1
|
Won EJ, Lee YJ, Kim MJ, Kim TJ, Shin HJ, Kim TO, Kwon YS. Lower respiratory tract microbiota in patients with clinically suspected nontuberculous mycobacterial pulmonary disease according to the presence of gastroesophageal reflux. PLoS One 2024; 19:e0309446. [PMID: 39196906 PMCID: PMC11355550 DOI: 10.1371/journal.pone.0309446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/12/2024] [Indexed: 08/30/2024] Open
Abstract
Although gastroesophageal reflux has been recognized as one of the risk factors of nontuberculous mycobacterial pulmonary disease (NTM-PD) progression, the effect of reflux on the lower respiratory tract microbiota has not been studied in detail. We investigated the composition of the lower respiratory tract microbiota in patients with clinically suspected NTM-PD, comparing them based on the presence of reflux. Forty-seven patients suspected of having NTM-PD were enrolled and assigned according to presence of reflux (n = 22) and non- reflux (n = 25). We performed a pepsin ELISA assay to identify the presence of reflux and 16S ribosomal RNA gene amplicon sequencing to evaluate the microbiota in bronchoalveolar lavage fluid. There were no significant differences in the diversity or composition of the lower respiratory microbiota between the NTM-PD and non-NTM-PD groups. Bacterial richness was observed in the non-reflux group than in the reflux group [P = 0.03] and a cluster in the reflux group was observed. The reflux group showed a predominance for Pseudomonas aeruginosa or Staphylococcus aureus among the NTM-PD group and for P. aeruginosa, Haemophilus influenzae, Klebsiella pneumoniae, or Eikenella species among the non-NTM-PD group. The non-reflux groups presented diverse patterns. A linear discriminant analysis and volcano plot demonstrated that P. aeruginosa, H. haemolyticus, Selenomonas artemidis, and Dolosigranulum pigrum were specifically associated with the NTM-PD reflux group, while P. aeruginosa was specifically associated with the non-NTM-PD reflux group. These observations confirm that the lower respiratory microbiota is consistently altered by reflux but not in NTM-PD.
Collapse
Affiliation(s)
- Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Jeong Lee
- Department of Biomedical Sciences, Graduate School of Chonnam National University, Gwangju, Republic of Korea
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Moon-Ju Kim
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hong-Joon Shin
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae-Ok Kim
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-Soo Kwon
- Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Yang K, Wang S, Ding Z, Zhang K, Zhu W, Wang H, Pan M, Li X, Wang H, Yu Z. Unveiling microbial dynamics in lung adenocarcinoma and adjacent nontumor tissues: insights from nicotine exposure and diverse clinical stages via nanopore sequencing technology. Front Cell Infect Microbiol 2024; 14:1397989. [PMID: 39258251 PMCID: PMC11385298 DOI: 10.3389/fcimb.2024.1397989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background Lung is the largest mucosal area of the human body and directly connected to the external environment, facing microbial exposure and environmental stimuli. Therefore, studying the internal microorganisms of the lung is crucial for a deeper understanding of the relationship between microorganisms and the occurrence and progression of lung cancer. Methods Tumor and adjacent nontumor tissues were collected from 38 lung adenocarcinoma patients and used nanopore sequencing technology to sequence the 16s full-length sequence of bacteria, and combining bioinformatics methods to identify and quantitatively analyze microorganisms in tissues, as well as to enrich the metabolic pathways of microorganisms. Results the microbial composition in lung adenocarcinoma tissues is highly similar to that in adjacent tissues, but the alpha diversity is significantly lower than that in adjacent tissues. The difference analysis results show that the bacterial communities of Streptococcaceae, Lactobacillaceae, and Neisseriales were significantly enriched in cancer tissues. The results of metabolic pathway analysis indicate that pathways related to cellular communication, transcription, and protein synthesis were significantly enriched in cancer tissue. In addition, clinical staging analysis of nicotine exposure and lung cancer found that Haemophilus, paralinfluenzae, Streptococcus gordonii were significantly enriched in the nicotine exposure group, while the microbiota of Cardiobactereae and Cardiobacterales were significantly enriched in stage II tumors. The microbiota significantly enriched in IA-II stages were Neisseriaeae, Enterobacteriales, and Cardiobacterales, respectively. Conclusion Nanopore sequencing technology was performed on the full length 16s sequence, which preliminarily depicted the microbial changes and enrichment of microbial metabolic pathways in tumor and adjacent nontumor tissues. The relationship between nicotine exposure, tumor progression, and microorganisms was explored, providing a theoretical basis for the treatment of lung cancer through microbial targets.
Collapse
Affiliation(s)
- Kangli Yang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaifeng Wang
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengshu Pan
- Department of Grassroots Medical, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
4
|
Shen Y, Cui SS, Teng XB, Han MF, Zhang YB. Clinical, Laboratory, and Imaging Characteristics of Tropheryma Whipplei Detection in Bronchoalveolar Lavage Fluid Using Next-Generation Sequencing: A Case-Control Study. Infect Drug Resist 2024; 17:3101-3112. [PMID: 39050831 PMCID: PMC11268753 DOI: 10.2147/idr.s470084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Objective The aim of this study was to assess the prevalence of Tropheryma whipplei (TW) infection in the population and to investigate the clinical symptoms, as well as the laboratory and imaging characteristics of patients testing positive for TW using next-generation sequencing (NGS). Methods A retrospective review was conducted on 1346 bronchoalveolar lavage fluid (BALF) samples collected between January 2021 and September 2023. The case group comprised patients with TW detected using NGS while the control group included 65 randomly chosen Gram-positive bacterial infection patients without TW. Comparative analyses were carried out on the basic demographics, laboratory parameters, and imaging findings between the two groups. Additionally, the case group underwent an in-depth examination of underlying diseases, pathogens, final diagnoses, treatment strategies. Results The case group comprised of 51 patients with TW, constituting 3.8% of the total. There was no significant difference in gender and age between the case and control groups (P = 0.84, P = 0.07). Symptoms such as coughing, expectoration, wheezing, fever, and hemoptysis are less commonly detected in the case group with a higher incidence of chest pain when compared to the control group (P >0.05). The case group exhibited decreased albumin levels and increased C-reactive protein and D-dimer levels compared to normal levels. Imaging findings in the case group commonly included nodules, patchy images, and interstitial changes, the most common underlying disease is cardiovascular disease, and the most frequently co-occurring pathogen is the human herpesvirus. Among the case group, 27 patients received a final diagnosis of pneumonia, and 3 patients clinically diagnosed with Whipple's disease demonstrated improvement in both symptoms and imaging after treatment. Conclusion NGS revealed a relatively low overall detection rate of TW-positive patients using BALF. TW was more prevalent in middle-aged and elderly male patients characterized by symptoms such as cough, expectoration, shortness of breath, and fever. Chest imaging in these cases typically showed nodules and interstitial changes.
Collapse
Affiliation(s)
- Ya Shen
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Shun-Shun Cui
- Department of Respiratory and Critical Care Medicine, Fuyang People’s Hospital, Fuyang, 236000, People’s Republic of China
| | - Xiao-Bao Teng
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Ming-Feng Han
- Department of Respiratory and Critical Care Medicine, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236000, People’s Republic of China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
| |
Collapse
|
5
|
Fukuda K, Haro K, Yamasaki K, Ikegami H, Saito M. Surveillance and phylogenetic analysis of a pathogenic bacterium candidate in nasal discharge from children. Microbiol Spectr 2024; 12:e0056624. [PMID: 38785433 PMCID: PMC11218501 DOI: 10.1128/spectrum.00566-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
"The infectious organism lurking in human airways (IOLA)" is a candidate pathogenic bacterium detected in bronchoalveolar lavage fluid specimens derived from adult patients with chronic lower respiratory tract infections. Genomic analyses of IOLA have revealed that it possesses the smallest and most AT-rich genome among human-derived bacteria. However, its biological properties remain unclear because no culture method has been established for IOLA. Here, we conducted a large-scale IOLA surveillance study of nasal discharge specimens from children in Japan and investigated the correlation between IOLA detection frequency and patient characteristics. We detected IOLA in 5.4% (103 of 1,920) of pediatric nasal discharge samples. No significant differences were observed in the frequency of detection based on the patient's background. However, with respect to age, the frequency of detection tended to be significantly high at 2-3 and 6 years old. Phylogenetic analysis revealed five phylotypes in the IOLA 16S rRNA gene sequences, and the sequences detected in adult patients with respiratory infections in a previous study belonged to one of the five phylotypes. The involvement of IOLA in the symptoms is not clear, but IOLA is detected at a relatively high frequency in pediatric nasal discharge. Many subjects with detected IOLA were not always IOLA positive, and IOLA was detected transiently. Our findings suggest that IOLA is horizontally transmitted through groups in nursery and elementary schools, and there are differences in biological characteristics among the IOLA phylotypes.IMPORTANCE"The infectious organism lurking in human airways (IOLA)" is a candidate pathogenic bacterium strongly suspected to be infectious to the respiratory tracts of humans and animals. However, a culture method for IOLA has not been established yet, and its properties remain unclear. In this study, IOLA was detected at a relatively high frequency in the nasal discharge of children, and five phylotypes of IOLA were identified. One of these phylotypes was found in the bronchoalveolar lavage fluid from adult patients, suggesting lineage-specific differences in the pathogenicity of IOLA. Moreover, it was suggested that IOLA is horizontally transmitted when children gather in groups such as nursery and elementary schools. These findings strongly indicate that IOLAs have been clinically undetected so far but are spreading among children, with one lineage being involved in respiratory diseases in adults. Examining the presence of IOLA in clinical specimens may help to understand the etiology of respiratory diseases with unknown causes.
