1
|
Lusta KA, Summerhill VI, Khotina VA, Sukhorukov VN, Glanz VY, Orekhov AN. The Role of Bacterial Extracellular Membrane Nanovesicles in Atherosclerosis: Unraveling a Potential Trigger. Curr Atheroscler Rep 2024; 26:289-304. [PMID: 38805145 DOI: 10.1007/s11883-024-01206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW In this review, we explore the intriguing and evolving connections between bacterial extracellular membrane nanovesicles (BEMNs) and atherosclerosis development, highlighting the evidence on molecular mechanisms by which BEMNs can promote the athero-inflammatory process that is central to the progression of atherosclerosis. RECENT FINDINGS Atherosclerosis is a chronic inflammatory disease primarily driven by metabolic and lifestyle factors; however, some studies have suggested that bacterial infections may contribute to the development of both atherogenesis and inflammation in atherosclerotic lesions. In particular, the participation of BEMNs in atherosclerosis pathogenesis has attracted special attention. We provide some general insights into how the immune system responds to potential threats such as BEMNs during the development of atherosclerosis. A comprehensive understanding of contribution of BEMNs to atherosclerosis pathogenesis may lead to the development of targeted interventions for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Volha I Summerhill
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| | - Victoria A Khotina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Victor Y Glanz
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky Russian National Center of Surgery, Moscow, 119991, Russia.
- Department of Research and Development, Institute for Atherosclerosis Research, Moscow, 121609, Russia.
| |
Collapse
|
2
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
3
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
4
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Bradford MK, Elkins KL. Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Sci Rep 2020; 10:12023. [PMID: 32694562 PMCID: PMC7374111 DOI: 10.1038/s41598-020-68798-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes tularemia by invading and replicating in mammalian myeloid cells. Francisella primarily invades host macrophages, where it escapes phagosomes within a few hours and replicates in the cytoplasm. Less is known about how Francisella traffics within macrophages or exits into the extracellular environment for further infection. Immune T lymphocytes control the replication of Francisella within macrophages in vitro by a variety of mechanisms, but nothing is known about intracellular bacterial trafficking in the face of such immune pressure. Here we used a murine model of infection with a Francisella attenuated live vaccine strain (LVS), which is under study as a human vaccine, to evaluate the hypothesis that immune T cells control intramacrophage bacterial growth by re-directing bacteria into toxic intracellular compartments of infected macrophages. We visualized the interactions of lymphocytes and LVS-infected macrophages using confocal microscopy and characterized LVS intramacrophage trafficking when co-cultured with immune lymphocytes. We focused on the late stages of infection after bacteria escape from phagosomes, through bacterial replication and the death of macrophages. We found that the majority of LVS remained cytosolic in the absence of immune pressure, eventually resulting in macrophage death. In contrast, co-culture of LVS-infected macrophages with LVS-immune lymphocytes halted LVS replication and inhibited the spread of LVS infection between macrophages, but bacteria did not return to vacuoles such as lysosomes or autophagosomes and macrophages did not die. Therefore, immune lymphocytes directly limit intracellular bacterial replication within the cytoplasm of infected macrophages.
Collapse
Affiliation(s)
- Mary Katherine Bradford
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.,Johns Hopkins University Professional Development and Career Office, 1830 E. Monument, 2-107, Baltimore, MD, 21287, USA
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
6
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
7
|
Yang J, Wang J, Zhang X, Qiu Y, Yan J, Sun S, He Y, Yin Y, Xu W. Mast cell degranulation impairs pneumococcus clearance in mice via IL-6 dependent and TNF-α independent mechanisms. World Allergy Organ J 2019; 12:100028. [PMID: 31044024 PMCID: PMC6479162 DOI: 10.1016/j.waojou.2019.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
Background Mast cells participate in immune responses by releasing potent immune system modifiers via degranulation. Due to currently reported controversial roles of mast cells in Streptococcus pneumoniae infections, this study aimed to determine the role and mechanism of mast cells in clearing S. pneumoniae in mice. Methods In vivo mouse model of mast cell degranulation established by administration of C48/80 was evaluated for the influences of mast cell degranulation on bacterial colonization and inflammation. In vitro model was established to observe the influences of mast cell degranulation on phagocytic and bactericidal functions of neutrophils and macrophages. IL-6 null and TNF-α null mice on the C57BL/6 background were used to investigate the effects of inflammatory factors released by mast cell degranulation on bacterial clearance. Results Mast cell degranulation increased IL-6 and TNF-α levels and immune cell numbers in nasal lavage fluid, and inhibited the bactericidal function of macrophages and neutrophils in vitro. It decreased the number of neutrophils and macrophages recruited to respiratory tract after S. pneumoniae challenge and inhibited the clearance of S. pneumoniae in mice. After pretreatment with C48/80, S. pneumoniae loads were significantly lower in IL-6 null mice than in wild type mice, while no differences were observed between TNF-α null and wild type mice. Conclusions Mast cell degranulation can cause inflammation and impair immune cell recruitment to respiratory tract after S. pneumoniae challenge. Products of mast cell degranulation including IL-6 decreased the bactericidal function of neutrophils and macrophages. Through these mechanisms, mast cell degranulation inhibited clearance of S. pneumoniae in mice.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jichao Wang
- Department of Clinical Laboratory, Chongqing Hospital for Women and Children, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yulan Qiu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jurong Yan
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Si Sun
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
De Zuani M, Paolicelli G, Zelante T, Renga G, Romani L, Arzese A, Pucillo CEM, Frossi B. Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus. Front Immunol 2018; 9:2829. [PMID: 30555491 PMCID: PMC6284040 DOI: 10.3389/fimmu.2018.02829] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are long-lived immune cells widely distributed at mucosal surfaces and are among the first immune cell type that can get in contact with the external environment. This study aims to unravel the mechanisms of reciprocal influence between mucosal MCs and Candida albicans as commensal/opportunistic pathogen species in humans. Stimulation of bone marrow-derived mast cells (BMMCs) with live forms of C. albicans induced the release of TNF-α, IL-6, IL-13, and IL-4. Quite interestingly, BMMCs were able to engulf C. albicans hyphae, rearranging their α-tubulin cytoskeleton and accumulating LAMP1+ vesicles at the phagocytic synapse with the fungus. Candida-infected MCs increased macrophage crawling ability and promoted their chemotaxis against the infection. On the other side, resting MCs inhibited macrophage phagocytosis of C. albicans in a contact-dependent manner. Taken together, these results indicate that MCs play a key role in the maintenance of the equilibrium between the host and the commensal fungus C. albicans, limiting pathological fungal growth and modulating the response of resident macrophages during infections.
