1
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
2
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Morant L, Petrovic-Erfurth ML, Jordanova A. An Adapted GeneSwitch Toolkit for Comparable Cellular and Animal Models: A Proof of Concept in Modeling Charcot-Marie-Tooth Neuropathy. Int J Mol Sci 2023; 24:16138. [PMID: 38003325 PMCID: PMC10670994 DOI: 10.3390/ijms242216138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Investigating the impact of disease-causing mutations, their affected pathways, and/or potential therapeutic strategies using disease modeling often requires the generation of different in vivo and in cellulo models. To date, several approaches have been established to induce transgene expression in a controlled manner in different model systems. Several rounds of subcloning are, however, required, depending on the model organism used, thus bringing labor-intensive experiments into the technical approach and analysis comparison. The GeneSwitch™ technology is an adapted version of the classical UAS-GAL4 inducible system, allowing the spatial and temporal modulation of transgene expression. It consists of three components: a plasmid encoding for the chimeric regulatory pSwitch protein, Mifepristone as an inducer, and an inducible plasmid. While the pSwitch-containing first plasmid can be used both in vivo and in cellulo, the inducible second plasmid can only be used in cellulo. This requires a specific subcloning strategy of the inducible plasmid tailored to the model organism used. To avoid this step and unify gene expression in the transgenic models generated, we replaced the backbone vector with standard pUAS-attB plasmid for both plasmids containing either the chimeric GeneSwitch™ cDNA sequence or the transgene cDNA sequence. We optimized this adapted system to regulate transgene expression in several mammalian cell lines. Moreover, we took advantage of this new system to generate unified cellular and fruit fly models for YARS1-induced Charco-Marie-Tooth neuropathy (CMT). These new models displayed the expected CMT-like phenotypes. In the N2a neuroblastoma cells expressing YARS1 transgenes, we observed the typical "teardrop" distribution of the synthetase that was perturbed when expressing the YARS1CMT mutation. In flies, the ubiquitous expression of YARS1CMT induced dose-dependent developmental lethality and pan-neuronal expression caused locomotor deficit, while expression of the wild-type allele was harmless. Our proof-of-concept disease modeling studies support the efficacy of the adapted transgenesis system as a powerful tool allowing the design of studies with optimal data comparability.
Collapse
Affiliation(s)
- Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
5
|
Meyer-Schuman R, Marte S, Smith TJ, Feely SME, Kennerson M, Nicholson G, Shy ME, Koutmou KS, Antonellis A. A humanized yeast model reveals dominant-negative properties of neuropathy-associated alanyl-tRNA synthetase mutations. Hum Mol Genet 2023; 32:2177-2191. [PMID: 37010095 PMCID: PMC10281750 DOI: 10.1093/hmg/ddad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Mike E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Cui Q, Bi H, Lv Z, Wu Q, Hua J, Gu B, Huo C, Tang M, Chen Y, Chen C, Chen S, Zhang X, Wu Z, Lao Z, Sheng N, Shen C, Zhang Y, Wu ZY, Jin Z, Yang P, Liu H, Li J, Bai G. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell 2023; 186:803-820.e25. [PMID: 36738734 DOI: 10.1016/j.cell.2022.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Bi
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhanyun Lv
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qigui Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianfeng Hua
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Bokai Gu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Huo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingmin Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Yanqin Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chongjiu Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihan Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinrui Zhang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhangrui Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengkai Lao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Sciences, Kunming 650201, China
| | - Chengyong Shen
- Department of Neurobiology, The First Affiliated Hospital, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yongdeng Zhang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhi-Ying Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huaqing Liu
- Department of Pharmaceutical Sciences, Zhejiang University City College School of Medicine, Hangzhou 310015, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ge Bai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
He J, Liu XX, Ma MM, Lin JJ, Fu J, Chen YK, Xu GR, Xu LQ, Fu ZF, Xu D, Chen WF, Cao CY, Shi Y, Zeng YH, Zhang J, Chen XC, Zhang RX, Wang N, Kennerson M, Fan DS, Chen WJ. Heterozygous Seryl-tRNA Synthetase 1 Variants Cause Charcot-Marie-Tooth Disease. Ann Neurol 2023; 93:244-256. [PMID: 36088542 DOI: 10.1002/ana.26501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.
Collapse
Affiliation(s)
- Jin He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao-Xuan Liu
- Department of Neurology of Peking University Third Hospital, Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
| | - Ming-Ming Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jing-Jing Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jun Fu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yi-Kun Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Guo-Rong Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Liu-Qing Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Zhi-Fei Fu
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wen-Feng Chen
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Chun-Yan Cao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jing Zhang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Ru-Xu Zhang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Dong-Sheng Fan
- Department of Neurology of Peking University Third Hospital, Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Peking University Third Hospital, Beijing, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses 2022; 14:v14030613. [PMID: 35337020 PMCID: PMC8955326 DOI: 10.3390/v14030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as “molecule communicators” on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.
Collapse
|
10
|
Hines TJ, Lutz C, Murray SA, Burgess RW. An Integrated Approach to Studying Rare Neuromuscular Diseases Using Animal and Human Cell-Based Models. Front Cell Dev Biol 2022; 9:801819. [PMID: 35047510 PMCID: PMC8762301 DOI: 10.3389/fcell.2021.801819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
As sequencing technology improves, the identification of new disease-associated genes and new alleles of known genes is rapidly increasing our understanding of the genetic underpinnings of rare diseases, including neuromuscular diseases. However, precisely because these disorders are rare and often heterogeneous, they are difficult to study in patient populations. In parallel, our ability to engineer the genomes of model organisms, such as mice or rats, has gotten increasingly efficient through techniques such as CRISPR/Cas9 genome editing, allowing the creation of precision human disease models. Such in vivo model systems provide an efficient means for exploring disease mechanisms and identifying therapeutic strategies. Furthermore, animal models provide a platform for preclinical studies to test the efficacy of those strategies. Determining whether the same mechanisms are involved in the human disease and confirming relevant parameters for treatment ideally involves a human experimental system. One system currently being used is induced pluripotent stem cells (iPSCs), which can then be differentiated into the relevant cell type(s) for in vitro confirmation of disease mechanisms and variables such as target engagement. Here we provide a demonstration of these approaches using the example of tRNA-synthetase-associated inherited peripheral neuropathies, rare forms of Charcot-Marie-Tooth disease (CMT). Mouse models have led to a better understanding of both the genetic and cellular mechanisms underlying the disease. To determine if the mechanisms are similar in human cells, we will use genetically engineered iPSC-based models. This will allow comparisons of different CMT-associated GARS alleles in the same genetic background, reducing the variability found between patient samples and simplifying the availability of cell-based models for a rare disease. The necessity of integrating mouse and human models, strategies for accomplishing this integration, and the challenges of doing it at scale are discussed using recently published work detailing the cellular mechanisms underlying GARS-associated CMT as a framework.
