hospital, Taichung Branch, and College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Y-W Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - C-Y Chen
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - G-T Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - T-C Wu
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - H Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
37
|
Klein G. Evolutionary aspects of cancer resistance. Semin Cancer Biol 2014; 25:10-4. [DOI: 10.1016/j.semcancer.2014.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/19/2013] [Accepted: 01/05/2014] [Indexed: 02/01/2023]
|
38
|
Zinin N, Adameyko I, Wilhelm M, Fritz N, Uhlén P, Ernfors P, Henriksson MA. MYC proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Rep 2014; 15:383-91. [PMID: 24599748 PMCID: PMC3989669 DOI: 10.1002/embr.201337424] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 12/09/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The role of MYC proteins in somatic stem and progenitor cells during development is poorly understood. We have taken advantage of a chick in vivo model to examine their role in progenitor cells of the developing neural tube. Our results show that depletion of endogenous MYC in radial glial precursors (RGPs) is incompatible with differentiation and conversely, that overexpression of MYC induces neurogenesis independently of premature or upregulated expression of proneural gene programs. Unexpectedly, the neurogenic function of MYC depends on the integrity of the polarized neural tissue, in contrast to the situation in dissociated RGPs where MYC is mitogenic. Within the polarized RGPs of the neural tube, MYC drives differentiation by inhibiting Notch signaling and by increasing neurogenic cell division, eventually resulting in a depletion of progenitor cells. These results reveal an unexpected role of MYC in the control of stemness versus differentiation of neural stem cells in vivo.
Collapse
Affiliation(s)
- Nikolay Zinin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska InstitutetStockholm, Sweden
| | - Igor Adameyko
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | - Margareta Wilhelm
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska InstitutetStockholm, Sweden
| | - Nicolas Fritz
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska InstitutetStockholm, Sweden
| | | |
Collapse
|
39
|
Rehman G, Shehzad A, Khan AL, Hamayun M. Role of AMP-activated protein kinase in cancer therapy. Arch Pharm (Weinheim) 2014; 347:457-68. [PMID: 24677093 DOI: 10.1002/ardp.201300402] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
Recent advances in AMP-activated protein kinase (AMPK) as a target in cancer waxed and waned over the past decade of cancer research. AMPK is a cellular energy sensor, present in almost all eukaryotic cells. An elevated AMP/ATP ratio activates the AMPK, which in turn inhibits energy-consuming processes and induces catabolic events that generate ATP to restore the energy homeostasis inside the cell. Several reports have indicated that AMPK regulates several metabolic pathways and may be a potential therapeutic target for the treatment of cancer. Cancer cells have specific metabolic changes that differ from normal cells, and AMPK prevents the deregulated processes in cancer. AMPK may also act to inhibit tumor formation through modulation of cell growth, cell proliferation, autophagy, stress responses, and cell polarity. AMPK has been shown to inhibit mammalian target of rapamycin (mTOR) through tuberous sclerosis complex 2 (TSC2) phosphorylation and phosphatase and tensin homolog (PTEN), considered as central cell growth controller signals in diseases. In response to glucose deprivation, AMPK phosphorylates and activates p53, which induces cell cycle arrest in the G1/S phase of the cell cycle. AMPK has also been reported to block cyclin-dependent kinases through phosphorylation of p27(kip1) , promoting its stabilization and allowing cells to survive metabolic stress via induction of autophagy. Additionally, AMPK induces autophagy by phosphorylation and activation of eEF-2 kinase, and prevents the formation of new proteins. AMPK activators are also used for the treatment of type II diabetes and cancer. This review focuses on AMPK activation and its possible therapeutic role in the treatment of cancer.
