1
|
Rimon A, Amartely H, Padan E. The crossing of two unwound transmembrane regions that is the hallmark of the NhaA structural fold is critical for antiporter activity. Sci Rep 2024; 14:5915. [PMID: 38467695 PMCID: PMC10928194 DOI: 10.1038/s41598-024-56425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Cell pH and Na+ homeostasis requires Na+/H+ antiporters. The crystal structure of NhaA, the main Escherichia coli Na+/H+ antiporter, revealed a unique NhaA structural fold shared by prokaryotic and eukaryotic membrane proteins. Out of the 12 NhaA transmembrane segments (TMs), TMs III-V and X-XII are topologically inverted repeats with unwound TMs IV and XI forming the X shape characterizing the NhaA fold. We show that intramolecular cross-linking under oxidizing conditions of a NhaA mutant with two Cys replacements across the crossing (D133C-T340C) inhibits antiporter activity and impairs NhaA-dependent cell growth in high-salts. The affinity purified D133C-T340C protein binds Li+ (the Na+ surrogate substrate of NhaA) under reducing conditions. The cross-linking traps the antiporter in an outward-facing conformation, blocking the antiport cycle. As many secondary transporters are found to share the NhaA fold, including some involved in human diseases, our data have importance for both basic and clinical research.
Collapse
Affiliation(s)
- Abraham Rimon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Hadar Amartely
- Wolfson Center for Applied Structural Biology, Jerusalem, Israel
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
| |
Collapse
|
2
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
3
|
Konno A, Okubo T, Enoeda Y, Uno T, Sato T, Yokota SI, Yano R, Yamaguchi H. Human pathogenic bacteria on high-touch dry surfaces can be controlled by warming to human-skin temperature under moderate humidity. PLoS One 2023; 18:e0291765. [PMID: 37729194 PMCID: PMC10511134 DOI: 10.1371/journal.pone.0291765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Healthcare-associated infections have become a major health issue worldwide. One route of transmission of pathogenic bacteria is through contact with "high-touch" dry surfaces, such as handrails. Regular cleaning of surfaces with disinfectant chemicals is insufficient against pathogenic bacteria and alternative control methods are therefore required. We previously showed that warming to human-skin temperature affected the survival of pathogenic bacteria on dry surfaces, but humidity was not considered in that study. Here, we investigated environmental factors that affect the number of live bacteria on dry surfaces in hospitals by principal component analysis of previously-collected data (n = 576, for CFU counts), and experimentally verified the effect of warming to human-skin temperature on the survival of pathogenic bacteria on dry surfaces under humidity control. The results revealed that PCA divided hospital dry surfaces into four groups (Group 1~4) and hospital dry surfaces at low temperature and low humidity (Group 3) had much higher bacterial counts as compared to the others (Group 1 and 4) (p<0.05). Experimentally, warming to human-skin temperature (37°C with 90% humidity) for 18~72h significantly suppressed the survival of pathogenic bacteria on dry surfaces, such as plastic surfaces [p<0.05 vs. 15°C (Escherichia coli DH5α, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and blaNDM-5 E. coli)] or handrails [p<0.05 vs. 15~25°C (E. coli DH5α, S. aureus, P. aeruginosa, A. baumannii)], under moderate 55% humidity. Furthermore, intermittent heating to human-skin temperature reduced the survival of spore-forming bacteria (Bacillus subtilis) (p<0.01 vs. continuous heating to human-skin temperature). NhaA, an Na+/H+ antiporter, was found to regulate the survival of bacteria on dry surfaces, and the inhibitor 2-aminoperimidine enhanced the effect of warming at human-skin temperature on the survival of pathogenic bacteria (E. coli DH5α, S. aureus, A. baumannii) on dry surfaces. Thus, warming to human-skin temperature under moderate humidity is a useful method for impairing live pathogenic bacteria on high-touch surfaces, thereby helping to prevent the spread of healthcare-associated infections.
Collapse
Affiliation(s)
- Ayano Konno
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Torahiko Okubo
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshiaki Enoeda
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomoko Uno
- Department of Nursing, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
- Faculty of Health Sciences, Department of Fundamental Nursing, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
- Faculty of Veterinary Medicine, Laboratory of Veterinary Hygiene, Hokkaido University, Kita-ku, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
- One Health Research Center, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | - Rika Yano
- Faculty of Health Sciences, Department of Fundamental Nursing, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Faculty of Health Sciences, Department of Medical Laboratory Science, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
4
|
Neila-Montero M, Alvarez M, Riesco MF, Montes-Garrido R, Palacin-Martinez C, Silva-Rodríguez A, Martín-Cano FE, Peña FJ, de Paz P, Anel L, Anel-Lopez L. Ovine fertility by artificial insemination in the breeding season could be affected by intraseasonal variations in ram sperm proteomic profile. Theriogenology 2023; 208:28-42. [PMID: 37290145 DOI: 10.1016/j.theriogenology.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
It is important to note that seasonality could affect ram reproductive parameters, and therefore, fertility results after artificial insemination. In this work, 1) we assessed fertility rates after cervical artificial insemination of 11,805 ewes at the beginning (June 21st to July 20th) and at the end (November 20th to December 21st) of the reproductive season in the Assaf breed for the last four years, and 2) we aimed to identify male factors influencing the different reproductive success obtained depending on the time at the mating season in which ovine artificial insemination was performed. For this purpose, we evaluated certain ram reproductive and ultrasonographical parameters as well as we performed a multiparametric and proteomic sperm analysis of 6-19 rams at two very distant points in the mating season (July as Early Breeding Season -EBS- and November as Late Breeding Season -LBS-). Rutinary assessments carried out in the ovine reproduction centers (testicular volume, libido, sperm production and mass motility) showed non-significant differences (P ≥ 0.05) between both studied times, as well as the ram ultrasonographic evaluation (Resistive and Pulsatility Index as Doppler parameters; and pixels mean gray level, and hypoechoic areas percentage and density as echotexture parameters). However, at level of sperm functionality, although sperm quality appeared non-significantly lower (P ≥ 0.05) in the EBS, we identified a significantly different (P < 0.05) sperm proteomic profile between the seasonality points. The following proteins were identified with the lowest abundance in the EBS with a fold change > 4, a P = 2.40e-07, and a q = 2.23e-06: Fibrous Sheath-Interacting Protein 2, Disintegrin and Metalloproteinase Domain-Containing Protein 20-like, Phosphoinositide-Specific Phospholipase C, Tektin 5, Armadillo Repeat-Containing Protein 12 Isoform X3, Solute Carrier Family 9B1, Radial Spoke Head Protein 3 Homolog, Pro-Interleukin-16, NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8, Testis, Prostate and Placenta-Expressed Protein, and Acyl Carrier Protein Mitochondrial. In conclusion, while our basic analyses on male and sperm quality showed similar results between the beginning and the end of the breeding season, on a proteomic level we detected a lower expression of sperm proteins linked to the energy metabolism, sperm-oocyte interactions, and flagellum structure in the EBS. Probably, this different protein expression could be related to the lower fertility rate of Assaf ewes after cervical artificial insemination at this time. More importantly, sperm proteins can be used as highly effective molecular markers in predicting sperm fertilization ability related to intraseasonal variations.
Collapse
Affiliation(s)
- Marta Neila-Montero
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Mercedes Alvarez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Marta F Riesco
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain.
| | - Rafael Montes-Garrido
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Cristina Palacin-Martinez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Paulino de Paz
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain
| | - Luis Anel
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Luis Anel-Lopez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| |
Collapse
|
5
|
Grahn E, Kaufmann SV, Askarova M, Ninov M, Welp LM, Berger TK, Urlaub H, Kaupp UB. Control of intracellular pH and bicarbonate by CO 2 diffusion into human sperm. Nat Commun 2023; 14:5395. [PMID: 37669933 PMCID: PMC10480191 DOI: 10.1038/s41467-023-40855-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The reaction of CO2 with H2O to form bicarbonate (HCO3-) and H+ controls sperm motility and fertilization via HCO3--stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3- in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3- transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3- is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3-/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3- synthesis. This work provides a new framework for the study of male infertility.
Collapse
Affiliation(s)
- Elena Grahn
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Svenja V Kaufmann
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Malika Askarova
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Momchil Ninov
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Luisa M Welp
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | - Thomas K Berger
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstrasse 1-2, 35037, Marburg, Germany.
