1
|
Choi WJ, Haratipour Z, Blind RD. Full-length nuclear receptor allosteric regulation. J Lipid Res 2023; 64:100406. [PMID: 37356665 PMCID: PMC10388211 DOI: 10.1016/j.jlr.2023.100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
Nuclear receptors are a superfamily of transcription factors regulated by a wide range of lipids that include phospholipids, fatty acids, heme-based metabolites, and cholesterol-based steroids. Encoded as classic two-domain modular transcription factors, nuclear receptors possess a DNA-binding domain (DBD) and a lipid ligand-binding domain (LBD) containing a transcriptional activation function. Decades of structural studies on the isolated LBDs of nuclear receptors established that lipid-ligand binding allosterically regulates the conformation of the LBD, regulating transcriptional coregulator recruitment and thus nuclear receptor function. These structural studies have aided the development of several FDA-approved drugs, highlighting the importance of understanding the structure-function relationships between lipids and nuclear receptors. However, there are few published descriptions of full-length nuclear receptor structure and even fewer descriptions of how lipids might allosterically regulate full-length structure. Here, we examine multidomain interactions based on the published full-length nuclear receptor structures, evaluating the potential of interdomain interfaces within these nuclear receptors to act as inducible sites of allosteric regulation by lipids.
Collapse
Affiliation(s)
- Woong Jae Choi
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zeinab Haratipour
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Raymond D Blind
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Center for Structural Biology, Nashville, TN, USA; Program in Precision Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Artificial intelligence-based HDX (AI-HDX) prediction reveals fundamental characteristics to protein dynamics: Mechanisms on SARS-CoV-2 immune escape. iScience 2023; 26:106282. [PMID: 36910327 PMCID: PMC9968663 DOI: 10.1016/j.isci.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Three-dimensional structure and dynamics are essential for protein function. Advancements in hydrogen-deuterium exchange (HDX) techniques enable probing protein dynamic information in physiologically relevant conditions. HDX-coupled mass spectrometry (HDX-MS) has been broadly applied in pharmaceutical industries. However, it is challenging to obtain dynamics information at the single amino acid resolution and time consuming to perform the experiments and process the data. Here, we demonstrate the first deep learning model, artificial intelligence-based HDX (AI-HDX), that predicts intrinsic protein dynamics based on the protein sequence. It uncovers the protein structural dynamics by combining deep learning, experimental HDX, sequence alignment, and protein structure prediction. AI-HDX can be broadly applied to drug discovery, protein engineering, and biomedical studies. As a demonstration, we elucidated receptor-binding domain structural dynamics as a potential mechanism of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody efficacy and immune escape. AI-HDX fundamentally differs from the current AI tools for protein analysis and may transform protein design for various applications.
Collapse
|
3
|
Negi A, Kesari KK, Voisin-Chiret AS. Estrogen Receptor-α Targeting: PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharmaceutics 2022; 14:pharmaceutics14112523. [PMID: 36432713 PMCID: PMC9699327 DOI: 10.3390/pharmaceutics14112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Targeting selective estrogen subtype receptors through typical medicinal chemistry approaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules are developed in order to inhibit the protein of interest (POI), and their popularity is based on their virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar range binding affinity and continuous dosage after a time interval for sustained inhibition of POI. These shortcomings were addressed by event-driven pharmacology-based approaches, which degrade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras), which has become one of the highly successful strategies of event-driven pharmacology (pharmacology that does the degradation of POI and diminishes its functions). The selective targeting of estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists. Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance commonly developed against these therapies, which led to selective estrogen receptor degrader (SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on the mechanism of degradation of ER-α, various types of strategies of developed.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University UNICAEN, 14000 Caen, France
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| |
Collapse
|
4
|
Human Estrogen Receptor Alpha Antagonists, Part 3: 3-D Pharmacophore and 3-D QSAR Guided Brefeldin A Hit-to-Lead Optimization toward New Breast Cancer Suppressants. Molecules 2022; 27:molecules27092823. [PMID: 35566172 PMCID: PMC9101642 DOI: 10.3390/molecules27092823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
The estrogen receptor α (ERα) is an important biological target mediating 17β-estradiol driven breast cancer (BC) development. Aiming to develop innovative drugs against BC, either wild-type or mutated ligand-ERα complexes were used as source data to build structure-based 3-D pharmacophore and 3-D QSAR models, afterward used as tools for the virtual screening of National Cancer Institute datasets and hit-to-lead optimization. The procedure identified Brefeldin A (BFA) as hit, then structurally optimized toward twelve new derivatives whose anticancer activity was confirmed both in vitro and in vivo. Compounds as SERMs showed picomolar to low nanomolar potencies against ERα and were then investigated as antiproliferative agents against BC cell lines, as stimulators of p53 expression, as well as BC cell cycle arrest agents. Most active leads were finally profiled upon administration to female Wistar rats with pre-induced BC, after which 3DPQ-12, 3DPQ-3, 3DPQ-9, 3DPQ-4, 3DPQ-2, and 3DPQ-1 represent potential candidates for BC therapy.