Collapse
Affiliation(s)
- Gauhar Rehman
- School of Life Science, College of Natural Science, Kyungpook National University, Daegu, South Korea; Department of Zoology, Abdul Wali Khan University, Mardan, K. P. K. Pakistan
| | | | | | | |
Collapse
|
40
|
A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. Biomaterials 2014; 35:3319-30. [PMID: 24447463 DOI: 10.1016/j.biomaterials.2013.12.080] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) tissue-engineered tumor models have the potential to bridge the gap between monolayer cultures and patient-derived xenografts for the testing of nanoparticle (NP)-based cancer therapeutics. In this study, a hydrogel-derived prostate cancer (PCa) model was developed for the in vitro evaluation of doxorubicin (Dox)-loaded polymer NPs (Dox-NPs). The hydrogels were synthesized using chemically modified hyaluronic acid (HA) carrying acrylate groups (HA-AC) or reactive thiols (HA-SH). The crosslinked hydrogel networks exhibited an estimated pore size of 70-100 nm, similar to the spacing of the extracellular matrices (ECM) surrounding tumor tissues. LNCaP PCa cells entrapped in the HA matrices formed distinct tumor-like multicellular aggregates with an average diameter of 50 μm after 7 days of culture. Compared to cells grown on two-dimensional (2D) tissue culture plates, cells from the engineered tumoroids expressed significantly higher levels of multidrug resistance (MDR) proteins, including multidrug resistance protein 1 (MRP1) and lung resistance-related protein (LRP), both at the mRNA and the protein levels. Separately, Dox-NPs with an average diameter of 54 ± 1 nm were prepared from amphiphilic block copolymers based on poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals. Dox-NPs were able to diffuse through the hydrogel matrices, penetrate into the tumoroid and be internalized by LNCaP PCa cells through caveolae-mediated endocytosis and macropinocytosis pathways. Compared to 2D cultures, LNCaP PCa cells cultured as multicellular aggregates in HA hydrogel were more resistant to Dox and Dox-NPs treatments. Moreover, the NP-based Dox formulation could bypass the drug efflux function of MRP1, thereby partially reversing the resistance to free Dox in 3D cultures. Overall, the engineered tumor model has the potential to provide predictable results on the efficacy of NP-based cancer therapeutics.
Collapse
|
41
|
Khanna A, Kauko O, Böckelman C, Laine A, Schreck I, Partanen JI, Szwajda A, Bormann S, Bilgen T, Helenius M, Pokharel YR, Pimanda J, Russel MR, Haglund C, Cole KA, Klefström J, Aittokallio T, Weiss C, Ristimäki A, Visakorpi T, Westermarck J. Chk1 targeting reactivates PP2A tumor suppressor activity in cancer cells. Cancer Res 2013; 73:6757-69. [PMID: 24072747 DOI: 10.1158/0008-5472.can-13-1002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Checkpoint kinase Chk1 is constitutively active in many cancer cell types and new generation Chk1 inhibitors show marked antitumor activity as single agents. Here we present a hitherto unrecognized mechanism that contributes to the response of cancer cells to Chk1-targeted therapy. Inhibiting chronic Chk1 activity in cancer cells induced the tumor suppressor activity of protein phosphatase protein phosphatase 2A (PP2A), which by dephosphorylating MYC serine 62, inhibited MYC activity and impaired cancer cell survival. Mechanistic investigations revealed that Chk1 inhibition activated PP2A by decreasing the transcription of cancerous inhibitor of PP2A (CIP2A), a chief inhibitor of PP2A activity. Inhibition of cancer cell clonogenicity by Chk1 inhibition could be rescued in vitro either by exogenous expression of CIP2A or by blocking the CIP2A-regulated PP2A complex. Chk1-mediated CIP2A regulation was extended in tumor models dependent on either Chk1 or CIP2A. The clinical relevance of CIP2A as a Chk1 effector protein was validated in several human cancer types, including neuroblastoma, where CIP2A was identified as an NMYC-independent prognostic factor. Because the Chk1-CIP2A-PP2A pathway is driven by DNA-PK activity, functioning regardless of p53 or ATM/ATR status, our results offer explanative power for understanding how Chk1 inhibitors mediate single-agent anticancer efficacy. Furthermore, they define CIP2A-PP2A status in cancer cells as a pharmacodynamic marker for their response to Chk1-targeted therapy.
Collapse
Affiliation(s)
- Anchit Khanna
- Authors' Affiliations: Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital; Tampere Graduate Program in Biomedicine and Biotechnology (TGPBB), University of Tampere, Tampere; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University; Department of Pathology, University of Turku; Turku Doctoral Program of Biomedical Sciences (TuBS), Turku; Department of Pathology, HUSLAB and Haartman Institute, Helsinki University, Central Hospital and University of Helsinki; University of Helsinki Institute of Biomedicine and Genome-Scale Biology Research Program; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Karlsruhe Institute of Technology, Campus North, Institute of Toxicology and Genetics, Karlsruhe, Germany; Adult Cancer Program, Lowy Cancer Centre and Prince of Wales Hospital, UNSW Medicine, University of New South Wales, Sydney, Australia; Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey; Division of Oncology, Children's Hospital of Philadelphia; and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Partanen JI, Tervonen TA, Klefström J. Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130111. [PMID: 24062587 DOI: 10.1098/rstb.2013.0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The PAR clan of polarity regulating genes was initially discovered in a genetic screen searching for genes involved in asymmetric cell divisions in the Caenorhabditis elegans embryo. Today, investigations in worms, flies and mammals have established PAR proteins as conserved and fundamental regulators of animal cell polarization in a broad range of biological phenomena requiring cellular asymmetries. The human homologue of invertebrate PAR-4, a serine-threonine kinase LKB1/STK11, has caught attention as a gene behind Peutz-Jeghers polyposis syndrome and as a bona fide tumour suppressor gene commonly mutated in sporadic cancer. LKB1 functions as a master regulator of AMP-activated protein kinase (AMPK) and 12 other kinases referred to as the AMPK-related kinases, including four human homologues of PAR-1. The role of LKB1 as part of the energy sensing LKB1-AMPK module has been intensively studied, whereas the polarity function of LKB1, in the context of homoeostasis or cancer, has gained less attention. Here, we focus on the PAR-4 identity of LKB1, discussing the weight of evidence indicating a role for LKB1 in regulation of cell polarity and epithelial integrity across species and highlight recent investigations providing new insight into the old question: does the PAR-4 identity of LKB1 matter in cancer?