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077, Göttingen, Germany.
- University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany.
| | - U Benjamin Kaupp
- Max Planck Institute for Neurobiology of Behavior-caesar, Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Life & Medical Sciences Institute (LIMES), University Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Velázquez D, Průša V, Masrati G, Yariv E, Sychrova H, Ben‐Tal N, Zimmermannova O. Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na + /H + antiporter NHA2. Protein Sci 2022; 31:e4460. [PMID: 36177733 PMCID: PMC9667825 DOI: 10.1002/pro.4460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
The human Na+ /H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ across the plasma membrane in exchange for protons, and is implicated in various pathologies. It is a 537 amino acids protein with an 82 residues long hydrophilic cytoplasmic N-terminus followed by a transmembrane part comprising 14 transmembrane helices. We optimized the functional expression of HsNHA2 in the plasma membrane of a salt-sensitive Saccharomyces cerevisiae strain and characterized in vivo a set of mutated or truncated versions of HsNHA2 in terms of their substrate specificity, transport activity, localization, and protein stability. We identified a highly conserved proline 246, located in the core of the protein, as being crucial for ion selectivity. The replacement of P246 with serine or threonine resulted in antiporters with altered substrate specificity that were not only highly active at acidic pH 4.0 (like the native antiporter), but also at neutral pH. P246T/S versions also exhibited increased resistance to the HsNHA2-specific inhibitor phloretin. We experimentally proved that a putative salt bridge between E215 and R432 is important for antiporter function, but also structural integrity. Truncations of the first 50-70 residues of the N-terminus doubled the transport activity of HsNHA2, while changes in the charge at positions E47, E56, K57, or K58 decreased the antiporter's transport activity. Thus, the hydrophilic N-terminal part of the protein appears to allosterically auto-inhibit cation transport of HsNHA2. Our data also show this in vivo approach to be useful for a rapid screening of SNP's effect on HsNHA2 activity.
Collapse
Affiliation(s)
- Diego Velázquez
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vojtěch Průša
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Gal Masrati
- Department of Biochemistry and Molecular BiologyGeorge S. Wise Faculty of Life Sciences, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Elon Yariv
- Department of Biochemistry and Molecular BiologyGeorge S. Wise Faculty of Life Sciences, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Hana Sychrova
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Nir Ben‐Tal
- Department of Biochemistry and Molecular BiologyGeorge S. Wise Faculty of Life Sciences, Tel‐Aviv UniversityTel‐AvivIsrael
| | - Olga Zimmermannova
- Laboratory of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
7
|
Bernardazzi C, Sheikh IA, Xu H, Ghishan FK. The Physiological Function and Potential Role of the Ubiquitous Na +/H + Exchanger Isoform 8 (NHE8): An Overview Data. Int J Mol Sci 2022; 23:ijms231810857. [PMID: 36142772 PMCID: PMC9501935 DOI: 10.3390/ijms231810857] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Na+/H+ exchanger transporters (NHE) play an important role in various biologic processes including Na+ absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life. Among the different isoforms, the most well-characterized NHEs are the Na+/H+ exchanger isoform 1 (NHE1) and Na+/H+ exchanger isoform 3 (NHE3). However, Na+/H+ exchanger isoform 8 (NHE8) has been receiving attention based on its recent discoveries in the gastrointestinal tract. In this review, we will discuss what is known about the physiological function and potential role of NHE8 in the main organ systems, including useful overviews that could inspire new studies on this multifaceted protein.
Collapse
|
8
|
Prokaryotic Na+/H+ Exchangers—Transport Mechanism and Essential Residues. Int J Mol Sci 2022; 23:ijms23169156. [PMID: 36012428 PMCID: PMC9408914 DOI: 10.3390/ijms23169156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Na+/H+ exchangers are essential for Na+ and pH homeostasis in all organisms. Human Na+/H+ exchangers are of high medical interest, and insights into their structure and function are aided by the investigation of prokaryotic homologues. Most prokaryotic Na+/H+ exchangers belong to either the Cation/Proton Antiporter (CPA) superfamily, the Ion Transport (IT) superfamily, or the Na+-translocating Mrp transporter superfamily. Several structures have been solved so far for CPA and Mrp members, but none for the IT members. NhaA from E. coli has served as the prototype of Na+/H+ exchangers due to the high amount of structural and functional data available. Recent structures from other CPA exchangers, together with diverse functional information, have allowed elucidation of some common working principles shared by Na+/H+ exchangers from different families, such as the type of residues involved in the substrate binding and even a simple mechanism sufficient to explain the pH regulation in the CPA and IT superfamilies. Here, we review several aspects of prokaryotic Na+/H+ exchanger structure and function, discussing the similarities and differences between different transporters, with a focus on the CPA and IT exchangers. We also discuss the proposed transport mechanisms for Na+/H+ exchangers that explain their highly pH-regulated activity profile.
Collapse
|
9
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
10
|
The genome-wide identification and adaptive evolution of slc9 genes in Leuciscus waleckii under extremely alkaline conditions. Gene 2022; 840:146769. [PMID: 35907566 DOI: 10.1016/j.gene.2022.146769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
The solute carrier family 9 (slc9) genes, especially slc9a isoform coding proteins contribute to electroneutral countertransport of H+ for Na+ across the plasmalemmal and organellar membranes, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. These functional properties determine a potential basis for organisms to challenge stressful conditions. However, these well-done researches have been reported more in mammals. Thus, in this study, a total of eleven slc9 genes were identified from the latest version genome of L. waleckii, a cyprinid fish that could tolerate extremely alkaline environments (pH 9.6). The evolutionary footprint of slc9 genes was uncovered via the analysis of copy numbers, gene structure, motif composition, chromosome location and phylogenetic relationship. More importantly, there were two SNPs located on 5' UTR and three non-synonymous mutations in the coding region of the slc9a3.2 gene by comparing freshwater with alkaline water populations attached to resequencing technology. Slc9a3.2 gene was a statistically significant low expression in gill tissue with extremely alkaline pressure. Generally, slc9 gene family in L. waleckii was highly conserved. Several important SNPs with high Fst values were identified where non-synonymous mutations occurred between freshwater and alkaline water populations, and they may play an important role in specific functional differentiation. Slc9 genes had clear tissue expression preferences and were involved in abiotic stress response, indicating their roles in physiological function and strong self-regulating capacity. Our insight into the genetic variations that take place in the individual genes under extreme conditions could provide a feasible example for studying specific molecular mechanisms based on genomic data with increasing environmental stress.
Collapse
|
11
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Matsuoka R, Fudim R, Jung S, Zhang C, Bazzone A, Chatzikyriakidou Y, Robinson CV, Nomura N, Iwata S, Landreh M, Orellana L, Beckstein O, Drew D. Structure, mechanism and lipid-mediated remodeling of the mammalian Na +/H + exchanger NHA2. Nat Struct Mol Biol 2022; 29:108-120. [PMID: 35173351 PMCID: PMC8850199 DOI: 10.1038/s41594-022-00738-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
The Na+/H+ exchanger SLC9B2, also known as NHA2, correlates with the long-sought-after Na+/Li+ exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite the functional importance of NHA2, structural information and the molecular basis for its ion-exchange mechanism have been lacking. Here we report the cryo-EM structures of bison NHA2 in detergent and in nanodiscs, at 3.0 and 3.5 Å resolution, respectively. The bison NHA2 structure, together with solid-state membrane-based electrophysiology, establishes the molecular basis for electroneutral ion exchange. NHA2 consists of 14 transmembrane (TM) segments, rather than the 13 TMs previously observed in mammalian Na+/H+ exchangers (NHEs) and related bacterial antiporters. The additional N-terminal helix in NHA2 forms a unique homodimer interface with a large intracellular gap between the protomers, which closes in the presence of phosphoinositol lipids. We propose that the additional N-terminal helix has evolved as a lipid-mediated remodeling switch for the regulation of NHA2 activity.
Collapse
Affiliation(s)
- Rei Matsuoka
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Roman Fudim
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Sukkyeong Jung
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Chenou Zhang
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ, USA
| | | | | | | | - Norimichi Nomura
- Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, Japan
| | - So Iwata
- Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, Japan
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Orellana
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Beckstein
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ, USA.
