1
|
Ma J, Chen Z, Fu C, Wei S, Liu J, Yang X, Chen X, Zhao Q, Sun Y, Huo Y. Consistency of drug-resistant mutations in plasma and peripheral blood mononuclear cells of patients with treatment-naïve and treatment-experienced HIV-1 infection. Front Cell Infect Microbiol 2023; 13:1249837. [PMID: 38179423 PMCID: PMC10766352 DOI: 10.3389/fcimb.2023.1249837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Genotypic drug resistance testing is cursrently recommended by the World Health Organization for all patients infected with human immunodeficiency virus type 1 (HIV-1) undergoing care or switching regimes due to failure with previous antiretroviral therapy (ART). Patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) who meet the criteria for free testing for genotypic drug resistance due to poor adherence in Henan Province may resume their previous regimens before resampling. Therefore, resistance testing based on plasma RNA can fail in a proportion of patients. Resistance testing based on peripheral blood mononuclear cells (PBMCs) is an alternative option. In this study, we investigated the differences in drug-resistant mutations (DRMs) between plasma HIV RNA and proviral DNA in treatment-experienced and treatment-naïve patients. Methods Matched plasma RNA and proviral DNA samples of 66 HIV-1 infected treatment-naïve and 78 treatment-experienced patients were selected for DRM analysis and comparison. Results DRMs were detected in 27.3% (18/66) of treatment-naïve and 80.8% (63/78) of treatment-experienced samples. Resistance to at least one drug was detected based on analysis of plasma RNA and proviral DNA in 7.6% (5/66) and 9.1% (6/66) of treatment-naïve patients and in 79.5% (62/78) and 78.2% (61/78) of treatment-experienced patients, respectively. Furthermore, 61/66 (92.4%) of treatment-naïve patients showed concordant RNA and DNA drug resistance. When drug resistance was defined as intermediate and high, the concordance of drug resistance profiles of paired RNA and proviral DNA samples derived from treatment-naïve patients were up to 97.0% compared with only 80.8% (63/78) in treatment-experienced patients. Discussion Our data indicate that drug resistance testing based on plasma RNA or proviral DNA might be interchangeable in treatment-naïve patients, whereas plasma RNA-based testing remains the best choice for drug resistance analysis in patients with ART failure in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Sun
- Center for Translational Medicine, The Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Yuqi Huo
- Center for Translational Medicine, The Sixth People’s Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
2
|
Koma T, Doi N, Le BQ, Kondo T, Ishizue M, Tokaji C, Tsukada C, Adachi A, Nomaguchi M. Involvement of a Rarely Used Splicing SD2b Site in the Regulation of HIV-1 vif mRNA Production as Revealed by a Growth-Adaptive Mutation. Viruses 2023; 15:2424. [PMID: 38140666 PMCID: PMC10747208 DOI: 10.3390/v15122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
We have previously reported an HIV-1 mutant designated NL-Y226tac that expresses Vif at an ultra-low level, being replication-defective in high-APOBEC3G cells, such as H9. It carries a synonymous mutation within the splicing SA1 site relative to its parental clone. In order to determine whether a certain mutant(s) emerges during multi-infection cycles, we maintained H9 cells infected with a relatively low or high input of NL-Y226tac for extended time periods. Unexpectedly, we reproducibly identified a g5061a mutation in the SD2b site in the two independent long-term culture experiments that partially increases Vif expression and replication ability. Importantly, the adaptive mutation g5061a was demonstrated to enhance vif mRNA production by activation of the SA1 site mediated through increasing usage of a rarely used SD2b site. In the long-term culture initiated by a high virus input, we additionally found a Y226Fttc mutation at the original Y226tac site in SA1 that fully restores Vif expression and replication ability. As expected, the adaptive mutation Y226Fttc enhances vif mRNA production through increasing the splicing site usage of SA1. Our results here revealed the importance of the SD2b nucleotide sequence in producing vif mRNA involved in the HIV-1 adaptation and of mutual antagonism between Vif and APOBEC3 proteins in HIV-1 adaptation/evolution and survival.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Naoya Doi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Bao Quoc Le
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Tomoyuki Kondo
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Mitsuki Ishizue
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Chiaki Tokaji
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Chizuko Tsukada
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| |
Collapse
|
3
|
Mohammadzadeh N, Chomont N, Estaquier J, Cohen EA, Power C. Is the Central Nervous System Reservoir a Hurdle for an HIV Cure? Viruses 2023; 15:2385. [PMID: 38140626 PMCID: PMC10747469 DOI: 10.3390/v15122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada;
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
4
|
Bao Q, Zhou J. Various strategies for developing APOBEC3G protectors to circumvent human immunodeficiency virus type 1. Eur J Med Chem 2023; 250:115188. [PMID: 36773550 DOI: 10.1016/j.ejmech.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.
Collapse
Affiliation(s)
- Qiqi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
5
|
Dobrovolná M, Brázda V, Warner EF, Bidula S. Inverted repeats in the monkeypox virus genome are hot spots for mutation. J Med Virol 2023; 95:e28322. [PMID: 36400742 PMCID: PMC10100261 DOI: 10.1002/jmv.28322] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The current monkeypox virus (MPXV) strain differs from the strain arising in 2018 by 50+ single nucleotide polymorphisms (SNPs) and is mutating much faster than expected. The cytidine deaminase apolipoprotein B messenger RNA editing enzyme, catalytic subunit B (APOBEC3) was hypothesized to be driving this increased mutation. APOBEC has recently been identified to preferentially mutate cruciform DNA secondary structures formed by inverted repeats (IRs). IRs were recently identified as hot spots for mutation in severe acute respiratory syndrome coronavirus 2, and we aimed to identify whether IRs were also hot spots for mutation within MPXV genomes. We found that MPXV genomes were replete with IR sequences. Of the 50+ SNPs identified in the 2022 outbreak strain, 63.9% of these were found to have arisen within IR regions in the 2018 reference strain (MT903344.1). Notably, IR sequences found in the 2018 reference strain were significantly lost over time, with an average of 32.5% of these sequences being conserved in the 2022 MPXV genomes. This evidence was highly indicative that mutations were arising within IRs. This data provides further support to the hypothesis that APOBEC may be driving MPXV mutation and highlights the necessity for greater surveillance of IRs of MPXV genomes to detect new mutations.
Collapse
Affiliation(s)
- Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.,Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Emily F Warner
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
6
|
King CR, Mehle A. Retasking of canonical antiviral factors into proviral effectors. Curr Opin Virol 2022; 56:101271. [PMID: 36242894 PMCID: PMC10090225 DOI: 10.1016/j.coviro.2022.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.
Collapse
Affiliation(s)
- Cason R King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Dwivedi R, Wang Y, Kline C, Fischer DK, Ambrose Z. APOBEC3 selects V179I in HIV-1 reverse transcriptase to provide selective advantage for non-nucleoside reverse transcriptase inhibitor-resistant mutants. FRONTIERS IN VIROLOGY 2022; 2. [PMID: 35957953 PMCID: PMC9364801 DOI: 10.3389/fviro.2022.919825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The V179I substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is selected in humans or mouse models treated with certain nonnucleoside reverse transcriptase inhibitors (NNRTIs). While it is often observed together with other NNRTI resistance mutations, V179I does not confer drug resistance. To understand how V179I arises during NNRTI treatment, we characterized it in HIV-1 molecular clones with or without the NNRTI resistance mutations Y181C or Y181V. While V179I alone did not confer resistance to any NNRTIs tested, when present with Y181C/V it enhanced drug resistance to some NNRTIs by 3- to 8-fold. In replication competition experiments in the presence of the NNRTI rilpivirine (RPV), V179I modestly enhanced Y181C HIV-1 or Y181V HIV-1 replication compared to viruses without V179I. As V179I arises from a G to A mutation, we evaluated whether it could arise due to host APOBEC3 deaminase activity and be maintained in the presence of a NNRTI to provide a selective advantage for the virus. V179I was detected in some humanized mice treated with RPV and was associated with G to A mutations characteristic of APOBEC3 activity. In RPV selection experiments, the frequency of V179I in HIV-1 was accelerated in CD4+ T cells expressing higher APOBEC3F and APOBEC3G levels. Our results provide evidence that V179I in HIV-1 RT can arise due to APOBEC-mediated G to A hypermutation and can confer a selective advantage to drug-resistant HIV-1 isolates in the presence of some NNRTIs.