Collapse
Affiliation(s)
- Marco De Zuani
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
9
|
Abstract
Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Center of functional genomics (C.U.R.Ge.F.), Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Trivedi NH, Yu JJ, Hung CY, Doelger RP, Navara CS, Armitige LY, Seshu J, Sinai AP, Chambers JP, Guentzel MN, Arulanandam BP. Microbial co-infection alters macrophage polarization, phagosomal escape, and microbial killing. Innate Immun 2018; 24:152-162. [PMID: 29482417 PMCID: PMC6852389 DOI: 10.1177/1753425918760180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrophages are important innate immune cells that respond to microbial insults.
In response to multi-bacterial infection, the macrophage activation state may
change upon exposure to nascent mediators, which results in different bacterial
killing mechanism(s). In this study, we utilized two respiratory bacterial
pathogens, Mycobacterium bovis (Bacillus Calmette
Guẻrin, BCG) and Francisella tularensis live
vaccine strain (LVS) with different phagocyte evasion mechanisms, as model
microbes to assess the influence of initial bacterial infection on the
macrophage response to secondary infection. Non-activated (M0) macrophages or
activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene)
were first infected with BCG for 24–48 h, subsequently challenged with LVS, and
the results of inhibition of LVS replication in the macrophages was assessed.
BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling
pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS.
BCG infection had little effect on LVS escape from phagosomes into the cytosol
in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced
endosomal acidification, as well as inhibiting LVS replication. Pre-infection
with BCG did not induce NO production and thus did not further reduce LVS
replication. This study provides a model for studies of the complexity of
macrophage activation in response to multi-bacterial infection.
Collapse
Affiliation(s)
- Nikita H Trivedi
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Jieh-Juen Yu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Chiung-Yu Hung
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Richard P Doelger
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Christopher S Navara
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | | | - Janakiram Seshu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Anthony P Sinai
- 3 The Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, USA
| | - James P Chambers
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - M Neal Guentzel
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Bernard P Arulanandam
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| |
Collapse
|
11
|
Yoshino N, Takeshita R, Kawamura H, Sasaki Y, Kagabu M, Sugiyama T, Muraki Y, Sato S. Mast cells partially contribute to mucosal adjuvanticity of surfactin in mice. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:117-127. [PMID: 29105371 PMCID: PMC5818442 DOI: 10.1002/iid3.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022]
Abstract
Introduction Surfactin (SF) is a cyclic lipopeptide that has potent mucosal adjuvant properties. However, immunological mechanisms of SF adjuvant action have not yet been elucidated. As some cyclic lipopeptides, such as polymyxin, can stimulate histamine release from mast cells, we hypothesized that mast cell activation is critical for SF adjuvanticity. Methods/Results We observed that following intranasal immunization with ovalbumin (OVA) plus SF, the titers of the OVA‐specific antibody (Ab) in the mucosal secretions and plasma of mast cell‐deficient mice were significantly lower than those in congenic normal mice, although OVA‐specific Ab did not entirely disappear from mast cell‐deficient mice. SF induced degranulation of mast cells and release of histamine in vitro. To investigate whether SF stimulated mast cells in vivo, we measured body temperature of mice immunized intranasally with OVA plus SF because histamine level affects body temperature. Following immunizations, body temperature of immunized congenic normal mice transiently decreased, whereas body temperature of mast cell‐deficient mice did not change. Plasma levels of OVA‐specific IgE Ab were not significantly different in mast cell‐deficient and congenic normal mice. These findings suggest that SF directly affected mast cells in an IgE Ab‐independent fashion. Furthermore, we analyzed the effects of SF on MC/9 mast cells cultured in vitro. MC/9 cells stimulated by SF released not only histamine but also leukotriene B4 and prostaglandin D2. Moreover, SF up‐regulated mRNA expression levels of Tnf, Ccr5, and Il4 genes in mast cells. These cytokines may play a facilitating role in OVA‐specific immune responses in mice. Conclusion Overall, our results showed that mast cell activation partially mediated SF adjuvanticity.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Hanae Kawamura
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yutaka Sasaki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Masahiro Kagabu
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yasushi Muraki
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Shigehiro Sato
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
12
|
Garcia-Rodriguez KM, Goenka A, Alonso-Rasgado MT, Hernández-Pando R, Bulfone-Paus S. The Role of Mast Cells in Tuberculosis: Orchestrating Innate Immune Crosstalk? Front Immunol 2017; 8:1290. [PMID: 29089945 PMCID: PMC5650967 DOI: 10.3389/fimmu.2017.01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis causes more annual deaths globally than any other infectious disease. However, progress in developing novel vaccines, diagnostics, and therapies has been hampered by an incomplete understanding of the immune response to Mycobacterium tuberculosis (Mtb). While the role of many immune cells has been extensively explored, mast cells (MCs) have been relatively ignored. MCs are tissue resident cells involved in defense against bacterial infections playing an important role mediating immune cell crosstalk. This review discusses specific interactions between MCs and Mtb, their contribution to both immunity and disease pathogenesis, and explores their role in orchestrating other immune cells against infections.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Maria T. Alonso-Rasgado
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubiran”, Mexico City, Mexico
| | - Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Abstract
Mast cells (MCs) play a central role in tissue homoeostasis, sensing the local environment through numerous innate cell surface receptors. This enables them to respond rapidly to perceived tissue insults with a view to initiating a co-ordinated programme of inflammation and repair. However, when the tissue insult is chronic, the ongoing release of multiple pro-inflammatory mediators, proteases, cytokines and chemokines leads to tissue damage and remodelling. In asthma, there is strong evidence of ongoing MC activation, and their mediators and cell-cell signals are capable of regulating many facets of asthma pathophysiology. This article reviews the evidence behind this.