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
14
|
Mondal R, Rimon A, Masrati G, Ben-Tal N, Friedler A, Padan E. Towards Molecular Understanding of the pH Dependence Characterizing NhaA of Which Structural Fold is Shared by Other Transporters. J Mol Biol 2021; 433:167156. [PMID: 34273399 DOI: 10.1016/j.jmb.2021.167156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a 'CPA motif', we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.
Collapse
Affiliation(s)
- R Mondal
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - A Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - G Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | - N Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel
| | - A Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - E Padan
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
15
|
Capasso L, Ganot P, Planas-Bielsa V, Tambutté S, Zoccola D. Intracellular pH regulation: characterization and functional investigation of H + transporters in Stylophora pistillata. BMC Mol Cell Biol 2021; 22:18. [PMID: 33685406 PMCID: PMC7941709 DOI: 10.1186/s12860-021-00353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Reef-building corals regularly experience changes in intra- and extracellular H+ concentrations ([H+]) due to physiological and environmental processes. Stringent control of [H+] is required to maintain the homeostatic acid-base balance in coral cells and is achieved through the regulation of intracellular pH (pHi). This task is especially challenging for reef-building corals that share an endosymbiotic relationship with photosynthetic dinoflagellates (family Symbiodinaceae), which significantly affect the pHi of coral cells. Despite their importance, the pH regulatory proteins involved in the homeostatic acid-base balance have been scarcely investigated in corals. Here, we report in the coral Stylophora pistillata a full characterization of the genomic structure, domain topology and phylogeny of three major H+ transporter families that are known to play a role in the intracellular pH regulation of animal cells; we investigated their tissue-specific expression patterns and assessed the effect of seawater acidification on their expression levels. RESULTS We identified members of the Na+/H+ exchanger (SLC9), vacuolar-type electrogenic H+-ATP hydrolase (V-ATPase) and voltage-gated proton channel (HvCN) families in the genome and transcriptome of S. pistillata. In addition, we identified a novel member of the HvCN gene family in the cnidarian subclass Hexacorallia that has not been previously described in any species. We also identified key residues that contribute to H+ transporter substrate specificity, protein function and regulation. Last, we demonstrated that some of these proteins have different tissue expression patterns, and most are unaffected by exposure to seawater acidification. CONCLUSIONS In this study, we provide the first characterization of H+ transporters that might contribute to the homeostatic acid-base balance in coral cells. This work will enrich the knowledge of the basic aspects of coral biology and has important implications for our understanding of how corals regulate their intracellular environment.
Collapse
Affiliation(s)
- Laura Capasso
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.,Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | | | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 quai Antoine 1er, 98000, Monaco, Monaco.
| |
Collapse
|
16
|
Kang H, Liu M, Zhang W, Huang RZ, Zhao N, Chen C, Zeng XH. Na +/H + Exchangers Involve in Regulating the pH-Sensitive Ion Channels in Mouse Sperm. Int J Mol Sci 2021; 22:ijms22041612. [PMID: 33562644 PMCID: PMC7914462 DOI: 10.3390/ijms22041612] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Sperm-specific K+ ion channel (KSper) and Ca2+ ion channel (CatSper), whose elimination causes male infertility in mice, determine the membrane potential and Ca2+ influx, respectively. KSper and CatSper can be activated by cytosolic alkalization, which occurs during sperm going through the alkaline environment of the female reproductive tract. However, which intracellular pH (pHi) regulator functionally couples to the activation of KSper/CatSper remains obscure. Although Na+/H+ exchangers (NHEs) have been implicated to mediate pHi in sperm, there is a lack of direct evidence confirming the functional coupling between NHEs and KSper/CatSper. Here, 5-(N,N-dimethyl)-amiloride (DMA), an NHEs inhibitor that firstly proved not to affect KSper/CatSper directly, was chosen to examine NHEs function on KSper/CatSper in mouse sperm. The results of patch clamping recordings showed that, when extracellular pH was at the physiological level of 7.4, DMA application caused KSper inhibition and the depolarization of membrane potential when pipette solutions were not pH-buffered. In contrast, these effects were minimized when pipette solutions were pH-buffered, indicating that they solely resulted from pHi acidification caused by NHEs inhibition. Similarly, DMA treatment reduced CatSper current and intracellular Ca2+, effects also dependent on the buffer capacity of pH in pipette solutions. The impairment of sperm motility was also observed after DMA incubation. These results manifested that NHEs activity is coupled to the activation of KSper/CatSper under physiological conditions.
Collapse
Affiliation(s)
- Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Min Liu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Wei Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Rong-Zu Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Na Zhao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Chen Chen
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
- Correspondence: ; Tel.: +86-177-6196-0066
| |
Collapse
|
17
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|
18
|
The sodium/proton exchanger NHA2 regulates blood pressure through a WNK4-NCC dependent pathway in the kidney. Kidney Int 2020; 99:350-363. [PMID: 32956652 DOI: 10.1016/j.kint.2020.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
NHA2 is a sodium/proton exchanger associated with arterial hypertension in humans, but the role of NHA2 in kidney function and blood pressure homeostasis is currently unknown. Here we show that NHA2 localizes almost exclusively to distal convoluted tubules in the kidney. NHA2 knock-out mice displayed reduced blood pressure, normocalcemic hypocalciuria and an attenuated response to the thiazide diuretic hydrochlorothiazide. Phosphorylation of the thiazide-sensitive sodium/chloride cotransporter NCC and its upstream activating kinase Ste20/SPS1-related proline/alanine rich kinase (SPAK), as well as the abundance of with no lysine kinase 4 (WNK4), were significantly reduced in the kidneys of NHA2 knock-out mice. In vitro experiments recapitulated these findings and revealed increased WNK4 ubiquitylation and enhanced proteasomal WNK4 degradation upon loss of NHA2. The effect of NHA2 on WNK4 stability was dependent from the ubiquitylation pathway protein Kelch-like 3 (KLHL3). More specifically, loss of NHA2 selectively attenuated KLHL3 phosphorylation and blunted protein kinase A- and protein kinase C-mediated decrease of WNK4 degradation. Phenotype analysis of NHA2/NCC double knock-out mice supported the notion that NHA2 affects blood pressure homeostasis by a kidney-specific and NCC-dependent mechanism. Thus, our data show that NHA2 as a critical component of the WNK4-NCC pathway and is a novel regulator of blood pressure homeostasis in the kidney.
Collapse
|
19
|
Sauveur J, Conilh L, Beaumel S, Chettab K, Jordheim L, Matera E, Dumontet C. Characterization of T-DM1-resistant breast cancer cells. Pharmacol Res Perspect 2020; 8:e00617. [PMID: 32583565 PMCID: PMC7314699 DOI: 10.1002/prp2.617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
The development of targeted therapies has drastically improved the outcome of patients with different types of cancer. T-DM1 (trastuzumab-emtansine) is an antibody-drug conjugate used for the treatment of HER2-positive breast cancer combining the FDA approved mAb (monoclonal antibody) trastuzumab and the microtubule cytotoxic agent DM1 (emtansine). Despite clinical successes achieved by targeted therapies, a large number of patients develop resistance during treatment. To explore mechanisms of resistance to T-DM1, the MDA-MB-361 HER2-positive breast cancer cell line was exposed in vitro to T-DM1 in the absence or presence of ciclosporin A. Previously reported mechanisms of resistance such as trastuzumab-binding alterations, MDR1 upregulation, and SLC46A3 downregulation were not observed in these models. Despite a decrease in HER2 expression at the cell surface, both resistant cell lines remained sensitive to HER2 targeted therapies such as mAbs and tyrosine kinase inhibitors. In addition, sensitivity to DNA damaging agents and topoisomerase inhibitors were unchanged. Conversely resistance to anti-tubulin agents increased. Resistant cells displayed a decreased content of polymerized tubulin and a decreased content of βIII tubulin although the downregulation of βIII tubulin by siRNA in the parental cell line did not modified the sensitivity to T-DM1. Both cell lines resistant to T-DM1 also presented giant aneuploid cells. Several SLC (solute carrier) transporters were found to be differentially expressed in the resistant cells in comparison to parental cells. These results suggest that some characteristics such as increased baseline aneuploidy and altered intracellular drug trafficking might be involved in resistance to T-DM1.