Collapse
|
5
|
Setayesh-Mehr Z, Poorsargol M. Dentistry pathways of coronaviruses transmission: a review. Virusdisease 2021; 32:616-624. [PMID: 34337110 PMCID: PMC8313004 DOI: 10.1007/s13337-021-00707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
The nCoV-19 in a short period of time, in lower than two months has been spread as a pandemic in all over the world. This novel type of Coronavirus which shows itself with coughing, sneezing, fatigue and respiratory symptoms which is similar to cold illness has killed more than 100,000 people. However, many protocols have been established to minimize the number of infected people, but without any border and regardless the nationality, this virus has been spread in all countries. In this review, with broad mechanistic and interdisciplinary consideration the dentistry pathways of transmission, physiology, effective and available drugs and their biological inhibiting pathways have been discussed. Among many reasons that have caused higher rate of spreading, the dental services and surgeries involve to professional-patient close contacts could be seen as one of the probable pathways of transmission for this virus. According to the more recently reported literatures, the blueprint of many individual and instrumental reasons in dentistry, could be observed in nCoV-19 infection and spreading which raise the concern of the professionals about the efficiency of conventional antiviral methods. So, results of many studies attributed to the facts that the superhydrophobic antiviral materials and surfaces are potential candidates for designing dentistry instruments with more antiviral properties.
Collapse
Affiliation(s)
- Zahra Setayesh-Mehr
- Department of Biology, Faculty of Science, University of Zabol, P.O. Box 35856-98613, Zabol, Iran
| | - Mahdiye Poorsargol
- Department of Chemistry, Faculty of Science, University of Zabol, P.O. Box 35856-98613, Zabol, Iran
| |
Collapse
|
6
|
Mihović N, Tomašević N, Matić S, Mitrović MM, Kostić DA, Sabatino M, Antonini L, Ragno R, Mladenović M. Human Estrogen Receptor α Antagonists. Part 1: 3-D QSAR-Driven Rational Design of Innovative Coumarin-Related Antiestrogens as Breast Cancer Suppressants through Structure-Based and Ligand-Based Studies. J Chem Inf Model 2021; 61:5028-5053. [PMID: 34648283 DOI: 10.1021/acs.jcim.1c00530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The estrogen receptor α (ERα) represents a 17β-estradiol-inducible transcriptional regulator that initiates the RNA polymerase II-dependent transcriptional machinery, pointed for breast cancer (BC) development via either genomic direct or genomic indirect (i.e., tethered) pathway. To develop innovative ligands, structure-based (SB) three-dimensional (3-D) quantitative structure-activity relationship (QSAR) studies have been undertaken from structural data taken from partial agonists, mixed agonists/antagonists (selective estrogen receptor modulators (SERMs)), and full antagonists (selective ERα downregulators (SERDs)) correlated with either wild-type or mutated ERα receptors. SB and ligand-based (LB) alignments allow us to rule out guidelines for the SB/LB alignment of untested compounds. 3-D QSAR models for ERα ligands, coupled with SB/LB alignment, were revealed to be useful tools to dissect the chemical determinants for ERα-based anticancer activity as well as to predict their potency. The herein developed protocol procedure was verified through the design and potency prediction of 12 new coumarin-based SERMs, namely, 3DQ-1a to 3DQ-1e, that upon synthesis turned to be potent ERα antagonists by means of either in vitro or in vivo assays (described in the second part of this study).