Collapse
Affiliation(s)
- P Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - G Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| |
Collapse
|
14
|
Rodriguez AR, Yu JJ, Navara C, Chambers JP, Guentzel MN, Arulanandam BP. Contribution of FcɛRI-associated vesicles to mast cell-macrophage communication following Francisella tularensis infection. Innate Immun 2016; 22:567-74. [PMID: 27554051 DOI: 10.1177/1753425916663639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Understanding innate immune intercellular communication following microbial infection remains a key biological issue. Using live cell imaging, we demonstrate that mast cells actively extend cellular projections to sample the macrophage periphery during Francisella tularensis LVS infection. Mast cell MHCII(hi) expression was elevated from less than 1% to 13% during LVS infection. Direct contact during co-culture with macrophages further increased mast cell MHCII(hi) expression to approximately 87%. Confocal analyses of the cellular perimeter revealed mast cell caspase-1 was localized in close proximity with FcɛRI in uninfected mast cells, and repositioned to clustered regions upon LVS infection. Importantly, mast cell FcɛRI-encompassed vesicles are transferred to macrophages by trogocytosis, and macrophage caspase-1 expression is further up-regulated upon direct contact with mast cells. Our study reveals direct cellular interactions between innate cells that may impact the function of caspase-1, a known sensor of microbial danger and requirement for innate defense against many pathogenic microbes including F. tularensis.
Collapse
Affiliation(s)
- Annette R Rodriguez
- RCMI, Biophotonics Core, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Christopher Navara
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
15
|
Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol 2016; 17:356-63. [PMID: 27002843 DOI: 10.1038/ni.3375] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of 'trained' innate cells that facilitate the rapid elimination of homologous or heterologous infections.
Collapse
|
16
|
Johnzon CF, Rönnberg E, Pejler G. The Role of Mast Cells in Bacterial Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:4-14. [DOI: 10.1016/j.ajpath.2015.06.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 01/21/2023]
|
17
|
Buchacher T, Ohradanova-Repic A, Stockinger H, Fischer MB, Weber V. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae. PLoS One 2015; 10:e0143593. [PMID: 26606059 PMCID: PMC4659546 DOI: 10.1371/journal.pone.0143593] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence for the ability of C. pneumoniae to evade cellular defense and to persist in human macrophages.
Collapse
Affiliation(s)
- Tanja Buchacher
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria
| | - Anna Ohradanova-Repic
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hannes Stockinger
- Molecular Immunology Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
- Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Krems, Austria
- Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
- * E-mail:
| |
Collapse
|
18
|
Nieto-Patlán A, Campillo-Navarro M, Rodríguez-Cortés O, Muñoz-Cruz S, Wong-Baeza I, Estrada-Parra S, Estrada-García I, Serafín-López J, Chacón-Salinas R. Recognition of Candida albicans by Dectin-1 induces mast cell activation. Immunobiology 2015; 220:1093-100. [DOI: 10.1016/j.imbio.2015.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/10/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
|
19
|
Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells. Cell Immunol 2015; 295:83-91. [PMID: 25863744 DOI: 10.1016/j.cellimm.2015.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/27/2015] [Accepted: 03/26/2015] [Indexed: 11/23/2022]
Abstract
The human pathogen Chlamydia pneumoniae has been implicated in chronic inflammatory diseases including type 2 diabetes. Therefore, we designed a study to evaluate pancreatic beta cells and mast cells during chlamydial infection. Our study revealed that C. pneumoniae infected mast cells significantly (p<0.005) decreased beta cell ATP and insulin production, in contrast to uninfected mast cells co-cultured with beta cells. Infected mast cells exhibited pyknotic nuclei and active caspase-3 and caspase-1 expression. Additionally, ex vivo analyses of tissues collected from C. pneumoniae infected mice showed increased interleukin-1β production in splenocytes and pancreatic tissues as was observed with in vitro mast cell-beta cell co-cultures during C. pneumoniae infection. Notably, infected mast cells promoted beta cell destruction. Our findings reveal the negative effect of C. pneumoniae on mast cells, and the consequential impact on pancreatic beta cell function and viability.
Collapse
|
20
|
Chiba N, Shimada K, Chen S, Jones HD, Alsabeh R, Slepenkin AV, Peterson E, Crother TR, Arditi M. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway. THE JOURNAL OF IMMUNOLOGY 2015; 194:3840-51. [PMID: 25754739 DOI: 10.4049/jimmunol.1402685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/02/2015] [Indexed: 01/17/2023]
Abstract
Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.
Collapse
Affiliation(s)
- Norika Chiba
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Kenichi Shimada
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Shuang Chen
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Heather D Jones
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Randa Alsabeh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048; and
| | | | - Ellena Peterson
- Department of Pathology, University of California Irvine, Irvine, CA 92697
| | - Timothy R Crother
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases and Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90048;
| |
Collapse
|
21
|
Campillo-Navarro M, Chávez-Blanco AD, Wong-Baeza I, Serafín-López J, Flores-Mejía R, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Mast Cells in Lung Homeostasis: Beyond Type I Hypersensitivity. CURRENT RESPIRATORY MEDICINE REVIEWS 2014; 10:115-123. [PMID: 25484639 PMCID: PMC4255078 DOI: 10.2174/1573398x10666141024220151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/07/2014] [Accepted: 10/23/2014] [Indexed: 12/29/2022]
Abstract
Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | | | - Isabel Wong-Baeza
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Raúl Flores-Mejía
- Department of Immunology, Superior School of Medicine, National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Iris Estrada-García
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| |
Collapse
|
22
|
Abstract
Macrophages are a diverse population of phagocytic cells that reside in tissues throughout the body. At sites of infection, macrophages encounter and engulf invading microbes. Accordingly, macrophages possess specialized effector functions to kill or coordinate the elimination of their prey. Nevertheless, many intracellular bacterial pathogens preferentially replicate inside macrophages. Here we consider explanations for what we call "the macrophage paradox:" why do so many pathogenic bacteria replicate in the very cells equipped to destroy them? We ask whether replication in macrophages is an unavoidable fate that essentially defines a key requirement to be a pathogen. Conversely, we consider whether fundamental aspects of macrophage biology provide unique cellular or metabolic environments that pathogens can exploit. We conclude that resolution of the macrophage paradox requires acknowledgment of the richness and complexity of macrophages as a replicative niche.
