1
|
Cao J, Ball IK, Cassidy B, Rae CD. Functional conductivity imaging: quantitative mapping of brain activity. Phys Eng Sci Med 2024:10.1007/s13246-024-01484-z. [PMID: 39259483 DOI: 10.1007/s13246-024-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Theory and modelling suggest that detection of neuronal activity may be feasible using phase sensitive MRI methods. Successful detection of neuronal activity both in vitro and in vivo has been described while others have reported negative results. Magnetic resonance electrical properties tomography may be a route by which signal changes can be identified. Here, we report successful and repeatable detection at 3 Tesla of human brain activation in response to visual and somatosensory stimuli using a functional version of tissue conductivity imaging (funCI). This detects activation in both white and grey matter with apparent tissue conductivity changes of 0.1 S/m (17-20%, depending on the tissue baseline conductivity measure) allowing visualization of complete system circuitry. The degree of activation scales with the degree of the stimulus (duration or contrast). The conductivity response functions show a distinct timecourse from that of traditional fMRI haemodynamic (BOLD or Blood Oxygenation Level Dependent) response functions, peaking within milliseconds of stimulus cessation and returning to baseline within 3-4 s. We demonstrate the utility of the funCI approach by showing robust activation of the lateral somatosensory circuitry on stimulation of an index finger, on stimulation of a big toe or of noxious (heat) stimulation of the face as well as activation of visual circuitry on visual stimulation in up to five different individuals. The sensitivity and repeatability of this approach provides further evidence that magnetic resonance imaging approaches can detect brain activation beyond changes in blood supply.
Collapse
Affiliation(s)
- Jun Cao
- Neuroscience Research Australia, 139 Barker St, Randwick, NSW, 2031, Australia
| | - Iain K Ball
- Philips Australia & New Zealand, North Ryde, NSW, 2113, Australia
| | - Benjamin Cassidy
- Neuroscience Research Australia, 139 Barker St, Randwick, NSW, 2031, Australia
- Pathfinder Exploration LLC, Tonopah, NV, USA
| | - Caroline D Rae
- Neuroscience Research Australia, 139 Barker St, Randwick, NSW, 2031, Australia.
- School of Psychology, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Roth BJ. Can MRI Be Used as a Sensor to Record Neural Activity? SENSORS (BASEL, SWITZERLAND) 2023; 23:1337. [PMID: 36772381 PMCID: PMC9918955 DOI: 10.3390/s23031337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Magnetic resonance provides exquisite anatomical images and functional MRI monitors physiological activity by recording blood oxygenation. This review attempts to answer the following question: Can MRI be used as a sensor to directly record neural behavior? It considers MRI sensing of electrical activity in the heart and in peripheral nerves before turning to the central topic: recording of brain activity. The primary hypothesis is that bioelectric current produced by a nerve or muscle creates a magnetic field that influences the magnetic resonance signal, although other mechanisms for detection are also considered. Recent studies have provided evidence that using MRI to sense neural activity is possible under ideal conditions. Whether it can be used routinely to provide functional information about brain processes in people remains an open question. The review concludes with a survey of artificial intelligence techniques that have been applied to functional MRI and may be appropriate for MRI sensing of neural activity.
Collapse
Affiliation(s)
- Bradley J Roth
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
3
|
Tan JL, Ragot DM, Chen JJ. Characterization of the echo-time dependence of spin-echo BOLD fMRI at 3 Tesla in grey and white matter. J Neurosci Methods 2022; 381:109691. [PMID: 36096237 DOI: 10.1016/j.jneumeth.2022.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Don M Ragot
- Rotman Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
4
|
Toi PT, Jang HJ, Min K, Kim SP, Lee SK, Lee J, Kwag J, Park JY. In vivo direct imaging of neuronal activity at high temporospatial resolution. Science 2022; 378:160-168. [PMID: 36227975 DOI: 10.1126/science.abh4340] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There has been a long-standing demand for noninvasive neuroimaging methods that can detect neuronal activity at both high temporal and high spatial resolution. We present a two-dimensional fast line-scan approach that enables direct imaging of neuronal activity with millisecond precision while retaining the high spatial resolution of magnetic resonance imaging (MRI). This approach was demonstrated through in vivo mouse brain imaging at 9.4 tesla during electrical whisker-pad stimulation. In vivo spike recording and optogenetics confirmed the high correlation of the observed MRI signal with neural activity. It also captured the sequential and laminar-specific propagation of neuronal activity along the thalamocortical pathway. This high-resolution, direct imaging of neuronal activity will open up new avenues in brain science by providing a deeper understanding of the brain's functional organization, including the temporospatial dynamics of neural networks.
Collapse
Affiliation(s)
- Phan Tan Toi
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Division of Computer Engineering, Baekseok University, Cheonan 31065, Republic of Korea
| | - Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seung-Kyun Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Nunes D, Gil R, Shemesh N. A rapid-onset diffusion functional MRI signal reflects neuromorphological coupling dynamics. Neuroimage 2021; 231:117862. [PMID: 33592243 DOI: 10.1016/j.neuroimage.2021.117862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) has transformed our understanding of brain function in-vivo. However, the neurovascular coupling mechanisms underlying fMRI are somewhat "distant" from neural activity. Interestingly, evidence from Intrinsic Optical Signals (IOSs) indicates that neural activity is also coupled to (sub)cellular morphological modulations. Diffusion-weighted functional MRI (dfMRI) experiments have been previously proposed to probe such neuromorphological couplings, but the underlying mechanisms have remained highly contested. Here, we provide the first direct link between in vivo ultrafast dfMRI signals upon rat forepaw stimulation and IOSs in acute slices stimulated optogenetically. We reveal a hitherto unreported rapid onset (<100 ms) dfMRI signal component which (i) agrees with fast-rising IOSs dynamics; (ii) evidences a punctate quantitative correspondence to the stimulation period; and (iii) is rather insensitive to a vascular challenge. Our findings suggest that neuromorphological coupling can be detected via dfMRI signals, auguring well for future mapping of neural activity more directly compared with blood-oxygenation-level-dependent mechanisms.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Rita Gil
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia 1400-038, Lisbon, Portugal.
| |
Collapse
|
6
|
Novikov DS. The present and the future of microstructure MRI: From a paradigm shift to normal science. J Neurosci Methods 2020; 351:108947. [PMID: 33096152 DOI: 10.1016/j.jneumeth.2020.108947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a paradigm shift within the biomedical imaging community. However, what feels like an ongoing revolution in MRI, has been conceptually experienced in physics decades ago; from this point of view, our current developments can be seen as Thomas Kuhn's "normal science" stage of progress. While the concept of model-based quantification below the nominal imaging resolution is not new, its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. This disconnect calls for communicating the progress of tissue microstructure MR imaging to its potential users. Here, a number of recent research developments are outlined in terms of the overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A variety of diffusion models and phenomena are summarized on the phase diagram of diffusion MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Abe Y, Takata N, Sakai Y, Hamada HT, Hiraoka Y, Aida T, Tanaka K, Bihan DL, Doya K, Tanaka KF. Diffusion functional MRI reveals global brain network functional abnormalities driven by targeted local activity in a neuropsychiatric disease mouse model. Neuroimage 2020; 223:117318. [PMID: 32882386 DOI: 10.1016/j.neuroimage.2020.117318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion functional magnetic resonance imaging (DfMRI) has been proposed as an alternative functional imaging method to detect brain activity without confounding hemodynamic effects. Here, taking advantage of this DfMRI feature, we investigated abnormalities of dynamic brain function in a neuropsychiatric disease mouse model (glial glutamate transporter-knockdown mice with obsessive-compulsive disorder [OCD]-related behavior). Our DfMRI approaches consisted of three analyses: resting state brain activity, functional connectivity, and propagation of neural information. We detected hyperactivation and biased connectivity across the cortico-striatal-thalamic circuitry, which is consistent with known blood oxygen-level dependent (BOLD)-fMRI patterns in OCD patients. In addition, we performed ignition-driven mean integration (IDMI) analysis, which combined activity and connectivity analyses, to evaluate neural propagation initiated from brain activation. This analysis revealed an unbalanced distribution of neural propagation initiated from intrinsic local activation to the global network, while these were not detected by the conventional method with BOLD-fMRI. This abnormal function detected by DfMRI was associated with OCD-related behavior. Together, our comprehensive DfMRI approaches can successfully provide information on dynamic brain function in normal and diseased brains.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | - Norio Takata
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan; Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuichi Hiraoka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Tomomi Aida
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Kohichi Tanaka
- Department of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, Japan
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France; Department of System Neuroscience, National Institutes for Physiological Sciences, Okazaki, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kenji F Tanaka
- Departemnt of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| |
Collapse
|
8
|
Blackband SJ, Flint JJ, Hansen B, Shepherd TM, Lee CH, Streit WJ, Forder JR. On the Origins of Diffusion MRI Signal Changes in Stroke. Front Neurol 2020; 11:549. [PMID: 32714267 PMCID: PMC7344185 DOI: 10.3389/fneur.2020.00549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a leading diagnostic technique especially for neurological studies. However, the physical origin of the hyperintense signal seen in MR images of stroke immediately after ischemic onset in the brain has been a matter of debate since it was first demonstrated in 1990. In this article, we hypothesize and provide evidence that changes in the glial cells, comprising roughly one-half of the brain's cells and therefore a significant share of its volume, accompanying ischemia, are the root cause of the MRI signal change. Indeed, a primary function of the glial cells is osmoregulation in order to maintain homeostasis in the neurons and nerve fibers for accurate and consistent function. This realization also impacts our understanding of signal changes in other tissues following ischemia. We anticipate that this paradigm shift will facilitate new and improved models of MRI signals in tissues, which will, in turn, impact clinical utility.