Collapse
|
11
|
Childers MC, Regnier M, Bothwell M, Smith AS. Conformational sampling of CMT-2D associated GlyRS mutations. BRAIN MULTIPHYSICS 2022; 3:100054. [PMID: 36504507 PMCID: PMC9731397 DOI: 10.1016/j.brain.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). Several studies employing diverse techniques have identified potential disease mechanisms at the molecular level. The majority of CMT-2D mutations in glycyl-tRNA are found within its dimer interface. However, no atomic structures bearing these mutations have been solved. Consequently, the specific disease-causing structural changes that occur in glycyl-tRNA synthetase have not been definitively established. Here we use molecular dynamics simulations to probe conformational changes in glycyl-tRNA synthetase caused by one mutation within the dimer interface: G240R. Our results show that the mutation alters the number of native interactions at the dimer interface and also leads to altered dynamics of two regions of glycyl-tRNA synthetase associated with tRNA binding. Additionally, we use our simulations to make predictions about the effects of other clinically reported CMT-2D mutations. Our results identify a region of the glycyl-tRNA synthetase structure that may be disrupted in a large number of CMT-2D mutations. Structural changes in this region may be a common molecular mechanism in glycyl-tRNA synthetase CMT-2D pathologies. Statement of significance: In this study, we use molecular dynamics simulations to elucidate structural conformations accessible to glycyl-tRNA synthetase (GlyRS), an enzyme that ligates cytosolic glycine with tRNA-Gly. This protein contains multiple flexible regions with dynamics that elude in vitro structural characterization. Our computational approach provides unparalleled atomistic details of structural changes in GlyRS that contribute to its role in protein synthesis. A number of mutations in GlyRS are associated with a peripheral nerve disorder, Charcot-Marie-Tooth disease type 2D (CMT-2D). Mutation-induced structural and dynamic changes in GlyRS have similarity that elude in vitro structural characterization. Our simulations provide insights into disease mechanisms for one such mutation: G240R. Additionally, we leverage our computational data to identify regions of GlyRS critical to its function and to predict the effects of other disease-associated mutations. These results open up new directions for research into the molecular characterization of GlyRS and into hypothesis-driven studies of CMT-2D disease mechanisms.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, University of Washington, Seattle, WA, United States,The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, United States,The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| | - Mark Bothwell
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Alec S.T. Smith
- The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States,Corresponding author at: Physiology and Biophysics, University of Washington, Seattle, WA, United States (A.S.T. Smith)
| |
Collapse
|
12
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
13
|
Mendonsa S, von Kuegelgen N, Bujanic L, Chekulaeva M. Charcot-Marie-Tooth mutation in glycyl-tRNA synthetase stalls ribosomes in a pre-accommodation state and activates integrated stress response. Nucleic Acids Res 2021; 49:10007-10017. [PMID: 34403468 PMCID: PMC8464049 DOI: 10.1093/nar/gkab730] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/14/2022] Open
Abstract
Toxic gain-of-function mutations in aminoacyl-tRNA synthetases cause a degeneration of peripheral motor and sensory axons, known as Charcot-Marie-Tooth (CMT) disease. While these mutations do not disrupt overall aminoacylation activity, they interfere with translation via an unknown mechanism. Here, we dissect the mechanism of function of CMT mutant glycyl-tRNA synthetase (CMT-GARS), using high-resolution ribosome profiling and reporter assays. We find that CMT-GARS mutants deplete the pool of glycyl-tRNAGly available for translation and inhibit the first stage of elongation, the accommodation of glycyl-tRNA into the ribosomal A-site, which causes ribosomes to pause at glycine codons. Moreover, ribosome pausing activates a secondary repression mechanism at the level of translation initiation, by inducing the phosphorylation of the alpha subunit of eIF2 and the integrated stress response. Thus, CMT-GARS mutant triggers translational repression via two interconnected mechanisms, affecting both elongation and initiation of translation.
Collapse
Affiliation(s)
- Samantha Mendonsa
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Nicolai von Kuegelgen
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Free University, Berlin, Germany
| | - Lucija Bujanic
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
14
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
15
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
17
|
Vinogradova ES, Nikonov OS, Nikonova EY. Associations between Neurological Diseases and Mutations in the Human Glycyl-tRNA Synthetase. BIOCHEMISTRY (MOSCOW) 2021; 86:S12-S23. [PMID: 33827397 PMCID: PMC7905983 DOI: 10.1134/s0006297921140029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot–Marie–Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.
Collapse
Affiliation(s)
| | - Oleg S Nikonov
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
18
|
Abstract
Charcot-Marie-Tooth disease (CMT) is a devastating motor and sensory neuropathy with an estimated 100,000 afflicted individuals in the US. Unexpectedly, aminoacyl-tRNA synthetases are the largest disease-associated protein family. A natural explanation is that the disease is associated with weak translation or mistranslation (caused by editing defects). However, our results with six different disease-causing mutants in AlaRS ruled out defects in aminoacylation or editing as causal factors. Instead, specific mutant proteins gained a neuropilin 1 (Nrp1)-AlaRS interaction. Previously a gain of Nrp1 interaction with a different disease-causing tRNA synthetase was mechanistically linked to the pathology of CMT. Thus, our results raise the possibility that pathological engagement of Nrp1 is common to at least a subset of tRNA synthetase-associated cases of CMT. Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.