Collapse
Affiliation(s)
- Johanna I Partanen
- Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine, University of Helsinki, , Biomedicum Helsinki, Rm B507b, PO Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | | | | |
Collapse
|
43
|
Abstract
The study of MYC has led to pivotal discoveries in cancer biology, induced pluripotency, and transcriptional regulation. In this review, continuing advances in our understanding of the function of MYC as a transcription factor and how its transcriptional activity controls normal vertebrate development and contributes to developmental disorders is discussed.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children Portland, Portland, Oregon 97239
| |
Collapse
|
44
|
Udd L, Gao Y, Ristimäki AP, Mäkelä TP. N-methylnitrosourea aggravates gastrointestinal polyposis in Lkb1+/- mice. Carcinogenesis 2013; 34:2409-14. [PMID: 23722652 DOI: 10.1093/carcin/bgt188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peutz-Jeghers patients develop hamartomatous polyps and carcinomas of the gastrointestinal tract. Cyclooxygenase-2 accelerates polyp growth in Lkb1 (+/-) mice modelling Peutz-Jeghers polyposis. In this study, we aimed to evaluate the effect of the mutagenic carcinogen N-methylnitrosourea (MNU) on gastrointestinal tumourigenesis in Lkb1 (+/-) mice and to investigate the role of cyclooxygenase-2 on the tumourigenesis. We treated 40 Lkb1 (+/-) and 51 wild-type mice with MNU, 10 mice from both groups received the cyclooxygenase-2 inhibitor celecoxib. Carcinogen-treated Lkb1 (+/-) mice displayed worse survival (60%) than treated wild-type (100%, P = 0.028) or untreated Lkb1 (+/-) mice (92%, P = 0.045). Also, the gastrointestinal tumour burden was almost 10-fold higher in carcinogen-treated (2181 mm(3)) than in untreated (237 mm(3), P = 0.00045) Lkb1 (+/-) mice. Celecoxib was much less efficient in reducing tumourigenesis in MNU-treated mice (by 23%; 1686 mm(3)) than in untreated mice (76%; 58 mm(3)). Surprisingly, the increase in tumour burden in MNU-treated mice was not accompanied by consistent histological changes, with only a single focus of epithelial dysplasia noted. This study suggests that MNU promotes Peutz-Jeghers polyposis independently from the acceleration by cyclooxygenase-2.
Collapse
Affiliation(s)
- Lina Udd
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland and
| | | | | | | |
Collapse
|
45
|
MMP1, MMP9, and COX2 expressions in promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness. BIOMED RESEARCH INTERNATIONAL 2013; 2013:279505. [PMID: 23762835 PMCID: PMC3665169 DOI: 10.1155/2013/279505] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022]
Abstract
Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.
Collapse
|
46
|
Blanchard JM. To be or not to be a proliferation marker? Oncogene 2013; 33:954-5. [PMID: 23396366 DOI: 10.1038/onc.2013.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 12/18/2022]
Abstract
Whether it is nobler in the mind to suffer the slings and arrows of outrageous proliferation, or to take arms against stroma, and favor metastasis… This pastiche of Hamlet's famous monologue illustrates recent reports on the paradoxical functions of well-established proliferation markers such as c-Myc or cyclin A2 that have revealed their ambiguous roles in the control of proliferation and metastasis. On the one hand, overexpression of c-Myc, while stimulating local proliferation, inhibits invasiveness of cancer cells, whereas on the other, downregulation of cyclin A2 leads to increased motility of transformed cells.