Collapse
Affiliation(s)
- Kazumasa Fukuda
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka
| | - Kaoru Haro
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka
| | - Hiroaki Ikegami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka
| | - Mitsumasa Saito
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka
| |
Collapse
|
6
|
Liu F, Yang X, He Z, OuYang C, Yang X, Yang C. Using Targeted Next-Generation Sequencing to Diagnose Severe Pneumonia Due to Tropheryma Whipplei and Human Metapneumovirus: A Case Report and Literature Review. Infect Drug Resist 2024; 17:1863-1868. [PMID: 38745678 PMCID: PMC11092972 DOI: 10.2147/idr.s451477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Background In addition to the well-known Whipple's disease (WD), Tropheryma Whipplei (TW) can also lead to acute pneumonia. There is no unified consensus on the susceptible population, pathogenesis, clinical manifestations, diagnostic criteria, and treatment options for TW pneumonia. Clinical Presentation and Intervention This is an elderly patient with multiple injuries caused by falling from a building, and was transferred to intensive care unit (ICU) for mechanical ventilation and empirical anti-infection treatment due to severe pneumonia, and then the results of targeted next-generation sequencing (tNGS) in patient's bronchoalveolar lavage fluid (BALF) suggested TW and human metapneumovirus (HMPV) infection, and after switching to anti-infective therapy for TW, the patient was successfully extubated and transferred out of the ICU. Conclusion This is the first case of using tNGS to diagnose severe pneumonia caused by TW and HMPV. We hope that our study can serve as a reference for the diagnosis and treatment of related cases in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Intensive Care Unit, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, People’s Republic of China
| | - XuYong Yang
- Department of Pediatrics, Gaoxin Hospital of The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Zhaohui He
- Department of Intensive Care Unit, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, People’s Republic of China
| | - Chenghong OuYang
- Department of Intensive Care Unit, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, People’s Republic of China
| | - Xiaogang Yang
- Department of Intensive Care Unit, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, People’s Republic of China
| | - Chunli Yang
- Department of Intensive Care Unit, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, People’s Republic of China
| |
Collapse
|
7
|
McDermott G, Walsh A, Crispie F, Frost S, Greally P, Cotter PD, O’Sullivan O, Renwick J. Insights into the Adolescent Cystic Fibrosis Airway Microbiome Using Shotgun Metagenomics. Int J Mol Sci 2024; 25:3893. [PMID: 38612702 PMCID: PMC11011389 DOI: 10.3390/ijms25073893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Cystic fibrosis (CF) is an inherited genetic disorder which manifests primarily in airway disease. Recent advances in molecular technologies have unearthed the diverse polymicrobial nature of the CF airway. Numerous studies have characterised the genus-level composition of this airway community using targeted 16S rDNA sequencing. Here, we employed whole-genome shotgun metagenomics to provide a more comprehensive understanding of the early CF airway microbiome. We collected 48 sputum samples from 11 adolescents and children with CF over a 12-month period and performed shotgun metagenomics on the Illumina NextSeq platform. We carried out functional and taxonomic analysis of the lung microbiome at the species and strain levels. Correlations between microbial diversity measures and independent demographic and clinical variables were performed. Shotgun metagenomics detected a greater diversity of bacteria than culture-based methods. A large proportion of the top 25 most-dominant species were anaerobes. Samples dominated by Staphylococcus aureus and Prevotella melaninogenica had significantly higher microbiome diversity, while no CF pathogen was associated with reduced microbial diversity. There was a diverse resistome present in all samples in this study, with 57.8% agreement between shotgun metagenomics and culture-based methods for detection of resistance. Pathogenic sequence types (STs) of S. aureus, Pseudomonas aeruginosa, Haemophilus influenzae and Stenotrophomonas maltophilia were observed to persist in young CF patients, while STs of S. aureus were both persistent and shared between patients. This study provides new insight into the temporal changes in strain level composition of the microbiome and the landscape of the resistome in young people with CF. Shotgun metagenomics could provide a very useful one-stop assay for detecting pathogens, emergence of resistance and conversion to persistent colonisation in early CF disease.
Collapse
Affiliation(s)
- Gillian McDermott
- Trinity Centre for Health Science, Clinical Microbiology Department, School of Medicine, Faculty of Health Science, Trinity College Dublin, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
| | - Aaron Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Susanna Frost
- Tallaght University Hospital, Tallaght, D24 NR0 Dublin, Ireland (P.G.)
| | - Peter Greally
- Tallaght University Hospital, Tallaght, D24 NR0 Dublin, Ireland (P.G.)
- Hermitage Medical Clinic, Lucan, D20 W722 Dublin, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland; (A.W.); (F.C.); (P.D.C.); (O.O.)
- APC Microbiome Ireland, University College Cork, T12 R229 Co Cork, Ireland
| | - Julie Renwick
- Trinity Centre for Health Science, Clinical Microbiology Department, School of Medicine, Faculty of Health Science, Trinity College Dublin, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
| |
Collapse
|
8
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Oda H, Tanaka S, Chen-Yoshikawa TF, Morimura Y, Yamada Y, Yutaka Y, Nakajima D, Hamaji M, Ohsumi A, Menju T, Nagao M, Date H. Impact of perioperative airway pathogens on living-donor lobar lung transplantation outcomes. Surg Today 2024; 54:266-274. [PMID: 37540232 DOI: 10.1007/s00595-023-02730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE To elucidate the clinical impact of pathogenic organism (PO) positivity early after transplantation, we evaluated the impact of perioperative airway POs on outcomes after living-donor lobar lung transplantation (LDLLT), where the graft airway is supposed to be sterile from a healthy donor. METHOD A retrospective review of 67 adult LDLLT procedures involving 132 living donors was performed. Presence of POs in the recipients' airways was evaluated preoperatively and postoperatively in intensive-care units. RESULTS POs were detected preoperatively in 13 (19.4%) recipients. No POs were isolated from the donor airways at transplantation. POs were detected in 39 (58.2%) recipients postoperatively; most were different from the POs isolated preoperatively. Postoperative PO isolation was not associated with short-term outcomes other than prolonged postoperative ventilation. The 5-year overall survival was significantly better in the PO-negative group than in the PO-positive group (89.1% vs. 63.7%, P = 0.014). In the multivariate analysis, advanced age (hazard ratio [HR]: 1.041 per 1-year increase, P = 0.033) and posttransplant PO positivity in the airway (HR: 3.684, P = 0.019) significantly affected the survival. CONCLUSIONS The airways of the living-donor grafts were microbiologically sterile. PO positivity in the airway early after transplantation negatively impacted long-term outcomes.
Collapse
Affiliation(s)
- Hiromi Oda
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
- Department of Thoracic Surgery, Tazuke Kofukai, Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, Kita-Ku, Osaka City, Osaka, 530-8480, Japan
| | - Satona Tanaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan.
| | - Toyofumi F Chen-Yoshikawa
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya City, Aichi, 466-8560, Japan
| | - Yuki Morimura
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Miki Nagao
- Department of Infection Control and Prevention, Kyoto University Hospital, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto City, Kyoto, 606-8507, Japan
| |
Collapse
|
10
|
Vasiljevs S, Witney AA, Baines DL. The presence of cystic fibrosis-related diabetes modifies the sputum microbiome in cystic fibrosis disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L125-L134. [PMID: 38084404 PMCID: PMC11244689 DOI: 10.1152/ajplung.00219.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Adam A Witney
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Deborah L Baines
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| |
Collapse
|
11
|
Musisi E, Wyness A, Eldirdiri S, Dombay E, Mtafya B, Ntinginya NE, Heinrich N, Kibiki GS, Hoelscher M, Boeree M, Aarnoutse R, Gillespie SH, Sabiiti W. Effect of seven anti-tuberculosis treatment regimens on sputum microbiome: a retrospective analysis of the HIGHRIF study 2 and PanACEA MAMS-TB clinical trials. THE LANCET. MICROBE 2023; 4:e913-e922. [PMID: 37832571 DOI: 10.1016/s2666-5247(23)00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Respiratory tract microbiota has been described as the gatekeeper for respiratory health. We aimed to assess the impact of standard-of-care and experimental anti-tuberculosis treatment regimens on the respiratory microbiome and implications for treatment outcomes. METHODS In this retrospective study, we analysed the sputum microbiome of participants with tuberculosis treated with six experimental regimens versus standard-of-care who were part of the HIGHRIF study 2 (NCT00760149) and PanACEA MAMS-TB (NCT01785186) clinical trials across a 3-month treatment follow-up period. Samples were from participants in Mbeya, Kilimanjaro, Bagamoyo, and Dar es Salaam, Tanzania. Experimental regimens were composed of different combinations of rifampicin (R), isoniazid (H), pyrazinamide (Z), ethambutol (E), moxifloxacin (M), and a new drug, SQ109 (Q). Reverse transcription was used to create complementary DNA for each participant's total sputum RNA and the V3-V4 region of the 16S rRNA gene was sequenced using the Illumina metagenomic technique. Qiime was used to analyse the amplicon sequence variants and estimate alpha diversity. Descriptive statistics were applied to assess differences in alpha diversity pre-treatment and post-treatment initiation and the effect of each treatment regimen. FINDINGS Sequence data were obtained from 397 pre-treatment and post-treatment samples taken between Sept 26, 2008, and June 30, 2015, across seven treatment regimens. Pre-treatment microbiome (206 genera) was dominated by Firmicutes (2860 [44%] of 6500 amplicon sequence variants [ASVs]) at the phylum level and Streptococcus (2340 [36%] ASVs) at the genus level. Two regimens had a significant depressing effect on the microbiome after 2 weeks of treatment, HR20mg/kgZM (Shannon diversity index p=0·0041) and HR35mg/kgZE (p=0·027). Gram-negative bacteria were the most sensitive to bactericidal activity of treatment with the highest number of species suppressed being under the moxifloxacin regimen. By week 12 after treatment initiation, microbiomes had recovered to pre-treatment level except for the HR35mg/kgZE regimen and for genus Mycobacterium, which did not show recovery across all regimens. Tuberculosis culture conversion to negative by week 8 of treatment was associated with clearance of genus Neisseria, with a 98% reduction of the pre-treatment level. INTERPRETATION HR20mg/kgZM was effective against tuberculosis without limiting microbiome recovery, which implies a shorter efficacious anti-tuberculosis regimen with improved treatment outcomes might be achieved without harming the commensal microbiota. FUNDING European and Developing Countries Clinical Trials Partnership and German Ministry of Education and Research.