Collapse
|
19
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
20
|
Mullen P, Abbott JA, Wellman T, Aktar M, Fjeld C, Demeler B, Ebert AM, Francklyn CS. Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS J 2021; 288:142-159. [PMID: 32543048 PMCID: PMC7736457 DOI: 10.1111/febs.15449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.
Collapse
Affiliation(s)
- Patrick Mullen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Theresa Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mahafuza Aktar
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Christian Fjeld
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
21
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
23
|
Sleigh JN, Mech AM, Aktar T, Zhang Y, Schiavo G. Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Front Cell Neurosci 2020; 14:232. [PMID: 32848623 PMCID: PMC7431706 DOI: 10.3389/fncel.2020.00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Dominant, missense mutations in the widely and constitutively expressed GARS1 gene cause peripheral neuropathy that usually begins in adolescence and principally impacts the upper limbs. Caused by a toxic gain-of-function in the encoded glycyl-tRNA synthetase (GlyRS) enzyme, the neuropathology appears to be independent of the canonical role of GlyRS in aminoacylation. Patients display progressive, life-long weakness and wasting of muscles in hands followed by feet, with frequently associated deficits in sensation. When dysfunction is observed in motor and sensory nerves, there is a diagnosis of Charcot-Marie-Tooth disease type 2D (CMT2D), or distal hereditary motor neuropathy type V if the symptoms are purely motor. The cause of this varied sensory involvement remains unresolved, as are the pathomechanisms underlying the selective neurodegeneration characteristic of the disease. We have previously identified in CMT2D mice that neuropathy-causing Gars mutations perturb sensory neuron fate and permit mutant GlyRS to aberrantly interact with neurotrophin receptors (Trks). Here, we extend this work by interrogating further the anatomy and function of the CMT2D sensory nervous system in mutant Gars mice, obtaining several key results: (1) sensory pathology is restricted to neurons innervating the hindlimbs; (2) perturbation of sensory development is not common to all mouse models of neuromuscular disease; (3) in vitro axonal transport of signaling endosomes is not impaired in afferent neurons of all CMT2D mouse models; and (4) Gars expression is selectively elevated in a subset of sensory neurons and linked to sensory developmental defects. These findings highlight the importance of comparative neurological assessment in mouse models of disease and shed light on key proposed neuropathogenic mechanisms in GARS1-linked neuropathy.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - Aleksandra M. Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tahmina Aktar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yuxin Zhang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, United Kingdom
| |
Collapse
|
24
|
Marcos AT, Martín‐Doncel E, Morejón‐García P, Marcos‐Alcalde I, Gómez‐Puertas P, Segura‐Puimedon M, Armengol L, Navarro‐Pando JM, Lazo PA. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Ann Clin Transl Neurol 2020; 7:808-818. [PMID: 32365420 PMCID: PMC7261760 DOI: 10.1002/acn3.51050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. PATIENT AND METHODS In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. RESULTS A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. CONCLUSION The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.
Collapse
Affiliation(s)
- Ana T. Marcos
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
| | - Elena Martín‐Doncel
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Patricia Morejón‐García
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Iñigo Marcos‐Alcalde
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
- School of Experimental SciencesBiosciences Research InstituteUniversidad Francisco de VitoriaPozuelo de Alarcón, MadridSpain
| | - Paulino Gómez‐Puertas
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
| | - María Segura‐Puimedon
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - José M. Navarro‐Pando
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
- Cátedra de Reproducción y Genética HumanaFacultad de Ciencias de la SaludUniversidad Europea del AtlánticoSantanderSpain
- Fundación Universitaria Iberoamericana (FUNIBER)BarcelonaSpain
| | - Pedro A. Lazo
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| |
Collapse
|
25
|
Wang Y, Zhou JB, Zeng QY, Wu S, Xue MQ, Fang P, Wang ED, Zhou XL. Hearing impairment-associated KARS mutations lead to defects in aminoacylation of both cytoplasmic and mitochondrial tRNA Lys. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1227-1239. [PMID: 32189241 DOI: 10.1007/s11427-019-1619-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitously expressed, essential enzymes, synthesizing aminoacyl-tRNAs for protein synthesis. Functional defects of aaRSs frequently cause various human disorders. Human KARS encodes both cytosolic and mitochondrial lysyl-tRNA synthetases (LysRSs). Previously, two mutations (c.1129G>A and c.517T>C) were identified that led to hearing impairment; however, the underlying biochemical mechanism is unclear. In the present study, we found that the two mutations have no impact on the incorporation of LysRS into the multiple-synthetase complex in the cytosol, but affect the cytosolic LysRS level, its tertiary structure, and cytosolic tRNA aminoacylation in vitro. As for mitochondrial translation, the two mutations have little effect on the steady-state level, mitochondrial targeting, and tRNA binding affinity of mitochondrial LysRS. However, they exhibit striking differences in charging mitochondrial tRNALys, with the c.517T>C mutant being completely deficient in vitro and in vivo. We constructed two yeast genetic models, which are powerful tools to test the in vivo aminoacylation activity of KARS mutations at both the cytosolic and mitochondrial levels. Overall, our data provided biochemical insights into the potentially molecular pathological mechanism of KARS c.1129G>A and c.517T>C mutations and provided yeast genetic bases to investigate other KARS mutations in the future.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mei-Qin Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
26
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
27
|
Varanda AS, Santos M, Soares AR, Vitorino R, Oliveira P, Oliveira C, Santos MAS. Human cells adapt to translational errors by modulating protein synthesis rate and protein turnover. RNA Biol 2020; 17:135-149. [PMID: 31570039 PMCID: PMC6948982 DOI: 10.1080/15476286.2019.1670039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023] Open
Abstract
Deregulation of tRNAs, aminoacyl-tRNA synthetases (aaRS) or tRNA modifying enzymes, increase the level of protein synthesis errors (PSE) and are associated with several diseases, but the cause-effect mechanisms of these pathologies remain elusive. To clarify the role of PSE in human biology, we have engineered a HEK293 cell line to overexpress a wild type (Wt) tRNASer and two tRNASer mutants that misincorporate serine at non-cognate codon sites. Then, we followed long-term adaptation to PSE of such recombinant cells by analysing cell viability, protein synthesis rate and activation of protein quality control mechanisms (PQC). Engineered cells showed higher level of misfolded and aggregated proteins; activated the ubiquitin-proteasome system (UPS) and the unfolded protein response (UPR), indicative of proteotoxic stress. Adaptation to PSE involved increased protein turnover, UPR up-regulation and altered protein synthesis rate. Gene expression analysis showed that engineered cells presented recurrent alterations in the endoplasmic reticulum, cell adhesion and calcium homeostasis. Herein, we unveil new phenotypic consequences of protein synthesis errors in human cells and identify the protein quality control processes that are necessary for long-term adaptation to PSE and proteotoxic stress. Our data provide important insight on how chronic proteotoxic stress may cause disease and highlight potential biological pathways that support the association of PSE with disease.