Collapse
Affiliation(s)
- Stephen J Blackband
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Center for Structural Biology, University of Florida, Gainesville, FL, United States.,National High Magnetic Field Laboratory, Tallahassee, FL, United States
| | - Jeremy J Flint
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Timothy M Shepherd
- Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Choong H Lee
- Department of Radiology, New York University School of Medicine, New York, NY, United States
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - John R Forder
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,National High Magnetic Field Laboratory, Tallahassee, FL, United States.,Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Radiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Komaki Y, Debacker C, Djemai B, Ciobanu L, Tsurugizawa T, Bihan DL. Differential effects of aquaporin-4 channel inhibition on BOLD fMRI and diffusion fMRI responses in mouse visual cortex. PLoS One 2020; 15:e0228759. [PMID: 32437449 PMCID: PMC7241787 DOI: 10.1371/journal.pone.0228759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
The contribution of astrocytes to the BOLD fMRI and DfMRI responses in visual cortex of mice following visual stimulation was investigated using TGN-020, an aquaporin 4 (AQP4) channel blocker, acting as an astrocyte function perturbator. Under TGN-020 injection the amplitude of the BOLD fMRI response became significantly higher. In contrast no significant changes in the DfMRI responses and the electrophysiological responses were observed. Those results further confirm the implications of astrocytes in the neurovascular coupling mechanism underlying BOLD fMRI, but not in the DfMRI responses which remained unsensitive to astrocyte function perturbation.
Collapse
Affiliation(s)
- Yuji Komaki
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Boucif Djemai
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | - Luisa Ciobanu
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
| | | | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
10
|
Albers F, Wachsmuth L, Schache D, Lambers H, Faber C. Functional MRI Readouts From BOLD and Diffusion Measurements Differentially Respond to Optogenetic Activation and Tissue Heating. Front Neurosci 2019; 13:1104. [PMID: 31708721 PMCID: PMC6821691 DOI: 10.3389/fnins.2019.01104] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Functional blood-oxygenation-level-dependent (BOLD) MRI provides a brain-wide readout that depends on the hemodynamic response to neuronal activity. Diffusion fMRI has been proposed as an alternative to BOLD fMRI and has been postulated to directly rely on neuronal activity. These complementary functional readouts are versatile tools to be combined with optogenetic stimulation to investigate networks of the brain. The cell-specificity and temporal precision of optogenetic manipulations promise to enable further investigation of the origin of fMRI signals. The signal characteristics of the diffusion fMRI readout vice versa may better resolve network effects of optogenetic stimulation. However, the light application needed for optogenetic stimulation is accompanied by heat deposition within the tissue. As both diffusion and BOLD are sensitive to temperature changes, light application can lead to apparent activations confounding the interpretation of fMRI data. The degree of tissue heating, the appearance of apparent activation in different fMRI sequences and the origin of these phenomena are not well understood. Here, we disentangled apparent activations in BOLD and diffusion measurements in rats from physiological activation upon sensory or optogenetic stimulation. Both, BOLD and diffusion fMRI revealed similar signal shapes upon sensory stimulation that differed clearly from those upon heating. Apparent activations induced by high-intensity light application were dominated by T2∗-effects and resulted in mainly negative signal changes. We estimated that even low-intensity light application used for optogenetic stimulation reduces the BOLD response close to the fiber by up to 0.4%. The diffusion fMRI signal contained T2, T2∗ and diffusion components. The apparent diffusion coefficient, which reflects the isolated diffusion component, showed negative changes upon both optogenetic and electric forepaw stimulation. In contrast, positive changes were detected upon high-intensity light application and thus ruled out heating as a major contributor to the diffusion fMRI signal.
Collapse
Affiliation(s)
- Franziska Albers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Daniel Schache
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Henriette Lambers
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
11
|
Lizarbe B, Fernández-Pérez A, Caz V, Largo C, Vallejo M, López-Larrubia P, Cerdán S. Systemic Glucose Administration Alters Water Diffusion and Microvascular Blood Flow in Mouse Hypothalamic Nuclei - An fMRI Study. Front Neurosci 2019; 13:921. [PMID: 31551685 PMCID: PMC6733885 DOI: 10.3389/fnins.2019.00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 12/23/2022] Open
Abstract
The hypothalamus is the principal regulator of global energy balance, enclosing additionally essential neuronal centers for glucose-sensing and osmoregulation. Disturbances in these tightly regulated neuronal networks are thought to underlie the development of severe pandemic syndromes, including obesity and diabetes. In this work, we investigate in vivo the response of individual hypothalamic nuclei to the i.p. administration of glucose or vehicle solutions, using two groups of adult male C57BL6/J fasted mice and a combination of non-invasive T2∗-weighted and diffusion-weighted functional magnetic resonance imaging (fMRI) approaches. MRI parameters were assessed in both groups of animals before, during and in a post-stimulus phase, following the administration of glucose or vehicle solutions. Hypothalamic nuclei depicted different patterns of activation characterized by: (i) generalized glucose-induced increases of neuronal activation and perfusion-markers in the lateral hypothalamus, arcuate and dorsomedial nuclei, (ii) cellular shrinking events and decreases in microvascular blood flow in the dorsomedial, ventromedial and lateral hypothalamus, following the administration of vehicle solutions and (iii) increased neuronal activity markers and decreased microperfusion parameters in the ARC nuclei of vehicle-administered animals. Immunohistochemical studies performed after the post-stimulus phase confirmed the presence of c-Fos immunoreactive neurons in the arcuate nucleus (ARC) from both animal groups, with significantly higher numbers in the glucose-treated animals. Together, our results reveal that fMRI methods are able to detect in vivo diverse patterns of glucose or vehicle-induced effects in the different hypothalamic nuclei.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Victor Caz
- Departamento de Cirugía Experimental, Instituto de Investigación Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Carlota Largo
- Departamento de Cirugía Experimental, Instituto de Investigación Hospital Universitario La Paz - IdiPAZ, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (Ciberdem), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| |
Collapse
|
12
|
De Luca A, Schlaffke L, Siero JCW, Froeling M, Leemans A. On the sensitivity of the diffusion MRI signal to brain activity in response to a motor cortex paradigm. Hum Brain Mapp 2019; 40:5069-5082. [PMID: 31410939 PMCID: PMC6865683 DOI: 10.1002/hbm.24758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Diffusion functional magnetic resonance imaging (dfMRI) is a promising technique to map functional activations by acquiring diffusion‐weighed spin‐echo images. In previous studies, dfMRI showed higher spatial accuracy at activation mapping compared to classic functional MRI approaches. However, it remains unclear whether dfMRI measures result from changes in the intracellular/extracellular environment, perfusion, and/or T2 values. We designed an acquisition/quantification scheme to disentangle such effects in the motor cortex during a finger‐tapping paradigm. dfMRI was acquired at specific diffusion weightings to selectively suppress perfusion and free‐water diffusion, then time series of the apparent diffusion coefficient (ADC‐fMRI) and of intravoxel incoherent motion (IVIM) effects were derived. ADC‐fMRI provided ADC estimates sensitive to changes in perfusion and free‐water volume, but not to T2/T2* values. With IVIM modeling, we isolated the perfusion contribution to ADC, while suppressing T2 effects. Compared to conventional gradient‐echo blood oxygenation level‐dependent fMRI, activation maps obtained with dfMRI and ADC‐fMRI had smaller clusters, and the spatial overlap between the three techniques was below 50%. Increases of perfusion fractions were observed during task in both dfMRI and ADC‐fMRI activations. Perfusion effects were more prominent with ADC‐fMRI than with dfMRI but were significant in less than 25% of activation regions. IVIM modeling suggests that the sensitivity to task of dfMRI derives from a decrease of intracellular/extracellular diffusion and an increase of the pseudo‐diffusion signal fraction, leading to different, more confined spatial activation patterns compared to classic functional MRI.