Collapse
|
8
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
9
|
The current toolbox for APOBEC drug discovery. Trends Pharmacol Sci 2022; 43:362-377. [PMID: 35272863 PMCID: PMC9018551 DOI: 10.1016/j.tips.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
Mutational processes driving genome evolution and heterogeneity contribute to immune evasion and therapy resistance in viral infections and cancer. APOBEC3 (A3) enzymes promote such mutations by catalyzing the deamination of cytosines to uracils in single-stranded DNA. Chemical inhibition of A3 enzymes may yield an antimutation therapeutic strategy to improve the durability of current drug therapies that are prone to resistance mutations. A3 small-molecule drug discovery efforts to date have been restricted to a single high-throughput biochemical activity assay; however, the arsenal of discovery assays has significantly expanded in recent years. The assays used to study A3 enzymes are reviewed here with an eye towards their potential for small-molecule discovery efforts.
Collapse
|
10
|
Sadeghpour S, Khodaee S, Rahnama M, Rahimi H, Ebrahimi D. Human APOBEC3 Variations and Viral Infection. Viruses 2021; 13:1366. [PMID: 34372572 PMCID: PMC8310219 DOI: 10.3390/v13071366] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human APOBEC3 (apolipoprotein B mRNA-editing catalytic polypeptide-like 3) enzymes are capable of inhibiting a wide range of endogenous and exogenous viruses using deaminase and deaminase-independent mechanisms. These enzymes are essential components of our innate immune system, as evidenced by (a) their strong positive selection and expansion in primates, (b) the evolution of viral counter-defense mechanisms, such as proteasomal degradation mediated by HIV Vif, and (c) hypermutation and inactivation of a large number of integrated HIV-1 proviruses. Numerous APOBEC3 single nucleotide polymorphisms, haplotypes, and splice variants have been identified in humans. Several of these variants have been reported to be associated with differential antiviral immunity. This review focuses on the current knowledge in the field about these natural variations and their roles in infectious diseases.
Collapse
Affiliation(s)
- Shiva Sadeghpour
- Department of Biological Science, University of California Irvine, Irvine, CA 92697, USA;
| | - Saeideh Khodaee
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA;
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
11
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
12
|
Drug resistance mutations in HIV provirus are associated with defective proviral genomes with hypermutation. AIDS 2021; 35:1015-1020. [PMID: 33635848 PMCID: PMC8102365 DOI: 10.1097/qad.0000000000002850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND HIV proviral sequencing overcomes the limit of plasma viral load requirement by detecting all the 'archived mutations', but the clinical relevance remains to be evaluated. METHODS We included 25 participants with available proviral sequences (both intact and defective sequences available) and utilized the genotypic sensitivity score (GSS) to evaluate the level of resistance in their provirus and plasma virus. Defective sequences were further categorized as sequences with and without hypermutations. Personalized GSS score and total GSS score were calculated to evaluate the level of resistance to a whole panel of antiretroviral therapies and to certain antiretroviral therapy that a participant was using. The rate of sequences with drug resistance mutations (DRMs) within each sequence compartment (intact, defective and plasma viral sequences) was calculated for each participant. RESULTS Defective proviral sequences harbored more DRMs than other sequence compartments, with a median DRM rate of 0.25 compared with intact sequences (0.0, P = 0.014) and plasma sequences (0.095, P = 0.30). Defective sequences with hypermutations were the major source of DRMs, with a median DRM rate of 1.0 compared with defective sequences without hypermutations (0.042, P < 0.001). Certain Apolipoprotein B Editing Complex 3-related DRMs including reverse transcriptase gene mutations M184I, E138K, M230I, G190E and protease gene mutations M46I, D30N were enriched in hypermutated sequences but not in intact sequences or plasma sequences. All the hypermutated sequences had premature stop codons due to Apolipoprotein B Editing Complex 3. CONCLUSION Proviral sequencing may overestimate DRMs as a result of hypermutations. Removing hypermutated sequences is essential in the interpretation of proviral drug resistance testing.
Collapse
|
13
|
Tran V, Ledwith MP, Thamamongood T, Higgins CA, Tripathi S, Chang MW, Benner C, García-Sastre A, Schwemmle M, Boon ACM, Diamond MS, Mehle A. Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nat Microbiol 2020; 5:1490-1503. [PMID: 32839537 PMCID: PMC7677226 DOI: 10.1038/s41564-020-0778-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Cells infected by influenza virus mount a large-scale antiviral response and most cells ultimately initiate cell-death pathways in an attempt to suppress viral replication. We performed a CRISPR-Cas9-knockout selection designed to identify host factors required for replication after viral entry. We identified a large class of presumptive antiviral factors that unexpectedly act as important proviral enhancers during influenza virus infection. One of these, IFIT2, is an interferon-stimulated gene with well-established antiviral activity but limited mechanistic understanding. As opposed to suppressing infection, we show in the present study that IFIT2 is instead repurposed by influenza virus to promote viral gene expression. CLIP-seq demonstrated that IFIT2 binds directly to viral and cellular messenger RNAs in AU-rich regions, with bound cellular transcripts enriched in interferon-stimulated mRNAs. Polysome and ribosome profiling revealed that IFIT2 prevents ribosome pausing on bound mRNAs. Together, the data link IFIT2 binding to enhanced translational efficiency for viral and cellular mRNAs and ultimately viral replication. Our findings establish a model for the normal function of IFIT2 as a protein that increases translation of cellular mRNAs to support antiviral responses and explain how influenza virus uses this same activity to redirect a classically antiviral protein into a proviral effector.
Collapse
Affiliation(s)
- Vy Tran
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Mitchell P Ledwith
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Thiprampai Thamamongood
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christina A Higgins
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Schwemmle
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adrianus C M Boon
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Mehle
- Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
15
|
Marelli S, Williamson JC, Protasio AV, Naamati A, Greenwood EJD, Deane JE, Lehner PJ, Matheson NJ. Antagonism of PP2A is an independent and conserved function of HIV-1 Vif and causes cell cycle arrest. eLife 2020; 9:e53036. [PMID: 32292164 PMCID: PMC7920553 DOI: 10.7554/elife.53036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The seminal description of the cellular restriction factor APOBEC3G and its antagonism by HIV-1 Vif has underpinned two decades of research on the host-virus interaction. We recently reported that HIV-1 Vif is also able to degrade the PPP2R5 family of regulatory subunits of key cellular phosphatase PP2A (PPP2R5A-E; Greenwood et al., 2016; Naamati et al., 2019). We now identify amino acid polymorphisms at positions 31 and 128 of HIV-1 Vif which selectively regulate the degradation of PPP2R5 family proteins. These residues covary across HIV-1 viruses in vivo, favouring depletion of PPP2R5A-E. Through analysis of point mutants and naturally occurring Vif variants, we further show that degradation of PPP2R5 family subunits is both necessary and sufficient for Vif-dependent G2/M cell cycle arrest. Antagonism of PP2A by HIV-1 Vif is therefore independent of APOBEC3 family proteins, and regulates cell cycle progression in HIV-infected cells.