Collapse
Affiliation(s)
- Ana Sofia Varanda
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Mafalda Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Ana R. Soares
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Patrícia Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carla Oliveira
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Manuel A. S. Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
28
|
Moss KR, Höke A. Targeting the programmed axon degeneration pathway as a potential therapeutic for Charcot-Marie-Tooth disease. Brain Res 2019; 1727:146539. [PMID: 31689415 DOI: 10.1016/j.brainres.2019.146539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The programmed axon degeneration pathway has emerged as an important process contributing to the pathogenesis of several neurological diseases. The most crucial events in this pathway include activation of the central executioner SARM1 and NAD+ depletion, which leads to an energetic failure and ultimately axon destruction. Given the prevalence of this pathway, it is not surprising that inhibitory therapies are currently being developed in order to treat multiple neurological diseases with the same therapy. Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of neurological diseases that may also benefit from this therapeutic approach. To evaluate the appropriateness of this strategy, the contribution of the programmed axon degeneration pathway to the pathogenesis of different CMT subtypes is being actively investigated. The subtypes CMT1A, CMT1B and CMT2D are the first to have been examined. Based on the results from these studies and advances in developing therapies to block the programmed axon degeneration pathway, promising therapeutics for CMT are now on the horizon.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
29
|
Benoy V, Van Helleputte L, Prior R, d'Ydewalle C, Haeck W, Geens N, Scheveneels W, Schevenels B, Cader MZ, Talbot K, Kozikowski AP, Vanden Berghe P, Van Damme P, Robberecht W, Van Den Bosch L. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain 2019; 141:673-687. [PMID: 29415205 PMCID: PMC5837793 DOI: 10.1093/brain/awx375] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023] Open
Abstract
Peripheral nerve axons require a well-organized axonal microtubule network for efficient transport to ensure the constant crosstalk between soma and synapse. Mutations in more than 80 different genes cause Charcot-Marie-Tooth disease, which is the most common inherited disorder affecting peripheral nerves. This genetic heterogeneity has hampered the development of therapeutics for Charcot-Marie-Tooth disease. The aim of this study was to explore whether histone deacetylase 6 (HDAC6) can serve as a therapeutic target focusing on the mutant glycyl-tRNA synthetase (GlyRS/GARS)-induced peripheral neuropathy. Peripheral nerves and dorsal root ganglia from the C201R mutant Gars mouse model showed reduced acetylated α-tubulin levels. In primary dorsal root ganglion neurons, mutant GlyRS affected neurite length and disrupted normal mitochondrial transport. We demonstrated that GlyRS co-immunoprecipitated with HDAC6 and that this interaction was blocked by tubastatin A, a selective inhibitor of the deacetylating function of HDAC6. Moreover, HDAC6 inhibition restored mitochondrial axonal transport in mutant GlyRS-expressing neurons. Systemic delivery of a specific HDAC6 inhibitor increased α-tubulin acetylation in peripheral nerves and partially restored nerve conduction and motor behaviour in mutant Gars mice. Our study demonstrates that α-tubulin deacetylation and disrupted axonal transport may represent a common pathogenic mechanism underlying Charcot-Marie-Tooth disease and it broadens the therapeutic potential of selective HDAC6 inhibition to other genetic forms of axonal Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Veronick Benoy
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Lawrence Van Helleputte
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robert Prior
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Constantin d'Ydewalle
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wanda Haeck
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Natasja Geens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wendy Scheveneels
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Begga Schevenels
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.,The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alan P Kozikowski
- Department of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, University of Illinois at Chicago, Chicago, USA
| | - Pieter Vanden Berghe
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium.,VIB - Center for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
30
|
Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019; 294:5340-5351. [PMID: 30782841 PMCID: PMC6462501 DOI: 10.1074/jbc.rev118.002958] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that ligate their cognate amino acids to tRNAs for protein synthesis. However, recent studies have shown that their functions are expanded beyond protein synthesis through the interactions with diverse cellular factors. In this review, we discuss how ARSs have evolved to expand and control their functions by forming protein assemblies. We particularly focus on a macromolecular ARS complex in eukaryotes, named multi-tRNA synthetase complex (MSC), which is proposed to provide a channel through which tRNAs reach bound ARSs to receive their cognate amino acid and transit further to the translation machinery. Approximately half of the ARSs assemble into the MSC through cis-acting noncatalytic domains attached to their catalytic domains and trans-acting factors. Evolution of the MSC included its functional expansion, during which the MSC interaction network was augmented by additional cellular pathways present in higher eukaryotes. We also discuss MSC components that could be functionally involved in the pathophysiology of tumorigenesis. For example, the activities of some trans-acting factors have tumor-suppressing effects or maintain DNA integrity and are functionally compromised in cancer. On the basis of Gene Ontology analyses, we propose that the regulatory activities of the MSC-associated ARSs mainly converge on five biological processes, including mammalian target of rapamycin (mTOR) and DNA repair pathways. Future studies are needed to investigate how the MSC-associated and free-ARSs interact with each other and other factors in the control of multiple cellular pathways, and how aberrant or disrupted interactions in the MSC can cause disease.