Collapse
Affiliation(s)
- Jordan V Price
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
24
|
van den Boogaard FE, Brands X, Roelofs JJTH, de Beer R, de Boer OJ, van 't Veer C, van der Poll T. Mast cells impair host defense during murine Streptococcus pneumoniae pneumonia. J Infect Dis 2014; 210:1376-84. [PMID: 24823624 DOI: 10.1093/infdis/jiu285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia. Mast cells (MCs) are located mainly at the host-environment interface where they function as sentinels. OBJECTIVE Our goal was to study the role of MCs during pneumonia caused by S. pneumoniae. METHODS Lung tissue of patients who had died from pneumococcal pneumonia or a nonpulmonary cause was stained for MCs and tryptase. Wild-type (WT) and MC-deficient (Kit(W-sh/W-sh)) mice were observed or sacrificed after induction of pneumonia by intranasal inoculation of S. pneumoniae. In separate experiments, WT mice were treated with doxantrazole or cromoglycate, which are MC stabilizing agents. RESULTS The constitutive presence of tryptase-positive MCs was reduced in affected lungs from pneumonia patients. Kit(W-sh/W-sh) mice showed a prolonged survival during the first few days after median lethal dose (LD)100 and LD50 infection, while overall mortality did not differ from that in WT mice. Relative to WT mice, Kit(W-sh/W-sh) mice showed reduced bacterial counts with less bacterial dissemination to distant organs and less inflammation. Neither doxantrazole nor cromoglycate influenced antibacterial defense or inflammatory responses after airway infection with S. pneumoniae. CONCLUSIONS MCs exhibit an unfavorable role in host defense during pneumococcal pneumonia by a mechanism independent of degranulation.
Collapse
Affiliation(s)
| | - Xanthe Brands
- Center for Experimental and Molecular Medicine Center for Infection and Immunity Amsterdam
| | | | - Regina de Beer
- Center for Experimental and Molecular Medicine Center for Infection and Immunity Amsterdam
| | | | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine Center for Infection and Immunity Amsterdam
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine Center for Infection and Immunity Amsterdam Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
25
|
Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS, Lam L, Mukundan L, Chawla A, Monack DM. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 2014; 14:171-182. [PMID: 23954156 DOI: 10.1016/j.chom.2013.07.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/10/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Host-adapted Salmonella strains are responsible for a number of disease manifestations in mammals, including an asymptomatic chronic infection in which bacteria survive within macrophages located in systemic sites. However, the host cell physiology and metabolic requirements supporting bacterial persistence are poorly understood. In a mouse model of long-term infection, we found that S. typhimurium preferentially associates with anti-inflammatory/M2 macrophages at later stages of infection. Further, PPARδ, a eukaryotic transcription factor involved in sustaining fatty acid metabolism, is upregulated in Salmonella-infected macrophages. PPARδ deficiency dramatically inhibits Salmonella replication, which is linked to the metabolic state of macrophages and the level of intracellular glucose available to bacteria. Pharmacological activation of PPARδ increases glucose availability and enhances bacterial replication in macrophages and mice, while Salmonella fail to persist in Pparδ null mice. These data suggest that M2 macrophages represent a unique niche for long-term intracellular bacterial survival and link the PPARδ-regulated metabolic state of the host cell to persistent bacterial infection.
Collapse
Affiliation(s)
- Nicholas A Eisele
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Ruby
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Jacobson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo S Manzanillo
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense. University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffery S Cox
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense. University of California San Francisco, San Francisco, CA 94143, USA
| | - Lilian Lam
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lata Mukundan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Griffin AJ, Crane DD, Wehrly TD, Scott DP, Bosio CM. Alternative activation of macrophages and induction of arginase are not components of pathogenesis mediated by Francisella species. PLoS One 2013; 8:e82096. [PMID: 24324751 PMCID: PMC3855703 DOI: 10.1371/journal.pone.0082096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023] Open
Abstract
Virulent Francisella tularensis ssp tularensis is an intracellular, Gram negative bacterium that causes acute lethal disease following inhalation of fewer than 15 organisms. Pathogenicity of Francisella infections is tied to its unique ability to evade and suppress inflammatory responses in host cells. It has been proposed that induction of alternative activation of infected macrophages is a mechanism by which attenuated Francisella species modulate host responses. In this report we reveal that neither attenuated F. tularensis Live Vaccine Strain (LVS) nor virulent F. tularensis strain SchuS4 induce alternative activation of macrophages in vitro or in vivo. LVS, but not SchuS4, provoked production of arginase1 independent of alternative activation in vitro and in vivo. However, absence of arginase1 did not significantly impact intracellular replication of LVS or SchuS4. Together our data establish that neither induction of alternative activation nor expression of arginase1 are critical features of disease mediated by attenuated or virulent Francisella species.
Collapse
Affiliation(s)
- Amanda J. Griffin
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Deborah D. Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tara D. Wehrly
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Veterinary Pathology Section, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
28
|
Yoshino N, Endo M, Kanno H, Matsukawa N, Tsutsumi R, Takeshita R, Sato S. Polymyxins as novel and safe mucosal adjuvants to induce humoral immune responses in mice. PLoS One 2013; 8:e61643. [PMID: 23593492 PMCID: PMC3623863 DOI: 10.1371/journal.pone.0061643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/12/2013] [Indexed: 11/21/2022] Open
Abstract
There is currently an urgent need to develop safe and effective adjuvants for enhancing vaccine-induced antigen-specific immune responses. We demonstrate here that intranasal immunization with clinically used polypeptide antibiotics, polymyxin B (PMB) and colistin (CL), along with ovalbumin (OVA), increases OVA-specific humoral immune responses in a dose-dependently manner at both mucosal and systemic compartments. Enhanced immunity by boosting was found to persist during 8 months of observation. Moreover, mice intranasally immunized with OVA plus various doses of PMB or CL showed neither inflammatory responses in the nasal cavity and olfactory bulbs nor renal damages, compared to those given OVA alone. These data suggest that polymyxins may serve as novel and safe mucosal adjuvants to induce humoral immune responses. The polymyxin adjuvanticity was found to be independent of endotoxins liberated by its bactericidal activity, as indicated by similar enhancing effects of PMB in lipopolysaccharide (LPS)-hyporesponsive and LPS-susceptible mice. However, despite the presence of preexisting anti-PMB antibodies, we observed no reduction in the adjuvant function of polymyxins when they were given intranasally. Furthermore, the titers of OVA-specific Abs in mice intranasally immunized with OVA plus PMB or CL were significantly higher than those in mice administered with polymyxin analogues, such as polymyxin B nonapeptide and colistin methanesulfonate. The levels of released β-hexosaminidase and histamine in mast cell culture supernatants stimulated by PMB or CL were also significantly higher than those stimulated by their analogues. These results suggest that both the hydrophobic carbon chain and hydrophilic cationic cyclic peptide contribute to the mucosal adjuvanticity of PMB and CL.