Collapse
Affiliation(s)
- Sara Marelli
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Anna V Protasio
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Adi Naamati
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Edward JD Greenwood
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Janet E Deane
- Department of Clinical Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute for Medical Research (CIMR), University of CambridgeCambridgeUnited Kingdom
| | - Paul J Lehner
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| | - Nicholas J Matheson
- Department of Medicine, University of CambridgeCambridgeUnited Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
16
|
Long-Acting Rilpivirine (RPV) Preexposure Prophylaxis Does Not Inhibit Vaginal Transmission of RPV-Resistant HIV-1 or Select for High-Frequency Drug Resistance in Humanized Mice. J Virol 2020; 94:JVI.01912-19. [PMID: 31969438 PMCID: PMC7108851 DOI: 10.1128/jvi.01912-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP. As a long-acting formulation of the nonnucleoside reverse transcriptase inhibitor rilpivirine (RPV LA) has been proposed for use as preexposure prophylaxis (PrEP) and the prevalence of transmitted RPV-resistant viruses can be relatively high, we evaluated the efficacy of RPV LA to inhibit vaginal transmission of RPV-resistant HIV-1 in humanized mice. Vaginal challenges of wild-type (WT), Y181C, and Y181V HIV-1 were performed in mice left untreated or after RPV PrEP. Plasma viremia was measured for 7 to 10 weeks, and single-genome sequencing was performed on plasma HIV-1 RNA in mice infected during PrEP. RPV LA significantly prevented vaginal transmission of WT HIV-1 and Y181C HIV-1, which is 3-fold resistant to RPV. However, it did not prevent transmission of Y181V HIV-1, which has 30-fold RPV resistance in the viruses used for this study. RPV LA did delay WT HIV-1 dissemination in infected animals until genital and plasma RPV concentrations waned. Animals that became infected despite RPV LA PrEP did not acquire new RPV-resistant mutations above frequencies in untreated mice or untreated people living with HIV-1, and the mutations detected conferred low-level resistance. These data suggest that high, sustained concentrations of RPV were required to inhibit vaginal transmission of HIV-1 with little or no resistance to RPV but could not inhibit virus with high resistance. HIV-1 did not develop high-level or high-frequency RPV resistance in the majority of mice infected after RPV LA treatment. However, the impact of low-frequency RPV resistance on virologic outcome during subsequent antiretroviral therapy still is unclear. IMPORTANCE The antiretroviral drug rilpivirine was developed into a long-acting formulation (RPV LA) to improve adherence for preexposure prophylaxis (PrEP) to prevent HIV-1 transmission. A concern is that RPV LA will not inhibit transmission of drug-resistant HIV-1 and may select for drug-resistant virus. In female humanized mice, we found that RPV LA inhibited vaginal transmission of WT or 3-fold RPV-resistant HIV-1 but not virus with 30-fold RPV resistance. In animals that became infected despite RPV LA PrEP, WT HIV-1 dissemination was delayed until genital and plasma RPV concentrations waned. RPV resistance was detected at similar low frequencies in untreated and PrEP-treated mice that became infected. These results indicate the importance of maintaining RPV at a sustained threshold after virus exposure to prevent dissemination of HIV-1 after vaginal infection and low-frequency resistance mutations conferred low-level resistance, suggesting that RPV resistance is difficult to develop after HIV-1 infection during RPV LA PrEP.
Collapse
|
17
|
Impact of Suboptimal APOBEC3G Neutralization on the Emergence of HIV Drug Resistance in Humanized Mice. J Virol 2020; 94:JVI.01543-19. [PMID: 31801862 DOI: 10.1128/jvi.01543-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
HIV diversification facilitates immune escape and complicates antiretroviral therapy. In this study, we take advantage of a humanized-mouse model to probe the contribution of APOBEC3 mutagenesis to viral evolution. Humanized mice were infected with isogenic HIV molecular clones (HIV-WT, HIV-45G, and HIV-ΔSLQ) that differ in their abilities to counteract APOBEC3G (A3G). Infected mice remained naive or were treated with the reverse transcriptase (RT) inhibitor lamivudine (3TC). Viremia, emergence of drug-resistant variants, and quasispecies diversification in the plasma compartment were determined throughout infection. While both HIV-WT and HIV-45G achieved robust infection, over time, HIV-45G replication was significantly reduced compared to that of HIV-WT in the absence of 3TC treatment. In contrast, treatment responses differed significantly between HIV-45G- and HIV-WT-infected mice. Antiretroviral treatment failed in 91% of HIV-45G-infected mice, while only 36% of HIV-WT-infected mice displayed a similar negative outcome. Emergence of 3TC-resistant variants and nucleotide diversity were determined by analyzing 155,462 single HIV reverse transcriptase gene (RT) and 6,985 vif sequences from 33 mice. Prior to treatment, variants with genotypic 3TC resistance (RT-M184I/V) were detected at low levels in over a third of all the animals. Upon treatment, the composition of the plasma quasispecies rapidly changed, leading to a majority of circulating viral variants encoding RT-184I. Interestingly, increased viral diversity prior to treatment initiation correlated with higher plasma viremia in HIV-45G-infected animals, but not in HIV-WT-infected animals. Taken together, HIV variants with suboptimal anti-A3G activity were attenuated in the absence of selection but displayed a fitness advantage in the presence of antiretroviral treatment.IMPORTANCE Both viral (e.g., RT) and host (e.g., A3G) factors can contribute to HIV sequence diversity. This study shows that suboptimal anti-A3G activity shapes viral fitness and drives viral evolution in the plasma compartment in humanized mice.
Collapse
|
18
|
Abstract
Single-molecule Förster resonance energy transfer (smFRET) imaging has emerged as a powerful tool to probe conformational dynamics of viral proteins, identify novel structural intermediates that are hiding in averaging population-based measurements, permit access to the energetics of transitions and as such to the precise molecular mechanisms of viral replication. One strength of smFRET is the capability of characterizing biological molecules in their fully hydrated/native state, which are not necessarily available to other structural methods. Elegant experimental design for physiologically relevant conditions, such as intact virions, has permitted the detection of previously unknown conformational states of viral glycoproteins, revealed asymmetric intermediates, and allowed access to the real-time imaging of conformational changes during viral fusion. As more laboratories are applying smFRET, our understanding of the molecular mechanisms and the dynamic nature of viral proteins throughout the virus life cycle are predicted to improve and assist the development of novel antiviral therapies and vaccine design.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| | - Xiaochu Ma
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
19
|
The effects of MAPK p38α on AZT resistance against reactivating HIV-1 replication in ACH2 cells. Mol Cell Biochem 2019; 462:41-50. [PMID: 31432386 DOI: 10.1007/s11010-019-03608-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023]
Abstract
Antiretroviral therapy (ART) has remarkably decreased HIV-related mortality. However, drug-resistant HIV variants pose a potential threat to the long-term success of ART. Both HIV mutants and host factors can cause HIV drug resistance. Using susceptible ACH2 cells chronically infected with HIV-1, we examined the effects of MAPK p38α on AZT resistance against reactivating HIV-1 replication that can be activated by HIV-1 superinfection. We found that HIV-1 superinfection induced more viral production, which was diminished by p38 inhibitor, SB203580, and by AZT in cells infected with non-AZT-resistant HIV-1 strain MN. p38α expression can resist action of AZT in inhibition of HIV-1 replication with increased expression of transcription factor, NF-ĸBp65, SP1, and c-Fos through activation of TCR-related pathways with upregulation of CD3, TCRα, TCRβ, Zap-70, PKC, PLCγ1, GRB2, and PI3K/Akt expression. In HIV-1 MN superinfection under AZT treatment, expression of p38α led to HIV vif expression and inhibited APOBEC3G expression. We also investigated effects of p38α on gp130/JAK-STAT pathways, in which p38α increased expression of protein, gp130, EGFR, Jak2, STAT1, STAT3, STAT5, ras, and TF. p38α could induce apoptotic pathways with upregulation of Fas, FADD, Caspase-8, p53, and Bax, and downregulation of Bcl2 expression. These results indicate that p38α plays a positive role in reactivation of viral replication from HIV-1 latent infection and leads to HIV-1 AZT resistance. In conclusion, MAPKp38α can activate HIV-1 replication inhibited by AZT from HIV-1 latent infection and may be used as a latency reversal agent. The activation involves induction of several cell signaling pathways that are required for HIV-1 replication, which may be integrated into future viral remission strategies.