Collapse
Affiliation(s)
- Nezrina Mihović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Sanja Matić
- Institute for Informational Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Marina M Mitrović
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Danijela A Kostić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Lorenzo Antonini
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|
7
|
Abstract
Efforts to improve estrogen receptor-α (ER)-targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.
Collapse
|
8
|
Uggowitzer KA, Habibi Y, Wei W, Moitessier N, Thibodeaux CJ. Mutations in Dynamic Structural Elements Alter the Kinetics and Fidelity of the Multifunctional Class II Lanthipeptide Synthetase, HalM2. Biochemistry 2021; 60:412-430. [PMID: 33507068 DOI: 10.1021/acs.biochem.0c00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Class II lanthipeptide synthetases (LanM enzymes) catalyze the multistep post-translational modification of genetically encoded precursor peptides into macrocyclic (often antimicrobial) lanthipeptides. The reaction sequence involves dehydration of serine/threonine residues, followed by intramolecular addition of cysteine thiols onto the nascent dehydration sites to construct thioether bridges. LanMs utilize two separate active sites in an iterative yet highly coordinated manner to maintain a remarkable level of regio- and stereochemical control over the multistep maturation. The mechanisms underlying this biosynthetic fidelity remain enigmatic. We recently demonstrated that proper function of the haloduracin β synthetase (HalM2) requires dynamic structural elements scattered across the surface of the enzyme. Here, we perform kinetic simulations, structural analysis of reaction intermediates, hydrogen-deuterium exchange mass spectrometry studies, and molecular dynamics simulations to investigate the contributions of these dynamic HalM2 structural elements to biosynthetic efficiency and fidelity. Our studies demonstrate that a large, conserved loop (HalM2 residues P349-P405) plays essential roles in defining the precursor peptide binding site, facilitating efficient peptide dehydration, and guiding the order of thioether ring formation. Moreover, mutations near the interface of the HalM2 dehydratase and cyclase domains perturb cyclization fidelity and result in aberrant thioether topologies that cannot be corrected by the wild type enzyme, suggesting an element of kinetic control in the normal cyclization sequence. Overall, this work provides the most comprehensive correlation of the structural and functional properties of a LanM enzyme reported to date and should inform mechanistic studies of the biosynthesis of other ribosomally synthesized and post-translationally modified peptide natural products.
Collapse
|
9
|
Ligand and structure based virtual screening of chemical databases to explore potent small molecule inhibitors against breast invasive carcinoma using recent computational technologies. J Mol Graph Model 2020; 98:107591. [PMID: 32234678 DOI: 10.1016/j.jmgm.2020.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 11/21/2022]
Abstract
Breast carcinoma is the most common invasive cancer to affect the women in the North America and the world. Cancer of breast is the number one cancer overall with estimated 1.5 lakh new cases during 2016. The success of the current endocrine therapies is often limited due to the development of resistance. Therefore, there is a need to develop new lead compounds for breast cancer treatment. As 70% of breast carcinoma is ER+, and it is well known previously that estrogen receptor alpha (ERα) is overexpressed in ER + cases, so in the current work we attempt to develop some novel potent analogues against ERα. To achieve this, we have adopted an integrative computational approach that involves multiple sequence alignment, virtual screening (ligand and structure based), molecular docking, fingerprint based clustering and molecular dynamics simulation. The approach envisaged vital information about the binding site residues, conserved sequence among different species, ligand and protein conformations, binding energy of compound to bind into the active site of the receptor. Molecular docking analysis revealed that some analogues exhibited significant binding towards ERα. The top docked complexes showing good docking scores, hydrogen bond and hydrophobic interactions were selected for molecular dynamics simulation studies. RMSD revealed that the systems were quite stable with RMSD value below 3 Å. The RMSF analysis calculated residue wise fluctuations and revealed that the residues are flexible enough to interact with the ligand. The residue at C-terminal showed more flexibility as compared to other residues. To confirm binding of these analogues, MMGBSA analysis was performed which revealed binding energy of the ligands. Further, per-residue decomposition energy analysis revealed that Glu353, Leu346, Leu387 and Arg394 contributed towards ligand binding. The results visibly indicated that MMGBSA can act as filter in virtual screening experiments and play a major role in facilitating drug discovery.