Collapse
Affiliation(s)
- Juliette Sauveur
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Louise Conilh
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Sabine Beaumel
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Kamel Chettab
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Lars‐Petter Jordheim
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Eva‐Laure Matera
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| | - Charles Dumontet
- Cancer Research Center of LyonINSERM 1052/CNRS 5286/University of LyonLyonFrance
| |
Collapse
|
20
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
21
|
Prasad H, Dang DK, Kondapalli KC, Natarajan N, Cebotaru V, Rao R. NHA2 promotes cyst development in an in vitro model of polycystic kidney disease. J Physiol 2019; 597:499-519. [PMID: 30242840 PMCID: PMC6332743 DOI: 10.1113/jp276796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Significant and selective up-regulation of the Na+ /H+ exchanger NHA2 (SLC9B2) was observed in cysts of patients with autosomal dominant polycystic kidney disease. Using the MDCK cell model of cystogenesis, it was found that NHA2 increases cyst size. Silencing or pharmacological inhibition of NHA2 inhibits cyst formation in vitro. Polycystin-1 represses NHA2 expression via Ca2+ /NFAT signalling whereas the dominant negative membrane-anchored C-terminal fragment (PC1-MAT) increased NHA2 levels. Drugs (caffeine, theophylline) and hormones (vasopressin, aldosterone) known to exacerbate cysts elicit NHA2 expression. Taken together, the findings reveal NHA2 as a potential new player in salt and water homeostasis in the kidney and in the pathogenesis of polycystic kidney disease. ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The molecular pathways linking polycystins to cyst development in ADPKD are still unclear. Intracystic fluid secretion via ion transporters and channels plays a crucial role in cyst expansion in ADPKD. Unexpectedly, we observed significant and selective up-regulation of NHA2, a member of the SLC9B family of Na+ /H+ exchangers, that correlated with cyst size and disease severity in ADPKD patients. Using three-dimensional cultures of MDCK cells to model cystogenesis in vitro, we showed that ectopic expression of NHA2 is causal to increased cyst size. Induction of PC1 in MDCK cells inhibited NHA2 expression with concordant inhibition of Ca2+ influx through store-dependent and -independent pathways, whereas reciprocal activation of Ca2+ influx by the dominant negative membrane-anchored C-terminal tail fragment of PC1 elevated NHA2. We showed that NHA2 is a target of Ca2+ /NFAT signalling and is transcriptionally induced by methylxanthine drugs such as caffeine and theophylline, which are contraindicated in ADPKD patients. Finally, we observed robust induction of NHA2 by vasopressin, which is physiologically consistent with increased levels of circulating vasopressin and up-regulation of vasopressin V2 receptors in ADPKD. Our findings have mechanistic implications on the emerging use of vasopressin V2 receptor antagonists such as tolvaptan as safe and effective therapy for polycystic kidney disease and reveal a potential new regulator of transepithelial salt and water transport in the kidney.
Collapse
Affiliation(s)
- Hari Prasad
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Donna K. Dang
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kalyan C. Kondapalli
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Niranjana Natarajan
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Valeriu Cebotaru
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Rajini Rao
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
22
|
Inhibition of Sodium-Hydrogen Antiport by Antibodies to NHA1 in Brush Border Membrane Vesicles from Whole Aedes aegypti Larvae. J Membr Biol 2018; 252:1-16. [PMID: 30392010 DOI: 10.1007/s00232-018-0053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
The present research report describes Na+/H+ antiport by brush border membrane vesicles isolated from whole larvae of Aedes aegypti (AeBBMVw). Our hypothesis is that acid quenching of acridine orange by AeBBMVw is predominantly mediated by Na+/H+ antiport via the NHA1 component of the AeBBMVw in the absence of amino acids and ATP. AeNHA1 is a Na+/H+ antiporter that has been postulated to exchange Na+ and H+ across the apical plasma membrane in posterior midgut of A. aegypti larvae. Its principal function is to recycle the H+ and Na+ that are transported during amino acid uptake, e.g., phenylalanine. This uptake is mediated, in part, by a voltage-driven, Na+-coupled, nutrient amino acid transporter (AeNAT8). The voltage is generated by an H+ V-ATPase. All three components, V-ATPase, antiporter, and nutrient amino acid transporter (VAN), are present in brush border membrane vesicles isolated from whole larvae of A. aegypti. By omitting ATP and amino acids, Na+/H+ antiport was measured by fluorescence quenching of acridine orange (AO) caused by acidification of either the internal vesicle medium (Na+in > Na+out) or the external fluid-membrane interface (Na+in < Na+out). Vesicles with 100 micromolar Na+ inside and 10 micromolar Na+ outside or with 0.01 micromolar Na+ inside and 100 micromolar Na+ outside quenched fluorescence of AO by as much as 30%. Acidification did not occur in the absence of AeBBMVw. Preincubation of AeBBMVw with antibodies to NHA1 inhibit Na+/H+ antiport dependent fluorescence quenching, indicating that AeNHA1 has a significant role in Na+/H+ exchange.
Collapse
|
23
|
Hima Kumari P, Anil Kumar S, Ramesh K, Sudhakar Reddy P, Nagaraju M, Bhanu Prakash A, Shah T, Henderson A, Srivastava RK, Rajasheker G, Chitikineni A, Varshney RK, Rathnagiri P, Lakshmi Narasu M, Kavi Kishor PB. Genome-Wide Identification and Analysis of Arabidopsis Sodium Proton Antiporter (NHX) and Human Sodium Proton Exchanger (NHE) Homologs in Sorghum bicolor. Genes (Basel) 2018; 9:genes9050236. [PMID: 29751546 PMCID: PMC5977176 DOI: 10.3390/genes9050236] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022] Open
Abstract
Na⁺ transporters play an important role during salt stress and development. The present study is aimed at genome-wide identification, in silico analysis of sodium-proton antiporter (NHX) and sodium-proton exchanger (NHE)-type transporters in Sorghum bicolor and their expression patterns under varied abiotic stress conditions. In Sorghum, seven NHX and nine NHE homologs were identified. Amiloride (a known inhibitor of Na⁺/H⁺ exchanger activity) binding motif was noticed in both types of the transporters. Chromosome 2 was found to be a hotspot region with five sodium transporters. Phylogenetic analysis inferred six ortholog and three paralog groups. To gain an insight into functional divergence of SbNHX/NHE transporters, real-time gene expression was performed under salt, drought, heat, and cold stresses in embryo, root, stem, and leaf tissues. Expression patterns revealed that both SbNHXs and SbNHEs are responsive either to single or multiple abiotic stresses. The predicted protein⁻protein interaction networks revealed that only SbNHX7 is involved in the calcineurin B-like proteins (CBL)- CBL interacting protein kinases (CIPK) pathway. The study provides insights into the functional divergence of SbNHX/NHE transporter genes with tissue specific expressions in Sorghum under different abiotic stress conditions.
Collapse
Affiliation(s)
- P Hima Kumari
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
- Centre for Biotechnology, Institute of Science & Technology, JNT University, Hyderabad 500 085, India.
| | - S Anil Kumar
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
- Centre for Biotechnology, Institute of Science & Technology, JNT University, Hyderabad 500 085, India.
| | - Katam Ramesh
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | - Palakolanu Sudhakar Reddy
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - M Nagaraju
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - A Bhanu Prakash
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - Trushar Shah
- IITA-Kenya c/o International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya.
| | - Ashley Henderson
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
- Ottawa University, Ottawa, KS 66067, USA.
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| | - A Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India.
| | - P Rathnagiri
- Genomix CARL Pvt. Ltd. Rayalapuram Road, Pulivendula, 516 390, Kadapa, Andhra Pradesh, India.
| | - M Lakshmi Narasu
- Centre for Biotechnology, Institute of Science & Technology, JNT University, Hyderabad 500 085, India.