Collapse
Affiliation(s)
- Alberto De Luca
- Image Sciences Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jeroen C W Siero
- Department of Radiology, UMC Utrecht, Utrecht, The Netherlands.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ. Arterial stiffness and brain integrity: A review of MRI findings. Ageing Res Rev 2019; 53:100907. [PMID: 31063866 DOI: 10.1016/j.arr.2019.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Given the increasing incidence of vascular diseases and dementia, a better understanding of the cerebrovascular changes induced by arterial stiffness is important for early identification of white and gray matter abnormalities that might antedate the appearance of clinical cognitive symptoms. Here, we review the evidence from neuroimaging demonstrating the impact of arterial stiffness on the aging brain. METHOD This review presents findings from recent studies examining the association between arterial stiffness, cognitive function, cerebral hypoperfusion, and markers of neuronal fiber integrity using a variety of MRI techniques. RESULTS Overall, changes associated with arterial stiffness indicates that the corpus callosum, the internal capsule and the corona radiata may be the most vulnerable regions to microvascular damage. In addition, the microstructural integrity of these regions appears to be associated with cognitive performance. Changes in gray matter structure have also been found to be associated with arterial stiffness and are present as early as the 5th decade. Moreover, low cerebral perfusion has been associated with arterial stiffness as well as lower cognitive performance in age-sensitive tasks such as executive function. CONCLUSION Considering the established relationship between arterial stiffness, brain and cognition, this review highlights the need for future studies of brain structure and function in aging to implement measurements of arterial stiffness in parallel with quantitative imaging.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dalia Sabra
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Biomedical Science, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Louis Bherer
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hélène Girouard
- Neuroimaging Functional Unit (UNF), Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada; Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine J Gauthier
- Physics Department, Concordia University, Montréal, QC, Canada; PERFORM Centre, Concordia University, Montréal, QC, Canada; Research Center, Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
14
|
Characterizing contrast origins and noise contribution in spin-echo EPI BOLD at 3 T. Magn Reson Imaging 2019; 57:328-336. [DOI: 10.1016/j.mri.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/06/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022]
|
15
|
Liu C, Özarslan E. Multimodal integration of diffusion MRI for better characterization of tissue biology. NMR IN BIOMEDICINE 2019; 32:e3939. [PMID: 30011138 DOI: 10.1002/nbm.3939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The contrast in diffusion-weighted MR images is due to variations of diffusion properties within the examined specimen. Certain microstructural information on the underlying tissues can be inferred through quantitative analyses of the diffusion-sensitized MR signals. In the first part of the paper, we review two types of approach for characterizing diffusion MRI signals: Bloch's equations with diffusion terms, and statistical descriptions. Specifically, we discuss expansions in terms of cumulants and orthogonal basis functions, the confinement tensor formalism and tensor distribution models. Further insights into the tissue properties may be obtained by integrating diffusion MRI with other techniques, which is the subject of the second part of the paper. We review examples involving magnetic susceptibility, structural tensors, internal field gradients, transverse relaxation and functional MRI. Integrating information provided by other imaging modalities (MR based or otherwise) could be a key to improve our understanding of how diffusion MRI relates to physiology and biology.
Collapse
Affiliation(s)
- Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019; 184:646-657. [PMID: 30267858 PMCID: PMC6264401 DOI: 10.1016/j.neuroimage.2018.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andrada Ianus
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
17
|
Jones DK, Alexander DC, Bowtell R, Cercignani M, Dell'Acqua F, McHugh DJ, Miller KL, Palombo M, Parker GJM, Rudrapatna US, Tax CMW. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage 2018; 182:8-38. [PMID: 29793061 DOI: 10.1016/j.neuroimage.2018.05.047] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'.
Collapse
Affiliation(s)
- D K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, 3065, Australia.
| | - D C Alexander
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK; Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - R Bowtell
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - M Cercignani
- Department of Psychiatry, Brighton and Sussex Medical School, Brighton, UK
| | - F Dell'Acqua
- Natbrainlab, Department of Neuroimaging, King's College London, London, UK
| | - D J McHugh
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK
| | - K L Miller
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | - M Palombo
- Centre for Medical Image Computing (CMIC), Department of Computer Science, UCL (University College London), Gower Street, London, UK
| | - G J M Parker
- Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, UK; CRUK and EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge and Manchester, UK; Bioxydyn Ltd., Manchester, UK
| | - U S Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
18
|
Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, de Pablo PJ, Debroye E, Eggeling C, Franck C, Fritzsche M, Gerritsen H, Giepmans BNG, Grunewald K, Hofkens J, Hoogenboom JP, Janssen KPF, Kaufman R, Klumpermann J, Kurniawan N, Kusch J, Liv N, Parekh V, Peckys DB, Rehfeldt F, Reutens DC, Roeffaers MBJ, Salditt T, Schaap IAT, Schwarz US, Verkade P, Vogel MW, Wagner R, Winterhalter M, Yuan H, Zifarelli G. The 2018 correlative microscopy techniques roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:443001. [PMID: 30799880 PMCID: PMC6372154 DOI: 10.1088/1361-6463/aad055] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 05/19/2023]
Abstract
Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | | | | | - H Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | | | - Niels De Jonge
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - P J de Pablo
- Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid 28049, Madrid, Spain
| | - Elke Debroye
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave, Madison, WI 53706, United States of America
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hans Gerritsen
- Debye Institute, Utrecht University, Utrecht, Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kay Grunewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Heinrich-Pette-Institute, Leibniz Institute of Virology, Hamburg, Germany
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | | | | | - Rainer Kaufman
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Klumpermann
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Viha Parekh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Diana B Peckys
- Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Florian Rehfeldt
- University of Göttingen, Third Institute of Physics-Biophysics, 37077 Göttingen, Germany
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, 37077 Göttingen, Germany
| | - Iwan A T Schaap
- SmarAct GmbH, Schütte-Lanz-Str. 9, D-26135 Oldenburg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael W Vogel
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Wagner
- Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| | | | - Haifeng Yuan
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Spees WM, Lin TH, Sun P, Song C, George A, Gary SE, Yang HC, Song SK. MRI-based assessment of function and dysfunction in myelinated axons. Proc Natl Acad Sci U S A 2018; 115:E10225-E10234. [PMID: 30297414 PMCID: PMC6205472 DOI: 10.1073/pnas.1801788115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Repetitive electrical activity produces microstructural alteration in myelinated axons, which may afford the opportunity to noninvasively monitor function of myelinated fibers in peripheral nervous system (PNS)/CNS pathways. Microstructural changes were assessed via two different magnetic-resonance-based approaches: diffusion fMRI and dynamic T2 spectroscopy in the ex vivo perfused bullfrog sciatic nerves. Using this robust, classical model as a platform for testing, we demonstrate that noninvasive diffusion fMRI, based on standard diffusion tensor imaging (DTI), can clearly localize the sites of axonal conduction blockage as might be encountered in neurotrauma or other lesion types. It is also shown that the diffusion fMRI response is graded in proportion to the total number of electrical impulses carried through a given locus. Dynamic T2 spectroscopy of the perfused frog nerves point to an electrical-activity-induced redistribution of tissue water and myelin structural changes. Diffusion basis spectrum imaging (DBSI) reveals a reversible shift of tissue water into a restricted isotropic diffusion signal component. Submyelinic vacuoles are observed in electron-microscopy images of tissue fixed during electrical stimulation. A slowing of the compound action potential conduction velocity accompanies repetitive electrical activity. Correlations between electrophysiology and MRI parameters during and immediately after stimulation are presented. Potential mechanisms and interpretations of these results are discussed.