Collapse
|
10
|
Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR, Kojetin DJ. A molecular switch regulating transcriptional repression and activation of PPARγ. Nat Commun 2020; 11:956. [PMID: 32075969 PMCID: PMC7031403 DOI: 10.1038/s41467-020-14750-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations—supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations. Structural studies of nuclear receptor transcription factors revealed that nearly all nuclear receptors share a conserved helix 12 dependent transcriptional activation mechanism. Here the authors present two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation, where helix 12 is located within the orthosteric ligand-binding pocket instead, and discuss mechanistic implications.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jie Zheng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jared Bass
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ashley Nichols
- Summer Undergraduate Research Fellows (SURF) program, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
11
|
GLL398, an oral selective estrogen receptor degrader (SERD), blocks tumor growth in xenograft breast cancer models. Breast Cancer Res Treat 2020; 180:359-368. [PMID: 32030569 DOI: 10.1007/s10549-020-05558-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Selective estrogen receptor degrader (SERD) has proven clinically effective in treating advanced or metastatic breast cancer since the approval of fulvestrant by FDA in 2002. Recent expansion of indications as a first line monotherapy and as combination therapy with CDK4/6 inhibitors further extends its clinical utility as an efficacious breast cancer endocrine regimen. However, the poor pharmacokinetic properties of fulvestrant and its injection-only administration route has driven continued efforts to develop orally bioavailability SERD that could potentially improve clinical response to SERD treatment. GLL398, a boron-modified GW5638 analog, showed superior oral bioavailability, while retaining both antiestrogenic activity and ER degrading efficacy at a potency level comparable to the more active metabolite of GW5638, GW7604. METHODS Here we used molecular modeling, ER (Y537S) binding assay, MCF-7 Xenograft tumor, and patient-derived xenograft (PDX) tumor model to conduct further studies on the pharmacology and metabolism of GLL398. RESULTS Consistent with GLL398's robust activities in breast cancer cells that either are tamoxifen resistant or express constitutively active, mutant ESR1 (Y537S), it was found to bind the mutant ERY537S with high affinity. Molecular modeling of the binding mode of GLL398 to ER also found its molecular interactions consistent with the experimentally determined high binding affinity towards WT ER and ERY537S. To test the in vivo efficacy of GLL398, mice bearing MCF-7-derived xenograft breast tumors and patient-derived xenograft tumors harboring ERY537S were treated with GLL398 which potently inhibited tumor growth in mice. CONCLUSIONS This study demonstrates GLL398 is an oral SERD that has therapeutic efficacy in clinically relevant breast tumor models.
Collapse
|
12
|
Moldogazieva NT, Ostroverkhova DS, Kuzmich NN, Kadochnikov VV, Terentiev AA, Porozov YB. Elucidating Binding Sites and Affinities of ERα Agonists and Antagonists to Human Alpha-Fetoprotein by In Silico Modeling and Point Mutagenesis. Int J Mol Sci 2020; 21:ijms21030893. [PMID: 32019136 PMCID: PMC7036865 DOI: 10.3390/ijms21030893] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP–ligand interaction remains obscure. In our study, we constructed a homology-based 3D model of human AFP (HAFP) with the purpose of molecular docking of ERα ligands, three agonists (17β-estradiol, estrone and diethylstilbestrol), and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on the ligand-docked scoring functions, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity binding sites were located (i) in a tunnel formed within HAFP subdomains IB and IIA and (ii) on the opposite side of the molecule in a groove originating from a cavity formed between domains I and III, while (iii) the third low-affinity binding site was found at the bottom of the cavity. Here, 100 ns molecular dynamics (MD) simulation allowed us to study their geometries and showed that HAFP–estrogen interactions were caused by van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP–antiestrogen binding. Molecular mechanics/Generalized Born surface area (MM/GBSA) rescoring method exploited for estimation of binding free energies (ΔGbind) showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP–ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues, along with two disulfide bonds (Cys224–Cys270 and Cys269–Cys277), have key roles in both HAFP–estrogen and HAFP–antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein–ligand interactions and anticancer therapy strategies based on ERα-binding ligands.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Correspondence:
| | - Daria S. Ostroverkhova
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Bioengineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolai N. Kuzmich
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Drug Safety, I.M. Smorodintsev Research Institute of Influenza, WHO National Influenza Centre of Russia, 197376 Saint Petersburg, Russia
| | - Vladimir V. Kadochnikov
- Department of Food Biotechnology and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint-Petersburg, Russia;
| | - Alexander A. Terentiev
- Deparment of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Yuri B. Porozov
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (D.S.O.); (N.N.K.); (Y.B.P.)