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
24
|
Dissecting the proton transport pathway in electrogenic Na +/H + antiporters. Proc Natl Acad Sci U S A 2017; 114:E1101-E1110. [PMID: 28154142 DOI: 10.1073/pnas.1614521114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sodium/proton exchangers of the SLC9 family mediate the transport of protons in exchange for sodium to help regulate intracellular pH, sodium levels, and cell volume. In electrogenic Na+/H+ antiporters, it has been assumed that two ion-binding aspartate residues transport the two protons that are later exchanged for one sodium ion. However, here we show that we can switch the antiport activity of the bacterial Na+/H+ antiporter NapA from being electrogenic to electroneutral by the mutation of a single lysine residue (K305). Electroneutral lysine mutants show similar ion affinities when driven by [Formula: see text]pH, but no longer respond to either an electrochemical potential ([Formula: see text]) or could generate one when driven by ion gradients. We further show that the exchange activity of the human Na+/H+ exchanger NHA2 (SLC9B2) is electroneutral, despite harboring the two conserved aspartic acid residues found in NapA and other bacterial homologues. Consistently, the equivalent residue to K305 in human NHA2 has been replaced with arginine, which is a mutation that makes NapA electroneutral. We conclude that a transmembrane embedded lysine residue is essential for electrogenic transport in Na+/H+ antiporters.
Collapse
|
25
|
NHA2 is expressed in distal nephron and regulated by dietary sodium. J Physiol Biochem 2016; 73:199-205. [PMID: 27909897 DOI: 10.1007/s13105-016-0539-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023]
Abstract
Increased renal reabsorption of sodium is a significant risk factor in hypertension. An established clinical marker for essential hypertension is elevated sodium lithium countertransport (SLC) activity. NHA2 is a newly identified Na+(Li+)/H+ antiporter with potential genetic links to hypertension, which has been shown to mediate SLC activity and H+-coupled Na+(Li+) efflux in kidney-derived MDCK cells. To evaluate a putative role in sodium homeostasis, we determined the effect of dietary salt on NHA2. In murine kidney sections, NHA2 localized apically to distal convoluted (both DCT1 and 2) and connecting tubules, partially overlapping in distribution with V-ATPase, AQP2, and NCC1 transporters. Mice fed a diet high in sodium chloride showed elevated transcripts and expression of NHA2 protein. We propose a model in which NHA2 plays a dual role in salt reabsorption or secretion, depending on the coupling ion (sodium or protons). The identified novel regulation of Na+/H+ antiporter in the kidney suggests new roles in salt homeostasis and disease.
Collapse
|
26
|
Deisl C, Anderegg M, Albano G, Lüscher BP, Cerny D, Soria R, Bouillet E, Rimoldi S, Scherrer U, Fuster DG. Loss of Sodium/Hydrogen Exchanger NHA2 Exacerbates Obesity- and Aging-Induced Glucose Intolerance in Mice. PLoS One 2016; 11:e0163568. [PMID: 27685945 PMCID: PMC5042380 DOI: 10.1371/journal.pone.0163568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/11/2016] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that the sodium/hydrogen exchanger NHA2, also known as NHEDC2 or SLC9B2, is critical for insulin secretion by β–cells. To gain more insights into the role of NHA2 on systemic glucose homeostasis, we studied the impact of loss of NHA2 during the physiological aging process and in the setting of diet-induced obesity. While glucose tolerance was normal at 2 months of age, NHA2 KO mice displayed a significant glucose intolerance at 5 and 12 months of age, respectively. An obesogenic high fat diet further exacerbated the glucose intolerance of NHA2 KO mice. Insulin levels remained similar in NHA2 KO and WT mice during aging and high fat diet, but fasting insulin/glucose ratios were significantly lower in NHA2 KO mice. Peripheral insulin sensitivity, measured by insulin tolerance tests and hyperinsulinemic euglycemic clamps, was unaffected by loss of NHA2 during aging and high fat diet. High fat diet diminished insulin secretion capacity in both WT and NHA2 KO islets and reduced expression of NHA2 in WT islets. In contrast, aging was characterized by a gradual increase of NHA2 expression in islets, paralleled by an increasing difference in insulin secretion between WT and NHA2 KO islets. In summary, our results demonstrate that loss of the sodium/hydrogen exchanger NHA2 exacerbates obesity- and aging-induced glucose intolerance in mice. Furthermore, our data reveal a close link between NHA2 expression and insulin secretion capacity in islets.
Collapse
Affiliation(s)
- Christine Deisl
- Division of Nephrology, Hypertension and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
| | - Manuel Anderegg
- Division of Nephrology, Hypertension and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
| | - Giuseppe Albano
- Division of Nephrology, Hypertension and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
| | - Benjamin P. Lüscher
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
| | - David Cerny
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
- Division of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rodrigo Soria
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
- Division of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisa Bouillet
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
- Division of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefano Rimoldi
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
- Division of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urs Scherrer
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
- Division of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
- Facultad de Ciencias, Departamento de Biologia, Universidad de Tarapaca, Arica, Chile
| | - Daniel G. Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- Department of Clinical Research, Bern University Hospital, University of Bern, Bern Switzerland
- * E-mail:
| |
Collapse
|
27
|
Holmes RS, Spradling-Reeves KD, Cox LA. Evolution of Vertebrate Solute Carrier Family 9B Genes and Proteins ( SLC9B): Evidence for a Marsupial Origin for Testis Specific SLC9B1 from an Ancestral Vertebrate SLC9B2 Gene. ACTA ACUST UNITED AC 2016; 4. [PMID: 28868326 DOI: 10.4172/2329-9002.1000167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SLC9B genes and proteins are members of the sodium/lithium hydrogen antiporter family which function as solute exchangers within cellular membranes of mammalian tissues. SLC9B2 and SLC9B1 amino acid sequences and structures and SLC9B-like gene locations were examined using bioinformatic data from several vertebrate genome projects. Vertebrate SLC9B2 sequences shared 56-98% identity as compared with ∼50% identities with mammalian SLC9B1 sequences. Sequence alignments, key amino acid residues and conserved predicted transmembrane structures were also studied. Mammalian SLC9B2 and SLC9B1 genes usually contained 11 or 12 coding exons with differential tissue expression patterns: SLC9B2, broad tissue distribution; and SLC9B1, being testis specific. Transcription factor binding sites and CpG islands within the human SLC9B2 and SLC9B1 gene promoters were identified. Phylogenetic analyses suggested that SLC9B1 originated in an ancestral marsupial genome from a SLC9B2 gene duplication event.
Collapse
Affiliation(s)
- Roger S Holmes
- Eskitis Institute for Drug Discovery and School of Natural Sciences, Griffith University, Nathan, QLD, Australia.,Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Kimberly D Spradling-Reeves
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Laura A Cox
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
28
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Transport proteins NHA1 and NHA2 are essential for survival, but have distinct transport modalities. Proc Natl Acad Sci U S A 2015; 112:11720-5. [PMID: 26324901 DOI: 10.1073/pnas.1508031112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cation/proton antiporter (CPA) family includes the well-known sodium/proton exchanger (NHE; SLC9A) family of Na(+)/H(+) exchangers, and the more recently discovered and less well understood CPA2s (SLC9B), found widely in living organisms. In Drosophila, as in humans, they are represented by two genes, Nha1 (Slc9b1) and Nha2 (Slc9b2), which are enriched and functionally significant in renal tubules. The importance of their role in organismal survival has not been investigated in animals, however. Here we show that single RNAi knockdowns of either Nha1 or Nha2 reduce survival and in combination are lethal. Knockdown of either gene alone results in up-regulation of the other, suggesting functional complementation of the two genes. Under salt stress, knockdown of either gene decreases survival, demonstrating a key role for the CPA2 family in ion homeostasis. This is specific to Na(+) stress; survival on K(+) intoxication is not affected by sodium/hydrogen antiporter (NHA) knockdown. A direct functional assay in Xenopus oocytes shows that Nha2 acts as a Na(+)/H(+) exchanger. In contrast, Nha1 expressed in Xenopus oocytes shows strong Cl(-) conductance and acts as a H(+)-Cl(-) cotransporter. The activity of Nha1 is inhibited by chloride-binding competitors 4,4'-diiso-thiocyano-2,2'-disulfonic acid stilbene and 4,4'-dibenzamido-2,2'-stilbenedisulphonate. Salt stress induces a massive up-regulation of NHA gene expression not in the major osmoregulatory tissues of the alimentary canal, but in the crop, cuticle, and associated tissues. Thus, it is necessary to revise the classical view of the coordination of different tissues in the coordination of the response to osmoregulatory stress.