Collapse
Affiliation(s)
- Do Young Hyeon
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873
| | - Jong Hyun Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| | - Tae Jin Ahn
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Yeshin Cho
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Daehee Hwang
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873,
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Sunghoon Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| |
Collapse
|
31
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
32
|
Abstract
Aging-related neurodegenerative diseases are progressive and fatal neurological diseases that are characterized by irreversible neuron loss and gliosis. With a growing population of aging individuals, there is a pressing need to better understand the basic biology underlying these diseases. Although diverse disease mechanisms have been implicated in neurodegeneration, a common theme of altered RNA processing has emerged as a unifying contributing factor to neurodegenerative disease. RNA processing includes a series of distinct processes, including RNA splicing, transport and stability, as well as the biogenesis of non-coding RNAs. Here, we highlight how some of these mechanisms are altered in neurodegenerative disease, including the mislocalization of RNA-binding proteins and their sequestration induced by microsatellite repeats, microRNA biogenesis alterations and defective tRNA biogenesis, as well as changes to long-intergenic non-coding RNAs. We also highlight potential therapeutic interventions for each of these mechanisms. Summary: In this At a Glance review, Edward Lee and co-authors provide an overview of RNA metabolism defects, including mislocalization of RNA-binding proteins and microRNA biogenesis alterations, that contribute to neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Elaine Y Liu
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Christopher P Cali
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratories, Perelman School of Med. Univ. of Pennsylvania, 613A Stellar Chance Laboratories, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Mo Z, Zhao X, Liu H, Hu Q, Chen XQ, Pham J, Wei N, Liu Z, Zhou J, Burgess RW, Pfaff SL, Caskey CT, Wu C, Bai G, Yang XL. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun 2018. [PMID: 29520015 PMCID: PMC5843656 DOI: 10.1038/s41467-018-03461-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease’s specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D. Mutations in glycyl-tRNA synthetase (GlyRS) cause Charcot-Marie-Tooth disease, a neuromuscular disorder characterized by axonal degeneration. Here the authors show that mutant GlyRS interacts with histone deacetylase 6, resulting in increased deacetylation of α-tubulin and axonal transport deficits.
Collapse
Affiliation(s)
- Zhongying Mo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaobei Zhao
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Huaqing Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Qinghua Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xu-Qiao Chen
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jessica Pham
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ze Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Samuel L Pfaff
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Chengbiao Wu
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.,Veterans Affairs San Diego Healthcare System, San Diego, 92161, CA, USA
| | - Ge Bai
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Abbott JA, Meyer-Schuman R, Lupo V, Feely S, Mademan I, Oprescu SN, Griffin LB, Alberti MA, Casasnovas C, Aharoni S, Basel-Vanagaite L, Züchner S, De Jonghe P, Baets J, Shy ME, Espinós C, Demeler B, Antonellis A, Francklyn C. Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy. Hum Mutat 2018; 39:415-432. [PMID: 29235198 PMCID: PMC5983030 DOI: 10.1002/humu.23380] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022]
Abstract
Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.
Collapse
Affiliation(s)
- Jamie A. Abbott
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont
| | - Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Shawna Feely
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Inès Mademan
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
| | - Stephanie N. Oprescu
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Laurie B. Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan
| | - M. Antonia Alberti
- Department of Neurology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Carlos Casasnovas
- Department of Neurology, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Sharon Aharoni
- Institute of Child Neurology, Schneider Children’s Medical Center of Israel, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina Basel-Vanagaite
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
- Pediatric Genetics Unit, Schneider Children’s Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Stephan Züchner
- Dr John T McDonald Foundation Department of Human Genetics & John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerpen, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerpen, Belgium
| | - Michael E. Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Sciences at San Antonio, San Antonio, Texas
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christopher Francklyn
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont
| |
Collapse
|
35
|
Grice SJ, Sleigh JN, Zameel Cader M. Plexin-Semaphorin Signaling Modifies Neuromuscular Defects in a Drosophila Model of Peripheral Neuropathy. Front Mol Neurosci 2018. [PMID: 29520219 PMCID: PMC5827687 DOI: 10.3389/fnmol.2018.00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dominant mutations in GARS, encoding the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and Charcot-Marie-Tooth disease type 2D (CMT2D). This genetic disorder exemplifies a recurring paradigm in neurodegeneration, in which mutations in essential genes cause selective degeneration of the nervous system. Recent evidence suggests that the mechanism underlying CMT2D involves extracellular neomorphic binding of mutant GlyRS to neuronally-expressed proteins. Consistent with this, our previous studies indicate a non-cell autonomous mechanism, whereby mutant GlyRS is secreted and interacts with the neuromuscular junction (NMJ). In this Drosophila model for CMT2D, we have previously shown that mutant gars expression decreases viability and larval motor function, and causes a concurrent build-up