Collapse
Affiliation(s)
- Emmanuel Musisi
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Adam Wyness
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK; Scottish Association of Marine Science, Oban, UK
| | - Sahar Eldirdiri
- Department of Microbiology, Kettering General Hospital, Kettering, UK
| | - Evelin Dombay
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Bariki Mtafya
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK; National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Nyanda E Ntinginya
- National Institute for Medical Research, Mbeya Medical Research Centre, Mbeya, Tanzania
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, University of Munich (LMU), Munich, Germany
| | - Gibson S Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania; Africa Research Excellence Fund (AREF), London, UK
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, University of Munich (LMU), Munich, Germany; Fraunhofer ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Martin Boeree
- Department of Lung Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rob Aarnoutse
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK
| | - Wilber Sabiiti
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, UK.
| |
Collapse
|
12
|
Fang Z, Liu Q, Tang W, Yu H, Zou M, Zhang H, Xue H, Lin S, Pei Y, Ai J, Chen J. Experience in the diagnosis and treatment of pneumonia caused by infection with Tropheryma whipplei: A case series. Heliyon 2023; 9:e17132. [PMID: 37484369 PMCID: PMC10361318 DOI: 10.1016/j.heliyon.2023.e17132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Tropheryma whipplei (TW) is the root cause of Whipple's disease (WD), a rare infectious illness leading to multi-organ impairment. A prominent feature of WD is acute pneumonia, which can be exceedingly challenging to diagnose clinically due to the pathogen's surreptitious nature. However and significantly, with the advent of metagenomic next-generation sequencing (mNGS) of bronchoalveolar lavage fluid (BALF), it offers clinicians a potent tool at their disposal to detect TW infections. The present study conducted a retrospective analysis of clinical data gleaned from five patients in Hunan Province in China. Findings in this study demonstrated the potential of BALF-mNGS in diagnosing pneumonia caused by TW infection.
Collapse
Affiliation(s)
- Zhixiong Fang
- Department of Infectious Disease and Public Health, Central Hospital of Xiangtan, Hunan province, China
| | - Qiong Liu
- Linxiang People’s Hospital, Hunan province, China
| | - Wei Tang
- Department of Infectious Disease and Public Health, Central Hospital of Xiangtan, Hunan province, China
| | - Hongyin Yu
- Center for Infectious Diseases, The First People's Hospital of Huaihua, Hunan, China
| | - Min Zou
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Xiangtan City Affiliated to Nanhua University, Hunan, China
| | - Haiming Zhang
- Department of Infectious Disease and Public Health, Central Hospital of Xiangtan, Hunan province, China
| | - Haiyan Xue
- Department of Infectious Disease and Public Health, Central Hospital of Xiangtan, Hunan province, China
| | - Sha Lin
- Department of Infectious Disease and Public Health, Central Hospital of Xiangtan, Hunan province, China
| | - Yi Pei
- Department of Tuberculosis, Changsha Central Hospital, Changsha, China
| | - Jingwen Ai
- Department of Infectious Disease, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Chen
- Department of Liver Diseases, Third Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
14
|
O’Connor JB, Wagner BD, Harris JK, Frank DN, Clabots DE, Laguna TA. Detection and identification of fungi in the lower airway of children with and without cystic fibrosis. Front Microbiol 2023; 14:1119703. [PMID: 36846802 PMCID: PMC9948248 DOI: 10.3389/fmicb.2023.1119703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Airway infection and inflammation lead to the progression of obstructive lung disease in persons with cystic fibrosis (PWCF). However, cystic fibrosis (CF) fungal communities, known drivers of CF pathophysiology, remain poorly understood due to the shortcomings of traditional fungal culture. Our objective was to apply a novel small subunit rRNA gene (SSU-rRNA) sequencing approach to characterize the lower airway mycobiome in children with and without CF. Methods Bronchoalveolar lavage fluid (BALF) samples and relevant clinical data were collected from pediatric PWCF and disease control (DC) subjects. Total fungal load (TFL) was measured using quantitative PCR, and SSU-rRNA sequencing was used for mycobiome characterization. Results were compared across groups, and Morisita-Horn clustering was performed. Results 161 (84%) of the BALF samples collected had sufficient load for SSU-rRNA sequencing, with amplification being more common in PWCF. BALF from PWCF had increased TFL and increased neutrophilic inflammation compared to DC subjects. PWCF exhibited increased abundance of Aspergillus and Candida, while Malassezia, Cladosporium, and Pleosporales were prevalent in both groups. CF and DC samples showed no clear differences in clustering when compared to each other or to negative controls. SSU-rRNA sequencing was used to profile the mycobiome in pediatric PWCF and DC subjects. Notable differences were observed between the groups, including the abundance of Aspergillus and Candida. Discussion Fungal DNA detected in the airway could represent a combination of pathogenic fungi and environmental exposure (e.g., dust) to fungus indicative of a common background signature. Next steps will require comparisons to airway bacterial communities.
Collapse
Affiliation(s)
- John B. O’Connor
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States,*Correspondence: John B. O’Connor, ✉
| | - Brandie D. Wagner
- University of Colorado School of Medicine, Aurora, CO, United States,Colorado School of Public Health, University of Colorado Denver, Aurora, CO, United States
| | - J. Kirk Harris
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Daniel N. Frank
- University of Colorado School of Medicine, Aurora, CO, United States
| | - Diana E. Clabots
- University of Colorado School of Medicine, Aurora, CO, United States,Department of Internal Medicine, Palmetto General Hospital, Hialeah, FL, United States
| | - Theresa A. Laguna
- Division of Pulmonary and Sleep Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
15
|
Hahn A, Burrell A, Chaney H, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Zemanick ET. Therapeutic beta-lactam dosages and broad-spectrum antibiotics are associated with reductions in microbial richness and diversity in persons with cystic fibrosis. Sci Rep 2023; 13:1217. [PMID: 36681756 PMCID: PMC9867719 DOI: 10.1038/s41598-023-27628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Persons with cystic fibrosis (PwCF) suffer from pulmonary exacerbations (PEx) related in part to lung infection. While higher microbial diversity is associated with higher lung function, the data on the impact of short-term antibiotics on changes in microbial diversity is conflicting. Further, Prevotella secretes beta-lactamases, which may influence recovery of lung function. We hypothesize that sub-therapeutic and broad spectrum antibiotic exposure leads to decreasing microbial diversity. Our secondary aim was to evaluate the concerted association of beta-lactam pharmacokinetics (PK), antibiotic spectrum, microbial diversity, and antibiotic resistance on lung function recovery using a pathway analysis. This was a retrospective observational study of persons with CF treated with IV antibiotics for PEx between 2016 and 2020 at Children's National Hospital; respiratory samples and clinical information were collected at hospital admission for PEx (E), end of antibiotic treatment (T), and follow-up (F). Metagenomic sequencing was performed; PathoScope 2.0 and AmrPlusPlus were used for taxonomic assignment of sequences to bacteria and antibiotic resistance genes (ARGs). M/W Pharm was used for PK modeling. Comparison of categorical and continuous variables and pathway analysis were performed in STATA. Twenty-two PwCF experienced 43 PEx. The study cohort had a mean age of 14.6 years. Only 12/43 beta-lactam courses had therapeutic PK, and 18/43 were broad spectrum. A larger decrease in richness between E and T was seen in the therapeutic PK group (sufficient - 20.1 vs. insufficient - 1.59, p = 0.025) and those receiving broad spectrum antibiotics (broad - 14.5 vs. narrow - 2.8, p = 0.030). We did not detect differences in the increase in percent predicted forced expiratory volume in one second (ppFEV1) at end of treatment compared to PEx based on beta-lactam PK (sufficient 13.6% vs. insufficient 15.1%) or antibiotic spectrum (broad 11.5% vs. narrow 16.6%). While both therapeutic beta-lactam PK and broad-spectrum antibiotics decreased richness between PEx and the end of treatment, we did not detect longstanding changes in alpha diversity or an association with superior recovery of lung function compared with subtherapeutic PK and narrow spectrum antimicrobials.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Diseases, Children's National Hospital (CNH), Washington, DC, USA.
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA.
- Department of Pediatrics, George Washington University (GWU), Washington, DC, USA.
| | - Aszia Burrell
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
| | - Hollis Chaney
- Department of Pediatrics, George Washington University (GWU), Washington, DC, USA
- Division of Pulmonary Medicine, CNH, Washington, DC, USA
| | - Iman Sami
- Department of Pediatrics, George Washington University (GWU), Washington, DC, USA
- Division of Pulmonary Medicine, CNH, Washington, DC, USA
| | - Anastassios C Koumbourlis
- Department of Pediatrics, George Washington University (GWU), Washington, DC, USA
- Division of Pulmonary Medicine, CNH, Washington, DC, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- Department of Pediatrics, George Washington University (GWU), Washington, DC, USA
- Division of Emergency Medicine, CNH, Washington, DC, USA
| | - Keith A Crandall
- Deptartment of Biostatistics and Bioinformatics, Milken Institute School of Public Health, GWU, Washington, DC, USA
| | - Edith T Zemanick
- Deptartment of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Zhou J, Wang X, Xu M, Yang J, Lai XH, Jin D, Lu S, Pu J, Yang C, Zhang S, Tao Y, Zhang Z, Liu L, Xu J. Nocardioides ochotonae sp. nov., Nocardioides campestrisoli sp. nov. and Nocardioides pantholopis sp. nov., isolated from the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2022; 72. [PMID: 36208423 DOI: 10.1099/ijsem.0.005507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Six Gram-stain-positive, aerobic and irregular-rod-shaped actinobacteria (ZJ1313T, ZJ1307, MC1495T, Y192, 603T and X2025) were isolated from the Qinghai-Tibet Plateau of China and were characterized using a polyphasic taxonomic method. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the six new strains formed three distinct clusters within the genus Nocardioides, and strains ZJ1313T and ZJ1307 were most closely related to N. solisilvae JCM 31492T (16S rRNA gene sequence similarity, 98.0 %), MC1495T and Y192 to N. houyundeii 78T (98.5 %), and 603T and X2025 to N. dokdonensis JCM 14815T (97.6 %). The digital DNA-DNA hybridization values of strains ZJ1313T, MC1495T and 603T among each other and with type strains of their closest relatives were all below the 70 % cut-off point, but values within each pair of new strains were all higher than the threshold. The major fatty acids of these strains were iso-C16 : 0, C17 : 1 ω8c or C18 : 1 ω9c. MK-8(H4) was the predominant respiratory menaquinone and ʟʟ-2,6-diaminopimelic acid was the diagnostic diamino acid. All the strains shared diphosphatidylglycerol (predominant), phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol as the common polar lipids, with minor difference in the types of unidentified phospholipids, glycolipids and lipids. The G+C contents based on genomic DNA of strains ZJ1313T, MC1495T and 603T were 72.5, 72.1 and 73.2 mol%, respectively. The above results suggested that strain pairs ZJ1313T/ZJ1307, MC1495T/Y192 and 603T/X2025 represent three new species of genus Nocardioides, for which the names Nocardioides ochotonae sp. nov. (ZJ1313T=GDMCC 4.177T=KCTC 49537T=JCM 34185T), Nocardioides campestrisoli sp. nov. (MC1495T=GDMCC 4.176T=KCTC 49536T=JCM 34307T) and Nocardioides pantholopis sp. nov. (603T=CGMCC 4.7510T=DSM 106494T) are proposed accordingly.