- Department of Food Biotechnology and Engineering, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 Saint-Petersburg, Russia;
| |
Collapse
|
13
|
Li KS, Schaper Bergman ET, Beno BR, Huang RYC, Deyanova E, Chen G, Gross ML. Hydrogen-Deuterium Exchange and Hydroxyl Radical Footprinting for Mapping Hydrophobic Interactions of Human Bromodomain with a Small Molecule Inhibitor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2795-2804. [PMID: 31720974 PMCID: PMC6917846 DOI: 10.1007/s13361-019-02316-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 05/11/2023]
Abstract
Mass spectrometry (MS)-based protein footprinting, a valuable structural tool in mapping protein-ligand interaction, has been extensively applied to protein-protein complexes, showing success in mapping large interfaces. Here, we utilized an integrated footprinting strategy incorporating both hydrogen-deuterium exchange (HDX) and hydroxyl radical footprinting (i.e., fast photochemical oxidation of proteins (FPOP)) for molecular-level characterization of the interaction of human bromodomain-containing protein 4 (BRD4) with a hydrophobic benzodiazepine inhibitor. HDX does not provide strong evidence for the location of the binding interface, possibly because the shielding of solvent by the small molecule is not large. Instead, HDX suggests that BRD4 appears to be stabilized by showing a modest decrease in dynamics caused by binding. In contrast, FPOP points to a critical binding region in the hydrophobic cavity, also identified by crystallography, and, therefore, exhibits higher sensitivity than HDX in mapping the interaction of BRD4 with compound 1. In the absence or under low concentrations of the radical scavenger, FPOP modifications on Met residues show significant differences that reflect the minor change in protein conformation. This problem can be avoided by using a sufficient amount of proper scavenger, as suggested by the FPOP kinetics directed by a dosimeter of the hydroxyl radical.
Collapse
Affiliation(s)
- Ke Sherry Li
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
| | | | - Brett R Beno
- Molecular Structure & Design, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Ekaterina Deyanova
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development, Bristol-Myers Squibb, Princeton, NJ, 08540, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
14
|
Espada A, Haro R, Castañon J, Sayago C, Perez-Cozar F, Cano L, Redero P, Molina-Martin M, Broughton H, Stites RE, Pascal BD, Griffin PR, Dodge JA, Chalmers MJ. A Decoupled Automation Platform for Hydrogen/Deuterium Exchange Mass Spectrometry Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2580-2583. [PMID: 31724102 DOI: 10.1007/s13361-019-02331-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a biophysical technique well suited to the characterization of protein dynamics and protein-ligand interactions. In order to accurately define the rate of exchange, HDX experiments require the repeated measure of deuterium incorporation into the target protein across a range of time points. Accordingly, the HDX-MS experiment is well suited to automation, and a number of automated systems for HDX-MS have been developed. The most widely utilized platforms all operate an integrated design, where robotic liquid handling is interfaced directly with a mass spectrometer. With integrated designs, the exchange samples are prepared and injected into the LC-MS following a "real-time" serial workflow. Here we describe a new HDX-MS platform that is comprised of two complementary pieces of automation that disconnect the sample preparation from the LC-MS analysis. For preparation, a plate-based automation system is used to prepare samples in parallel, followed by immediate freezing and storage. A second piece of automation has been constructed to perform the thawing and LC-MS analysis of frozen samples in a serial mode and has been optimized to maximize the duty cycle of the mass spectrometer. The decoupled configuration described here reduces experiment time, significantly improves capacity, and improves the flexibility of the platform when compared with a fully integrated system.