Collapse
|
20
|
Pan T, Song Z, Wu L, Liu G, Ma X, Peng Z, Zhou M, Liang L, Liu B, Liu J, Zhang J, Zhang X, Huang R, Zhao J, Li Y, Ling X, Luo Y, Tang X, Cai W, Deng K, Li L, Zhang H. USP49 potently stabilizes APOBEC3G protein by removing ubiquitin and inhibits HIV-1 replication. eLife 2019; 8:48318. [PMID: 31397674 PMCID: PMC6701944 DOI: 10.7554/elife.48318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022] Open
Abstract
The antiviral activity of host factor apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) and its degradation mediated by human immunodeficiency virus type 1 (HIV-1) Vif protein are important topics. Although accumulating evidence indicates the importance of deubiquitination enzymes (DUBs) in innate immunity, it is unknown if they participate in A3G stability. Here, we found that USP49 directly interacts with A3G and efficiently removes ubiquitin, consequently increasing A3G protein expression and significantly enhancing its anti-HIV-1 activity. Unexpectedly, A3G degradation was also mediated by a Vif- and cullin-ring-independent pathway, which was effectively counteracted by USP49. Furthermore, clinical data suggested that USP49 is correlated with A3G protein expression and hypermutations in Vif-positive proviruses, and inversely with the intact provirus ratio in the HIV-1 latent reservoir. Our studies demonstrated a mechanism to effectively stabilize A3G expression, which could comprise a target to control HIV-1 infection and eradicate the latent reservoir.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Song
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liyang Wu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhilin Peng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mo Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liting Liang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuanhong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ryan Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Ling
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuewen Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Ikeda T, Molan AM, Jarvis MC, Carpenter MA, Salamango DJ, Brown WL, Harris RS. HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1. J Gen Virol 2019; 100:1140-1152. [PMID: 31145054 DOI: 10.1099/jgv.0.001276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
HIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully. We show that multiple APOBEC3 genes including APOBEC3G are expressed in myeloid cell lines such as THP-1. Vif-deficient HIV-1 produced from THP-1 is less infectious than Vif-proficient virus, and proviral DNA resulting from such Vif-deficient infections shows strong G to A mutation biases in the dinucleotide motif preferred by APOBEC3G. Moreover, Vif mutant viruses with selective sensitivity to APOBEC3G show Vif null-like infectivity levels and similarly strong APOBEC3G-biased mutation spectra. Importantly, APOBEC3G-null THP-1 cells yield Vif-deficient particles with significantly improved infectivities and proviral DNA with background levels of G to A hypermutation. These studies combine to indicate that APOBEC3G is the main HIV-1 restricting APOBEC3 family member in THP-1 cells.
Collapse
Affiliation(s)
- Terumasa Ikeda
- 2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,5 Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy M Molan
- 4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Matthew C Jarvis
- 3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA
| | - Michael A Carpenter
- 3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,5 Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Salamango
- 1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA
| | - William L Brown
- 4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- 3 Center for Genome Engineering, Minneapolis, MN 55455, USA.,1 Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN 55455, USA.,4 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,2 Institute for Molecular Virology, Minneapolis, MN 55455, USA.,5 Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Role of co-expressed APOBEC3F and APOBEC3G in inducing HIV-1 drug resistance. Heliyon 2019; 5:e01498. [PMID: 31025011 PMCID: PMC6475876 DOI: 10.1016/j.heliyon.2019.e01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 01/04/2023] Open
Abstract
The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.
Collapse
|
23
|
Adolph MB, Ara A, Chelico L. APOBEC3 Host Restriction Factors of HIV-1 Can Change the Template Switching Frequency of Reverse Transcriptase. J Mol Biol 2019; 431:1339-1352. [PMID: 30797859 DOI: 10.1016/j.jmb.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
The APOBEC3 family of deoxycytidine deaminases has the ability to restrict HIV-1 through deamination-dependent and deamination-independent mechanisms. Although the generation of mutations through deamination of cytosine to uracil in single-stranded HIV-1 (-) DNA is the dominant mechanism of restriction, the deaminase-independent mechanism additionally contributes. Previous observations indicate that APOBEC3 enzymes competitively bind the RNA template or reverse transcriptase (RT) and act as a roadblock to DNA polymerization. Here we studied how the deamination-independent inhibition of HIV-1 RT by APOBEC3C S188I, APOBEC3F, APOBEC3G, and APOBEC3H affected RT template switching. We found that APOBEC3F could promote template switching of RT, and this was dependent on the high affinity with which it bound nucleic acids, suggesting than an APOBEC3 "road-block" can force template switching. Our data demonstrate that the deamination-independent functions of APOBEC3 enzymes extend beyond only disrupting RT DNA polymerization. Since alterations to the RT template switching frequency can result in insertions or deletions, our data support a model in which APOBEC3 enzymes use multiple mechanisms to increase the probability of generating a mutated and nonfunctional virus in addition to cytosine deamination.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Anjuman Ara
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Saskatchewan Cancer Agency and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
24
|
Veggiani G, Gerpe MCR, Sidhu SS, Zhang W. Emerging drug development technologies targeting ubiquitination for cancer therapeutics. Pharmacol Ther 2019; 199:139-154. [PMID: 30851297 PMCID: PMC7112620 DOI: 10.1016/j.pharmthera.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of effective cancer therapeutic strategies relies on our ability to interfere with cellular processes that are dysregulated in tumors. Given the essential role of the ubiquitin proteasome system (UPS) in regulating a myriad of cellular processes, it is not surprising that malfunction of UPS components is implicated in numerous human diseases, including many types of cancer. The clinical success of proteasome inhibitors in treating multiple myeloma has further stimulated enthusiasm for targeting UPS proteins for pharmacological intervention in cancer treatment, particularly in the precision medicine era. Unfortunately, despite tremendous efforts, the paucity of potent and selective UPS inhibitors has severely hampered attempts to exploit the UPS for therapeutic benefits. To tackle this problem, many groups have been working on technology advancement to rapidly and effectively screen for potent and specific UPS modulators as intracellular probes or early-phase therapeutic agents. Here, we review several emerging technologies for developing chemical- and protein-based molecules to manipulate UPS enzymatic activity, with the aim of providing an overview of strategies available to target ubiquitination for cancer therapy.
Collapse
Affiliation(s)
- Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada
| | - María Carla Rosales Gerpe
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada
| | - Sachdev S Sidhu
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S3E1, Canada.
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E., Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
25
|
Gopalan BP, D'Souza RR, Rajnala N, Arumugam K, Dias M, Ranga U, Shet A. Viral evolution in the cell-associated HIV-1 DNA during early ART can lead to drug resistance and virological failure in children. J Med Virol 2019; 91:1036-1047. [PMID: 30695102 DOI: 10.1002/jmv.25413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 11/07/2022]
Abstract
Using cell-associated DNA and cell-free RNA of human immunodeficiency virus type-1 (HIV-1), we investigated the role of drug-resistant viral variants that emerged during early antiretroviral therapy (ART) in determining virological outcome. This case-control study compared virologic nonresponder children (two viral loads [VLs] ≥ 200 copies/mL within 2 years of ART) and responder children (two VLs < 200 copies/mL after six months of ART) infected with HIV-1 initiated on nonnucleoside reverse-transcriptase inhibitor (NNRTI)-based ART. The partial reverse-transcriptase gene of HIV-1 in cell-associated DNA was genotyped using next-generation sequencing (NGS; Illumina; threshold 0.5%; at baseline and month six of ART) and in cell-free RNA (concurrently and at virological failure; VL > 1000 copies/mL at ≥ 12 months of ART) using the Sanger method. Among 30 nonresponders and 37 responders, baseline differences were insignificant while adherence, VL, and drug resistance mutations (DRMs) observed at month six differed significantly ( P ≥ 0.05). At month six, NGS estimated a higher number of DRMs compared with Sanger (50% vs 33%; P = 0.001). Among the nonresponders carrying a resistant virus (86.6%) at virological failure, 26% harbored clinically relevant low-frequency DRMs in the cell-associated DNA at month six (0.5%-20%; K103N, G190A, Y181C, and M184I). Plasma VL of > 3 log 10 copies/mL (AOR, 30.4; 95% CI, 3.3-281; P = 0.003) and treatment-relevant DRMs detected in the cell-associated DNA at month six (AOR, 24.2; 95% CI, 2.6-221; P = 0.005) were independently associated with increased risk for early virological failure. Our findings suggest that treatment-relevant DRMs acquired in cell-associated DNA during the first six months of ART can predict virological failure in children initiated on NNRTI-based ART.