Collapse
Affiliation(s)
- William M Spees
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110;
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
| | - Tsen-Hsuan Lin
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Peng Sun
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Chunyu Song
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Ajit George
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sam E Gary
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Hsin-Chieh Yang
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sheng-Kwei Song
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| |
Collapse
|
20
|
Pan WJ, Lee SY, Billings J, Nezafati M, Majeed W, Buckley E, Keilholz S. Detection of neural light-scattering activity in vivo: optical transmittance studies in the rat brain. Neuroimage 2018; 179:207-214. [PMID: 29908312 DOI: 10.1016/j.neuroimage.2018.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023] Open
Abstract
Optical studies of ex vivo brain slices where blood is absent show that neural activity is accompanied by significant intrinsic optical signals (IOS) related to activity-dependent scattering changes in neural tissue. However, the neural scattering signals have been largely ignored in vivo in widely-used IOS methods where absorption contrast from hemoglobin was employed. Changes in scattering were observed on a time scale of seconds in previous brain slice IOS studies, similar to the time scale for the hemodynamic response. Therefore, potential crosstalk between the scattering and absorption changes may not be ignored if they have comparable contributions to IOS. In vivo, the IOS changes linked to neural scattering have been elusive. To isolate neural scattering signals in vivo, we employed 2 implantable optodes for small-separation (2 mm) transmission measurements of local brain tissue in anesthetized rats. This unique geometry enables us to separate neuronal activity-related changes in neural tissue scattering from changes in blood absorption based upon the direction of the signal change. The changes in IOS scattering and absorption in response to up-states of spontaneous neuronal activity in cortical or subcortical structures have strong correlation to local field potentials, but significantly different response latencies. We conclude that activity-dependent neural tissue scattering in vivo may be an additional source of contrast for functional brain studies that provides complementary information to other optical or MR-based systems that are sensitive to hemodynamic contrast.
Collapse
Affiliation(s)
- Wen-Ju Pan
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA.
| | - Seung Yup Lee
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Jacob Billings
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Maysam Nezafati
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Waqas Majeed
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Erin Buckley
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA
| | - Shella Keilholz
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, 1760 Haygood Drive, HSRB W200, Atlanta, GA, 30322, USA.
| |
Collapse
|
21
|
Kristensen TD, Mandl RC, Jepsen JR, Rostrup E, Glenthøj LB, Nordentoft M, Glenthøj BY, Ebdrup BH. Non-pharmacological modulation of cerebral white matter organization: A systematic review of non-psychiatric and psychiatric studies. Neurosci Biobehav Rev 2018; 88:84-97. [DOI: 10.1016/j.neubiorev.2018.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
22
|
Abstract
Functional diffusion magnetic resonance imaging (fDMRI) is a noninvasive technique that allows elucidating physiological and anatomical changes at a microscopic scale by detection of water molecular displacements in tissue structures. These displacements likely reflect microstructural changes associated with neuronal or glial cells activation. In this chapter, we will describe the physical and biological concepts of fDMRI and how images of brain activation can be acquired in a preclinical setup.
Collapse
Affiliation(s)
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC/UAM, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC/UAM, Madrid, Spain.
| |
Collapse
|
23
|
Ianuş A, Shemesh N. Incomplete initial nutation diffusion imaging: An ultrafast, single-scan approach for diffusion mapping. Magn Reson Med 2017; 79:2198-2204. [PMID: 28868785 PMCID: PMC5836954 DOI: 10.1002/mrm.26894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023]
Abstract
Purpose Diffusion MRI is confounded by the need to acquire at least two images separated by a repetition time, thereby thwarting the detection of rapid dynamic microstructural changes. The issue is exacerbated when diffusivity variations are accompanied by rapid changes in T2. The purpose of the present study is to accelerate diffusion MRI acquisitions such that both reference and diffusion‐weighted images necessary for quantitative diffusivity mapping are acquired in a single‐shot experiment. Methods A general methodology termed incomplete initial nutation diffusion imaging (INDI), capturing two diffusion contrasts in a single shot, is presented. This methodology creates a longitudinal magnetization reservoir that facilitates the successive acquisition of two images separated by only a few milliseconds. The theory behind INDI is presented, followed by proof‐of‐concept studies in water phantom, ex vivo, and in vivo experiments at 16.4 and 9.4 T. Results Mean diffusivities extracted from INDI were comparable with diffusion tensor imaging and the two‐shot isotropic diffusion encoding in the water phantom. In ex vivo mouse brain tissues, as well as in the in vivo mouse brain, mean diffusivities extracted from conventional isotropic diffusion encoding and INDI were in excellent agreement. Simulations for signal‐to‐noise considerations identified the regimes in which INDI is most beneficial. Conclusions The INDI method accelerates diffusion MRI acquisition to single‐shot mode, which can be of great importance for mapping dynamic microstructural properties in vivo without T2 bias. Magn Reson Med 79:2198–2204, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Andrada Ianuş
- Champalimaud Neuroscience Programme, Champalimaud Centre for the UnknownLisbonPortugal
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonUnited Kingdom
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the UnknownLisbonPortugal
| |
Collapse
|
24
|
Abe Y, Tsurugizawa T, Le Bihan D. Water diffusion closely reveals neural activity status in rat brain loci affected by anesthesia. PLoS Biol 2017; 15:e2001494. [PMID: 28406906 PMCID: PMC5390968 DOI: 10.1371/journal.pbio.2001494] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
Diffusion functional MRI (DfMRI) reveals neuronal activation even when neurovascular coupling is abolished, contrary to blood oxygenation level—dependent (BOLD) functional MRI (fMRI). Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity observed with local field potentials (LFPs), especially in regions involved in wakefulness. In contrast, BOLD signals showed nonspecific changes, reflecting systemic effects of the anesthesia on overall brain hemodynamics status. Electrical stimulation of the central medial thalamus nucleus (CM) exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion in the CM of furosemide, a specific neuronal swelling blocker, led the ADC to increase further locally, although LFP activity remained unchanged, and increased the current threshold awakening the animals under CM electrical stimulation. Oppositely, induction of cell swelling in the CM through infusion of a hypotonic solution (−80 milliosmole [mOsm] artificial cerebrospinal fluid [aCSF]) led to a local ADC decrease and a lower current threshold to wake up the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Together, those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI. It has been reported that neuronal activation results in a decrease of water diffusion in activated neural tissue. This new approach, known as diffusion functional MRI (DfMRI), has high potential for functional imaging of the brain, as the currently widespread blood oxygenation level—dependent (BOLD)-functional MRI (fMRI) method, which is based on neurovascular coupling, remains an indirect marker of neuronal activation. Here, we show that the water apparent diffusion coefficient (ADC) derived from DfMRI increased in specific rat brain regions under anesthetic conditions, reflecting the decreased neuronal activity, especially in regions involved in wakefulness. Electrical stimulation of the central medial (CM) thalamic nucleus exhibiting this anesthesia-induced ADC increase led the animals to transiently wake up. Infusion of the CM with furosemide—a specific blocker of neuronal swelling—led the ADC to increase further locally and increased the current threshold for waking the animals. Conversely, induction of cell swelling in the CM through infusion of a hypotonic solution led to a local ADC decrease and a lower current threshold to wake the animals. Strikingly, the local ADC changes produced by blocking or enhancing cell swelling in the CM were also mirrored remotely in areas functionally connected to the CM, such as the cingulate and somatosensory cortex. Those results strongly suggest that neuronal swelling is a significant mechanism underlying DfMRI.