Collapse
Affiliation(s)
- Alfonso Espada
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Ruben Haro
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Jesus Castañon
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Cristina Sayago
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Francisco Perez-Cozar
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Leticia Cano
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Pablo Redero
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Manuel Molina-Martin
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Howard Broughton
- Centro de Investigación Lilly, SA, Avenida de la Industria 30, 28108, Alcobendas, Spain
| | - Ryan E Stites
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Bruce D Pascal
- Omics Informatics LLC, 1050 Bishop Street #517, Honolulu, HI, 96813, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Jeffrey A Dodge
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Michael J Chalmers
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, IN, 46285, USA.
| |
Collapse
|
15
|
Belorusova AY, Evertsson E, Hovdal D, Sandmark J, Bratt E, Maxvall I, Schulman IG, Åkerblad P, Lindstedt EL. Structural analysis identifies an escape route from the adverse lipogenic effects of liver X receptor ligands. Commun Biol 2019; 2:431. [PMID: 31799433 PMCID: PMC6874530 DOI: 10.1038/s42003-019-0675-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Liver X receptors (LXRs) are attractive drug targets for cardiovascular disease treatment due to their role in regulating cholesterol homeostasis and immunity. The anti-atherogenic properties of LXRs have prompted development of synthetic ligands, but these cause major adverse effects-such as increased lipogenesis-which are challenging to dissect from their beneficial activities. Here we show that LXR compounds displaying diverse functional responses in animal models induce distinct receptor conformations. Combination of hydrogen/deuterium exchange mass spectrometry and multivariate analysis allowed identification of LXR regions differentially correlating with anti-atherogenic and lipogenic activities of ligands. We show that lipogenic compounds stabilize active states of LXRα and LXRβ while the anti-atherogenic expression of the cholesterol transporter ABCA1 is associated with the ligand-induced stabilization of LXRα helix 3. Our data indicates that avoiding ligand interaction with the activation helix 12 while engaging helix 3 may provide directions for development of ligands with improved therapeutic profiles.
Collapse
Affiliation(s)
- Anna Y. Belorusova
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Evertsson
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Hovdal
- Preclinical and Translational PK & PKPD, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny Sandmark
- Structure, Biophysics & Fragment Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Bratt
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Ira G. Schulman
- Department of Pharmacology, University of Virginia, Charlottesville, VA USA
| | - Peter Åkerblad
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Present Address: Albireo Pharma, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
16
|
Cao H, Wang L, Cao M, Ye T, Sun Y. Computational insights on agonist and antagonist mechanisms of estrogen receptor α induced by bisphenol A analogues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:536-545. [PMID: 30831350 DOI: 10.1016/j.envpol.2019.02.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Structural analogues of bisphenol A (BPA) have become widely used as alternatives in BPA-free products. Most toxicological investigations have focused on the estrogenic activities of these analogues, which have been considered as potential environmental estrogens. However, recent studies revealed that certain BPA analogues could dramatically inhibit the proliferation of breast cancer cells, and exhibited strong anti-estrogenic effects compared with the antagonist 4-hydroxytamoxifen (OHT). Thus, we adopted computational models combining molecular dynamics simulations and binding free energy calculations to explore the underlying molecular basis of BPA analogues binding to estrogen receptor α (ERα). We also evaluated ligand-induced structural rearrangements of ERα at the atomic level. Conformational analyses showed that induced-fit H-bonding recognition by Thr347 was an important factor distinguishing antagonist from agonist BPA analogues. Moreover, antagonists of BPA analogues could indirectly induce the structural reposition of key helix 12 and produce an antagonistic conformation of ERα. Compared with OHT, the binding affinity of BPA analogues is stronger for antagonists than agonists. Taken together, we therefore propose computational indicators for screening of anti-estrogenic activities of BPA analogues, which may be beneficial for predicting the estrogenic or anti-estrogenic effects of BPA alternatives.
Collapse
Affiliation(s)
- Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Tong Ye
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
17
|
Okafor CD, Colucci JK, Ortlund EA. Ligand-Induced Allosteric Effects Governing SR Signaling. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Hamuro Y, Coales SJ. Optimization of Feasibility Stage for Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:623-629. [PMID: 29299838 DOI: 10.1007/s13361-017-1860-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 05/12/2023]
Abstract
The practice of HDX-MS remains somewhat difficult, not only for newcomers but also for veterans, despite its increasing popularity. While a typical HDX-MS project starts with a feasibility stage where the experimental conditions are optimized and the peptide map is generated prior to the HDX study stage, the literature usually reports only the HDX study stage. In this protocol, we describe a few considerations for the initial feasibility stage, more specifically, how to optimize quench conditions, how to tackle the carryover issue, and how to apply the pepsin specificity rule. Two sets of quench conditions are described depending on the presence of disulfide bonds to facilitate the quench condition optimization process. Four protocols are outlined to minimize carryover during the feasibility stage: (1) addition of a detergent to the quench buffer, (2) injection of a detergent or chaotrope to the protease column after each sample injection, (3) back-flushing of the trap column and the analytical column with a new plumbing configuration, and (4) use of PEEK (or PEEK coated) frits instead of stainless steel frits for the columns. The application of the pepsin specificity rule after peptide map generation and not before peptide map generation is suggested. The rule can be used not only to remove falsely identified peptides, but also to check the sample purity. A well-optimized HDX-MS feasibility stage makes subsequent HDX study stage smoother and the resulting HDX data more reliable. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation (scientifically co-founded by Professor Virgil Woods and now dissolved), Monmouth Junction, NJ, USA.