of mutant GlyRS at the larval neuromuscular presynapse. Here, we report additional phenotypes that closely mimic the axonal branching defects of Drosophila plexin transmembrane receptor mutants, implying interference of plexin signaling in gars mutants. Individual dosage reduction of two Drosophila Plexins, plexin A (plexA) and B (plexB) enhances and represses the viability and larval motor defects caused by mutant GlyRS, respectively. However, we find plexB levels, but not plexA levels, modify mutant GlyRS association with the presynaptic membrane. Furthermore, increasing availability of the plexB ligand, Semaphorin-2a (Sema2a), alleviates the pathology and the build-up of mutant GlyRS, suggesting competition for plexB binding may be occurring between these two ligands. This toxic gain-of-function and subversion of neurodevelopmental processes indicate that signaling pathways governing axonal guidance could be integral to neuropathology and may underlie the non-cell autonomous CMT2D mechanism.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - M Zameel Cader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Boczonadi V, Jennings MJ, Horvath R. The role of tRNA synthetases in neurological and neuromuscular disorders. FEBS Lett 2018; 592:703-717. [PMID: 29288497 PMCID: PMC5873386 DOI: 10.1002/1873-3468.12962] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Aminoacyl‐tRNA synthetases (ARSs) are ubiquitously expressed enzymes responsible for charging tRNAs with their cognate amino acids, therefore essential for the first step in protein synthesis. Although the majority of protein synthesis happens in the cytosol, an additional translation apparatus is required to translate the 13 mitochondrial DNA‐encoded proteins important for oxidative phosphorylation. Most ARS genes in these cellular compartments are distinct, but two genes are common, encoding aminoacyl‐tRNA synthetases of glycine (GARS) and lysine (KARS) in both mitochondria and the cytosol. Mutations in the majority of the 37 nuclear‐encoded human ARS genes have been linked to a variety of recessive and dominant tissue‐specific disorders. Current data indicate that impaired enzyme function could explain the pathogenicity, however not all pathogenic ARSs mutations result in deficient catalytic function; thus, the consequences of mutations may arise from other molecular mechanisms. The peripheral nerves are frequently affected, as illustrated by the high number of mutations in cytosolic and bifunctional tRNA synthetases causing Charcot–Marie–Tooth disease (CMT). Here we provide insights on the pathomechanisms of CMT‐causing tRNA synthetases with specific focus on the two bifunctional tRNA synthetases (GARS, KARS).
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew J Jennings
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Nikonov OS, Nemchinova MS, Klyashtornii VG, Nikonova EY, Garber MB. Model of the Complex of the Human Glycyl-tRNA Synthetase Anticodon-Binding Domain with IRES I Fragment. Mol Biol 2018. [DOI: 10.1134/s0026893318010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
39
|
Blocquel D, Li S, Wei N, Daub H, Sajish M, Erfurth ML, Kooi G, Zhou J, Bai G, Schimmel P, Jordanova A, Yang XL. Alternative stable conformation capable of protein misinteraction links tRNA synthetase to peripheral neuropathy. Nucleic Acids Res 2017; 45:8091-8104. [PMID: 28531329 PMCID: PMC5737801 DOI: 10.1093/nar/gkx455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
While having multiple aminoacyl-tRNA synthetases implicated in Charcot-Marie-Tooth (CMT) disease suggests a common mechanism, a defect in enzymatic activity is not shared among the CMT-causing mutants. Protein misfolding is a common hypothesis underlying the development of many neurological diseases. Its process usually involves an initial reduction in protein stability and then the subsequent oligomerization and aggregation. Here, we study the structural effect of three CMT-causing mutations in tyrosyl-tRNA synthetase (TyrRS or YARS). Through various approaches, we found that the mutations do not induce changes in protein secondary structures, or shared effects on oligomerization state and stability. However, all mutations provide access to a surface masked in the wild-type enzyme, and that access correlates with protein misinteraction. With recent data on another CMT-linked tRNA synthetase, we suggest that an inherent plasticity, engendering the formation of alternative stable conformations capable of aberrant interactions, links the tRNA synthetase family to CMT.
Collapse
Affiliation(s)
- David Blocquel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Herwin Daub
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | - Mathew Sajish
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, 2610 Antwerpen, Belgium
| | - Grace Kooi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Bai
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, 2610 Antwerpen, Belgium
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Neuropilin 1 sequestration by neuropathogenic mutant glycyl-tRNA synthetase is permissive to vascular homeostasis. Sci Rep 2017; 7:9216. [PMID: 28835631 PMCID: PMC5569042 DOI: 10.1038/s41598-017-10005-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
The mechanism by which dominantly inherited mutations in the housekeeping gene GARS, which encodes glycyl-tRNA synthetase (GlyRS), mediate selective peripheral nerve toxicity resulting in Charcot-Marie-Tooth disease type 2D (CMT2D) is still largely unresolved. The transmembrane receptor protein neuropilin 1 (Nrp1) was recently identified as an aberrant extracellular binding partner of mutant GlyRS. Formation of the Nrp1/mutant GlyRS complex antagonises Nrp1 interaction with one of its main natural ligands, vascular endothelial growth factor-A (VEGF-A), contributing to neurodegeneration. However, reduced extracellular binding of VEGF-A to Nrp1 is known to disrupt post-natal blood vessel development and growth. We therefore analysed the vascular system at early and late symptomatic time points in CMT2D mouse muscles, retina, and sciatic nerve, as well as in embryonic hindbrain. Mutant tissues show no difference in blood vessel diameter, density/growth, and branching from embryonic development to three months, spanning the duration over which numerous sensory and neuromuscular phenotypes manifest. Our findings indicate that mutant GlyRS-mediated disruption of Nrp1/VEGF-A signalling is permissive to maturation and maintenance of the vasculature in CMT2D mice.