Collapse
Affiliation(s)
- Yoshifumi Abe
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Tomokazu Tsurugizawa
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Joliot Institute, Commissariat à l'énergie atomique et aux énergies alternatives, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
25
|
Short Latency Gray Matter Changes in Voxel-Based Morphometry following High Frequent Visual Stimulation. Neural Plast 2017; 2017:1397801. [PMID: 28293437 PMCID: PMC5331306 DOI: 10.1155/2017/1397801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Magnetic resonance imaging studies using voxel-based morphometry (VBM) detected structural changes in the human brain within periods of months or weeks. The underlying molecular mechanisms of VBM findings remain unresolved. We showed that simple visual stimulation by an alternating checkerboard leads to instant, short-lasting alterations of the primary and secondary visual cortex detected by VBM. The rapidness of occurrence (i.e., within 10 minutes) rather excludes most of the proposed physiological mechanism such as neural or glial cell genesis/degeneration or synapse turnover. We therefore favour cerebral fluid shifts to be the underlying correlate of the here observed VBM gray matter changes. Fast onset gray matter changes might be one important explanation for the inconsistency of VBM study results that often raise concern in regard to the validity of presented data. This study shows that changes detectable by VBM may occur within a few minutes after physiological stimulation and must be considered in future VBM experiments to avoid misinterpretation of results.
Collapse
|
26
|
Mussel M, Inzelberg L, Nevo U. Insignificance of active flow for neural diffusion weighted imaging: A negative result. Magn Reson Med 2016; 78:746-753. [DOI: 10.1002/mrm.26375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Matan Mussel
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
| | - Lilah Inzelberg
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| | - Uri Nevo
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
27
|
Williams RJ, Reutens DC, Hocking J. Influence of BOLD Contributions to Diffusion fMRI Activation of the Visual Cortex. Front Neurosci 2016; 10:279. [PMID: 27445654 PMCID: PMC4923189 DOI: 10.3389/fnins.2016.00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/06/2016] [Indexed: 11/24/2022] Open
Abstract
Reliance on the hemodynamic response as a surrogate marker of neural activity imposes an intrinsic limit on the spatial specificity of functional MRI. An alternative approach based on diffusion-weighted functional MRI (DfMRI) has been reported as a contrast less reliant on hemodynamic effects, however current evidence suggests that both hemodynamic and unique neural sources contribute to the diffusion signal. Here we compare activation patterns obtained with the standard blood oxygenation level-dependent (BOLD) contrast to DfMRI in order to gain a deeper understanding of how the BOLD proportion contributes to the observable diffusion signal. Both individual and group-level activation patterns obtained with DfMRI and BOLD to a visual field stimulation paradigm were analyzed. At the individual level, the DfMRI contrast showed a strong, positive relationship between the volumes of cortex activated in response to quadrant- and hemi-field visual stimulation. This was not observed in the corresponding BOLD experiment. Overall, the DfMRI response indicated less between-subject variability, with random effects analyses demonstrating higher statistical values at the peak voxel for DfMRI. Furthermore, the spatial extent of the activation was more restricted to the primary visual region for DfMRI than BOLD. However, the diffusion signal was sensitive to the hemodynamic response in a manner dependent on experimental manipulation. It was also limited by its low signal-to-noise ratio (SNR), demonstrating lower sensitivity than BOLD. Together these findings both support DfMRI as a contrast that bears a closer spatial relationship to the underlying neural activity than BOLD, and raise important caveats regarding its utilization. Models explaining the DfMRI signal change need to consider the dynamic vascular contributions that may vary with neural activity.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute and Department of Radiology, University of CalgaryCalgary, AB, Canada; Centre for Advanced Imaging, The University of QueenslandSt. Lucia, QLD, Australia; Queensland Brain Institute, The University of QueenslandSt. Lucia, QLD, Australia; Centre for Clinical Research, The University of QueenslandBrisbane, QLD, Australia
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland St. Lucia, QLD, Australia
| | - Julia Hocking
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology Kelvin Grove, QLD, Australia
| |
Collapse
|
28
|
Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc Natl Acad Sci U S A 2016; 113:E1728-37. [PMID: 26941239 DOI: 10.1073/pnas.1519890113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Functional MRI (fMRI) is widely used to study brain function in the neurosciences. Unfortunately, conventional fMRI only indirectly assesses neuronal activity via hemodynamic coupling. Diffusion fMRI was proposed as a more direct and accurate fMRI method to detect neuronal activity, yet confirmative findings have proven difficult to obtain. Given that the underlying relation between tissue water diffusion changes and neuronal activity remains unclear, the rationale for using diffusion MRI to monitor neuronal activity has yet to be clearly established. Here, we studied the correlation between water diffusion and neuronal activity in vitro by simultaneous calcium fluorescence imaging and diffusion MR acquisition. We used organotypic cortical cultures from rat brains as a biological model system, in which spontaneous neuronal activity robustly emerges free of hemodynamic and other artifacts. Simultaneous fluorescent calcium images of neuronal activity are then directly correlated with diffusion MR signals now free of confounds typically encountered in vivo. Although a simultaneous increase of diffusion-weighted MR signals was observed together with the prolonged depolarization of neurons induced by pharmacological manipulations (in which cell swelling was demonstrated to play an important role), no evidence was found that diffusion MR signals directly correlate with normal spontaneous neuronal activity. These results suggest that, whereas current diffusion MR methods could monitor pathological conditions such as hyperexcitability, e.g., those seen in epilepsy, they do not appear to be sensitive or specific enough to detect or follow normal neuronal activity.
Collapse
|
29
|
Bai R, Klaus A, Bellay T, Stewart C, Pajevic S, Nevo U, Merkle H, Plenz D, Basser PJ. Simultaneous calcium fluorescence imaging and MR of ex vivo organotypic cortical cultures: a new test bed for functional MRI. NMR IN BIOMEDICINE 2015; 28:1726-1738. [PMID: 26510537 DOI: 10.1002/nbm.3424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them. Here we describe the development and testing of such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a stable and reproducible biological model of neuronal activity that shows spontaneous activity similar to that of in vivo brain cortex without any hemodynamic confounds. An open-access, single-sided magnetic resonance (MR) "profiler" consisting of four permanent magnets with magnetic field of 0.32 T was used in this study to perform MR acquisition. A fluorescence microscope with long working distance objective was mounted on the top of a custom-designed chamber that keeps the organotypic culture vital, and the MR system was mounted on the bottom of the chamber to achieve real-time simultaneous calcium fluorescence optical imaging and MR acquisition on the same specimen. In this study, the reliability and performance of the proposed test bed were demonstrated by a conventional CPMG MR sequence acquired simultaneously with calcium imaging, which is a well-characterized measurement of neuronal activity. This experimental design will make it possible to correlate directly the other candidate functional MR signals to the optical indicia of neuronal activity in the future.
Collapse
Affiliation(s)
- Ruiliang Bai
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland, USA
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Andreas Klaus
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Tim Bellay
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Craig Stewart
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Sinisa Pajevic
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, NIH, Bethesda, Maryland, USA
| | - Uri Nevo
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Hellmut Merkle
- Laboratory for Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Basser
- Section on Tissue Biophysics and Biomimetics, PPITS, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Williams RJ, Reutens DC, Hocking J. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI. Brain Behav 2015; 5:e00408. [PMID: 26664792 PMCID: PMC4667755 DOI: 10.1002/brb3.408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. METHODS Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. RESULTS At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. CONCLUSIONS DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Collapse
Affiliation(s)
- Rebecca J Williams
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia ; Queensland Brain Institute The University of Queensland St Lucia Qld 4067 Australia ; Centre for Clinical Research The University of Queensland Brisbane Qld 4006 Australia ; Hotchkiss Brain Institute and Department of Radiology University of Calgary Calgary AB T2N 4N1 Canada
| | - David C Reutens
- Centre for Advanced Imaging The University of Queensland St Lucia Qld 4067 Australia
| | - Julia Hocking
- School of Psychology and Counselling Queensland University of Technology Kelvin Grove Qld 4059 Australia
| |
Collapse
|
31
|
Abstract
Magnetic resonance imaging (MRI) and functional MRI (fMRI) continue to advance because creative physicists, engineers, neuroscientists, clinicians, and physiologists find new ways for extracting more information from the signal. Innovations in pulse sequence design, paradigm design, and processing methods have advanced the field and firmly established fMRI as a cornerstone for understanding the human brain. In this article, the field of fMRI is described through consideration of the central problem of separating hemodynamic from neuronal information. Discussed here are examples of how pulse sequences, activation paradigms, and processing methods are integrated such that novel, high-quality information can be obtained. Examples include the extraction of information such as activation onset latency, metabolic rate, neuronal adaptation, vascular patency, vessel diameter, vigilance, and subvoxel activation. Experimental measures include time series latency, hemodynamic shape, MR phase, multivoxel patterns, ratios of activation-related R2* to R2, metabolic rate changes, fluctuation correlations and frequencies, changes in fluctuation correlations and frequencies over time, resting correlation states, echo time dependence, and more.