Collapse
|
31
|
Huetsch J, Shimoda LA. Na(+)/H(+) exchange and hypoxic pulmonary hypertension. Pulm Circ 2015; 5:228-43. [PMID: 26064449 DOI: 10.1086/680213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is key to the functioning of vascular smooth muscle cells, including pulmonary artery smooth muscle cells (PASMCs). Sodium-hydrogen exchange (NHE) is an important contributor to pHi control in PASMCs. In this review, we examine the role of NHE in PASMC function, in both physiologic and pathologic conditions. In particular, we focus on the contribution of NHE to the PASMC response to hypoxia, considering both acute hypoxic pulmonary vasoconstriction and the development of pulmonary vascular remodeling and pulmonary hypertension in response to chronic hypoxia. Hypoxic pulmonary hypertension remains a disease with limited therapeutic options. Thus, this review explores past efforts at disrupting NHE signaling and discusses the therapeutic potential that such efforts may have in the field of pulmonary hypertension.
Collapse
Affiliation(s)
- John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| |
Collapse
|
32
|
Malik R, Freilinger T, Winsvold BS, Anttila V, Vander Heiden J, Traylor M, de Vries B, Holliday EG, Terwindt GM, Sturm J, Bis JC, Hopewell JC, Ferrari MD, Rannikmae K, Wessman M, Kallela M, Kubisch C, Fornage M, Meschia JF, Lehtimäki T, Sudlow C, Clarke R, Chasman DI, Mitchell BD, Maguire J, Kaprio J, Farrall M, Raitakari OT, Kurth T, Ikram MA, Reiner AP, Longstreth WT, Rothwell PM, Strachan DP, Sharma P, Seshadri S, Quaye L, Cherkas L, Schürks M, Rosand J, Ligthart L, Boncoraglio GB, Davey Smith G, van Duijn CM, Stefansson K, Worrall BB, Nyholt DR, Markus HS, van den Maagdenberg AMJM, Cotsapas C, Zwart JA, Palotie A, Dichgans M. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants. Neurology 2015; 84:2132-45. [PMID: 25934857 DOI: 10.1212/wnl.0000000000001606] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. METHODS We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. RESULTS We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10(-20) for the CE score in MO). CONCLUSIONS Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.
Collapse
Affiliation(s)
- Rainer Malik
- Author affiliations are provided at the end of the article
| | | | | | | | | | | | | | | | | | - Jonathan Sturm
- Author affiliations are provided at the end of the article
| | - Joshua C Bis
- Author affiliations are provided at the end of the article
| | | | | | | | - Maija Wessman
- Author affiliations are provided at the end of the article
| | - Mikko Kallela
- Author affiliations are provided at the end of the article
| | | | - Myriam Fornage
- Author affiliations are provided at the end of the article
| | | | | | - Cathie Sudlow
- Author affiliations are provided at the end of the article
| | - Robert Clarke
- Author affiliations are provided at the end of the article
| | | | | | - Jane Maguire
- Author affiliations are provided at the end of the article
| | - Jaakko Kaprio
- Author affiliations are provided at the end of the article
| | - Martin Farrall
- Author affiliations are provided at the end of the article
| | | | - Tobias Kurth
- Author affiliations are provided at the end of the article
| | - M Arfan Ikram
- Author affiliations are provided at the end of the article
| | - Alex P Reiner
- Author affiliations are provided at the end of the article
| | - W T Longstreth
- Author affiliations are provided at the end of the article
| | | | | | - Pankaj Sharma
- Author affiliations are provided at the end of the article
| | - Sudha Seshadri
- Author affiliations are provided at the end of the article
| | - Lydia Quaye
- Author affiliations are provided at the end of the article
| | - Lynn Cherkas
- Author affiliations are provided at the end of the article
| | - Markus Schürks
- Author affiliations are provided at the end of the article
| | | | | | | | | | | | | | | | - Dale R Nyholt
- Author affiliations are provided at the end of the article
| | - Hugh S Markus
- Author affiliations are provided at the end of the article
| | | | - Chris Cotsapas
- Author affiliations are provided at the end of the article
| | - John A Zwart
- Author affiliations are provided at the end of the article
| | - Aarno Palotie
- Author affiliations are provided at the end of the article
| | | | | | | |
Collapse
|
33
|
Mine Y, Shuto T, Nikawa H, Kawai T, Ohara M, Kawahara K, Ohta K, Kukita T, Terada Y, Makihira S. Inhibition of RANKL-dependent cellular fusion in pre-osteoclasts by amiloride and a NHE10-specific monoclonal antibody. Cell Biol Int 2015; 39:696-709. [PMID: 25612314 DOI: 10.1002/cbin.10447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022]
Abstract
The functions of Na(+) /H(+) exchangers (NHEs) during osteoclastic differentiation were investigated using the NHE inhibitor amiloride and a monoclonal antibody (MAb). Compared with sRANKL-stimulated control cells, amiloride decreased the number of large TRAP-positive osteoclast cells (OCs) with ≥10 nuclei and increased the number of small TRAP-positive OCs with ≤10 nuclei during sRANKL-dependent osteoclastic differentiation of RAW264.7 cells. NHE10 mRNA expression and OC differentiation markers were increased by sRANKL stimulation in dose- and time-dependent manners. NHEs 1-9 mRNA expression was not increased by sRANKL stimulation. Similar to amiloride, a rat anti-mouse NHE10 MAb (clone 6B11) decreased the number of large TRAP-positive OCs, but increased the number of small TRAP-positive OCs. These findings suggested that inhibition of NHEs by amiloride or an anti-NHE10 MAb prevented sRANKL-promoted cellular fusion. The anti-NHE10 MAb has the potential for use as an effective inhibitor of bone resorption for targeted bone disease therapy.
Collapse
Affiliation(s)
- Yuichi Mine
- Department of Oral Biology and Engineering, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Takahiro Shuto
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Nikawa
- Department of Oral Biology and Engineering, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 1st St., Cambridge, MA, 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA, 02115,, USA
| | - Masaru Ohara
- Hiroshima University Hospital, Dental Clinic, 1-1-2 Kagamiyama, Higashihiroshima, 739-0046, Japan
| | - Kazuko Kawahara
- Department of Oral Biology and Engineering, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Kouji Ohta
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 1st St., Cambridge, MA, 02142, USA.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Ave., Boston, MA, 02115,, USA
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Terada
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seicho Makihira
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
34
|
|
35
|
Abstract
Members of the urea transporter (UT) family mediate rapid, selective transport of urea down its concentration gradient. To date, crystal structures of two evolutionarily distant UTs have been solved. These structures reveal a common UT fold involving two structurally homologous domains that encircle a continuous membrane-spanning pore and indicate that UTs transport urea via a channel-like mechanism. Examination of the conserved architecture of the pore, combined with crystal structures of ligand-bound proteins, molecular dynamics simulations, and functional data on permeation and inhibition by a broad range of urea analogs and other small molecules, provides insight into the structural basis of urea permeation and selectivity.
Collapse
Affiliation(s)
- Elena J. Levin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine 1 Baylor Plaza, Houston, TX 77030 USA
| | - Ming Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine 1 Baylor Plaza, Houston, TX 77030 USA
| |
Collapse
|
36
|
Abstract
H(+), a most common ion, is involved in very many biological processes. However, most proteins have distinct ranges of pH for function; when the H(+) concentration in the cells is too high or too low, protons turn into very potent stressors to all cells. Therefore, all living cells are strictly dependent on homeostasis mechanisms that regulate their intracellular pH. Na(+)/H(+) antiporters play primary role in pH homeostatic mechanisms both in prokaryotes and eukaryotes. Regulation by pH is a property common to these antiporters. They are equipped with a pH sensor to perceive the pH signal and a pH transducer to transduce the signal into a change in activity. Determining the crystal structure of NhaA, the Na(+)/H(+) antiporter of Escherichia coli have provided the basis for understanding in a realistic rational way the unique regulation of an antiporter by pH and the mechanism of the antiport activity. The physical separation between the pH sensor/transducer and the active site revealed by the structure entailed long-range pH-induced conformational changes for NhaA pH activation. As yet, it is not possible to decide whether the amino acid participating in the pH sensor and the pH transducer overlap or are separated. The pH sensor/transducer is not a single amino acid but rather a cluster of electrostatically interacting residues. Thus, integrating structural, computational, and experimental approaches are essential to reveal how the pH signal is perceived and transduced to activate the pH regulated protein.