Collapse
Affiliation(s)
- Juan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaoxia Wang
- Central & Clinical Laboratory of Sanya People's Hospital, Sanya 572000, Hainan Province, PR China
| | - Mingchao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu Province, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Caixin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan 030001, Shanxi Province, PR China
| | - Sihui Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, PR China
| | - Yuanmeihui Tao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Zehui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
- Research Institute of Public Health, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
17
|
Yu H, Le Roux JJ, Zhao M, Li W. Mikania sesquiterpene lactones enhance soil bacterial diversity and fungal and bacterial activities. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Thornton CS, Acosta N, Surette MG, Parkins MD. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J Pediatric Infect Dis Soc 2022; 11:S13-S22. [PMID: 36069903 PMCID: PMC9451016 DOI: 10.1093/jpids/piac036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 01/02/2023]
Abstract
Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive culture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided insight into these dynamics, challenges remain including discerning not only "who is there" but "what they are doing" in relation to disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognostication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in translating microbiome data to clinical practice.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Parkins
- Corresponding Author: Michael D. Parkins, MD, MSc, FRCPC, Associate Professor, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. E-mail:
| |
Collapse
|
19
|
Liu X, Sun W, Ma W, Wang H, Xu K, Zhao L, He Y. Smoking related environmental microbes affecting the pulmonary microbiome in Chinese population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154652. [PMID: 35307427 DOI: 10.1016/j.scitotenv.2022.154652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Smoking is a serious public health problem that affects human health conditions. Although there is evidence that microorganisms are associated with smoking-related lung diseases, the relationship between the rich lung microbiome of upper respiratory tract groups and smoking has not been studied. OBJECTIVE In this study, we investigated the effects of smoking on environmental microbes and lung microbiome in the Chinese population and provided clues for the role of smoking in the development of respiratory disease. METHODS Bronchoalveolar lavage fluid samples were collected from 55 individuals with a history of smoking. Microbial gene sequencing was carried out through NGS technology. We analyzed and compared the diversity, community structure, and species abundance of bronchoalveolar lavage microbiome between smokers and nonsmokers, to speculate the effects of smoking on the lung microbiome. RESULTS Smoking hardly affected the α diversity of microbial groups of bronchoalveolar lavage, but it had a huge influence on the microbiome composition. The relative abundance of Rothia, Actinomycetes, Haemophilus, Porphyrins, Neisseria, Acinetobacter, and Streptococcus genera had a remarkable increase in the smoking group. On the other hand, the relative abundance of Plusella and Veronella decreased significantly. CONCLUSION Smoking may change the environmental microbes and then alter the structure of the lung microbiome, which may lead to smoking-related diseases.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenwen Sun
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Weiqi Ma
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Kandi Xu
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lishu Zhao
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yayi He
- School of Medicine, Tongji University, Shanghai 200092, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
20
|
Crosstalk between Body Microbiota and the Regulation of Immunity. J Immunol Res 2022; 2022:6274265. [PMID: 35647199 PMCID: PMC9135571 DOI: 10.1155/2022/6274265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms. Here, we summarize recent studies regarding microbiota residing in different zones of the body and their relationship with the immune system. We emphasize the immune components underlying pathological conditions and how they interact with local (and distant) microbiota.
Collapse
|
21
|
Widder S, Zhao J, Carmody LA, Zhang Q, Kalikin LM, Schloss PD, LiPuma JJ. Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways. THE ISME JOURNAL 2022; 16:905-914. [PMID: 34689185 PMCID: PMC8941020 DOI: 10.1038/s41396-021-01129-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Bacterial infection and inflammation of the airways are the leading causes of morbidity and mortality in persons with cystic fibrosis (CF). The ecology of the bacterial communities inhabiting CF airways is poorly understood, especially with respect to how community structure, dynamics, and microbial metabolic activity relate to clinical outcomes. In this study, the bacterial communities in 818 sputum samples from 109 persons with CF were analyzed by sequencing bacterial 16S rRNA gene amplicons. We identified eight alternative community types (pulmotypes) by using a Dirichlet multinomial mixture model and studied their temporal dynamics in the cohort. Across patients, the pulmotypes displayed chronological patterns in the transition among each other. Furthermore, significant correlations between pulmotypes and patient clinical status were detected by using multinomial mixed effects models, principal components regression, and statistical testing. Constructing pulmotype-specific metabolic activity profiles, we found that pulmotype microbiota drive distinct community functions including mucus degradation or increased acid production. These results indicate that pulmotypes are the result of ordered, underlying drivers such as predominant metabolism, ecological competition, and niche construction and can form the basis for quantitative, predictive models supporting clinical treatment decisions.
Collapse
Affiliation(s)
- Stefanie Widder
- Department of Medicine 1, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Lisa A Carmody
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qingyang Zhang
- Department of Mathematical Science, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Linda M Kalikin
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Boumaza A, Ben Azzouz E, Arrindell J, Lepidi H, Mezouar S, Desnues B. Whipple's disease and Tropheryma whipplei infections: from bench to bedside. THE LANCET INFECTIOUS DISEASES 2022; 22:e280-e291. [DOI: 10.1016/s1473-3099(22)00128-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
|
23
|
Huang DH, He J, Su XF, Wen YN, Zhang SJ, Liu LY, Zhao H, Ye CP, Wu JH, Cai S, Dong H. The airway microbiota of non-small cell lung cancer patients and its relationship to tumor stage and EGFR gene mutation. Thorac Cancer 2022; 13:858-869. [PMID: 35142041 PMCID: PMC8930493 DOI: 10.1111/1759-7714.14340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating studies have suggested the airway microbiota in lung cancer patients is significantly different from that of healthy controls. However, little is known about the relationship between airway microbiota and important clinical parameters of lung cancer. In this study, we aimed to explore the association between sputum microbiota and lung cancer stage, lymph node metastasis, intrathoracic metastasis, and epidermal growth factor receptor (EGFR) gene mutation. METHODS The microbiota of sputum samples from 85 newly-diagnosed NSCLC patients were sequenced via 16S rRNA sequencing of the V3-V4 region. Sequencing reads were filtered using QIIME2 and clustered against UPARSE. RESULTS Alpha- and β-diversity was significantly different between patients in stages I to II (early stage, ES) and patients in stages III to IV (advanced stage, AS). Linear discriminant analysis Effect Size (LEfSe) identified that genera Granulicatella and Actinobacillus were significantly enriched in ES, and the genus Actinomyces was significantly enriched in AS. PICRUSt2 identified that the NAD salvage pathway was significantly enriched in AS, which was positively associated with Granulicatella. Patients with intrathoracic metastasis were associated with increased genus Peptostreptococcus and incomplete reductive TCA cycle, which was associated with increased Peptostreptococcus. Genera Parvimonas, Pseudomona and L-valine biosynthesis were positively associated with lymph node metastasis. L-valine biosynthesis was related with increased Pseudomona. Finally, the genus Parvimonas was significantly enriched in adenocarcinoma patients with EGFR mutation. CONCLUSION The taxonomy structure differed between different lung cancer stages. The tumor stage, intrathoracic metastasis, lymph node metastasis, and EGFR mutation were associated with alteration of specific airway genera and metabolic function of sputum microbiota.
Collapse
Affiliation(s)
- Dan Hui Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing He
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Fang Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Na Wen
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shu Jia Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lai Yu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cui Pin Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Hua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Guo Y, Li L, Li Z, Sun L, Wang H. Tropheryma whipplei Detection by Nanopore Sequencing in Patients With Interstitial Lung Disease. Front Microbiol 2021; 12:760696. [PMID: 34912314 PMCID: PMC8667551 DOI: 10.3389/fmicb.2021.760696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Tropheryma whipplei is a bacterium associated with Whipple's disease, which commonly manifests as weight loss, arthralgia, and diarrhea. The most frequently involved organs comprise the heart and eyes, in addition to the central nervous system. Few studies have explored the relationship between T. whipplei and pneumonia. Herein, we report three patients with interstitial lung disease (ILD) of unknown cause, whose bronchoalveolar lavage fluid (BALF) were evaluated via Nanopore sequencing. In our in-house BALF Nanopore platform, human DNA was removed with saponin, to improve the reads ratio of microorganisms/host. T. whipplei was the sole or most abundant pathogen in all the patients, comprising 1,385, 826, and 285 reads. The positive result was confirmed via quantitative polymerase chain reaction (PCR) with two pairs of primers (cycle threshold value: 33.26/36.29; 31.68/32.01; 28.82/28.80) and Sanger sequencing. To our knowledge, this is the first report of T. whipplei detection using Nanopore-based sequencing. The turnaround time was approximately 6-8 h in clinical laboratories, including less than 1 h for analysis. In conclusion, the results of this study confirm that Nanopore sequencing can rapidly detect rare pathogens, to improve clinical diagnosis. In addition, diagnosis of Whipple's disease should be combined other laboratory findings, such as periodic acid-Schiff (PAS) staining, and considered a possibility in middle-aged men presenting with ILD and a clinical history of unexplained arthralgia and/or fever.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Lijuan Li
- Department of Pulmonary and Critical Care Medicine, National Center for Clinical Research on Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenzhong Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China.,Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Lingxiao Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Multi-Omics Study of Keystone Species in a Cystic Fibrosis Microbiome. Int J Mol Sci 2021; 22:ijms222112050. [PMID: 34769481 PMCID: PMC8584531 DOI: 10.3390/ijms222112050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.