Collapse
Affiliation(s)
- Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med 2013; 3:a010314. [PMID: 23545572 DOI: 10.1101/cshperspect.a010314] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Francisella tularensis is a zoonotic intracellular pathogen and the causative agent of the debilitating febrile illness tularemia. Although natural infections by F. tularensis are sporadic and generally localized, the low infectious dose, with the ability to be transmitted to humans via multiple routes and the potential to cause life-threatening infections, has led to concerns that this bacterium could be used as an agent of bioterror and released intentionally into the environment. Recent studies of F. tularensis and other closely related Francisella species have greatly increased our understanding of mechanisms used by this organism to infect and cause disease within the host. Here, we review the intracellular life cycle of Francisella and highlight key genetic determinants and/or pathways that contribute to the survival and proliferation of this bacterium within host cells.
Collapse
Affiliation(s)
- Jean Celli
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MO 59840, USA
| | | |
Collapse
|
30
|
Graham AC, Hilmer KM, Zickovich JM, Obar JJ. Inflammatory response of mast cells during influenza A virus infection is mediated by active infection and RIG-I signaling. THE JOURNAL OF IMMUNOLOGY 2013; 190:4676-84. [PMID: 23526820 DOI: 10.4049/jimmunol.1202096] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Influenza A virus (IAV) is a major respiratory pathogen of both humans and animals. The lung is protected from pathogens by alveolar epithelial cells, tissue-resident alveolar macrophages, dendritic cells, and mast cells. The role of alveolar epithelial cells, endothelial cells, and alveolar macrophages during IAV infection has been studied previously. In this study, we address the role of mast cells during IAV infection. Respiratory infection with A/WSN/33 causes significant disease and immunopathology in C57BL/6 mice but not in B6.Cg-Kit(W-sh) mice, which lack mast cells. During in vitro coculture, A/WSN/33 caused mast cells to release histamine, secrete cytokines and chemokines, and produce leukotrienes. Moreover, when mast cells were infected with IAV, the virus did not replicate within mast cells. Importantly, human H1N1, H3N2, and influenza B virus isolates also could activate mast cells in vitro. Mast cell production of cytokines and chemokines occurs in a RIG-I/MAVS-dependent mechanism; in contrast, histamine production occurred through a RIG-I/MAVS-independent mechanism. Our data highlight that, following IAV infection, the response of mast cells is controlled by multiple receptors. In conclusion, we identified a unique inflammatory cascade activated during IAV infection that could potentially be targeted to limit morbidity following IAV infection.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA
| | | | | | | |
Collapse
|
31
|
Hunter C, Rodriguez A, Yu JJ, Chambers J, Guentzel MN, Arulanandam B. Comparison of bone marrow-derived and mucosal mast cells in controlling intramacrophage Francisella tularensis replication. Exp Biol Med (Maywood) 2012; 237:617-21. [PMID: 22688822 DOI: 10.1258/ebm.2012.011389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the importance of mast cells (MCs) in response to allergens has been characterized extensively, the contribution of these cells in host defense against bacterial pathogens is not well understood. Previously, we have demonstrated that the release of interleukin-4 by bone marrow-derived MCs inhibits intramacrophage replication of Francisella tularensis live vaccine strain (LVS). Because pneumonic tularemia is one of the several manifestations of infection by Francisella, it is important to determine whether MCs present in mucosal tissues, i.e. the lung, exhibit similar effects on LVS replication. On the basis of this rationale, we phenotypically compared mucosal mast cells (MMCs) to traditional bone marrow-derived MCs. Both cell types exhibited similar levels of cell surface expression of fragment crystal epsilon receptor I (FcεRI), mast/stem cell growth factor receptor (c-Kit) and major histocompatibility complex I (MHCI), as well as patterns of granulation. MMCs exhibited a comparable, but somewhat greater uptake of fluorescent-labeled beads compared with MCs, suggesting an increased phagocytic ability. MCs and MMCs co-cultured with primary macrophages exhibited comparable significant decreases in LVS replication compared with macrophages cultured alone. Collectively, these results suggest that MMCs are phenotypically similar to MCs and appear equally effective in the control of intramacrophage F. tularensis LVS replication.
Collapse
Affiliation(s)
- Colleen Hunter
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
32
|
Rodriguez AR, Yu JJ, Guentzel MN, Navara CS, Klose KE, Forsthuber TG, Chambers JP, Berton MT, Arulanandam BP. Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2012; 188:5604-11. [PMID: 22529298 DOI: 10.4049/jimmunol.1200039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.
Collapse
Affiliation(s)
- Annette R Rodriguez
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A novel mouse model of Schistosoma haematobium egg-induced immunopathology. PLoS Pathog 2012; 8:e1002605. [PMID: 22479181 PMCID: PMC3315496 DOI: 10.1371/journal.ppat.1002605] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Schistosoma haematobium is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with S. haematobium results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of S. haematobium urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified S. haematobium eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, S. haematobium egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis. Urogenital schistosomiasis (infection with parasitic Schistosoma haematobium worms, the most common human-specific Schistosoma species globally) affects over 112 million people worldwide. S. haematobium worms primarily lay eggs in the bladder, upper urinary and genital tracts, and the host immune response to these eggs is considered to cause almost all associated disease in these organs. Resulting conditions include hematuria (bloody urine), urinary frequency, fibrosis (internal scarring) of the urinary tract, increased risk of bladder cancer, and enhanced susceptibility to contracting HIV. Approximately 150,000 people die annually from S. haematobium-induced obstructive kidney failure alone, making this species one of the deadliest worms worldwide. Despite the importance of S. haematobium, a lack of an experimentally manipulable model has contributed to the paucity of research focusing on this parasite. We have circumvented the barriers to natural S. haematobium oviposition in the mouse bladder by directly microinjecting parasite eggs into the bladder wall. This triggers inflammation, hematuria, urinary frequency, fibrosis, egg shedding, and epithelial changes that are similar to that seen in clinical S. haematobium infections. Our model may provide new opportunities to better understand the basic molecular and cellular immunology of urogenital schistosomiasis and thereby contribute to the development of new diagnostics and therapeutics.
Collapse
|
34
|
Carroll-Portillo A, Surviladze Z, Cambi A, Lidke DS, Wilson BS. Mast cell synapses and exosomes: membrane contacts for information exchange. Front Immunol 2012; 3:46. [PMID: 22566928 PMCID: PMC3342342 DOI: 10.3389/fimmu.2012.00046] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/27/2012] [Indexed: 11/16/2022] Open
Abstract
In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell–cell contacts with dendritic cells and T cells. Release of membrane bound exosomes also provide for the transfer of antigen, mast cell proteins, and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.