Collapse
|
32
|
Functional mapping of the human visual cortex with intravoxel incoherent motion MRI. PLoS One 2015; 10:e0117706. [PMID: 25647423 PMCID: PMC4315413 DOI: 10.1371/journal.pone.0117706] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023] Open
Abstract
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Collapse
|
33
|
Abstract
Measurements of water molecule diffusion along fiber tracts in CNS by diffusion tensor imaging (DTI) provides a static map of neural connections between brain centers, but does not capture the electrical activity along axons for these fiber tracts. Here, a modification of the DTI method is presented to enable the mapping of active fibers. It is termed dynamic diffusion tensor imaging (dDTI) and is based on a hypothesized “anisotropy reduction due to axonal excitation” (“AREX”). The potential changes in water mobility accompanying the movement of ions during the propagation of action potentials along axonal tracts are taken into account. Specifically, the proposed model, termed “ionic DTI model”, was formulated as follows.First, based on theoretical calculations, we calculated the molecular water flow accompanying the ionic flow perpendicular to the principal axis of fiber tracts produced by electrical conduction along excited myelinated and non-myelinated axons. Based on the changes in molecular water flow we estimated the signal changes as well as the changes in fractional anisotropy of axonal tracts while performing a functional task. The variation of fractional anisotropy in axonal tracts could allow mapping the active fiber tracts during a functional task.
Although technological advances are necessary to enable the robust and routine measurement of this electrical activity-dependent movement of water molecules perpendicular to axons, the proposed model of dDTI defines the vectorial parameters that will need to be measured to bring this much needed technique to fruition.
Collapse
Affiliation(s)
- Nikos Makris
- Harvard Medical School, Department of Psychiatry, Center for Morphometric Analysis, HST Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Department of Neurology, Center for Morphometric Analysis, HST Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA 02129, USA
- Corresponding author at: Massachusetts General Hospital, Center for Morphometric Analysis, Building 149, 13th Street, Office 10.006, Charlestown, MA 02129, USA. Tel.: +1 617 726 5733; fax: +1 617 726 5711.
| | - Gregory P. Gasic
- Harvard Medical School, Department of Radiology, HST Athinoula A. Martinos Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Leoncio Garrido
- Department of Physical Chemistry, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
34
|
Balasubramanian M, Mulkern RV, Wells WM, Sundaram P, Orbach DB. Magnetic resonance imaging of ionic currents in solution: the effect of magnetohydrodynamic flow. Magn Reson Med 2014; 74:1145-55. [PMID: 25273917 DOI: 10.1002/mrm.25445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/25/2014] [Accepted: 08/15/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE Reliably detecting MRI signals in the brain that are more tightly coupled to neural activity than blood-oxygen-level-dependent fMRI signals could not only prove valuable for basic scientific research but could also enhance clinical applications such as epilepsy presurgical mapping. This endeavor will likely benefit from an improved understanding of the behavior of ionic currents, the mediators of neural activity, in the presence of the strong magnetic fields that are typical of modern-day MRI scanners. THEORY Of the various mechanisms that have been proposed to explain the behavior of ionic volume currents in a magnetic field, only one-magnetohydrodynamic flow-predicts a slow evolution of signals, on the order of a minute for normal saline in a typical MRI scanner. METHODS This prediction was tested by scanning a volume-current phantom containing normal saline with gradient-echo-planar imaging at 3 T. RESULTS Greater signal changes were observed in the phase of the images than in the magnitude, with the changes evolving on the order of a minute. CONCLUSION These results provide experimental support for the MHD flow hypothesis. Furthermore, MHD-driven cerebrospinal fluid flow could provide a novel fMRI contrast mechanism.
Collapse
Affiliation(s)
- Mukund Balasubramanian
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert V Mulkern
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William M Wells
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Padmavathi Sundaram
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Darren B Orbach
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Gawryluk JR, Mazerolle EL, D'Arcy RCN. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci 2014; 8:239. [PMID: 25152709 PMCID: PMC4125856 DOI: 10.3389/fnins.2014.00239] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI.
Collapse
Affiliation(s)
- Jodie R Gawryluk
- Division of Medical Sciences, Department of Psychology, University of Victoria Victoria, BC, Canada
| | - Erin L Mazerolle
- Department of Radiology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Ryan C N D'Arcy
- Applied Sciences, Simon Fraser University Burnaby, BC, Canada ; Fraser Health Authority, Surrey Memorial Hospital Surrey, BC, Canada
| |
Collapse
|
36
|
Autio JA, Roberts RE. Interpreting functional diffusion tensor imaging. Front Neurosci 2014; 8:68. [PMID: 24782700 PMCID: PMC3990107 DOI: 10.3389/fnins.2014.00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/21/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joonas Arttu Autio
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu Oulu, Finland ; Department of Diagnostics, Faculty of Medicine, University of Oulu Oulu, Finland ; Department of Diagnostic Radiology, Oulu University Hospital Oulu, Finland
| | - R Edward Roberts
- Division of Brain Sciences, Academic Department of Neuro-otology, Imperial College London, Charing Cross Hospital Campus London, UK
| |
Collapse
|
37
|
Branzoli F, Ercan E, Webb A, Ronen I. The interaction between apparent diffusion coefficients and transverse relaxation rates of human brain metabolites and water studied by diffusion-weighted spectroscopy at 7 T. NMR IN BIOMEDICINE 2014; 27:495-506. [PMID: 24706330 DOI: 10.1002/nbm.3085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The dependence of apparent diffusion coefficients (ADCs) of molecules in biological tissues on an acquisition-specific timescale is a powerful mechanism for studying tissue microstructure. Unlike water, metabolites are confined mainly to intracellular compartments, thus providing higher specificity to tissue microstructure. Compartment-specific structural and chemical properties may also affect molecule transverse relaxation times (T₂). Here, we investigated the correlation between diffusion and relaxation for N-acetylaspartate, creatine and choline compounds in human brain white matter in vivo at 7 T, and compared them with those of water under the same experimental conditions. Data were acquired in a volume of interest in parietal white matter at two different diffusion times, Δ = 44 and 246 ms, using a matrix of three echo times (T(E)) and five diffusion weighting values (up to 4575 s/mm²). Significant differences in the dependence of the ADCs on T(E) were found between water and metabolites, as well as among the different metabolites. A significant decrease in water ADC as a function of TE was observed only at the longest diffusion time (p < 0.001), supporting the hypothesis that at least part of the restricted water pool can be associated with longer T₂, as suggested by previous studies in vitro. Metabolite data showed an increase of creatine (p < 0.05) and N-acetylaspartate (p < 0.05) ADCs with TE at Δ = 44 ms, and a decrease of creatine (p < 0.05) and N-acetylaspartate (p = 0.1) ADCs with TE at Δ = 246 ms. No dependence of choline ADC on TE was observed. The metabolite results suggest that diffusion and relaxation properties are dictated not only by metabolite distribution in different cell types, but also by other mechanisms, such as interactions with membranes, exchange between "free" and "bound" states or interactions with microsusceptibility gradients.