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
| | - Stephen J Coales
- ExSAR Corporation (scientifically co-founded by Professor Virgil Woods and now dissolved), Monmouth Junction, NJ, USA
- LEAP Technologies, 1015 Aviation Parkway, Suite 1000, Morrisville, NC, 27560, USA
| |
Collapse
|
19
|
Guo S, Zhang C, Bratton M, Mottamal M, Liu J, Ma P, Zheng S, Zhong Q, Yang L, Wiese TE, Wu Y, Ellis MJ, Matossian M, Burow ME, Miele L, Houtman R, Wang G. ZB716, a steroidal selective estrogen receptor degrader (SERD), is orally efficacious in blocking tumor growth in mouse xenograft models. Oncotarget 2018; 9:6924-6937. [PMID: 29467940 PMCID: PMC5805526 DOI: 10.18632/oncotarget.24023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Advances in oral SERDs development so far have been confined to nonsteroidal molecules such as those containing a cinnamic acid moiety, which are in earlystage clinical evaluation. ZB716 was previously reported as an orally bioavailable SERD structurally analogous to fulvestrant. In this study, we examined the binding details of ZB716 to the estrogen receptor alpha (ERα) by computer modeling to reveal its interactions with the ligand binding domain as a steroidal molecule. We also found that ZB716 modulates ERα-coregulator interactions in nearly identical manner to fulvestrant. The ability of ZB716 to inhibit cell growth and downregulate ER expression in endocrine resistant, ERα mutant breast cancer cells was demonstrated. Moreover, in both the MCF-7 xenograft and a patient derived xenograft model, orally administered ZB716 showed superior efficacy in blocking tumor growth when compared to fulvestrant. Importantly, such enhanced efficacy of ZB716 was shown to be attributable to its markedly higher bioavailability, as evidenced in the final plasma and tumor tissue concentrations of ZB716 in mice where drug concentrations were found significantly higher than in the fulvestrant treatment group.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Changde Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Melyssa Bratton
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.,College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Madhusoodanan Mottamal
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Peng Ma
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.,College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Shilong Zheng
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Qiu Zhong
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Lin Yang
- College of Pharmacy Chongqing Medical and Pharmaceutical College, University Town, Chongqing, 401331, China
| | - Thomas E Wiese
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.,College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Yong Wu
- Department of Internal Medicine, Charles Drew University, Los Angeles, CA 90059, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarite Matossian
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Matthew E Burow
- Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - René Houtman
- Nuclear Receptor Group, PamGene International, 5211HH Den Bosch, The Netherlands
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.,RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
20
|
Mass spectrometry for fragment screening. Essays Biochem 2017; 61:465-473. [PMID: 28986384 DOI: 10.1042/ebc20170071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening.
Collapse
|
21
|
Saltzberg DJ, Broughton HB, Pellarin R, Chalmers MJ, Espada A, Dodge JA, Pascal BD, Griffin PR, Humblet C, Sali A. A Residue-Resolved Bayesian Approach to Quantitative Interpretation of Hydrogen-Deuterium Exchange from Mass Spectrometry: Application to Characterizing Protein-Ligand Interactions. J Phys Chem B 2016; 121:3493-3501. [PMID: 27807976 DOI: 10.1021/acs.jpcb.6b09358] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Characterization of interactions between proteins and other molecules is crucial for understanding the mechanisms of action of biological systems and, thus, drug discovery. An increasingly useful approach to mapping these interactions is measurement of hydrogen/deuterium exchange (HDX) using mass spectrometry (HDX-MS), which measures the time-resolved deuterium incorporation of peptides obtained by enzymatic digestion of the protein. Comparison of exchange rates between apo- and ligand-bound conditions results in a mapping of the differential HDX (ΔHDX) of the ligand. Residue-level analysis of these data, however, must account for experimental error, sparseness, and ambiguity due to overlapping peptides. Here, we propose a Bayesian method consisting of a forward model, noise model, prior probabilities, and a Monte Carlo sampling scheme. This method exploits a residue-resolved exponential rate model of HDX-MS data obtained from all peptides simultaneously, and explicitly models experimental error. The result is the best possible estimate of ΔHDX magnitude and significance for each residue given the data. We demonstrate the method by revealing richer structural interpretation of ΔHDX data on two nuclear receptors: vitamin D-receptor (VDR) and retinoic acid receptor gamma (RORγ). The method is implemented in HDX Workbench and as a standalone module of the open source Integrative Modeling Platform.