Collapse
|
41
|
Mutations in RARS cause a hypomyelination disorder akin to Pelizaeus-Merzbacher disease. Eur J Hum Genet 2017; 25:1134-1141. [PMID: 28905880 DOI: 10.1038/ejhg.2017.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/18/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a rare Mendelian disorder characterised by central nervous system hypomyelination. PMD typically manifests in infancy or early childhood and is caused by mutations in proteolipid protein-1 (PLP1). However, variants in several other genes including gap junction protein gamma 2 (GJC2) can also cause a similar phenotype and are referred to PMD-like disease (PMLD). Whole-exome sequencing in two siblings presenting with clinical symptoms of PMD revealed a homozygous variant in the arginyl-tRNA synthetase (RARS) gene: NM_002887.3: c.[5A>G] p.(Asp2Gly). Subsequent screening of a PMD cohort without a genetic diagnosis identified an unrelated individual with novel compound heterozygous variants including a missense variant c.[1367C>T] p.(Ser456Leu) and a de novo deletion c.[1846_1847delTA] p.(Tyr616Leufs*6). Protein levels of RARS and the multi-tRNA synthetase complex into which it assembles were found to be significantly reduced by 80 and 90% by western blotting and Blue native-PAGE respectively using patient fibroblast extracts. As RARS is involved in protein synthesis whereby it attaches arginine to its cognate tRNA, patient cells were studied to determine their ability to proliferate with limiting amounts of this essential amino acid. Patient fibroblasts cultured in medium with limited arginine at 30 °C and 40 °C, showed a significant decrease in fibroblast proliferation (P<0.001) compared to control cells, suggestive of inefficiency of protein synthesis in the patient cells. Our functional studies provide further evidence that RARS is a PMD-causing gene.
Collapse
|
42
|
Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A. Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Hum Mutat 2017; 38:1412-1420. [PMID: 28675565 DOI: 10.1002/humu.23287] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.
Collapse
Affiliation(s)
| | - Xenia Chepa-Lotrea
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gretchen Golas
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Thomas C Markello
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David R Adams
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Camilo Toro
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea L Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children's National Medical Center, Washington, District of Columbia
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - May Christine V Malicdan
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Cynthia J Tifft
- NIH, Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
43
|
Ognjenović J, Simonović M. Human aminoacyl-tRNA synthetases in diseases of the nervous system. RNA Biol 2017; 15:623-634. [PMID: 28534666 PMCID: PMC6103678 DOI: 10.1080/15476286.2017.1330245] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are ubiquitously expressed enzymes that ensure accurate translation of the genetic information into functional proteins. These enzymes also execute a variety of non-canonical functions that are significant for regulation of diverse cellular processes and that reside outside the realm of protein synthesis. Associations between faults in AaRS-mediated processes and human diseases have been long recognized. Most recent research findings strongly argue that 10 cytosolic and 14 mitochondrial AaRSs are implicated in some form of pathology of the human nervous system. The advent of modern whole-exome sequencing makes it all but certain that similar associations between the remaining 15 ARS genes and neurologic illnesses will be defined in future. It is not surprising that an intense scientific debate about the role of translational machinery, in general, and AaRSs, in particular, in the development and maintenance of the healthy human neural cell types and the brain is sparked. Herein, we summarize the current knowledge about causative links between mutations in human AaRSs and diseases of the nervous system and briefly discuss future directions.
Collapse
Affiliation(s)
- Jana Ognjenović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
44
|
Sleigh JN, Dawes JM, West SJ, Wei N, Spaulding EL, Gómez-Martín A, Zhang Q, Burgess RW, Cader MZ, Talbot K, Yang XL, Bennett DL, Schiavo G. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proc Natl Acad Sci U S A 2017; 114:E3324-E3333. [PMID: 28351971 PMCID: PMC5402433 DOI: 10.1073/pnas.1614557114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom;
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Steven J West
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469
| | - Adriana Gómez-Martín
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom;
| |
Collapse
|
45
|
Lenartić M, Jelenčić V, Zafirova B, Ožanič M, Marečić V, Jurković S, Sexl V, Šantić M, Wensveen FM, Polić B. NKG2D Promotes B1a Cell Development and Protection against Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:1531-1542. [PMID: 28087665 DOI: 10.4049/jimmunol.1600461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
NKG2D is a potent activating receptor that is expressed on cytotoxic immune cells such as CD8 T and NK cells, where it promotes cytotoxicity after binding stress ligands on infected or transformed cells. On NK cell precursors NKG2D modulates proliferation and maturation. Previously, we observed that NKG2D deficiency affects peripheral B cell numbers. In this study, we show that NKG2D regulates B1a cell development and function. We find that mice deficient for NKG2D have a strong reduction of B1a cell numbers. As a result, NKG2D-deficient mice produce significantly less Ag-specific IgM Abs upon immunization with T cell-independent Ags, and they are more susceptible to Gram-negative sepsis. Klrk1-/- B1a cells are also functionally impaired and they fail to provide protection against Francisella novicida upon adoptive transfer. Using mixed bone marrow chimeric mice, we show that the impact of NKG2D deficiency on B1a cell development is cell intrinsic. No changes in homeostatic turnover and homing of B cells were detectable, limiting the effects of NKG2D to modulation of the hematopoietic development of B1a cells. Using conditional ablation, we demonstrate that the effect of NKG2D on B1a cell development occurs at a developmental stage that precedes the common lymphoid progenitor. Our findings reveal an unexpected new role for NKG2D in the regulation of B1a cell development. The protective effects of this activating receptor therefore reach beyond that of cytotoxic cells, stimulating the immune system to fight bacterial infections by promoting development of innate-like B cells.