Collapse
Affiliation(s)
- Francesca Branzoli
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | |
Collapse
|
38
|
Kuroiwa D, Obata T, Kawaguchi H, Autio J, Hirano M, Aoki I, Kanno I, Kershaw J. Signal contributions to heavily diffusion-weighted functional magnetic resonance imaging investigated with multi-SE-EPI acquisitions. Neuroimage 2014; 98:258-65. [PMID: 24780698 DOI: 10.1016/j.neuroimage.2014.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/14/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022] Open
Abstract
Diffusion-weighted (DW) functional magnetic resonance imaging (fMRI) signal changes have been noted as a promising marker of neural activity. Although there is no agreement on the signal origin, the blood oxygen level dependent (BOLD) effect has figured as one of the most likely sources. In order to investigate possible BOLD and non-BOLD contributions to the signal, DW fMRI was performed on normal volunteers using a sequence with two echo-planar acquisitions after pulsed-gradient spin-echo. Along with the changes to the signal amplitude (ΔS/S) measured at both echo-times, this sequence allowed changes to the transverse relaxation rate (ΔR2) to be estimated for multiple b-values during hypercapnia (HC) and visual stimulation (VS). ΔS/S and ΔR2 observed during HC were relatively insensitive to increasing b-value. On the other hand, ΔS/S demonstrated a clear dependence on b-value at both echo-times for VS. In addition, ΔR2 during the latter half of VS was significantly more negative at b=1400s/mm(2) than for the time-courses at lower b-value, but ΔR2 during the post-stimulus undershoot was independent of b-value. The results have been discussed in terms of two models: the standard intravascular-extravascular model for fMRI and a three-compartment model (one intra- and two extravascular compartments). Within these interpretations the results suggest that the majority of the response is linked to changes in transverse relaxation, but possible contributions from other sources may not be ruled out.
Collapse
Affiliation(s)
- Daigo Kuroiwa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takayuki Obata
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan; Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hiroshi Kawaguchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Joonas Autio
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Masaya Hirano
- MR Engineering, GE Healthcare, Asahigaoka 4-7-127, Hino, Tokyo 191-8503, Japan
| | - Ichio Aoki
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Iwao Kanno
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Jeff Kershaw
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
39
|
Jiang C, Zhang L, Zou C, Long X, Liu X, Zheng H, Liao W, Diao Y. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging. PLoS One 2014; 9:e84822. [PMID: 24400118 PMCID: PMC3882241 DOI: 10.1371/journal.pone.0084822] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/21/2013] [Indexed: 11/26/2022] Open
Abstract
Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI). To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM) within a 24-hour interval. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial (λ//) and radial diffusivity (λ⊥) were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58%) was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05), while no hemispheric preference was observed for the same analysis for ADC (p = 0.77), λ// (p = 0.08) or FA (p = 0.25). The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.
Collapse
Affiliation(s)
- Chunxiang Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail:
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Long
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiqi Liao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjun Diao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
40
|
Mandl RCW, Schnack HG, Zwiers MP, Kahn RS, Hulshoff Pol HE. Functional diffusion tensor imaging at 3 Tesla. Front Hum Neurosci 2013; 7:817. [PMID: 24409133 PMCID: PMC3847896 DOI: 10.3389/fnhum.2013.00817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/11/2013] [Indexed: 11/13/2022] Open
Abstract
In a previous study we reported on a non-invasive functional diffusion tensor imaging (fDTI) method to measure neuronal signals directly from subtle changes in fractional anisotropy along white matter tracts. We hypothesized that these fractional anisotropy changes relate to morphological changes of glial cells induced by axonal activity. In the present study we set out to replicate the results of the previous study with an improved fDTI scan acquisition scheme. A group of twelve healthy human participants were scanned on a 3 Tesla MRI scanner. Activation was revealed in the contralateral thalamo-cortical tract and optic radiations during tactile and visual stimulation, respectively. Mean percent signal change in FA was 3.47% for the tactile task and 3.79% for the visual task, while for the MD the mean percent signal change was only -0.10 and -0.09%. The results support the notion of different response functions for tactile and visual stimuli. With this study we successfully replicated our previous findings using the same types of stimuli but on a different group of healthy participants and at different field-strength. The successful replication of our first fDTI results suggests that the non-invasive fDTI method is robust enough to study the functional neural networks in the human brain within a practically feasible time period.
Collapse
Affiliation(s)
- René C W Mandl
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Hugo G Schnack
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Marcel P Zwiers
- 2Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour Centre for Cognitive Neuroimaging Nijmegen, Netherlands
| | - René S Kahn
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| | - Hilleke E Hulshoff Pol
- 1Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
41
|
Williams RJ, McMahon KL, Hocking J, Reutens DC. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI. J Magn Reson Imaging 2013; 40:367-75. [PMID: 24923816 DOI: 10.1002/jmri.24353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/31/2013] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. MATERIALS AND METHODS Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. RESULTS The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). CONCLUSION The hemodynamic contribution to DfMRI may increase with the use of block designs.
Collapse
Affiliation(s)
- Rebecca J Williams
- University of Queensland, Centre for Advanced Imaging, Brisbane, Australia; University of Queensland, Queensland Brain Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
42
|
Yeh CH, Schmitt B, Le Bihan D, Li-Schlittgen JR, Lin CP, Poupon C. Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging. PLoS One 2013; 8:e76626. [PMID: 24130783 PMCID: PMC3794953 DOI: 10.1371/journal.pone.0076626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
This article describes the development and application of an integrated, generalized, and efficient Monte Carlo simulation system for diffusion magnetic resonance imaging (dMRI), named Diffusion Microscopist Simulator (DMS). DMS comprises a random walk Monte Carlo simulator and an MR image synthesizer. The former has the capacity to perform large-scale simulations of Brownian dynamics in the virtual environments of neural tissues at various levels of complexity, and the latter is flexible enough to synthesize dMRI datasets from a variety of simulated MRI pulse sequences. The aims of DMS are to give insights into the link between the fundamental diffusion process in biological tissues and the features observed in dMRI, as well as to provide appropriate ground-truth information for the development, optimization, and validation of dMRI acquisition schemes for different applications. The validity, efficiency, and potential applications of DMS are evaluated through four benchmark experiments, including the simulated dMRI of white matter fibers, the multiple scattering diffusion imaging, the biophysical modeling of polar cell membranes, and the high angular resolution diffusion imaging and fiber tractography of complex fiber configurations. We expect that this novel software tool would be substantially advantageous to clarify the interrelationship between dMRI and the microscopic characteristics of brain tissues, and to advance the biophysical modeling and the dMRI methodologies.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
- NeuroSpin, Commissariat à l’énergie atomique et aux énergies alternatives (CEA Saclay), Gif-sur-Yvette, France
- Institut de Federatif de Recherche 49, Gif-sur-Yvette, France
| | - Benoît Schmitt
- NeuroSpin, Commissariat à l’énergie atomique et aux énergies alternatives (CEA Saclay), Gif-sur-Yvette, France
- Institut de Federatif de Recherche 49, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, Commissariat à l’énergie atomique et aux énergies alternatives (CEA Saclay), Gif-sur-Yvette, France
- Institut de Federatif de Recherche 49, Gif-sur-Yvette, France
| | - Jing-Rebecca Li-Schlittgen
- Détermination de Formes et Identification (Equipe DEFI), Institut national de recherche en informatique et en automatique (INRIA Saclay), Palaiseau, France
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Cyril Poupon
- NeuroSpin, Commissariat à l’énergie atomique et aux énergies alternatives (CEA Saclay), Gif-sur-Yvette, France
- Institut de Federatif de Recherche 49, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
43
|
Water diffusion in brain cortex closely tracks underlying neuronal activity. Proc Natl Acad Sci U S A 2013; 110:11636-41. [PMID: 23801756 DOI: 10.1073/pnas.1303178110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuronal activity results in a local increase in blood flow. This concept serves as the basis for functional MRI. Still, this approach remains indirect and may fail in situations interfering with the neurovascular coupling mechanisms (drugs, anesthesia). Here we establish that water molecular diffusion is directly modulated by underlying neuronal activity using a rat forepaw stimulation model under different conditions of neuronal stimulation and neurovascular coupling. Under nitroprusside infusion, a neurovascular-coupling inhibitor, the diffusion response and local field potentials were maintained, whereas the hemodynamic response was abolished. As diffusion MRI reflects interactions of water molecules with obstacles (e.g., cell membranes), the observed changes point to a dynamic modulation of the neural tissue structure upon activation, which remains to be investigated. These findings represent a significant shift in concept from the current electrochemical and neurovascular coupling principles used for brain imaging, and open unique avenues to investigate mechanisms underlying brain function.