Collapse
Affiliation(s)
- Bindu Parachalil Gopalan
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.,School of Integrative Health Sciences, University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, India
| | - Reena R D'Souza
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.,Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Niharika Rajnala
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Karthika Arumugam
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, HIV/AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Anita Shet
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India.,International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
26
|
Mohammadzadeh N, Follack TB, Love RP, Stewart K, Sanche S, Chelico L. Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology 2018; 527:21-31. [PMID: 30448640 DOI: 10.1016/j.virol.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Kris Stewart
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan Infectious Disease Care Network, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Stephen Sanche
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
27
|
RNA-Mediated Dimerization of the Human Deoxycytidine Deaminase APOBEC3H Influences Enzyme Activity and Interaction with Nucleic Acids. J Mol Biol 2018; 430:4891-4907. [PMID: 30414963 DOI: 10.1016/j.jmb.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 12/11/2022]
Abstract
Human APOBEC3H is a single-stranded (ss)DNA deoxycytidine deaminase that inhibits replication of retroelements and HIV-1 in CD4+ T cells. When aberrantly expressed in lung or breast tissue, APOBEC3H can contribute to cancer mutagenesis. These different activities are carried out by different haplotypes of APOBEC3H. Here we studied APOBEC3H haplotype II, which is able to restrict HIV-1 replication and retroelements. We determined how the dimerization mechanism, which is mediated by a double-stranded RNA molecule, influenced interactions with and activity on ssDNA. The data demonstrate that the cellular RNA bound by APOBEC3H does not completely inhibit enzyme activity, in contrast to other APOBEC family members. Despite degradation of the cellular RNA, an approximately 12-nt RNA remains bound to the enzyme, even in the presence of ssDNA. The RNA-mediated dimer is disrupted by mutating W115 on loop 7 or R175 and R176 on helix 6, but this also disrupts protein stability. In contrast, mutation of Y112 and Y113 on loop 7 also destabilizes RNA-mediated dimerization but results in a stable enzyme. Mutants unable to bind cellular RNA are unable to bind RNA oligonucleotides, oligomerize, and deaminate ssDNA in vitro, but ssDNA binding is retained. Comparison of A3H wild type and Y112A/Y113A by fluorescence polarization, single-molecule optical tweezer, and atomic force microscopy experiments demonstrates that RNA-mediated dimerization alters the interactions of A3H with ssDNA and other RNA molecules. Altogether, the biochemical analysis demonstrates that RNA binding is integral to APOBEC3H function.
Collapse
|
28
|
Ebrahimi D, Richards CM, Carpenter MA, Wang J, Ikeda T, Becker JT, Cheng AZ, McCann JL, Shaban NM, Salamango DJ, Starrett GJ, Lingappa JR, Yong J, Brown WL, Harris RS. Genetic and mechanistic basis for APOBEC3H alternative splicing, retrovirus restriction, and counteraction by HIV-1 protease. Nat Commun 2018; 9:4137. [PMID: 30297863 PMCID: PMC6175962 DOI: 10.1038/s41467-018-06594-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Human APOBEC3H (A3H) is a single-stranded DNA cytosine deaminase that inhibits HIV-1. Seven haplotypes (I–VII) and four splice variants (SV154/182/183/200) with differing antiviral activities and geographic distributions have been described, but the genetic and mechanistic basis for variant expression and function remains unclear. Using a combined bioinformatic/experimental analysis, we find that SV200 expression is specific to haplotype II, which is primarily found in sub-Saharan Africa. The underlying genetic mechanism for differential mRNA splicing is an ancient intronic deletion [del(ctc)] within A3H haplotype II sequence. We show that SV200 is at least fourfold more HIV-1 restrictive than other A3H splice variants. To counteract this elevated antiviral activity, HIV-1 protease cleaves SV200 into a shorter, less restrictive isoform. Our analyses indicate that, in addition to Vif-mediated degradation, HIV-1 may use protease as a counter-defense mechanism against A3H in >80% of sub-Saharan African populations. Human APOBEC3H has several haplotypes and splice variants with distinct anti-HIV-1 activities, but the genetics underlying the expression of these variants are unclear. Here, the authors identify an intronic deletion in A3H haplotype II resulting in production of the most active splice variant, which is counteracted by HIV-1 protease.
Collapse
Affiliation(s)
- Diako Ebrahimi
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher M Richards
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiayi Wang
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Terumasa Ikeda
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Adam Z Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jennifer L McCann
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gabriel J Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jairam R Lingappa
- Departments of Global Health, Medicine and Pediatrics, University of Washington, Seattle, WA, 98104, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA. .,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
29
|
Borzooee F, Asgharpour M, Quinlan E, Grant MD, Larijani M. Viral subversion of APOBEC3s: Lessons for anti-tumor immunity and tumor immunotherapy. Int Rev Immunol 2018; 37:151-164. [PMID: 29211501 DOI: 10.1080/08830185.2017.1403596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
APOBEC3s (A3) are endogenous DNA-editing enzymes that are expressed in immune cells including T lymphocytes. A3s target and mutate the genomes of retroviruses that infect immune tissues such as the human immunodeficiency virus (HIV). Therefore, A3s were classically defined as host anti-viral innate immune factors. In contrast, we and others showed that A3s can also benefit the virus by mediating escape from adaptive immune recognition and drugs. Crucially, whether A3-mediated mutations help or hinder HIV, is not up to chance. Rather, the virus has evolved multiple mechanisms to actively and maximally subvert A3 activity. More recently, extensive A3 mutational footprints in tumor genomes have been observed in many different cancers. This suggests a role for A3s in cancer initiation and progression. On the other hand, multiple anti-tumor activities of A3s have also come to light, including impact on immune checkpoint molecules and possible generation of tumor neo-antigens. Here, we review the studies that reshaped the view of A3s from anti-viral innate immune agents to host factors exploited by HIV to escape from immune recognition. Viruses and tumors share many attributes, including rapid evolution and adeptness at exploiting mutations. Given this parallel, we then discuss the pro- and anti-tumor roles of A3s, and suggest that lessons learned from studying A3s in the context of anti-viral immunity can be applied to tumor immunotherapy.
Collapse
Affiliation(s)
- Faezeh Borzooee
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mahdi Asgharpour
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Emma Quinlan
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Michael D Grant
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| | - Mani Larijani
- a Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine , Memorial University of Newfoundland , St. John's, Newfoundland A1B 3V6 , Canada
| |
Collapse
|
30
|
Adolph MB, Love RP, Chelico L. Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. ACS Infect Dis 2018; 4:224-238. [PMID: 29347817 DOI: 10.1021/acsinfecdis.7b00221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Apolipoprotein B mRNA editing complex (APOBEC) family of enzymes contains single-stranded polynucleotide cytidine deaminases. These enzymes catalyze the deamination of cytidine in RNA or single-stranded DNA, which forms uracil. From this 11 member enzyme family in humans, the deamination of single-stranded DNA by the seven APOBEC3 family members is considered here. The APOBEC3 family has many roles, such as restricting endogenous and exogenous retrovirus replication and retrotransposon insertion events and reducing DNA-induced inflammation. Similar to other APOBEC family members, the APOBEC3 enzymes are a double-edged sword that can catalyze deamination of cytosine in genomic DNA, which results in potential genomic instability due to the many mutagenic fates of uracil in DNA. Here, we discuss how these enzymes find their single-stranded DNA substrate in different biological contexts such as during human immunodeficiency virus (HIV) proviral DNA synthesis, retrotransposition of the LINE-1 element, and the "off-target" genomic DNA substrate. The enzymes must be able to efficiently deaminate transiently available single-stranded DNA during reverse transcription, replication, or transcription. Specific biochemical characteristics promote deamination in each situation to increase enzyme efficiency through processivity, rapid enzyme cycling between substrates, or oligomerization state. The use of biochemical data to clarify biological functions and alignment with cellular data is discussed. Models to bridge knowledge from biochemical, structural, and single molecule experiments are presented.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| |
Collapse
|
31
|
Upregulation of Glucose Uptake and Hexokinase Activity of Primary Human CD4+ T Cells in Response to Infection with HIV-1. Viruses 2018. [PMID: 29518929 PMCID: PMC5869507 DOI: 10.3390/v10030114] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infection of primary CD4+ T cells with HIV-1 coincides with an increase in glycolysis. We investigated the expression of glucose transporters (GLUT) and glycolytic enzymes in human CD4+ T cells in response to infection with HIV-1. We demonstrate the co-expression of GLUT1, GLUT3, GLUT4, and GLUT6 in human CD4+ T cells after activation, and their concerted overexpression in HIV-1 infected cells. The investigation of glycolytic enzymes demonstrated activation-dependent expression of hexokinases HK1 and HK2 in human CD4+ T cells, and a highly significant increase in cellular hexokinase enzyme activity in response to infection with HIV-1. HIV-1 infected CD4+ T cells showed a marked increase in expression of HK1, as well as the functionally related voltage-dependent anion channel (VDAC) protein, but not HK2. The elevation of GLUT, HK1, and VDAC expression in HIV-1 infected cells mirrored replication kinetics and was dependent on virus replication, as evidenced by the use of reverse transcription inhibitors. Finally, we demonstrated that the upregulation of HK1 in HIV-1 infected CD4+ T cells is independent of the viral accessory proteins Vpu, Vif, Nef, and Vpr. Though these data are consistent with HIV-1 dependency on CD4+ T cell glucose metabolism, a cellular response mechanism to infection cannot be ruled out.