Collapse
|
26
|
Bozzella MJ, Chaney H, Sami I, Koumbourlis A, Bost JE, Zemanick ET, Freishtat RJ, Crandall KA, Hahn A. Impact of Anaerobic Antibacterial Spectrum on Cystic Fibrosis Airway Microbiome Diversity and Pulmonary Function. Pediatr Infect Dis J 2021; 40:962-968. [PMID: 34269323 PMCID: PMC8511214 DOI: 10.1097/inf.0000000000003211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The role of anaerobic organisms in the cystic fibrosis (CF) lung microbiome is unclear. Our objectives were to investigate the effect of broad (BS) versus narrow (NS) spectrum antianaerobic antibiotic activity on lung microbiome diversity and pulmonary function, hypothesizing that BS antibiotics would cause greater change in microbiome diversity without a significant improvement in lung function. METHODS Pulmonary function tests and respiratory samples were collected prospectively in persons with CF before and after treatment for pulmonary exacerbations. Treatment antibiotics were classified as BS or NS. Gene sequencing data from 16S rRNA were used for diversity analysis and bacterial genera classification. We compared the effects of BS versus NS on diversity indices, lung function and anaerobic/aerobic ratios. Statistical significance was determined by multilevel mixed-effects generalized linear models and mixed-effects regression models. RESULTS Twenty patients, 6-20 years of age, experienced 30 exacerbations. BS therapy had a greater effect on beta diversity than NS therapy when comparing time points before antibiotics to after and at recovery. After antibiotics, the NS therapy group had a greater return toward baseline forced expiratory volume at 1 second and forced expiratory flow 25%-75% values than the BS group. The ratio of anaerobic/aerobic organisms showed a predominance of anaerobes in the NS group with aerobes dominating in the BS group. CONCLUSIONS BS antianaerobic therapy had a greater and possibly longer lasting effect on the lung microbiome of persons with CF, without achieving the recovery of pulmonary function seen with the NS therapy. Specific antibiotic therapies may affect disease progression by changing the airway microbiome.
Collapse
Affiliation(s)
| | - Hollis Chaney
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - Iman Sami
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - Anastassios Koumbourlis
- Division of Pulmonary and Sleep Medicine, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| | - James E. Bost
- The George Washington University School of Medicine and Health Sciences
- Division of Biostatistics and Study Methodology, Children’s National Hospital
| | - Edith T. Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Robert J. Freishtat
- The George Washington University School of Medicine and Health Sciences
- Division of Emergency Medicine, Children’s National Hospital
| | - Keith. A. Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University
| | - Andrea Hahn
- Division of Infectious Diseases, Children’s National Hospital
- The George Washington University School of Medicine and Health Sciences
| |
Collapse
|
27
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
28
|
O’Connor JB, Mottlowitz MM, Wagner BD, Boyne KL, Stevens MJ, Robertson CE, Harris JK, Laguna TA. Divergence of bacterial communities in the lower airways of CF patients in early childhood. PLoS One 2021; 16:e0257838. [PMID: 34613995 PMCID: PMC8494354 DOI: 10.1371/journal.pone.0257838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale Chronic airway infection and inflammation resulting in progressive, obstructive lung disease is the leading cause of morbidity and mortality in cystic fibrosis. Understanding the lower airway microbiota across the ages can provide valuable insight and potential therapeutic targets. Objectives To characterize and compare the lower airway microbiota in cystic fibrosis and disease control subjects across the pediatric age spectrum. Methods Bronchoalveolar lavage fluid samples from 191 subjects (63 with cystic fibrosis) aged 0 to 21 years were collected along with relevant clinical data. We measured total bacterial load using quantitative polymerase chain reaction and performed 16S rRNA gene sequencing to characterize bacterial communities with species-level sensitivity for select genera. Clinical comparisons were investigated. Measurements and main results Cystic fibrosis samples had higher total bacterial load and lower microbial diversity, with a divergence from disease controls around 2–5 years of age, as well as higher neutrophilic inflammation relative to bacterial burden. Cystic fibrosis samples had increased abundance of traditional cystic fibrosis pathogens and decreased abundance of the Streptococcus mitis species group in older subjects. Interestingly, increased diversity in the heterogeneous disease controls was independent of diagnosis and indication. Sequencing was more sensitive than culture, and antibiotic exposure was more common in disease controls, which showed a negative relationship with load and neutrophilic inflammation. Conclusions Analysis of lower airway samples from people with cystic fibrosis and disease controls across the ages revealed key differences in airway microbiota and inflammation. The divergence in subjects during early childhood may represent a window of opportunity for intervention and additional study.
Collapse
Affiliation(s)
- John B. O’Connor
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Madison M. Mottlowitz
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
| | - Brandie D. Wagner
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathleen L. Boyne
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Charles E. Robertson
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jonathan K. Harris
- Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Theresa A. Laguna
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
29
|
Zhou D, Wang Q, Liu H. Coronavirus disease-19 and the gut-lung axis. Int J Infect Dis 2021; 113:300-307. [PMID: 34517046 PMCID: PMC8431834 DOI: 10.1016/j.ijid.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
Gastrointestinal and respiratory tract diseases often occur together. There are many overlapping pathologies, leading to the concept of the ‘gut–lung axis’ in which stimulation on one side triggers a response on the other side. This axis appears to be implicated in infections involving severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has triggered the global coronavirus disease 2019 (COVID-19) pandemic, in which respiratory symptoms of fever, cough and dyspnoea often occur together with gastrointestinal symptoms such as nausea, vomiting, abdominal pain and diarrhoea. Besides the gut–lung axis, it should be noted that the gut participates in numerous axes which may affect lung function, and consequently the severity of COVID-19, through several pathways. This article focuses on the latest evidence and the mechanisms that drive the operation of the gut–lung axis, and discusses the interaction between the gut–lung axis and its possible involvement in COVID-19 from the perspective of microbiota, microbiota metabolites, microbial dysbiosis, common mucosal immunity and angiotensin-converting enzyme II, raising hypotheses and providing methods to guide future research on this new disease and its treatments.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Qiu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education.
| |
Collapse
|
30
|
Abstract
Microbial communities in the airways of persons with CF (pwCF) are variable, may include genera that are not typically associated with CF, and their composition can be difficult to correlate with long-term disease outcomes. Leveraging two large data sets characterizing sputum communities of 167 pwCF and associated metadata, we identified five bacterial community types. These communities explain 24% of the variability in lung function in this cohort, far more than single factors like Simpson diversity, which explains only 4%. Subjects with Pseudomonas-dominated communities tended to be older and have reduced percent predicted FEV1 (ppFEV1) compared to subjects with Streptococcus-dominated communities, consistent with previous findings. To assess the predictive power of these five communities in a longitudinal setting, we used random forests to classify 346 additional samples from 24 subjects observed 8 years on average in a range of clinical states. Subjects with mild disease were more likely to be observed at baseline, that is, not in the context of a pulmonary exacerbation, and community structure in these subjects was more self-similar over time, as measured by Bray-Curtis distance. Interestingly, we found that subjects with mild disease were more likely to remain in a mixed Pseudomonas community, providing some support for the climax-attack model of the CF airway. In contrast, patients with worse outcomes were more likely to show shifts among community types. Our results suggest that bacterial community instability may be a risk factor for lung function decline and indicates the need to understand factors that drive shifts in community composition. IMPORTANCE While much research supports a polymicrobial view of the CF airway, one in which the community is seen as the pathogenic unit, only controlled experiments using model bacterial communities can unravel the mechanistic role played by different communities. This report uses a large data set to identify a small number of communities as a starting point in the development of tractable model systems. We describe a set of five communities that explain 24% of the variability in lung function in our data set, far more than single factors like Simpson diversity, which explained only 4%. In addition, we report that patients with severe disease experienced more shifts among community types, suggesting that bacterial community instability may be a risk factor for lung function decline. Together, these findings provide a proof of principle for selecting bacterial community model systems.
Collapse
|
31
|
Systems Biology and Bile Acid Signalling in Microbiome-Host Interactions in the Cystic Fibrosis Lung. Antibiotics (Basel) 2021; 10:antibiotics10070766. [PMID: 34202495 PMCID: PMC8300688 DOI: 10.3390/antibiotics10070766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.
Collapse
|
32
|
A human respiratory tract-associated bacterium with an extremely small genome. Commun Biol 2021; 4:628. [PMID: 34040152 PMCID: PMC8155191 DOI: 10.1038/s42003-021-02162-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
Recent advances in culture-independent microbiological analyses have greatly expanded our understanding of the diversity of unculturable microbes. However, human pathogenic bacteria differing significantly from known taxa have rarely been discovered. Here, we present the complete genome sequence of an uncultured bacterium detected in human respiratory tract named IOLA, which was determined by developing a protocol to selectively amplify extremely AT-rich genomes. The IOLA genome is 303,838 bp in size with a 20.7% GC content, making it the smallest and most AT-rich genome among known human-associated bacterial genomes to our best knowledge and comparable to those of insect endosymbionts. While IOLA belongs to order Rickettsiales (mostly intracellular parasites), the gene content suggests an epicellular parasitic lifestyle. Surveillance of clinical samples provides evidence that IOLA can be predominantly detected in patients with respiratory bacterial infections and can persist for at least 15 months in the respiratory tract, suggesting that IOLA is a human respiratory tract-associated bacterium. Kazumasa Fukuda et al. complete a new genome sequence for an uncultured bacterium detected in human respiratory tract named IOLA. The IOLA genome is found to be among the smallest and most AT-rich of known human-associated bacterial genomes and surveillance of clinical samples indicates that IOLA is in fact a human respiratory tract-associated bacterium.
Collapse
|
33
|
Dong Q, Chen ES, Zhao C, Jin C. Host-Microbiome Interaction in Lung Cancer. Front Immunol 2021; 12:679829. [PMID: 34108973 PMCID: PMC8183378 DOI: 10.3389/fimmu.2021.679829] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Commensal microbiota has emerged as an essential biomarker and regulator of both tumorigenesis and response to cancer therapy. However, our current knowledge about microbiota in cancer has been largely limited to intestinal microbiota. As a mucosal organ harboring one of the largest surface areas in the body, the lung is exposed to a variety of microbes through inhalation and micro-aspiration, and is colonized by a diverse bacterial community in both physiological and pathological conditions. Importantly, increasing evidence has linked the lung microbiome to cancer development. Studies in lung cancer patients and mouse models have revealed tumor-associated dysregulation of the local microbiome in the lung, which in turn impacts cancer progression by shaping the tumor microenvironment and modulating the activity of tumor-infiltrating immune cells. These findings not only provide novel mechanistic insight into the biology of lung cancer but also shed light on new therapeutic targets and strategies for lung cancer prevention and treatment. The goal of this review is to discuss the key findings, remaining questions, and future directions in this new and exciting field.