Collapse
Affiliation(s)
- Amanda Carroll-Portillo
- Department of Pathology, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | | | | | | | | |
Collapse
|
35
|
Crane DD, Scott DP, Bosio CM. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PLoS One 2012; 7:e33349. [PMID: 22428026 PMCID: PMC3299770 DOI: 10.1371/journal.pone.0033349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/12/2012] [Indexed: 01/04/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection.
Collapse
Affiliation(s)
- Deborah D. Crane
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Veterinary Pathology Section, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Chan CY, St John AL, Abraham SN. Plasticity in mast cell responses during bacterial infections. Curr Opin Microbiol 2011; 15:78-84. [PMID: 22055570 DOI: 10.1016/j.mib.2011.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) have been implicated in orchestrating the host's early innate immune and adaptive immune responses in several models of acute bacterial infections. Most of this activity results in early clearance of the bacteria and timely resolution of infection. However, during chronic infections because of the prolonged nature of MC-bacterial interactions, the role of the MC in determining the fate of infection is markedly more complex. Depending on the nature of the pathogen, severity of infection, and its association with a preexisting inflammatory disease, MCs may promote rather than contain chronic infections and exacerbate their pathological sequellae.
Collapse
Affiliation(s)
- Cheryl Y Chan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
37
|
Mast cells in lung inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:235-69. [PMID: 21713660 DOI: 10.1007/978-1-4419-9533-9_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mast cells play an important role in the lung in both health and disease. Their primary role is to initiate an appropriate program of inflammation and repair in response to tissue damage initiated by a variety of diverse stimuli. They are important for host immunity against bacterial infection and potentially in the host immune response to non small cell lung cancer. In situations of ongoing tissue damage, the sustained release of numerous pro-inflammatory mediators, proteases and cytokines, contributes to the pathophysiology of lung diseases such as asthma and interstitial lung disease. A key goal is the development of treatments which attenuate adverse mast cell function when administered chronically to humans in vivo. Such therapies may offer a novel approach to the treatment of many life-threatening diseases.
Collapse
|
38
|
Thathiah P, Sanapala S, Rodriguez AR, Yu JJ, Murthy AK, Guentzel MN, Forsthuber TG, Chambers JP, Arulanandam BP. Non-FcεR bearing mast cells secrete sufficient interleukin-4 to control Francisella tularensis replication within macrophages. Cytokine 2011; 55:211-20. [PMID: 21565523 DOI: 10.1016/j.cyto.2011.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/04/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022]
Abstract
Mast cells have classically been implicated in the triggering of allergic and anaphylactic reactions. However, recent findings have elucidated the ability of these cells to selectively release a variety of cytokines leading to bacterial clearance through neutrophil and dendritic cell mobilization, and suggest an important role in innate host defenses. Our laboratory has established a primary bone marrow derived mast cell-macrophage co-culture system and found that mast cells mediated a significant inhibition of Francisella tularensis live vaccine strain (LVS) uptake and replication within macrophages through contact and the secreted product interleukin-4 (IL-4). In this study, we utilized P815 mast cells and J774 macrophages to further investigate whether mast cell activation by non-FcεR driven signals could produce IL-4 and control intramacrophage LVS replication. P815 supernatants collected upon activation by the mast cell activating peptide MP7, as well as P815 cells co-cultured with J774 macrophages, exhibited marked inhibition of bacterial uptake and replication, which correlated with the production of IL-4. The inhibition noted in vitro was titratable and preserved at ratios relevant to cellular infiltration events following pulmonary challenge. Collectively, our data suggest that both primary mast cell and P815 mast cell (lacking FcεR) secreted IL-4 can control intramacrophage Francisella replication.
Collapse
Affiliation(s)
- Prea Thathiah
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Anaplasma phagocytophilum infects mast cells via alpha1,3-fucosylated but not sialylated glycans and inhibits IgE-mediated cytokine production and histamine release. Infect Immun 2011; 79:2717-26. [PMID: 21536789 DOI: 10.1128/iai.00181-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mast cells are sentinels for infection. Upon exposure to pathogens, they release their stores of proinflammatory cytokines, chemokines, and histamine. Mast cells are also important for the control of certain tick-borne infections. Anaplasma phagocytophilum is an obligate intracellular tick-transmitted bacterium that infects neutrophils to cause the emerging disease granulocytic anaplasmosis. A. phagocytophilum adhesion to and infection of neutrophils depend on sialylated and α1,3-fucosylated glycans. We investigated the hypotheses that A. phagocytophilum invades mast cells and inhibits mast cell activation. We demonstrate that A. phagocytophilum binds and/or infects murine bone marrow-derived mast cells (BMMCs), murine peritoneal mast cells, and human skin-derived mast cells. A. phagocytophilum infection of BMMCs depends on α1,3-fucosylated, but not sialylated, glycans. A. phagocytophilum binding to and invasion of BMMCs do not elicit proinflammatory cytokine secretion. Moreover, A. phagocytophilum-infected cells are inhibited in the release of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-13, and histamine following stimulation with IgE or antigen. Thus, A. phagocytophilum mitigates mast cell activation. These findings potentially represent a novel means by which A. phagocytophilum usurps host defense mechanisms and shed light on the interplay between mast cells and vector-borne bacterial pathogens.
Collapse
|
40
|
Nallaparaju KC, Yu JJ, Rodriguez SA, Zogaj X, Manam S, Guentzel MN, Seshu J, Murthy AK, Chambers JP, Klose KE, Arulanandam BP. Evasion of IFN-γ signaling by Francisella novicida is dependent upon Francisella outer membrane protein C. PLoS One 2011; 6:e18201. [PMID: 21483828 PMCID: PMC3069069 DOI: 10.1371/journal.pone.0018201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/24/2011] [Indexed: 12/12/2022] Open
Abstract
Background Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918. Methods and Findings The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and µmT (B cell deficient), but not in IFN-γ or IFN-γR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-γ exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-γR KO macrophages showed no IFN-γ-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-γ treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-γ. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed. Conclusions F. novicida FopC protein facilitates evasion of IFN-γ-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components.