Collapse
|
32
|
Nomaguchi M, Doi N, Yoshida T, Koma T, Adachi S, Ode H, Iwatani Y, Yokoyama M, Sato H, Adachi A. Production of HIV-1 vif mRNA Is Modulated by Natural Nucleotide Variations and SLSA1 RNA Structure in SA1D2prox Genomic Region. Front Microbiol 2017; 8:2542. [PMID: 29326677 PMCID: PMC5741601 DOI: 10.3389/fmicb.2017.02542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022] Open
Abstract
Genomic RNA of HIV-1 contains localized structures critical for viral replication. Its structural analysis has demonstrated a stem-loop structure, SLSA1, in a nearby region of HIV-1 genomic splicing acceptor 1 (SA1). We have previously shown that the expression level of vif mRNA is considerably altered by some natural single-nucleotide variations (nSNVs) clustering in SLSA1 structure. In this study, besides eleven nSNVs previously identified by us, we totally found nine new nSNVs in the SLSA1-containing sequence from SA1, splicing donor 2, and through to the start codon of Vif that significantly affect the vif mRNA level, and designated the sequence SA1D2prox (142 nucleotides for HIV-1 NL4-3). We then examined by extensive variant and mutagenesis analyses how SA1D2prox sequence and SLSA1 secondary structure are related to vif mRNA level. While the secondary structure and stability of SLSA1 was largely changed by nSNVs and artificial mutations introduced to restore the original NL4-3 form from altered ones by nSNVs, no clear association of the two SLSA1 properties with vif mRNA level was observed. In contrast, when naturally occurring SA1D2prox sequences that contain multiple nSNVs were examined, we attained significant inverse correlation between the vif level and SLSA1 stability. These results may suggest that SA1D2prox sequence adapts over time, and also that the altered SA1D2prox sequence, SLSA1 stability, and vif level are mutually related. In total, we show here that the entire SA1D2prox sequence and SLSA1 stability critically contribute to the modulation of vif mRNA level.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Naoya Doi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Tomoya Yoshida
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Shun Adachi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| | - Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Graduate School of Medical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
33
|
APOBEC Enzymes as Targets for Virus and Cancer Therapy. Cell Chem Biol 2017; 25:36-49. [PMID: 29153851 DOI: 10.1016/j.chembiol.2017.10.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/11/2017] [Accepted: 10/18/2017] [Indexed: 01/08/2023]
Abstract
Human DNA cytosine-to-uracil deaminases catalyze mutations in both pathogen and cellular genomes. APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H restrict human immunodeficiency virus 1 (HIV-1) infection in cells deficient in the viral infectivity factor (Vif), and have the potential to catalyze sublethal levels of mutation in viral genomes in Vif-proficient cells. At least two APOBEC3 enzymes, and in particular APOBEC3B, are sources of somatic mutagenesis in cancer cells that drive tumor evolution and may manifest clinically as recurrence, metastasis, and/or therapy resistance. Consequently, APOBEC3 enzymes are tantalizing targets for developing chemical probes and therapeutic molecules to harness mutational processes in human disease. This review highlights recent efforts to chemically manipulate APOBEC3 activities.
Collapse
|
34
|
|
35
|
Abstract
Background: A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade. Host cytidine deaminases (
e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis. By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity. To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation. The model plant
Arabidopsis thaliana genome encodes nine cytidine deaminases (
AtCDAs), raising the question of whether deamination is an antiviral mechanism in plants as well. Methods: Here we tested the effects of expression of
AtCDAs on the pararetrovirus Cauliflower mosaic virus (CaMV). Two different experiments were carried out. First, we transiently overexpressed each one of the nine
A. thalianaAtCDA genes in
Nicotianabigelovii plants infected with CaMV, and characterized the resulting mutational spectra, comparing them with those generated under normal conditions. Secondly, we created
A. thaliana transgenic plants expressing an artificial microRNA designed to knock-out the expression of up to six
AtCDA genes. This and control plants were then infected with CaMV. Virus accumulation and mutational spectra where characterized in both types of plants. Results: We have shown that the
A. thalianaAtCDA1 gene product exerts a mutagenic activity, significantly increasing the number of G to A mutations
in vivo, with a concomitant reduction in the amount of CaMV genomes accumulated. Furthermore, the magnitude of this mutagenic effect on CaMV accumulation is positively correlated with the level of
AtCDA1 mRNA expression in the plant. Conclusions: Our results suggest that deamination of viral genomes may also work as an antiviral mechanism in plants.
Collapse
Affiliation(s)
- Susana Martín
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - José M Cuevas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", CSIC-Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain.,Área de Genética, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain.,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
36
|
Rawson JMO, Gohl DM, Landman SR, Roth ME, Meissner ME, Peterson TS, Hodges JS, Beckman KB, Mansky LM. Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra. J Mol Biol 2017; 429:2290-2307. [PMID: 28502791 DOI: 10.1016/j.jmb.2017.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Morgan E Meissner
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Tara S Peterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Presence of Minority Resistant Variants After Failure of a Tenofovir, Emtricitabine, and Rilpivirine Regimen. J Acquir Immune Defic Syndr 2016; 72:e43-5. [DOI: 10.1097/qai.0000000000000935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Lambert-Niclot S, Allavena C, Grude M, Flandre P, Sayon S, Andre E, Wirden M, Rodallec A, Jovelin T, Katlama C, Calvez V, Raffi F, Marcelin AG. Usefulness of an HIV DNA resistance genotypic test in patients who are candidates for a switch to the rilpivirine/emtricitabine/tenofovir disoproxil fumarate combination. J Antimicrob Chemother 2016; 71:2248-51. [PMID: 27231280 DOI: 10.1093/jac/dkw146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/01/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In the context of a rilpivirine/emtricitabine/tenofovir disoproxil fumarate switch in HIV-1-infected patients with at least 1 year of virological success, we determined whether proviral DNA is an alternative to plasma HIV RNA for resistance genotyping. METHODS Resistance-associated mutations (RAMs) in DNA after at least 1 year of virological success [viral load (VL) <50 copies/mL] were compared with those identified in the last plasma RNA genotype available. Rilpivirine/emtricitabine/tenofovir disoproxil fumarate RAMs studied were K65R, L100I, K101E/P, E138A/G/K/R/Q, V179L, Y181C/I/V, M184V/I, Y188L, H221Y, F227C and M230I/L in the RT. We studied patients without virological failure (VF) and with at least 1 VF (two consecutive VLs >50 copies/mL). Kappa's coefficient was used to measure agreement between the DNA and RNA genotypes. RESULTS In patients without VF (n = 130) and with VF (n = 114), RNA and DNA showed resistance to at least one drug of the rilpivirine/emtricitabine/tenofovir disoproxil fumarate combination in 8% and 9% and in 60% and 45%, respectively. For rilpivirine RAMs, correlation between RNA and DNA was higher in patients without VF than in patients with VF (kappa = 0.60 versus 0.19, P = 0.026). Overall, the prevalence of RAMs was lower in DNA than in RNA. CONCLUSIONS Incomplete information provided by the DNA genotypic test is more notable in patients with VF, suggesting that all resistance mutations associated with prior VF have not been archived in the proviral DNA or decreased to a level below the threshold of detection. In the case where no historical plasma genotypic test is available, DNA testing might be useful to rule out switching to rilpivirine/emtricitabine/tenofovir disoproxil fumarate.