Collapse
Affiliation(s)
- J M Blanchard
- 1] Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France [2] Université Montpellier 2, Montpellier, France [3] Université Montpellier 1, Montpellier, France
| |
Collapse
|
47
|
Abstract
Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture models has brought new insights into the mechanisms underlying the establishment and maintenance of higher-order epithelial tissue architecture, and in the dynamic remodeling of cell polarity that often occurs during development of epithelial organs. Here we discuss some important aspects of mammalian epithelial morphogenesis, from the establishment of cell polarity to epithelial tissue generation.
Collapse
|
48
|
Leung CT. Epithelial cell translocation: new insights into mechanisms of tumor initiation. Bioessays 2012; 35:80-3. [PMID: 23255249 DOI: 10.1002/bies.201200151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheuk T Leung
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Xu X, Gurski LA, Zhang C, Harrington DA, Farach-Carson MC, Jia X. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials 2012; 33:9049-60. [PMID: 22999468 PMCID: PMC3466381 DOI: 10.1016/j.biomaterials.2012.08.061] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/26/2012] [Indexed: 11/30/2022]
Abstract
Cancer cells cultured in physiologically relevant, three-dimensional (3D) matrices can recapture many essential features of native tumor tissues. In this study, a hyaluronic acid (HA)-based bilayer hydrogel system that not only supports the tumoroid formation from LNCaP prostate cancer (PCa) cells, but also simulates their reciprocal interactions with the tumor-associated stroma was developed and characterized. HA hydrogels were prepared by mixing solutions of HA precursors functionalized with acrylate groups (HA-AC) and reactive thiols (HA-SH) under physiological conditions. The resultant viscoelastic gels have an average elastic modulus of 234 ± 30 Pa and can be degraded readily by hyaluronidase. The orthogonal and cytocompatible nature of the crosslinking chemistry permits facile incorporation of cytokine-releasing particles and PCa cells. In our bilayer hydrogel construct, the top layer contains heparin (HP)-decorated, HA-based hydrogel particles (HGPs) capable of releasing heparin-binding epidermal growth factor-like growth factor (HB-EGF) in a sustained manner at a rate of 2.5 wt%/day cumulatively. LNCaP cells embedded in the bottom layer receive the growth factor signals from the top, and in response form enlarging tumoroids with an average diameter of 85 μm by day 7. Cells in 3D hydrogels assemble into spherical tumoroids, form close cellular contacts through E-cadherin, and show cortical organization of F-actin, whereas those plated as 2D monolayers adopt a spread-out morphology. Compared to cells cultured on 2D, the engineered tumoroids significantly increased the expression of two pro-angiogenic factors, vascular endothelial growth factor-165 (VEGF(165)) and interleukin-8 (IL-8), both at mRNA and protein levels. Overall, the HA model system provides a useful platform for the study of tumor cell responses to growth factors and for screening of anticancer drugs targeting these pathways.
Collapse
Affiliation(s)
- Xian Xu
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
| | - Lisa A. Gurski
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Chu Zhang
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Daniel A. Harrington
- Departments of Biochemistry and Cell Biology and Bioengineering, Rice University, Houston, TX 77251, USA
| | - Mary C. Farach-Carson
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Departments of Biochemistry and Cell Biology and Bioengineering, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
- Center for Translational Cancer Research, University of Delaware, Newark, DE 19716, USA
- Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
50
|
Thomas E, Lee-Pullen T, Rigby P, Hartmann P, Xu J, Zeps N. Receptor activator of NF-κB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells 2012; 30:1255-64. [PMID: 22593019 DOI: 10.1002/stem.1092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In mice, CD49f(hi) mammary stem cells (MaSCs) asymmetrically divide to generate CD49f(+) committed progenitor cells that differentiate into CD49f(-) phenotypes of the milk-secreting tissue at the onset of pregnancy. We show CD49f(+) primary mammary epithelial cells (PMECs) isolated from lactating tissue uniquely respond to pregnancy-associated hormones (PAH) compared with CD49f(+) cells from nonlactating tissue. Differentiation of CD49f(+) PMEC in extracellular matrix produces CD49f(-) luminal cells to form differentiated alveoli. The PAH prolactin and placental lactogen specifically stimulate division of CD49f(-) luminal cells, while receptor activator of nuclear factor (NF)-κB ligand (RANKL) specifically stimulates division of basal CD49f(+) cells. In nondifferentiating conditions, we observed a greater proportion of multipotent self-renewing cells, and RANKL treatment activated the RANK pathway in these cultures. Furthermore, we observed the deposition of calcium nodules in a proportion of these cells. These data imply that a MaSC unique to the lactating breast exists in humans, which generates progeny with discrete lineages and distinct response to PAH.
Collapse
Affiliation(s)
- Elizabeth Thomas
- School of Biomedical, Biomolecular and Chemical Sciences, Subiaco, Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|