Collapse
|
44
|
Jin T, Kim SG. Characterization of non-hemodynamic functional signal measured by spin-lock fMRI. Neuroimage 2013; 78:385-95. [PMID: 23618601 DOI: 10.1016/j.neuroimage.2013.04.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 01/29/2023] Open
Abstract
Current functional MRI techniques measure hemodynamic changes induced by neural activity. Alternative measurement of signals originated from tissue is desirable and may be achieved using T1ρ, the spin-lattice relaxation time in the rotating-frame, which is measured by spin-lock MRI. Functional T1ρ changes in the brain can have contributions from vascular dilation, tissue acidosis, and potentially other contributions. When the blood contributions were suppressed with a contrast agent at 9.4 T, a small tissue-originated T1ρ change was consistently observed at the middle cortical layers of cat visual cortex during visual stimulation, which had different dynamic characteristics compared to hemodynamic fMRI such as a faster response and no post-stimulus undershoot. Functional tissue T1ρ is highly dependent on the magnetic field strength and experimental parameters such as the power of the spin-locking pulse. With a 500Hz spin-locking pulse, the tissue T1ρ without the blood contribution increased during visual stimulation, but decreased during acidosis-inducing hypercapnia and global ischemia, indicating different signal origins. Phantom studies suggest that it may have contribution from concentration decrease in metabolites. Even though the sensitivity is much weaker than BOLD and its exact interpretation needs further investigation, our results show that non-hemodynamic functional signal can be consistently observed by spin-lock fMRI.
Collapse
Affiliation(s)
- Tao Jin
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.
| | | |
Collapse
|
45
|
Tirosh N, Nevo U. Neuronal activity significantly reduces water displacement: DWI of a vital rat spinal cord with no hemodynamic effect. Neuroimage 2013; 76:98-107. [PMID: 23507391 DOI: 10.1016/j.neuroimage.2013.02.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
Changes in the diffusion weighted MRI (DWI) signal were observed to be correlated with neuronal activity during chemically induced brain activity, epileptic seizures, or visual stimulation. These changes suggest a possible reduction in water displacement that accompanies neuronal activity, but were possibly affected by other physiological mechanisms such as blood oxygenation level and blood flow. We developed an imaging experiment of an excised and vital newborn rat spinal cord to examine the effect of neuronal function on the displacement of water molecules as measured by DWI signal. This approach provides a DWI experiment of a vital mammalian CNS tissue in the absence of some of the systemic sources of noise. We detected a significant and reproducible drop with an average value of 19.5 ± 1.6% (mean ± SE) upon activation. The drop repeated itself in three orthogonal directions. ADC values corresponded to an oblate anisotropy. This result was validated by high resolution DWI of a fixed tissue, imaged with an ultra-high field MRI. The results support our working hypothesis that water displacement is affected by neuronal activation. These results further imply that water displacement might serve as a potential marker for brain function, and that, although commonly viewed as wholly electrochemical, neuronal activity includes a significant mechanical dimension that affects water displacement.
Collapse
Affiliation(s)
- Nitzan Tirosh
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | |
Collapse
|
46
|
Aso T, Urayama SI, Fukuyama H, Le Bihan D. Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task. Neuroimage 2013; 67:25-32. [DOI: 10.1016/j.neuroimage.2012.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 10/04/2012] [Accepted: 11/02/2012] [Indexed: 11/25/2022] Open
|
47
|
Ding AY, Li Q, Zhou IY, Ma SJ, Tong G, McAlonan GM, Wu EX. MR diffusion tensor imaging detects rapid microstructural changes in amygdala and hippocampus following fear conditioning in mice. PLoS One 2013; 8:e51704. [PMID: 23382811 PMCID: PMC3559642 DOI: 10.1371/journal.pone.0051704] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/05/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Following fear conditioning (FC), ex vivo evidence suggests that early dynamics of cellular and molecular plasticity in amygdala and hippocampal circuits mediate responses to fear. Such altered dynamics in fear circuits are thought to be etiologically related to anxiety disorders including posttraumatic stress disorder (PTSD). Consistent with this, neuroimaging studies of individuals with established PTSD in the months after trauma have revealed changes in brain regions responsible for processing fear. However, whether early changes in fear circuits can be captured in vivo is not known. METHODS We hypothesized that in vivo magnetic resonance diffusion tensor imaging (DTI) would be sensitive to rapid microstructural changes elicited by FC in an experimental mouse PTSD model. We employed a repeated measures paired design to compare in vivo DTI measurements before, one hour after, and one day after FC-exposed mice (n=18). RESULTS Using voxel-wise repeated measures analysis, fractional anisotropy (FA) significantly increased then decreased in amygdala, decreased then increased in hippocampus, and was increasing in cingulum and adjacent gray matter one hour and one day post-FC respectively. These findings demonstrate that DTI is sensitive to early changes in brain microstructure following FC, and that FC elicits distinct, rapid in vivo responses in amygdala and hippocampus. CONCLUSIONS Our results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in individuals at risk for developing PTSD.
Collapse
Affiliation(s)
- Abby Y. Ding
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Qi Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction Growth and Development, The University of Hong Kong, Hong Kong SAR, China
| | - Iris Y. Zhou
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Samantha J. Ma
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
| | - Gehua Tong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
| | - Grainne M. McAlonan
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
- Centre for Reproduction Growth and Development, The University of Hong Kong, Hong Kong SAR, China
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, King’s College London
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
48
|
Bissig D, Berkowitz BA. Light-dependent changes in outer retinal water diffusion in rats in vivo. Mol Vis 2012; 18:2561-xxx. [PMID: 23129976 PMCID: PMC3482170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To test the hypothesis that in rats, intraretinal light-dependent changes on diffusion-weighted magnetic resonance imaging (MRI) in vivo are consistent with known retinal layer-specific physiology. METHODS In male Sprague-Dawley rats, retinal morphology (thickness, extent, surface area, volume) and intraretinal profiles of the apparent diffusion coefficient (ADC, i.e., water mobility) parallel and perpendicular to the optic nerve were measured in vivo using quantitative MRI methods during light and dark stimulation. RESULTS The parallel ADC in the posterior half of the avascular, photoreceptor-dominated outer retina was significantly higher in light than dark, and this pattern was reversed (dark>light) in the anterior outer retina. The perpendicular ADC in the posterior outer retina was similar in light and dark, but was significantly higher in dark than light in the anterior outer retina. No light-dark changes in the inner retina were noted. CONCLUSIONS We identified light-dependent intraretinal diffusion changes that reflected established stimulation-based changes in outer retinal hydration. These findings are expected to motivate future applications of functional diffusion-based MRI in blinding disorders of the outer retina.
Collapse
Affiliation(s)
- David Bissig
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI
| | - Bruce A. Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI,Department of Ophthalmology, Wayne State University, Detroit, MI
| |
Collapse
|
49
|
Spees WM, Lin TH, Song SK. White-matter diffusion fMRI of mouse optic nerve. Neuroimage 2012; 65:209-15. [PMID: 23085108 DOI: 10.1016/j.neuroimage.2012.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022] Open
Abstract
Non-invasive assessment of white-matter functionality in the nervous system would be a valuable basic neuroscience and clinical diagnostic tool. Using standard MRI techniques, a visual-stimulus-induced 27% decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC(perpendicular)) is demonstrated for C57BL/6 mouse optic nerve in vivo. No change in ADC(||) (diffusion parallel to the optic nerve fibers) was observed during visual stimulation. The stimulus-induced changes are completely reversible. A possible vascular contribution was sought by carrying out the ADC(perpendicular) measurements in hypercapnic mice with and without visual stimulus. Similar effects were seen in room-air-breathing and hypercapnic animals. The in vivo stimulus-induced ADC(perpendicular) decreases are roughly similar to literature reports for ex vivo rat optic nerve preparations under conditions of osmotic swelling. The experimental results strongly suggest that osmotic after-effects of nerve impulses through the axonal fibers are responsible for the observed ADC decrease.
Collapse
Affiliation(s)
- William M Spees
- Biomedical MR Laboratory, Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
50
|
Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain. Neuroimage 2012; 64:448-57. [PMID: 23000787 DOI: 10.1016/j.neuroimage.2012.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 01/15/2023] Open
Abstract
Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10<b<2000s.mm(-2)). The diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non-invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies.
Collapse
|