Collapse
Affiliation(s)
- S Lambert-Niclot
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| | - C Allavena
- Infectious Diseases Department, University Hospital of Nantes, Nantes, France
| | - M Grude
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| | - P Flandre
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| | - S Sayon
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| | - E Andre
- Virology, University Hospital of Nantes, Nantes, France
| | - M Wirden
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| | - A Rodallec
- Virology, University Hospital of Nantes, Nantes, France
| | - T Jovelin
- Infectious Diseases Department, University Hospital of Nantes, Nantes, France
| | - C Katlama
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de maladies Infectieuses, Paris F-75013, France
| | - V Calvez
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| | - F Raffi
- Infectious Diseases Department, University Hospital of Nantes, Nantes, France
| | - A-G Marcelin
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris F-75013, France
| |
Collapse
|
39
|
Delviks-Frankenberry KA, Nikolaitchik OA, Burdick RC, Gorelick RJ, Keele BF, Hu WS, Pathak VK. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation. PLoS Pathog 2016; 12:e1005646. [PMID: 27186986 PMCID: PMC4871359 DOI: 10.1371/journal.ppat.1005646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation is substantially lower than that from mutations during error-prone replication.
Collapse
Affiliation(s)
- Krista A. Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Lab, Frederick, Maryland, United States of America
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
40
|
Natural Single-Nucleotide Variations in the HIV-1 Genomic SA1prox Region Can Alter Viral Replication Ability by Regulating Vif Expression Levels. J Virol 2016; 90:4563-4578. [PMID: 26912631 DOI: 10.1128/jvi.02939-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/15/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED We previously found that natural single-nucleotide variations located within a proximal region of splicing acceptor 1 (SA1prox) in the HIV-1 genome could alter the viral replication potential and mRNA expression pattern, especially the vif mRNA level. Here, we studied the virological and molecular basis of nucleotide sequence variations in SA1prox for alterations of viral replication ability. Consistent with our previous findings, variant clones indeed expressed Vif at different levels and grew distinctively in cells with various APOBEC3G expression levels. Similar effects were observed for natural variations found in HIV-2 SA1prox, suggesting the importance of the SA1prox sequence. To define nucleotides critical for the regulation of HIV-1 Vif expression, effects of natural SA1prox variations newly found in the HIV Sequence Compendium database on vif mRNA/Vif protein levels were examined. Seven out of nine variations were found to produce Vif at lower, higher, or more excessive levels than wild-type NL4-3. Combination experiments of variations giving distinct Vif levels suggested that the variations mutually affected vif transcript production. While low and high producers of Vif grew in an APOBEC3G-dependent manner, excessive expressers always showed an impeded growth phenotype due to defects in single-cycle infectivity and/or virion production levels. The phenotype of excessive expressers was not due primarily to inadequate expression of Tat or Rev, although SA1prox variations altered the overall HIV-1 mRNA expression pattern. Collectively, our results demonstrate that HIV SA1prox regulates Vif expression levels and suggest a relationship between SA1prox and viral adaptation/evolution given that variations occurred naturally. IMPORTANCE While human cells possess restriction factors to inhibit HIV-1 replication, HIV-1 encodes antagonists to overcome these barriers. Conflicts between host restriction factors and viral counterparts are critical driving forces behind mutual evolution. The interplay of cellular APOBEC3G and viral Vif proteins is a typical example. Here, we demonstrate that naturally occurring single-nucleotide variations in the proximal region of splicing acceptor 1 (SA1prox) of the HIV-1 genome frequently alter Vif expression levels, thereby modulating viral replication potential in cells with various ABOBEC3G levels. The results of the present study reveal a previously unidentified and important way for HIV-1 to compete with APOBEC3G restriction by regulating its Vif expression levels. We propose that SA1prox plays a regulatory role in Vif counteraction against APOBEC3G in order to contribute to HIV-1 replication and evolution, and this may be applicable to other primate lentiviruses.
Collapse
|
41
|
Deep Sequencing of HIV-1 RNA and DNA in Newly Diagnosed Patients with Baseline Drug Resistance Showed No Indications for Hidden Resistance and Is Biased by Strong Interference of Hypermutation. J Clin Microbiol 2016; 54:1605-1615. [PMID: 27076656 DOI: 10.1128/jcm.00030-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/01/2016] [Indexed: 12/29/2022] Open
Abstract
Deep sequencing of plasma RNA or proviral DNA may be an interesting alternative to population sequencing for the detection of baseline transmitted HIV-1 drug resistance. Using a Roche 454 GS Junior HIV-1 prototype kit, we performed deep sequencing of the HIV-1 protease and reverse transcriptase genes on paired plasma and buffy coat samples from newly diagnosed HIV-1-positive individuals. Selection was based on the outcome of population sequencing and included 12 patients with either a revertant amino acid at codon 215 of the reverse transcriptase or a singleton resistance mutation, 4 patients with multiple resistance mutations, and 4 patients with wild-type virus. Deep sequencing of RNA and DNA detected 6 and 43 mutations, respectively, that were not identified by population sequencing. A subsequently performed hypermutation analysis, however, revealed hypermutation in 61.19% of 3,188 DNA reads with a resistance mutation. The removal of hypermutated reads dropped the number of additional mutations in DNA from 43 to 17. No hypermutation evidence was found in the RNA reads. Five of the 6 additional RNA mutations and all additional DNA mutations, after full exclusion of hypermutation bias, were observed in the 3 individuals with multiple resistance mutations detected by population sequencing. Despite focused selection of patients with T215 revertants or singleton mutations, deep sequencing failed to identify the resistant T215Y/F or M184V or any other resistance mutation, indicating that in most of these cases there is no hidden resistance and that the virus detected at diagnosis by population sequencing is the original infecting variant.
Collapse
|
42
|
Knisbacher BA, Gerber D, Levanon EY. DNA Editing by APOBECs: A Genomic Preserver and Transformer. Trends Genet 2016; 32:16-28. [PMID: 26608778 DOI: 10.1016/j.tig.2015.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/18/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Information warfare is not limited to the cyber world because it is waged within our cells as well. The unique AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide) family comprises proteins that alter DNA sequences by converting deoxycytidines to deoxyuridines through deamination. This C-to-U DNA editing enables them to inhibit parasitic viruses and retrotransposons by disrupting their genomic content. In addition to attacking genomic invaders, APOBECs can target their host genome, which can be beneficial by initiating processes that create antibody diversity needed for the immune system or by accelerating the rate of evolution. AID can also alter gene regulation by removing epigenetic modifications from genomic DNA. However, when uncontrolled, these powerful agents of change can threaten genome stability and eventually lead to cancer.