Collapse
Affiliation(s)
- Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Biljana Zafirova
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.,Laboratory of Dendritic Cell Immunobiology, Immunology Department, Institute Pasteur, 75015 Paris, France
| | - Mateja Ožanič
- Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentina Marečić
- Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Slaven Jurković
- Department of Medical Physics, University Hospital Rijeka, 51000 Rijeka, Croatia
| | - Veronika Sexl
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria; and
| | - Marina Šantić
- Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.,Department of Experimental Immunology, Academic Medical Center, 1105 Amsterdam, the Netherlands
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
46
|
Lee S, Panthi S, Jo HW, Cho J, Kim MS, Jeong NY, Song IO, Jung J, Huh Y. Anatomical distributional defects in mutant genes associated with dominant intermediate Charcot-Marie-Tooth disease type C in an adenovirus-mediated mouse model. Neural Regen Res 2017; 12:486-492. [PMID: 28469666 PMCID: PMC5399729 DOI: 10.4103/1673-5374.202920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dominant intermediate Charcot-Marie-Tooth disease type C (DI-CMTC) is a dominantly inherited neuropathy that has been classified primarily based on motor conduction velocity tests but is now known to involve axonal and demyelination features. DI-CMTC is linked to tyrosyl-tRNA synthetase (YARS)-associated neuropathies, which are caused by E196K and G41R missense mutations and a single de novo deletion (153-156delVKQV). It is well-established that these YARS mutations induce neuronal dysfunction, morphological symptoms involving axonal degeneration, and impaired motor performance. The present study is the first to describe a novel mouse model of YARS-mutation-induced neuropathy involving a neuron-specific promoter with a deleted mitochondrial targeting sequence that inhibits the expression of YARS protein in the mitochondria. An adenovirus vector system and in vivo techniques were utilized to express YARS fusion proteins with a Flag-tag in the spinal cord, peripheral axons, and dorsal root ganglia. Following transfection of YARS-expressing viruses, the distributions of wild-type (WT) YARS and E196K mutant proteins were compared in all expressed regions; G41R was not expressed. The proportion of Flag/green fluorescent protein (GFP) double-positive signaling in the E196K mutant-type mice did not significantly differ from that of WT mice in dorsal root ganglion neurons. All adenovirus genes, and even the empty vector without the YARS gene, exhibited GFP-positive signaling in the ventral horn of the spinal cord because GFP in an adenovirus vector is driven by a cytomegalovirus promoter. The present study demonstrated that anatomical differences in tissue can lead to dissimilar expressions of YARS genes. Thus, use of this novel animal model will provide data regarding distributional defects between mutant and WT genes in neurons, the DI-CMTC phenotype, and potential treatment approaches for this disease.
Collapse
Affiliation(s)
- SeoJin Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Sandesh Panthi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Hyun Woo Jo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Jaeyoung Cho
- Department of Medicine, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Seo-gu, Busan, Korea
| | - In Ok Song
- Department of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cheil General Hospital, Dankook University College of Medicine, Jung-gu, Seoul, Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea.,Department of Medicine, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Youngbuhm Huh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea.,Department of Medicine, Graduate School, Kyung Hee University, Dongdaemun-gu, Seoul, Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|
47
|
Oprescu SN, Griffin LB, Beg AA, Antonellis A. Predicting the pathogenicity of aminoacyl-tRNA synthetase mutations. Methods 2016; 113:139-151. [PMID: 27876679 DOI: 10.1016/j.ymeth.2016.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 10/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids-the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data indicate that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Laurie B Griffin
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States; Medical Scientist Training Program, and University of Michigan Medical School, Ann Arbor, MI, United States
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
48
|
Nowaczyk MJM, Huang L, Tarnopolsky M, Schwartzentruber J, Majewski J, Bulman DE, Hartley T, Boycott KM. A novel multisystem disease associated with recessive mutations in the tyrosyl-tRNA synthetase (YARS) gene. Am J Med Genet A 2016; 173:126-134. [PMID: 27633801 DOI: 10.1002/ajmg.a.37973] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/15/2016] [Indexed: 01/14/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a group of ubiquitously expressed enzymes that are best known for their function in the first step of protein translation but have been increasingly associated with secondary functions including transcription and translation control and extracellular signaling. Mutations in numerous ARSs have been linked to a growing number of both autosomal dominant and autosomal recessive human diseases. The tyrosyl-tRNA synthetase (YARS) links the amino acid tyrosine to its cognate tRNA. We report two siblings who presented with failure to thrive (FTT), hypertriglyceridemia, developmental delay, liver dysfunction, lung cysts, and abnormal subcortical white matter. Using exome sequencing the siblings were found to harbor bi-allelic pathogenic-appearing variants within the YARS gene (NM_003680.3):c.638C>T p.(Pro213Leu) and c.1573G>A p.(Gly525Arg). These YARS variants occur in the catalytic domain and the C-terminal domain, respectively. Mutations in YARS have been previously associated with an autosomal dominant form of Charcot-Marie-Tooth (CMT); our findings suggest the disease spectrum associated with YARS dysregulation is broader than peripheral neuropathy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Małgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lijia Huang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Storkebaum E. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation. Bioessays 2016; 38:818-29. [PMID: 27352040 PMCID: PMC5094542 DOI: 10.1002/bies.201600052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that inhibition of protein translation may be a common pathogenic mechanism for peripheral neuropathy associated with mutant tRNA synthetases (aaRSs). aaRSs are enzymes that ligate amino acids to their cognate tRNA, thus catalyzing the first step of translation. Dominant mutations in five distinct aaRSs cause Charcot‐Marie‐Tooth (CMT) peripheral neuropathy, characterized by length‐dependent degeneration of peripheral motor and sensory axons. Surprisingly, loss of aminoacylation activity is not required for mutant aaRSs to cause CMT. Rather, at least for some mutations, a toxic‐gain‐of‐function mechanism underlies CMT‐aaRS. Interestingly, several mutations in two distinct aaRSs were recently shown to inhibit global protein translation in Drosophila models of CMT‐aaRS, by a mechanism independent of aminoacylation, suggesting inhibition of translation as a common pathogenic mechanism. Future research aimed at elucidating the molecular mechanisms underlying the translation defect induced by CMT‐mutant aaRSs should provide novel insight into the molecular pathogenesis of these incurable diseases.
Collapse
Affiliation(s)
- Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Chang CY, Chien CI, Chang CP, Lin BC, Wang CC. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase. J Biol Chem 2016; 291:16567-75. [PMID: 27298321 DOI: 10.1074/jbc.m116.730812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 11/06/2022] Open
Abstract
WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme.
Collapse
Affiliation(s)
- Chih-Yao Chang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chin-I Chien
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Pei Chang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Bo-Chun Lin
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chien-Chia Wang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|