Collapse
Affiliation(s)
- Kalyan C. Nallaparaju
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Stephen A. Rodriguez
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Xhavit Zogaj
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Srikanth Manam
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Rodriguez AR, Yu JJ, Murthy AK, Guentzel MN, Klose KE, Forsthuber TG, Chambers JP, Berton MT, Arulanandam BP. Mast cell/IL-4 control of Francisella tularensis replication and host cell death is associated with increased ATP production and phagosomal acidification. Mucosal Immunol 2011; 4:217-26. [PMID: 20861832 PMCID: PMC3040285 DOI: 10.1038/mi.2010.59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mast cells are now recognized as effective modulators of innate immunity. We recently reported that mast cells and secreted interleukin-4 (IL-4) effectively control intramacrophage replication of Francisella tularensis Live Vaccine Strain (LVS), and that mice deficient in mast cells or IL-4 receptor (IL-4R(-/-)) exhibit greater susceptibility to pulmonary challenge. In this study, we further evaluated the mechanism(s) by which mast cells/IL-4 control intramacrophage bacterial replication and host cell death, and found that IL-4R(-/-) mice exhibited significantly greater induction of active caspase-3 within lung macrophages than wild-type animals following intranasal challenge with either LVS or the human virulent type A strain SCHU S4. Treatment of LVS-infected bone-marrow-derived macrophages with a pancaspase inhibitor (zVAD) did not alter bacterial replication, but minimized active caspase-3 and other markers (Annexin V and propidium iodide) of cell death, whereas treatment with both rIL-4 and zVAD resulted in concomitant reduction of both parameters, suggesting that inhibition of bacterial replication by IL-4 was independent of caspase activation. Interestingly, IL-4-treated infected macrophages exhibited significantly increased ATP production and phagolysosomal acidification, as well as enhanced mannose receptor upregulation and increased internalization with acidification, which correlated with observations in mast cell-macrophage co-cultures, with resultant decreases in F. tularensis replication.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Animals
- Caspase 3/metabolism
- Cell Death/immunology
- Cells, Cultured
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Francisella tularensis/growth & development
- Francisella tularensis/immunology
- Gene Expression Regulation
- Host-Pathogen Interactions
- Interleukin-4/immunology
- Lectins, C-Type/metabolism
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Oligopeptides/pharmacology
- Organelles/chemistry
- Organelles/microbiology
- Phagosomes/chemistry
- Phagosomes/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/immunology
- Signal Transduction/immunology
- Tularemia/immunology
Collapse
Affiliation(s)
- Annette R. Rodriguez
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Thomas G. Forsthuber
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Michael T. Berton
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229; USA
| | - Bernard. P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
- Corresponding author: Bernard Arulanandam, Ph.D., South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249. Phone: (210) 458-5492; Fax: (210) 458-5523;
| |
Collapse
|
42
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
43
|
Shelburne CP, Abraham SN. The mast cell in innate and adaptive immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:162-85. [PMID: 21713657 DOI: 10.1007/978-1-4419-9533-9_10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) were once considered only as effector cells in pathogenic IgE- and IgG-mediated responses such as allergy. However, developments over the last 15 years have suggested that MCs have evolved in vertebrates as beneficial effector cells that are involved in the very first inflammatory responses generated during infection. This pro-inflammatory environment has been demonstrated to be important for initiating innate responses in many different models of infection and more recently, in the development of adaptive immunity as well. Interestingly this latter finding has led to the discovery that small MC-activating compounds can behave as adjuvants in vaccine formulations. Thus, our continued understanding of the MC in the context of infectious disease is likely to not only expand our scope of the MC in the normal processes of immunity, but provide new therapeutic targets to combat disease.
Collapse
|
44
|
Chong A, Celli J. The francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol 2010; 1:138. [PMID: 21687806 PMCID: PMC3109316 DOI: 10.3389/fmicb.2010.00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/05/2010] [Indexed: 11/13/2022] Open
Abstract
The tularemia-causing bacterium Francisella tularensis is a facultative intracellular organism with a complex intracellular lifecycle that ensures its survival and proliferation in a variety of mammalian cell types, including professional phagocytes. Because this cycle is essential to Francisella pathogenesis and virulence, much research has focused on deciphering the mechanisms of its intracellular survival and replication and characterizing both bacterial and host determinants of the bacterium's intracellular cycle. Studies of various strains and host cell models have led to the consensual paradigm of Francisella as a cytosolic pathogen, but also to some controversy about its intracellular cycle. In this review, we will detail major findings that have advanced our knowledge of Francisella intracellular survival strategies and also attempt to reconcile discrepancies that exist in our molecular understanding of the Francisella–phagocyte interactions.
Collapse
Affiliation(s)
- Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | |
Collapse
|
45
|
Abstract
Although mast cells were discovered more than a century ago, their functions beyond their role in allergic responses remained elusive until recently. However, there is a growing appreciation that an important physiological function of these cells is the recognition of pathogens and modulation of appropriate immune responses. Because of their ability to instantly release several pro-inflammatory mediators from intracellular stores and their location at the host-environment interface, mast cells have been shown to be crucial for optimal immune responses during infection. Mast cells seem to exert these effects by altering the inflammatory environment after detection of a pathogen and by mobilizing various immune cells to the site of infection and to draining lymph nodes. Interestingly, the character and timing of these responses can vary depending on the type of pathogen stimulus, location of pathogen recognition and sensitization state of the responding mast cells. Recent studies using mast cell activators as effective vaccine adjuvants show the potential of harnessing these cells to confer protective immunity against microbial pathogens.
Collapse
Affiliation(s)
- Soman N Abraham
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
46
|
Ray HJ, Chu P, Wu TH, Lyons CR, Murthy AK, Guentzel MN, Klose KE, Arulanandam BP. The Fischer 344 rat reflects human susceptibility to francisella pulmonary challenge and provides a new platform for virulence and protection studies. PLoS One 2010; 5:e9952. [PMID: 20376351 PMCID: PMC2848594 DOI: 10.1371/journal.pone.0009952] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/05/2010] [Indexed: 11/21/2022] Open
Abstract
Background The pathogenesis of Francisella tularensis, the causative agent of tularemia, has been primarily characterized in mice. However, the high degree of sensitivity of mice to bacterial challenge, especially with the human virulent strains of F. tularensis, limits this animal model for screening of defined attenuated vaccine candidates for protection studies. Methods and Findings We analyzed the susceptibility of the Fischer 344 rat to pulmonary (intratracheal) challenge with three different subspecies (subsp) of F. tularensis that reflect different levels of virulence in humans, and characterized the bacterial replication profile in rat bone marrow-derived macrophages (BMDM). In contrast to the mouse, Fischer 344 rats exhibit a broader range of sensitivity to pulmonary challenge with the human virulent subsp. tularensis and holarctica. Unlike mice, Fischer rats exhibited a high degree of resistance to pulmonary challenge with LVS (an attenuated derivative of subsp. holarctica) and subsp. novicida. Within BMDM, subsp. tularensis and LVS showed minimal replication, subsp. novicida showed marginal replication, and subsp. holartica replicated robustly. The limited intramacrophage replication of subsp. tularensis and novicida strains was correlated with the induction of nitric oxide production. Importantly, Fischer 344 rats that survived pulmonary infection with subsp. novicida were markedly protected against subsequent pulmonary challenge with subsp. tularensis, suggesting that subsp. novicida may be a useful platform for the development of vaccines against subsp. tularensis. Conclusions The Fischer 344 rat exhibits similar sensitivity to F. tularensis strains as that reported for humans, and thus the Fischer 344 ray may serve as a better animal model for tularemia vaccine development.