Collapse
Affiliation(s)
- Qiang Dong
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eric S Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chen Zhao
- Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Chengcheng Jin
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
34
|
Platt DJ, Lawrence D, Rodgers R, Schriefer L, Qian W, Miner CA, Menos AM, Kennedy EA, Peterson ST, Stinson WA, Baldridge MT, Miner JJ. Transferrable protection by gut microbes against STING-associated lung disease. Cell Rep 2021; 35:109113. [PMID: 33979608 PMCID: PMC8477380 DOI: 10.1016/j.celrep.2021.109113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
STING modulates immunity by responding to bacterial and endogenous cyclic dinucleotides (CDNs). Humans and mice with STING gain-of-function mutations develop a syndrome known as STING-associated vasculopathy with onset in infancy (SAVI), which is characterized by inflammatory or fibrosing lung disease. We hypothesized that hyperresponsiveness of gain-of-function STING to bacterial CDNs might explain autoinflammatory lung disease in SAVI mice. We report that depletion of gut microbes with oral antibiotics (vancomycin, neomycin, and ampicillin [VNA]) nearly eliminates lung disease in SAVI mice, implying that gut microbes might promote STING-associated autoinflammation. However, we show that germ-free SAVI mice still develop severe autoinflammatory disease and that transferring gut microbiota from antibiotics-treated mice to germ-free animals eliminates lung inflammation. Depletion of anaerobes with metronidazole abolishes the protective effect of the VNA antibiotics cocktail, and recolonization with the metronidazole-sensitive anaerobe Bacteroides thetaiotaomicron prevents disease, confirming a protective role of a metronidazole-sensitive microbe in a model of SAVI. Platt et al. report that oral antibiotics but not germ-free conditions prevent autoinflammatory lung disease in a mouse model of STING-associated vasculopathy with onset in infancy (SAVI). Recolonization of SAVI mice with either Bacteroidales-enriched stool or Bacteroides thetaiotaomicron is protective in this model of STING-associated autoinflammatory lung disease.
Collapse
Affiliation(s)
- Derek J Platt
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dylan Lawrence
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel Rodgers
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lawrence Schriefer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cathrine A Miner
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amber M Menos
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elizabeth A Kennedy
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jonathan J Miner
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
35
|
Williamson KM, Wagner BD, Robertson CE, Stevens MJ, Sontag MK, Mourani PM, Harris JK. Modified PCR protocol to increase sensitivity for determination of bacterial community composition. MICROBIOME 2021; 9:90. [PMID: 33849648 PMCID: PMC8045227 DOI: 10.1186/s40168-020-00958-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The objective of this project was to increase the sensitivity of sequence-based bacterial community determination without impacting community composition or interfering with cluster formation during sequencing. Two PCR protocols (standard and modified) were examined in airway samples where we observed a large range in bacterial load (3.1-6.2 log10 16S rRNA gene copies/reaction). Tracheal aspirate (TA) samples (n = 99) were collected from sixteen children requiring mechanical ventilation at a single center. DNA was extracted, and total bacterial load (TBL) was assessed using qPCR. Amplification of 16S rRNA was attempted with both protocols in all samples. RESULTS PCR product was observed using both protocols in 52 samples and in 24 additional samples only with the modified protocol. TBL, diversity metrics, and prominent taxa were compared for samples in three groups based on success of the two protocols (successful with both, success with modified only, unsuccessful for both). TBL differed significantly across the three groups (p<0.001). Specifically, the modified protocol allowed amplification from samples with intermediate TBL. Shannon diversity was similar between the two protocols, and Morisita-Horn beta diversity index showed high agreement between the two protocols within samples (median value 0.9997, range 0.9947 to 1). We show that both protocols identify similar communities, and the technical variability of both protocols was very low. The use of limited PCR cycles was a key feature to limit impact of background by exclusion of 24% of samples with no evidence of bacterial DNA present in the sample. CONCLUSION The modified amplification protocol represents a viable approach that increased sensitivity of bacterial community analysis, which is important for study of the human airway microbiome where bacterial load is highly variable. Video abstract.
Collapse
Affiliation(s)
- Kayla M. Williamson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado School of Medicine, 13001 17th Place, Mail Stop B119, Aurora, CO 80045 USA
| | - Brandie D. Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado School of Medicine, 13001 17th Place, Mail Stop B119, Aurora, CO 80045 USA
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, 13123 E. 16th Ave. Box B395, Aurora, CO 80045 USA
| | - Charles E. Robertson
- Division of Infectious Diseases, School of Medicine, University of Colorado, 12700 East 19th Avenue, Mail Stop B168, Aurora, CO 80045 USA
| | - Mark J. Stevens
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, 13123 E. 16th Ave. Box B395, Aurora, CO 80045 USA
| | - Marci K. Sontag
- Department of Epidemiology, Colorado School of Public Health, University of Colorado School of Medicine, 13001 17th Place, Mail Stop B119, Aurora, CO 80045 USA
| | - Peter M. Mourani
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, 13123 E. 16th Ave. Box B395, Aurora, CO 80045 USA
| | - J. Kirk Harris
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, 13123 E. 16th Ave. Box B395, Aurora, CO 80045 USA
| |
Collapse
|
36
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
37
|
Linnane B, Walsh AM, Walsh CJ, Crispie F, O’Sullivan O, Cotter PD, McDermott M, Renwick J, McNally P. The Lung Microbiome in Young Children with Cystic Fibrosis: A Prospective Cohort Study. Microorganisms 2021; 9:microorganisms9030492. [PMID: 33652802 PMCID: PMC7996874 DOI: 10.3390/microorganisms9030492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
The cystic fibrosis (CF) lung harbours a diverse microbiome and reduced diversity in the CF lung has been associated with advancing age, increased inflammation and poorer lung function. Data suggest that the window for intervention is early in CF, yet there is a paucity of studies on the lung microbiome in children with CF. The objective of this study was to thoroughly characterise the lower airway microbiome in pre-school children with CF. Bronchoalveolar lavage (BAL) samples were collected annually from children attending the three clinical centres. Clinical and demographic data were collated on all subjects alongside BAL inflammatory markers. 16S rRNA gene sequencing was performed on the Illumina MiSeq platform. Bioinformatics and data analysis were performed using Qiime and R project software. Data on 292 sequenced BALs from 101 children with CF and 51 without CF show the CF lung microbiome, while broadly similar to that in non-CF children, is distinct. Alpha diversity between the two cohorts was indistinguishable at this early age. The CF diagnosis explained only 1.1% of the variation between the cohort microbiomes. However, several key genera were significantly differentially abundant between the groups. While the non-CF lung microbiome diversity increased with age, diversity reduced in CF with age. Pseudomonas and Staphylococcus were more abundant with age, while genera such as Streptococcus, Porphyromonas and Veillonella were less abundant with age. There was a negative correlation between alpha diversity and interleukin-8 and neutrophil elastase in the CF population. Neither current flucloxacillin or azithromycin prophylaxis, nor previous oral or IV antibiotic exposure, was correlated with microbiome diversity. Consecutive annual BAL samples over 5 years from a subgroup of children demonstrated diverse patterns of development in the first years of life.
Collapse
Affiliation(s)
- Barry Linnane
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick V94 T9PX, Ireland;
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
| | - Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Michael McDermott
- Pathology Department, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
| | - Julie Renwick
- Department of Clinical Microbiology, Trinity College Dublin, Trinity Centre for Health Science, Tallaght University Hospital, Dublin 24, Ireland
- Correspondence: ; Tel.: +353-1-896-3791
| | - Paul McNally
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
- Department of Paediatrics, Royal College of Surgeons in Ireland, Our Lady’s Children’s Hospital Crumlin, Dublin D12 N512, Ireland
| |
Collapse
|
38
|
Abstract
Cystic fibrosis (CF) is the most common, lethal genetic disease among the Caucasian population. The leading cause of mortality is recurrent acute exacerbations resulting in chronic airway inflammation and subsequent downward progression of pulmonary function. Traditionally, these periods of clinical deterioration have been associated with several principal pathogens. However, a growing body of literature has demonstrated a polymicrobial lower respiratory community compromised of facultative and obligate anaerobes. Despite the understanding of a complex bacterial milieu in CF patient airways, specific roles of anaerobes in disease progression have not been established. In this paper, we first present a brief review of the anaerobic microorganisms that have been identified within CF lower respiratory airways. Next, we discuss the potential contribution of these organisms to CF disease progression, in part by pathogenic potential and also through synergistic interaction with principal pathogens. Finally, we propose a variety of clinical scenarios in which these anaerobic organisms indirectly facilitate principal CF pathogens by modulating host defense and contribute to treatment failure by antibiotic inactivation. These mechanisms may affect patient clinical outcomes and contribute to further disease progression.
Collapse
|
39
|
Li W, Zhang Q, Xu Y, Zhang X, Huang Q, Su Z. Severe pneumonia in adults caused by Tropheryma whipplei and Candida sp. infection: a 2019 case series. BMC Pulm Med 2021; 21:29. [PMID: 33451316 PMCID: PMC7810182 DOI: 10.1186/s12890-020-01384-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
Background Whipple’s disease is a chronic infectious disease caused by the Gram-positive bacterium Tropheryma whipplei (TW), which not only affects the gastrointestinal tract and causes malabsorption of nutrients, but several other systems, such as the cardiovascular system, central nervous system, the joints, and the vascular system, can also be simultaneously involved. The aim of this report was to be able to alert the clinician to severe pneumonia caused by TW combined with Candida sp. Case presentation The case study was conducted on patients in September and November 2019. After routine examination and treatment, the results were not satisfactory. A bronchoalveolar lavage (BAL) using metagenomics next-generation sequencing was conducted on two adults who presented with fever, cough, and progressive dyspnea and who had no history of gastrointestinal symptoms, immunodeficiency diseases, or use of immunosuppressive agents. TW and Candida sp. were detected in in BAL. Conclusions This is a report of life-threatening pneumonia caused by TW combined with Candida sp. in a Chinese population.