Collapse
Affiliation(s)
- Etana Padan
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
37
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
38
|
Functional and structural dynamics of NhaA, a prototype for Na(+) and H(+) antiporters, which are responsible for Na(+) and H(+) homeostasis in cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1047-62. [PMID: 24361841 DOI: 10.1016/j.bbabio.2013.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 01/14/2023]
Abstract
The crystal structure of down-regulated NhaA crystallized at acidic pH4 [21] has provided the first structural insights into the antiport mechanism and pH regulation of a Na(+)/H(+) antiporter [22]. On the basis of the NhaA crystal structure [21] and experimental data (reviewed in [2,22,38] we have suggested that NhaA is organized into two functional regions: (i) a cluster of amino acids responsible for pH regulation (ii) a catalytic region at the middle of the TM IV/XI assembly, with its unique antiparallel unfolded regions that cross each other forming a delicate electrostatic balance in the middle of the membrane. This unique structure contributes to the cation binding site and allows the rapid conformational changes expected for NhaA. Extended chains interrupting helices appear now a common feature for ion binding in transporters. However the NhaA fold is unique and shared by ASBTNM [30] and NapA [29]. Computation [13], electrophysiology [69] combined with biochemistry [33,47] have provided intriguing models for the mechanism of NhaA. However, the conformational changes and the residues involved have not yet been fully identified. Another issue which is still enigma is how energy is transduced "in this 'nano-machine.'" We expect that an integrative approach will reveal the residues that are crucial for NhaA activity and regulation, as well as elucidate the pHand ligand-induced conformational changes and their dynamics. Ultimately, integrative results will shed light on the mechanism of activity and pH regulation of NhaA, a prototype of the CPA2 family of transporters. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
39
|
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2013; 466:61-76. [PMID: 24337822 DOI: 10.1007/s00424-013-1408-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na(+) and HCO3(-) and thus for whole body volume and acid-base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology and Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland,
| | | |
Collapse
|
40
|
Donowitz M, Ming Tse C, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na⁺/H⁺ exchangers. Mol Aspects Med 2013; 34:236-51. [PMID: 23506868 DOI: 10.1016/j.mam.2012.05.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/09/2012] [Indexed: 12/24/2022]
Abstract
This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.
Collapse
Affiliation(s)
- Mark Donowitz
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | | | |
Collapse
|
41
|
Ullah A, Kemp G, Lee B, Alves C, Young H, Sykes BD, Fliegel L. Structural and functional analysis of transmembrane segment IV of the salt tolerance protein Sod2. J Biol Chem 2013; 288:24609-24. [PMID: 23836910 DOI: 10.1074/jbc.m113.483065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sod2 is the plasma membrane Na(+)/H(+) exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) ((126)FPQINFLGSLLIAGCITSTDPVLSALI(152)) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125-154). NMR analysis yielded a model with two helical regions (amino acids 128-142 and 147-154) separated by an unwound region (amino acids 143-146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na(+)/H(+) exchanger and TM VI of isoform 1 of mammalian Na(+)/H(+) exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Sodium/hydrogen exchanger NHA2 is critical for insulin secretion in β-cells. Proc Natl Acad Sci U S A 2013; 110:10004-9. [PMID: 23720317 DOI: 10.1073/pnas.1220009110] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
NHA2 is a sodium/hydrogen exchanger with unknown physiological function. Here we show that NHA2 is present in rodent and human β-cells, as well as β-cell lines. In vivo, two different strains of NHA2-deficient mice displayed a pathological glucose tolerance with impaired insulin secretion but normal peripheral insulin sensitivity. In vitro, islets of NHA2-deficient and heterozygous mice, NHA2-depleted Min6 cells, or islets treated with an NHA2 inhibitor exhibited reduced sulfonylurea- and secretagogue-induced insulin secretion. The secretory deficit could be rescued by overexpression of a wild-type, but not a functionally dead, NHA2 transporter. NHA2 deficiency did not affect insulin synthesis or maturation and had no impact on basal or glucose-induced intracellular Ca(2+) homeostasis in islets. Subcellular fractionation and imaging studies demonstrated that NHA2 resides in transferrin-positive endosomes and synaptic-like microvesicles but not in insulin-containing large dense core vesicles in β-cells. Loss of NHA2 inhibited clathrin-dependent, but not clathrin-independent, endocytosis in Min6 and primary β-cells, suggesting defective endo-exocytosis coupling as the underlying mechanism for the secretory deficit. Collectively, our in vitro and in vivo studies reveal the sodium/proton exchanger NHA2 as a critical player for insulin secretion in the β-cell. In addition, our study sheds light on the biological function of a member of this recently cloned family of transporters.
Collapse
|
43
|
Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease. J Mol Cell Cardiol 2013; 61:68-76. [PMID: 23429007 DOI: 10.1016/j.yjmcc.2013.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
The Na(+) gradient produced across the cardiac sarcolemma by the ATP-dependent Na(+)-pump is a constant source of energy for Na(+)-dependent transporters. The plasma membrane Na(+)/H(+) exchanger (NHE) is one such secondary active transporter, regulating intracellular pH, Na(+) concentration, and cell volume. NHE1, the major isoform found in the heart, is activated in response to a variety of stimuli such as hormones and mechanical stress. This important characteristic of NHE1 is intimately linked to heart diseases, including maladaptive cardiac hypertrophy and subsequent heart failure, as well as acute ischemic-reperfusion injury. NHE1 activation results in elevation of pH and intracellular Na(+) concentration, which potentially enhance downstream signaling cascades in the myocardium. Therefore, in addition to determining the mechanism underlying regulation of NHE1 activity, it is important to understand how the ionic signal produced by NHE1 is transmitted to the downstream targets. Extensive studies have identified many accessory factors that interact with NHE1. Here, we have summarized the recent progress on understanding the molecular mechanism underlying NHE1 regulation and have shown a possible signaling pathway leading to cardiac remodeling, which is initiated from NHE1. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
|
44
|
Lukashova V, Jinadasa T, Ilie A, Verbich D, Cooper E, Orlowski J. The Na(+)/H (+) exchanger NHE5 is sorted to discrete intracellular vesicles in the central and peripheral nervous systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:397-410. [PMID: 23224898 DOI: 10.1007/978-1-4614-4756-6_34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pH milieu of the central and peripheral nervous systems is an important determinant of neuronal excitability, function, and survival. In mammals, neural acid-base homeostasis is coordinately regulated by ion transporters belonging to the Na(+)/H(+) exchanger (NHE) and bicarbonate transporter gene families. However, the relative contributions of individual isoforms within the respective families are not fully understood. This report focuses on the NHE family, specifically the plasma membrane-type NHE5 which is preferentially transcribed in brain, but the distribution of the native protein has not been extensively characterized. To this end, we generated a rabbit polyclonal antibody that specifically recognizes NHE5. In both central (cortex, hippocampus) and peripheral (superior cervical ganglia, SCG) nervous tissue of mice, NHE5 immunostaining was punctate and highly concentrated in the somas and to lesser amounts in the dendrites of neurons. Very little signal was detected in axons. Similarly, in primary cultures of differentiated SCG neurons, NHE5 localized predominantly to vesicles in the somatodendritic compartment, though some immunostaining was also evident in punctate vesicles along the axons. NHE5 was also detected predominantly in intracellular vesicles of cultured SCG glial cells. Dual immunolabeling of SCG neurons showed that NHE5 did not colocalize with markers for early endosomes (EEA1) or synaptic vesicles (synaptophysin), but did partially colocalize with the transferrin receptor, a marker of recycling endosomes. Collectively, these data suggest that NHE5 partitions into a unique vesicular pool in neurons that shares some characteristics of recycling endosomes where it may serve as an important regulated store of functional transporters required to maintain cytoplasmic pH homeostasis.