Collapse
Affiliation(s)
- Heather J. Ray
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ping Chu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Terry H. Wu
- Center for Infectious Disease and Immunity, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - C. Rick Lyons
- Center for Infectious Disease and Immunity, Department of Internal Medicine, The University of New Mexico Health Science Center, Albuquerque, New Mexico, United States of America
| | - Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Hofmann AM, Abraham SN. New roles for mast cells in modulating allergic reactions and immunity against pathogens. Curr Opin Immunol 2009; 21:679-86. [PMID: 19828301 DOI: 10.1016/j.coi.2009.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/01/2009] [Indexed: 12/22/2022]
Abstract
Mast cells (MCs) have primarily been associated with mediating the pathological secondary responses to allergens in sensitized hosts. In view of the recent evidence for a MC role in modulating primary immune responses to pathogens, the likelihood for a role of MCs in influencing primary immune response to allergens has grown. New evidence suggests that MCs drive the development of Th2 responses to allergens, particularly when allergen exposure occurs concomitantly with exposure to pathogen products present in the environment. These new roles for MCs in allergy and infection suggest additional drug targets to prevent the development of allergic disease and allergic exacerbations of established disease.
Collapse
Affiliation(s)
- Alison M Hofmann
- Division of Pediatric Allergy and Immunology, Duke University, DUMC 2898, Durham, NC 27710, USA.
| | | |
Collapse
|
48
|
Kulka M, Fukuishi N, Metcalfe DD. Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily. J Leukoc Biol 2009; 86:1217-26. [PMID: 19625371 DOI: 10.1189/jlb.0908517] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ANG is a plasma protein with angiogenic and ribonucleolytic activity implicated in tumor growth, heart failure, wound healing, asthma, and the composition of the adult gut microflora. Human mast cells (HuMC) are similarly associated with modulation of vascular permeability, angiogenic processes, wound healing, and asthma. We hypothesized that HuMC express and secrete ANG in response to divergent stimuli. ANG expression was evaluated in the LAD2 HMC, the HMC-1, and CD34+-derived HuMC, following exposure to live Escherichia coli, TLR ligands, or neuropeptides and following FcepsilonRI aggregation. Expression and production of ANG were determined by microarray analysis, qRT-PCR, confocal microscopy, and ELISA. Microarray analysis showed that ANG is up-regulated by LAD2 cells exposed to live E. coli. qRT-PCR analysis revealed that LAD2, HMC-1, and HuMC constitutively expressed ANG mRNA and that it was up-regulated by exposure to E. coli. Activation of HuMC by FcepsilonRI aggregation resulted in release of small amounts of ANG (<100 pg/mL), whereas compound 48/80, NGF, LPS, PGN, and flagellin activated HuMC to secrete >160 pg/mL ANG. These observations demonstrate that HuMC store and secrete ANG to a variety of stimuli and suggest that MC-derived ANG is available in the subsequent inflammatory response.
Collapse
Affiliation(s)
- Marianna Kulka
- National Research Council, 550 University Ave., Charlottetown, PE, Canada.
| | | | | |
Collapse
|
49
|
Oral live vaccine strain-induced protective immunity against pulmonary Francisella tularensis challenge is mediated by CD4+ T cells and antibodies, including immunoglobulin A. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:444-52. [PMID: 19211773 DOI: 10.1128/cvi.00405-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Francisella tularensis is an intracellular gram-negative bacterium and the etiological agent of pulmonary tularemia. Given the high degrees of infectivity in the host and of dissemination of bacteria following respiratory infection, immunization strategies that target mucosal surfaces are critical for the development of effective vaccines against this organism. In this study, we have characterized the efficacy of protective immunity against pneumonic tularemia following oral vaccination with F. tularensis LVS (live vaccine strain). Mice vaccinated orally with LVS displayed colocalization of LVS with intestinal M cells, with subsequent enhanced production of splenic antigen-specific gamma interferon and of systemic and mucosal antibodies, including immunoglobulin A (IgA). LVS-vaccinated BALB/c mice were highly protected against intranasal (i.n.) SCHU S4 challenge and exhibited significantly less bacterial replication in the lungs, liver, and spleen than mock-immunized animals. Depletion of CD4(+) T cells significantly abrogated the protective immunity, and mice deficient in B cells or IgA displayed partial protection against SCHU S4 challenge. These results suggest that oral vaccination with LVS induces protective immunity against i.n. challenge with F. tularensis SCHU S4 by a process mediated cooperatively by CD4(+) T cells and antibodies, including IgA.
Collapse
|
50
|
Cremer TJ, Tridandapani S. Effective host response to Francisella tularensis requires functional mast cells. Future Microbiol 2008; 3:503-6. [PMID: 18811234 DOI: 10.2217/17460913.3.5.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Ketavarapu JM, Rodriguez AR, Yu J et al.: Mast cells inhibit intramacrophage Francisella tularensis replication via contact and secreted products including IL-4. Proc. Natl Acad. Sci. USA 105(27), 9313-9318 (2008). The intracellular pathogen Francisella tularensis is a highly infectious organism that infects cells of the immune system. Mast cells have been known for their role in anaphylaxis, although they are also important for their ability to aid in the defense against pathogens. The report by Ketavarapu et al. has demonstrated that mast cells function to limit the replication of F. tularensis live vaccine strain within macrophages in vitro as well as in vivo. It was determined that IL-4 is one secreted mediator of this effect thus highlights a previously unknown mechanism of host defense against F. tularensis.
Collapse
Affiliation(s)
- Thomas J Cremer
- Molecular, Cellular & Developmental Biology Program, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|