Collapse
Affiliation(s)
- Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qun Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yanling Xu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiyue Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qian Huang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenzhong Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
40
|
Abstract
Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. Antimicrobial therapies against cystic fibrosis (CF) lung infections are largely aimed at the traditional, well-studied CF pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex, despite the fact that the CF lung harbors a complex and dynamic polymicrobial community. A clinical focus on the dominant pathogens ignores potentially important community-level interactions in disease pathology, perhaps explaining why these treatments are often less effective than predicted based on in vitro testing. A better understanding of the ecological dynamics of this ecosystem may enable clinicians to harness these interactions and thereby improve treatment outcomes. Like all ecosystems, the CF lung microbial community develops through a series of stages, each of which may present with distinct microbial communities that generate unique host-microbe and microbe-microbe interactions, metabolic profiles, and clinical phenotypes. While insightful models have been developed to explain some of these stages and interactions, there is no unifying model to describe how these infections develop and persist. Here, we review current perspectives on the ecology of the CF airway and present the CF Ecological Succession (CFES) model that aims to capture the spatial and temporal complexity of CF lung infection, address current challenges in disease management, and inform the development of ecologically driven therapeutic strategies.
Collapse
|
41
|
Bacterial composition of nasal discharge in children based on highly accurate 16S rRNA gene sequencing analysis. Sci Rep 2020; 10:20193. [PMID: 33214657 PMCID: PMC7678852 DOI: 10.1038/s41598-020-77271-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 01/24/2023] Open
Abstract
Nasopharyngeal colonization by bacteria is a prerequisite for progression to respiratory disease and an important source of horizontal spread within communities. We aimed to perform quantitative analysis of the bacterial cells and reveal the microbiota of the nasal discharge in children at the species level based on highly accurate 16S rRNA gene sequencing. This study enrolled 40 pediatric patients with rhinorrhea. The bacterial cells in the nasal discharge were counted by epifluorescence microscopic analysis. The microbiota was analyzed by using the 16S rRNA gene clone library sequencing method. We demonstrated that a high abundance (median 2.2 × 107 cells/mL) of bacteria was contained in the nasal discharge of children. Of the 40 samples, 37 (92.5%) were dominated by OTUs corresponding to Haemophilus aegyptius/influenzae, Moraxella catarrhalis/nonliquefaciens, or Streptococcus pneumoniae. These samples showed higher cell abundance and lower alpha diversity than the remaining three samples in which the other bacteria coexisted. In addition, 12 sequences with low homology to type strains were considered as previously unknown bacterial lineages. In conclusion, the nasal discharge of most young children contains a large amount of respiratory pathogens and several unknown bacteria, which could not only cause endogenous infection but also be a source of transmission to others.
Collapse
|
42
|
Lee AJ, Einarsson GG, Gilpin DF, Tunney MM. Multi-Omics Approaches: The Key to Improving Respiratory Health in People With Cystic Fibrosis? Front Pharmacol 2020; 11:569821. [PMID: 33013411 PMCID: PMC7509435 DOI: 10.3389/fphar.2020.569821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The advent of high-throughput multi-omics technologies has underpinned the expansion in lung microbiome research, increasing our understanding of the nature, complexity and significance of the polymicrobial communities harbored by people with CF (PWCF). Having established that structurally complex microbial communities exist within the airways, the focus of recent research has now widened to investigating the function and dynamics of the resident microbiota during disease as well as in health. With further refinement, multi-omics approaches present the opportunity to untangle the complex interplay between microbe-microbe and microbe-host interactions in the lung and the relationship with respiratory disease progression, offering invaluable opportunities to discover new therapeutic approaches for our management of airway infection in CF.
Collapse
Affiliation(s)
- Andrew J. Lee
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Gisli G. Einarsson
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F. Gilpin
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Michael M. Tunney
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
43
|
Lira-Lucio JA, Falfán-Valencia R, Ramírez-Venegas A, Buendía-Roldán I, Rojas-Serrano J, Mejía M, Pérez-Rubio G. Lung Microbiome Participation in Local Immune Response Regulation in Respiratory Diseases. Microorganisms 2020; 8:E1059. [PMID: 32708647 PMCID: PMC7409050 DOI: 10.3390/microorganisms8071059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The lung microbiome composition has critical implications in the regulation of innate and adaptive immune responses. Next-generation sequencing techniques have revolutionized the understanding of pulmonary physiology and pathology. Currently, it is clear that the lung is not a sterile place; therefore, the investigation of the participation of the pulmonary microbiome in the presentation, severity, and prognosis of multiple pathologies, such as asthma, chronic obstructive pulmonary disease, and interstitial lung diseases, contributes to a better understanding of the pathophysiology. Dysregulation of microbiota components in the microbiome-host interaction is associated with multiple lung pathologies, severity, and prognosis, making microbiome study a useful tool for the identification of potential therapeutic strategies. This review integrates the findings regarding the activation and regulation of the innate and adaptive immune response pathways according to the microbiome, including microbial patterns that could be characteristic of certain diseases. Further studies are required to verify whether the microbial profile and its metabolites can be used as biomarkers of disease progression or poor prognosis and to identify new therapeutic targets that restore lung dysbiosis safely and effectively.
Collapse
Affiliation(s)
- Juan Alberto Lira-Lucio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.A.L.-L.); (R.F.-V.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.A.L.-L.); (R.F.-V.)
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Jorge Rojas-Serrano
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-S.); (M.M.)
| | - Mayra Mejía
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-S.); (M.M.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.A.L.-L.); (R.F.-V.)
| |
Collapse
|
44
|
F. Escapa I, Huang Y, Chen T, Lin M, Kokaras A, Dewhirst FE, Lemon KP. Construction of habitat-specific training sets to achieve species-level assignment in 16S rRNA gene datasets. MICROBIOME 2020; 8:65. [PMID: 32414415 PMCID: PMC7291764 DOI: 10.1186/s40168-020-00841-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/15/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The low cost of 16S rRNA gene sequencing facilitates population-scale molecular epidemiological studies. Existing computational algorithms can resolve 16S rRNA gene sequences into high-resolution amplicon sequence variants (ASVs), which represent consistent labels comparable across studies. Assigning these ASVs to species-level taxonomy strengthens the ecological and/or clinical relevance of 16S rRNA gene-based microbiota studies and further facilitates data comparison across studies. RESULTS To achieve this, we developed a broadly applicable method for constructing high-resolution training sets based on the phylogenic relationships among microbes found in a habitat of interest. When used with the naïve Bayesian Ribosomal Database Project (RDP) Classifier, this training set achieved species/supraspecies-level taxonomic assignment of 16S rRNA gene-derived ASVs. The key steps for generating such a training set are (1) constructing an accurate and comprehensive phylogenetic-based, habitat-specific database; (2) compiling multiple 16S rRNA gene sequences to represent the natural sequence variability of each taxon in the database; (3) trimming the training set to match the sequenced regions, if necessary; and (4) placing species sharing closely related sequences into a training-set-specific supraspecies taxonomic level to preserve subgenus-level resolution. As proof of principle, we developed a V1-V3 region training set for the bacterial microbiota of the human aerodigestive tract using the full-length 16S rRNA gene reference sequences compiled in our expanded Human Oral Microbiome Database (eHOMD). We also overcame technical limitations to successfully use Illumina sequences for the 16S rRNA gene V1-V3 region, the most informative segment for classifying bacteria native to the human aerodigestive tract. Finally, we generated a full-length eHOMD 16S rRNA gene training set, which we used in conjunction with an independent PacBio single molecule, real-time (SMRT)-sequenced sinonasal dataset to validate the representation of species in our training set. This also established the effectiveness of a full-length training set for assigning taxonomy of long-read 16S rRNA gene datasets. CONCLUSION Here, we present a systematic approach for constructing a phylogeny-based, high-resolution, habitat-specific training set that permits species/supraspecies-level taxonomic assignment to short- and long-read 16S rRNA gene-derived ASVs. This advancement enhances the ecological and/or clinical relevance of 16S rRNA gene-based microbiota studies. Video Abstract.
Collapse
Affiliation(s)
- Isabel F. Escapa
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
- Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | - Yanmei Huang
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
| | - Tsute Chen
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
| | - Maoxuan Lin
- Forsyth Institute (Microbiology), Cambridge, MA USA
| | | | - Floyd E. Dewhirst
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA USA
| | - Katherine P. Lemon
- Forsyth Institute (Microbiology), Cambridge, MA USA
- Department of Molecular Virology & Microbiology, Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX USA
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
- Section of Infectious Diseases, Department of Pediatrics, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
45
|
Valentini TD, Lucas SK, Binder KA, Cameron LC, Motl JA, Dunitz JM, Hunter RC. Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota. Nat Commun 2020; 11:2287. [PMID: 32385294 PMCID: PMC7210995 DOI: 10.1038/s41467-020-16163-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Culture-independent studies of cystic fibrosis lung microbiota have provided few mechanistic insights into the polymicrobial basis of disease. Deciphering the specific contributions of individual taxa to CF pathogenesis requires comprehensive understanding of their ecophysiology at the site of infection. We hypothesize that only a subset of CF microbiota are translationally active and that these activities vary between subjects. Here, we apply bioorthogonal non-canonical amino acid tagging (BONCAT) to visualize and quantify bacterial translational activity in expectorated sputum. We report that the percentage of BONCAT-labeled (i.e. active) bacterial cells varies substantially between subjects (6-56%). We use fluorescence-activated cell sorting (FACS) and genomic sequencing to assign taxonomy to BONCAT-labeled cells. While many abundant taxa are indeed active, most bacterial species detected by conventional molecular profiling show a mixed population of both BONCAT-labeled and unlabeled cells, suggesting heterogeneous growth rates in sputum. Differentiating translationally active subpopulations adds to our evolving understanding of CF lung disease and may help guide antibiotic therapies targeting bacteria most likely to be susceptible.