Collapse
|
45
|
Kondapalli KC, Kallay LM, Muszelik M, Rao R. Unconventional chemiosmotic coupling of NHA2, a mammalian Na+/H+ antiporter, to a plasma membrane H+ gradient. J Biol Chem 2012; 287:36239-50. [PMID: 22948142 DOI: 10.1074/jbc.m112.403550] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human NHA2, a newly discovered cation proton antiporter, is implicated in essential hypertension by gene linkage analysis. We show that NHA2 mediates phloretin-sensitive Na(+)-Li(+) counter-transport (SLC) activity, an established marker for hypertension. In contrast to bacteria and fungi where H(+) gradients drive uptake of metabolites, secondary transport at the plasma membrane of mammalian cells is coupled to the Na(+) electrochemical gradient. Our findings challenge this paradigm by showing coupling of NHA2 and V-type H(+)-ATPase at the plasma membrane of kidney-derived MDCK cells, resulting in a virtual Na(+) efflux pump. Thus, NHA2 functionally recapitulates an ancient shared evolutionary origin with bacterial NhaA. Although plasma membrane H(+) gradients have been observed in some specialized mammalian cells, the ubiquitous tissue distribution of NHA2 suggests that H(+)-coupled transport is more widespread. The coexistence of Na(+) and H(+)-driven chemiosmotic circuits has implications for salt and pH regulation in the kidney.
Collapse
Affiliation(s)
- Kalyan C Kondapalli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
46
|
Maes M, Rimon A, Kozachkov-Magrisso L, Friedler A, Padan E. Revealing the ligand binding site of NhaA Na+/H+ antiporter and its pH dependence. J Biol Chem 2012; 287:38150-7. [PMID: 22915592 DOI: 10.1074/jbc.m112.391128] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
pH and Na(+) homeostasis in all cells requires Na(+)/H(+) antiporters. In most cases, their activity is tightly pH-regulated. NhaA, the main antiporter of Escherichia coli, has homologues in all biological kingdoms. The crystal structure of NhaA provided insights into the mechanism of action and pH regulation of an antiporter. However, the active site of NhaA remained elusive because neither Na(+) nor Li(+), the NhaA ligands, were observed in the structure. Using isothermal titration calorimetry, we show that purified NhaA binds Li(+) in detergent micelles. This interaction is driven by an increase in enthalpy (ΔH of -8000 ± 300 cal/mol and ΔS of -15.2 cal/mol/degree at 283 K), involves a single binding site per NhaA molecule, and is highly specific and drastically dependent on pH; Li(+) binding was observed only at pH 8.5. Combining mutational analysis with the isothermal titration calorimetry measurements revealed that Asp-163, Asp-164, Thr-132, and Asp-133 form the Li(+) binding site, whereas Lys-300 plays an important role in pH regulation of the antiporter.
Collapse
Affiliation(s)
- Michal Maes
- Institute of Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Sciences, Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Xiang MA, Linser PJ, Price DA, Harvey WR. Localization of two Na+- or K+-H+ antiporters, AgNHA1 and AgNHA2, in Anopheles gambiae larval Malpighian tubules and the functional expression of AgNHA2 in yeast. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:570-9. [PMID: 22206887 DOI: 10.1016/j.jinsphys.2011.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 05/20/2023]
Abstract
The newly identified metazoan Na(+)/H(+) antiporter (NHA) family is represented by two paralogues, AgNHA1 and AgNHA2, in the genome of the African malaria mosquito, Anopheles gambiae. Both antiporters are postulated to be electrophoretic i.e. voltage-driven. AgNHA1 was first cloned from An. gambiae larvae and immunolocalized with respect to the H(+) V-ATPase by the Harvey laboratory. Little is known about the properties of NHA1s; attempts to characterize AgNHA1 in Na(+)/H(+) exchanger (NHE)-lacking Chinese hamster ovary cells and in yeast cells or frog oocytes were unsuccessful. Even less is known about AgNHA2. It is predicted to have a relative molecular mass of ∼60 kDa and shares 30.5% amino acid identity with AgNHA1. Immunolocalization images show AgNHA2 on the apical plasma membrane of stellate cells in Malpighian tubules of An. gambiae larvae and adults. When heterologously expressed in a mutant strain of the yeast, Saccharomyces cerevisiae, which lacks endogenous cation/proton antiporters and pumps, AgNHA2 enhanced repression of growth by the alkali metal cations, Li(+), Na(+), or K(+) and enhanced Li(+) accumulation. The yeast growth studies invite the speculation that AgNHA2 is an electrophoretic antiporter with a stoichiometry of nNa(+) to 1H(+) with n > 1. Immunolocalization images provide direct evidence that H(+) V-ATPase is co-localized with AgNHA1 on the apical membrane of principal cells but it is not present in the stellate cells where AgNHA2 is localized apically. These results are consistent with the notion that the outside positive voltage that the H(+) V-ATPase generates across the apical membrane of principal cells appears with but little attenuation across the apical membrane of stellate cells. This immunolocalization pattern is consistent with the hypothesis that the voltage acts via AgNHA1 to drive nH(+) into the principal cells and Na(+) out to the lumen and acts via AgNHA2 to drive nNa(+) into the stellate cells and H(+) out to the lumen. Precious Na(+) is then retained by ejection into the blood via a basal Na(+)/K(+)-ATPase. Localizations of anion transporters and their functions in stellate and principal cells are described by Linser, Romero and associates in this volume. The role that the electrogenic H(+) V-ATPase and the electrophoretic cationic and anionic transporters play in ion homeostasis is incorporated into a model for Malpighian tubule cells of larval mosquitoes.
Collapse
Affiliation(s)
- Minghui A Xiang
- Division of Nephrology and Hypertension, Department of Medicine, University of Florida-Jacksonville, Jacksonville, FL 32206, USA.
| | | | | | | |
Collapse
|
49
|
Harvey WR, Xiang MA. K+ pump: from caterpillar midgut to human cochlea. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:590-598. [PMID: 22410306 DOI: 10.1016/j.jinsphys.2012.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 05/31/2023]
Abstract
Deafness is a serious condition that affects millions of people and can also lead to dementia. Moreover, Karet and associates reported in 1999 that mutations in the gene encoding H(+) V-ATPase subunit B(1) lead to deafness. Yet ionic flows that enable humans to hear high-pitched sounds at 20,000 cycles/sec (20 kHz) are not well understood. Sound is transduced to electrical signals by stereocilia of hair cells by influx of Ca(2+) and K(+) as the "transducer channel" opens transiently and reduces the ∼90 mV (endolymph positive) endocochlear potential (EP) by ∼20 mV as the receptor potential. The EP as well as concentrations of Ca(2+), H(+) and K(+) must remain constant to produce reliable signals. Ca(2+) entry is balanced by Ca(2+) exit via a plasma membrane Ca(2+) ATPase (PMCA2a) but the Ca(2+) exit is coupled to H(+) entry. Moreover, K(+) entry is balanced by K(+) exit via a long diffusion route through several channels which is too slow to account for 20 kHz signaling. The problem is solved by a new hypothesis in which an H(+) V-ATPase generates the EP and removes the H(+) while a new K(+)/H(+) antiporter uses the voltage to drive H(+) back in and the K(+) back out. In the new model, Ca(2+), H(+) and K(+) cycle between unstirred layers on the endolymph- and cytoplasmic- borders of the stereocilial membrane through distances of ∼20 nanometers with travel time of ∼10 μs, which is fast enough to account for the 50 μs open/close time for 20 kHz signaling. Central to this model is the hypothesis that a K(+) pump which secretes K(+) into a K(+)-rich compartment is composed of a voltage producing (electrogenic) H(+) V-ATPase that is electrically coupled to a voltage-driven (electrophoretic) K(+)/nH(+) antiporter (KHA). Conversely, for an H(+) V-ATPase to secrete K(+) into a K(+) rich compartment, it must be coupled to a KHA. Richard Keynes reviewed evidence in 1969 that such a K(+) pump, which he called a Type V pump, is present in the stria vascularis of cochlea and the goblet cell apical membrane of caterpillars. Its signature is a large outside positive potential of ∼100 mV, K(+) secretion into a K(+) rich compartment and reversible inhibition by anoxia. The key role of the Type V K(+) pump in generating the EP was recognized by Sellick and Bock in 1974 and others but has disappeared from the hearing literature during the past decades. Its revival here is based on immunolocalization of KHA2 in the stereocilial membrane and Gillespie's generously shared mass spectroscopy evidence that all but one of the V(1) ATPase subunits are detected in isolated chicken stereocilia but V(o) and KHAs are not detected (implying that KHAs must be in the membrane). The new model proposed in the present paper could lead to important changes in our understanding of sensory physiology.
Collapse
Affiliation(s)
- William R Harvey
- Whitney Mosquito Biology Group, University of Florida, St. Augustine, FL 32080, USA
| | | |
Collapse
|
50
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|