Collapse
Affiliation(s)
- Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900 Israel.
| |
Collapse
|
43
|
Contribution of APOBEC3G/F activity to the development of low-abundance drug-resistant human immunodeficiency virus type 1 variants. Clin Microbiol Infect 2015; 22:191-200. [PMID: 26482266 DOI: 10.1016/j.cmi.2015.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/07/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022]
Abstract
Plasma drug-resistant minority human immunodeficiency virus type 1 variants (DRMVs) increase the risk of virological failure to first-line non-nucleoside reverse transcriptase inhibitor antiretroviral therapy (ART). The origin of DRMVs in ART-naive patients, however, remains unclear. In a large pan-European case-control study investigating the clinical relevance of pre-existing DRMVs using 454 pyrosequencing, the six most prevalent plasma DRMVs detected corresponded to G-to-A nucleotide mutations (V90I, V106I, V108I, E138K, M184I and M230I). Here, we evaluated if such DRMVs could have emerged from apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3G/F (APOBEC3G/F) activity. Out of 236 ART-naive subjects evaluated, APOBEC3G/F hypermutation signatures were detected in plasma viruses of 14 (5.9%) individuals. Samples with minority E138K, M184I, and M230I mutations, but not those with V90I, V106I or V108I, were significantly associated with APOBEC3G/F activity (Fisher's P < 0.005), defined as the presence of > 0.5% of sample sequences with an APOBEC3G/F signature. Mutations E138K, M184I and M230I co-occurred in the same sequence as APOBEC3G/F signatures in 3/9 (33%), 5/11 (45%) and 4/8 (50%) of samples, respectively; such linkage was not found for V90I, V106I or V108I. In-frame STOP codons were observed in 1.5% of all clonal sequences; 14.8% of them co-occurred with APOBEC3G/F signatures. APOBEC3G/F-associated E138K, M184I and M230I appeared within clonal sequences containing in-frame STOP codons in 2/3 (66%), 5/5 (100%) and 4/4 (100%) of the samples. In a re-analysis of the parent case control study, the presence of APOBEC3G/F signatures was not associated with virological failure. In conclusion, the contribution of APOBEC3G/F editing to the development of DRMVs is very limited and does not affect the efficacy of non-nucleoside reverse transcriptase inhibitor ART.
Collapse
|
44
|
Alteri C, Surdo M, Bellocchi MC, Saccomandi P, Continenza F, Armenia D, Parrotta L, Carioti L, Costa G, Fourati S, Di Santo F, Scutari R, Barbaliscia S, Fedele V, Carta S, Balestra E, Alcaro S, Marcelin AG, Calvez V, Ceccherini-Silberstein F, Artese A, Perno CF, Svicher V. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage. Antimicrob Agents Chemother 2015; 59:4870-81. [PMID: 26055363 PMCID: PMC4505216 DOI: 10.1128/aac.00137-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022] Open
Abstract
Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression.
Collapse
Affiliation(s)
- Claudia Alteri
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Matteo Surdo
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | | | - Patrizia Saccomandi
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | | | - Daniele Armenia
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Lucia Parrotta
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | - Luca Carioti
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Giosuè Costa
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | - Slim Fourati
- Department of Virology, Hospital "Pitie Salpietrere," Paris, France
| | - Fabiola Di Santo
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Rossana Scutari
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Silvia Barbaliscia
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | | | | | - Emanuela Balestra
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| | - Stefano Alcaro
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | | | - Vincent Calvez
- Department of Virology, Hospital "Pitie Salpietrere," Paris, France
| | | | - Anna Artese
- Università Magna Graecia di Catanzaro, Dipartimento di Scienze della Salute, Campus Universitario, Catanzaro, Italy
| | - Carlo Federico Perno
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy INMI L. Spallanzani, Rome, Italy
| | - Valentina Svicher
- University of Rome "Tor Vergata," Department of Experimental Medicine and Surgery, Rome, Italy
| |
Collapse
|
45
|
Rawson JMO, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015; 12:60. [PMID: 26160407 PMCID: PMC4496919 DOI: 10.1186/s12977-015-0180-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically. RESULTS To address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants. CONCLUSIONS Taken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
46
|
Valera MS, de Armas-Rillo L, Barroso-González J, Ziglio S, Batisse J, Dubois N, Marrero-Hernández S, Borel S, García-Expósito L, Biard-Piechaczyk M, Paillart JC, Valenzuela-Fernández A. The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology 2015; 12:53. [PMID: 26105074 PMCID: PMC4479245 DOI: 10.1186/s12977-015-0181-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor β (CBF-β), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-β-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.
Collapse
Affiliation(s)
- María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Jonathan Barroso-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Serena Ziglio
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Julien Batisse
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Noé Dubois
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Sophie Borel
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR5236 CNRS UMSF, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Laura García-Expósito
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| | - Martine Biard-Piechaczyk
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) UMR5236 CNRS UMSF, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg, France.
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Departamento de Medicina Física y Farmacología, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra s/n, 38071, La Laguna, Tenerife, Spain.
| |
Collapse
|
47
|
Bélanger K, Langlois MA. Comparative analysis of the gene-inactivating potential of retroviral restriction factors APOBEC3F and APOBEC3G. J Gen Virol 2015; 96:2878-2887. [PMID: 26048885 DOI: 10.1099/vir.0.000214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
APOBEC3 (A3) proteins are host-encoded restriction factors that inhibit retrovirus infection by mutagenic deamination of cytosines in minus-strand DNA replication intermediates. APOBEC3F (A3F) and APOBEC3G (A3G) are two of the most potent A3 enzymes in humans with each having a different target DNA specificity. A3G prefers to deaminate cytosines preceded by a cytosine (5'-CC), whereas A3F preferentially targets cytosines preceded by a thymine (5'-TC). Here we performed a detailed comparative analysis of retrovirus-encoded gene sequences edited by A3F and A3G, with the aim of correlating the context and intensity of the mutations with their effects on gene function. Our results revealed that, when there are few (TGG) tryptophan codons in the sequence, both enzymes alter gene function with a similar efficiency when given equal opportunities to deaminate in their preferred target DNA context. In contrast, tryptophan-rich genes are efficiently inactivated in the presence of a low mutational burden, through termination codon generation by A3G but not A3F. Overall, our results clearly demonstrated that the target DNA specificity of an A3 enzyme along with the intensity of the mutational burden and the tryptophan content of the gene being targeted are the factors that have the most forceful influence on whether A3-induced mutations will favour either terminal inactivation or genetic diversification of a retrovirus.
Collapse
Affiliation(s)
- Kasandra Bélanger
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015; 16:546-53. [PMID: 25988886 PMCID: PMC6908429 DOI: 10.1038/ni.3156] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023]
Abstract
To replicate in their hosts, viruses have to navigate the complexities of the mammalian cell, co-opting mechanisms of cellular physiology while defeating restriction factors that are dedicated to halting their progression. Primate lentiviruses devote a relatively large portion of their coding capacity to counteracting restriction factors by encoding accessory proteins dedicated to neutralizing the antiviral function of these intracellular inhibitors. Research into the roles of the accessory proteins has revealed the existence of previously undetected intrinsic defenses, provided insight into the evolution of primate lentiviruses as they adapt to new species and uncovered new targets for the development of therapeutics. This Review discusses the biology of the restriction factors APOBEC3, SAMHD1 and tetherin and the viral accessory proteins that counteract them.
Collapse
Affiliation(s)
- Viviana Simon
- Department of Microbiology, The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicolin Bloch
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
49
|
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45. [PMID: 25818029 PMCID: PMC4424171 DOI: 10.1016/j.virol.2015.03.012] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The APOBEC family of single-stranded DNA cytosine deaminases comprises a formidable arm of the vertebrate innate immune system. Pre-vertebrates express a single APOBEC, whereas some mammals produce as many as 11 enzymes. The APOBEC3 subfamily displays both copy number variation and polymorphisms, consistent with ongoing pathogenic pressures. These enzymes restrict the replication of many DNA-based parasites, such as exogenous viruses and endogenous transposable elements. APOBEC1 and activation-induced cytosine deaminase (AID) have specialized functions in RNA editing and antibody gene diversification, respectively, whereas APOBEC2 and APOBEC4 appear to have different functions. Nevertheless, the APOBEC family protects against both periodic viral zoonoses as well as exogenous and endogenous parasite replication. This review highlights viral pathogens that are restricted by APOBEC enzymes, but manage to escape through unique mechanisms. The sensitivity of viruses that lack counterdefense measures highlights the need to develop APOBEC-enabling small molecules as a new class of anti-viral drugs.
Collapse
Affiliation(s)
- Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
50
|
Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations. Nucleic Acids Res 2015; 43:3256-71. [PMID: 25765644 PMCID: PMC4381058 DOI: 10.1093/nar/gkv128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 01/03/2023] Open
Abstract
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.
Collapse
Affiliation(s)
- Sushama Telwatte
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Adam Johnson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Katie Moore
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul Agius
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Mary Tachedjian
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z1Y6, Canada
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|