Collapse
Affiliation(s)
- Talia D Valentini
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Sarah K Lucas
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Kelsey A Binder
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Lydia C Cameron
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Jason A Motl
- Academic Health Center, University Flow Cytometry Resource, University of Minnesota, 6th St SE, Minneapolis, MN, 55455, United States
| | - Jordan M Dunitz
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN, 55455, United States
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States.
| |
Collapse
|
46
|
Hahn A, Whiteson K, Davis TJ, Phan J, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Bean HD. Longitudinal Associations of the Cystic Fibrosis Airway Microbiome and Volatile Metabolites: A Case Study. Front Cell Infect Microbiol 2020; 10:174. [PMID: 32411616 PMCID: PMC7198769 DOI: 10.3389/fcimb.2020.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of 16S rDNA biomarkers from respiratory samples to describe the continuum of clinical disease states within persons having cystic fibrosis (CF) has remained elusive. We sought to combine 16S, metagenomics, and metabolomics data to describe multiple transitions between clinical disease states in 14 samples collected over a 12-month period in a single person with CF. We hypothesized that each clinical disease state would have a unique combination of bacterial genera and volatile metabolites as a potential signature that could be utilized as a biomarker of clinical disease state. Taxonomy identified by 16S sequencing corroborated clinical culture results, with the majority of the 109 PCR amplicons belonging to the bacteria grown in clinical cultures (Escherichia coli and Staphylococcus aureus). While alpha diversity measures fluctuated across disease states, no significant trends were present. Principle coordinates analysis showed that treatment samples trended toward a different community composition than baseline and exacerbation samples. This was driven by the phylum Bacteroidetes (less abundant in treatment, log2 fold difference -3.29, p = 0.015) and the genus Stenotrophomonas (more abundant in treatment, log2 fold difference 6.26, p = 0.003). Across all sputum samples, 466 distinct volatile metabolites were identified with total intensity varying across clinical disease state. Baseline and exacerbation samples were rather uniform in chemical composition and similar to one another, while treatment samples were highly variable and differed from the other two disease states. When utilizing a combination of the microbiome and metabolome data, we observed associations between samples dominated Staphylococcus and Escherichia and higher relative abundances of alcohols, while samples dominated by Achromobacter correlated with a metabolomics shift toward more oxidized volatiles. However, the microbiome and metabolome data were not tightly correlated; examining both the metagenomics and metabolomics allows for more context to examine changes across clinical disease states. In our study, combining the sputum microbiome and metabolome data revealed stability in the sputum composition through the first exacerbation and treatment episode, and into the second exacerbation. However, the second treatment ushered in a prolonged period of instability, which after three additional exacerbations and treatments culminated in a new lung microbiome and metabolome.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Diseases, Children's National Health System, Washington, DC, United States.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Center for Genetic Medicine Research, The Children's Research Institute, Washington, DC, United States
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, United States
| | - Trenton J Davis
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Joann Phan
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, United States
| | - Iman Sami
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Anastassios C Koumbourlis
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Robert J Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Division of Emergency Medicine, Children's National Health System, Washington, DC, United States
| | - Keith A Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Heather D Bean
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
47
|
Ibironke O, McGuinness LR, Lu SE, Wang Y, Hussain S, Weisel CP, Kerkhof LJ. Species-level evaluation of the human respiratory microbiome. Gigascience 2020; 9:giaa038. [PMID: 32298431 PMCID: PMC7162353 DOI: 10.1093/gigascience/giaa038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Changes to human respiratory tract microbiome may contribute significantly to the progression of respiratory diseases. However, there are few studies examining the relative abundance of microbial communities at the species level along the human respiratory tract. FINDINGS Bronchoalveolar lavage, throat swab, mouth rinse, and nasal swab samples were collected from 5 participants. Bacterial ribosomal operons were sequenced using the Oxford Nanopore MinION to determine the relative abundance of bacterial species in 4 compartments along the respiratory tract. More than 1.8 million raw operon reads were obtained from the participants with ∼600,000 rRNA reads passing quality assurance/quality control (70-95% identify; >1,200 bp alignment) by Discontiguous MegaBLAST against the EZ BioCloud 16S rRNA gene database. Nearly 3,600 bacterial species were detected overall (>750 bacterial species within the 5 dominant phyla: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria. The relative abundance of bacterial species along the respiratory tract indicated that most microbes (95%) were being passively transported from outside into the lung. However, a small percentage (<5%) of bacterial species were at higher abundance within the lavage samples. The most abundant lung-enriched bacterial species were Veillonella dispar and Veillonella atypica while the most abundant mouth-associated bacterial species were Streptococcus infantis and Streptococcus mitis. CONCLUSIONS Most bacteria detected in lower respiratory samples do not seem to colonize the lung. However, >100 bacterial species were found to be enriched in bronchoalveolar lavage samples (compared to mouth/nose) and may play a substantial role in lung health.
Collapse
Affiliation(s)
- Olufunmilola Ibironke
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers–the State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, USA 08854, NJ, USA
| | - Lora R McGuinness
- Department of Marine and Coastal Sciences, Rutgers–the State University of New Jersey, 71 Dudley Road, New Brunswick, NJ USA 08901
| | - Shou-En Lu
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers–the State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, USA 08854, NJ, USA
| | - Yaquan Wang
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers–the State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ, USA 08854, NJ, USA
| | - Sabiha Hussain
- Department of Pulmonary Medicine, Rutgers University-Robert Wood Johnsonchool, 125 Paterson Street, Suite 5200B New Brunswick, NJ 08901
| | - Clifford P Weisel
- Department of Pulmonary Medicine, Rutgers University-Robert Wood Johnsonchool, 125 Paterson Street, Suite 5200B New Brunswick, NJ 08901
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers–the State University of New Jersey, 71 Dudley Road, New Brunswick, NJ USA 08901
| |
Collapse
|
48
|
The characterization of bacterial communities of oropharynx microbiota in healthy children by combining culture techniques and sequencing of the 16S rRNA gene. Microb Pathog 2020; 143:104115. [PMID: 32135220 DOI: 10.1016/j.micpath.2020.104115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
Abstract
The high incidence of bacterial respiratory infections has led to a focus on evaluating the human respiratory microbiome. Studies based on culture-based and molecular methods have shown an increase in the bacterial community that includes the bacterial phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria in the oropharynx of healthy individuals. Therefore, recognizing this microbial compound and subsequently identifying those carriers of specific pathogens can be of great help in predicting future infections and their control. In this prospective study, we sought to characterize the bacterial communities of the respiratory microbiome in healthy children aged between 3 and 6 years old by combining both cultural techniques and sequencing of the 16S rRNA gene. Seventy-seven oropharynx samples using Dacron swabs were collected from 77 healthy children in the kindergartens of Ilam, Iran. Bacterial identification was performed by phenotypic methods and in house developed PCR-based sequencing (the V1-V9 hypervariable region of the bacterial 16S ribosomal RNA gene). In total, 346 bacterial isolates were characterized based on phenotypic and sequencing-based molecular methods. The 3 most predominant phyla were Firmicutes (74%), Proteobacteria (22%), and Actinobacteria (4%). At the level of the genus, Staphylococci (coagulase-positive and coagulase-negative) and Streptococci were dominant. Also, the most commonly identified potentially pathogenic colonisers were S. aureus (75%), Enterobacteriaceae spp. (40.1%), and A. baumannii (15.6%). The present study identified 3 phyla and 9 family of bacteria in the oropharyngeal microbiome. Remarkably, the presence of potential pathogenic bacteria in the nasopharynx of healthy children can predispose them to infectious diseases, and also frequent exposure to human respiratory bacterial pathogens are further risk factors.
Collapse
|
49
|
Abstract
Cystic fibrosis (CF) is a genetic, multisystem disease due to defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an anion channel responsible for chloride and bicarbonate trafficking. Although this channel is expressed in many tissues, its impaired function in airway epithelial cells leads to hyperviscous mucous secretions impeding effective mucociliary clearance. Impaired clearance of inhaled microorganisms results in the establishment of chronic infection, triggering an overexaggerated inflammatory response. The resulting release of inflammatory cytokines and enzymes causes pulmonary damage in the form of bronchiectasis, further impairing mucociliary action, forming a vicious cycle. Subsequent respiratory failure remains the leading cause of death in individuals with CF.
Collapse
Affiliation(s)
- Stephanie Duggins Davis
- The University of North Carolina at Chapel Hill, Department of Pediatrics, UNC Children’s Hospital, Chapel Hill, NC USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Division of Pulmonary and Sleep Medicine Seattle Children’s Hospital, Seattle, WA USA
| | - James Chmiel
- Department of Pediatrics, Indiana University School of Medicine, Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Riley Hospital for Children at IU Health, Indianapolis, IN USA
| |
Collapse
|
50
|
Orazi G, O'Toole GA. "It Takes a Village": Mechanisms Underlying Antimicrobial Recalcitrance of Polymicrobial Biofilms. J Bacteriol 2019; 202:e00530-19. [PMID: 31548277 PMCID: PMC6932244 DOI: 10.1128/jb.00530-19] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic infections are frequently caused by polymicrobial biofilms. Importantly, these infections are often difficult to treat effectively in part due to the recalcitrance of biofilms to antimicrobial therapy. Emerging evidence suggests that polymicrobial interactions can lead to dramatic and unexpected changes in the ability of antibiotics to eradicate biofilms and often result in decreased antimicrobial efficacy in vitro In this review, we discuss the influence of polymicrobial interactions on the antibiotic susceptibility of biofilms, and we highlight the studies that first documented the shifted antimicrobial susceptibilities of mixed-species cultures. Recent studies have identified several mechanisms underlying the recalcitrance of polymicrobial biofilm communities, including interspecies exchange of antibiotic resistance genes, β-lactamase-mediated inactivation of antibiotics, changes in gene expression induced by metabolites and quorum sensing signals, inhibition of the electron transport chain, and changes in properties of the cell membrane. In addition to elucidating multiple mechanisms that contribute to the altered drug susceptibility of polymicrobial biofilms, these studies have uncovered novel ways in which polymicrobial interactions can impact microbial physiology. The diversity of findings discussed highlights the importance of continuing to investigate the efficacy of antibiotics against biofilm communities composed of different combinations of microbial species. Together, the data presented here illustrate the importance of studying microbes as part of mixed-species communities rather than in isolation. In light of our greater understanding of how interspecies interactions alter the efficacy of antimicrobial agents, we propose that the methods for measuring the drug susceptibility of polymicrobial infections should be revisited.
Collapse
Affiliation(s)
- Giulia Orazi
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|