Collapse
Affiliation(s)
- Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco , San Francisco, California, United States
| | - Howard B Broughton
- Centro de Investigación Lilly, SA , Avenida de la Industria 30, 28108 Alcobendas, Spain
| | - Riccardo Pellarin
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco , San Francisco, California, United States.,Structural Bioinformatics Unit, Institut Pasteur, CNRS UMR 3528 , Paris, France
| | - Michael J Chalmers
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana, United States
| | - Alfonso Espada
- Centro de Investigación Lilly, SA , Avenida de la Industria 30, 28108 Alcobendas, Spain
| | - Jeffrey A Dodge
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana, United States
| | - Bruce D Pascal
- Bioinformatics Core, The Scripps Research Institute-Scripps Florida , Jupiter, Florida, United States
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida , Jupiter, Florida, United States
| | - Christine Humblet
- Lilly Research Laboratories, Eli Lilly and Company , Indianapolis, Indiana, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco , San Francisco, California, United States
| |
Collapse
|
22
|
Ng HL. Simulations reveal increased fluctuations in estrogen receptor-alpha conformation upon antagonist binding. J Mol Graph Model 2016; 69:72-7. [DOI: 10.1016/j.jmgm.2016.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/15/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
|
23
|
Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090869. [PMID: 27589781 PMCID: PMC5036702 DOI: 10.3390/ijerph13090869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 11/17/2022]
Abstract
Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors.
Collapse
|
24
|
Grimm SL, Hartig SM, Edwards DP. Progesterone Receptor Signaling Mechanisms. J Mol Biol 2016; 428:3831-49. [PMID: 27380738 DOI: 10.1016/j.jmb.2016.06.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/27/2022]
Abstract
Progesterone receptor (PR) is a master regulator in female reproductive tissues that controls developmental processes and proliferation and differentiation during the reproductive cycle and pregnancy. PR also plays a role in progression of endocrine-dependent breast cancer. As a member of the nuclear receptor family of ligand-dependent transcription factors, the main action of PR is to regulate networks of target gene expression in response to binding its cognate steroid hormone, progesterone. This paper summarizes recent advances in understanding the structure-function properties of the receptor protein and the tissue/cell-type-specific PR signaling pathways that contribute to the biological actions of progesterone in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Sandra L Grimm
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine,Houston, TX 77030, USA.
| |
Collapse
|
25
|
Kato A, Itoh T, Anami Y, Egawa D, Yamamoto K. Helix12-Stabilization Antagonist of Vitamin D Receptor. Bioconjug Chem 2016; 27:1750-61. [PMID: 27294600 DOI: 10.1021/acs.bioconjchem.6b00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To develop strong vitamin D receptor (VDR) antagonists and reveal their antagonistic mechanism, we designed and synthesized vitamin D analogues with bulky side chains based on the "active antagonist" concept in which antagonist prevents helix 12 (H12) folding. Of the synthesized analogues, compounds 3a and 3b showed strong antagonistic activity. Dynamic hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) and static X-ray crystal structure analyses indicated that compound 3a stabilizes H11-H12 but displaces H6-H7 so that 3a is a novel rather than "active" or "passive" type of antagonist. We classified 3a as a third type of antagonist and called it "H11-H12 stabilization antagonist". HDX-MS analysis indicated that antagonist 3b is an "active" antagonist. To date there are no reports relating to nuclear receptor antagonist that strongly stabilizes H12. In this study, we found first VDR antagonist that stabilizes H12 and we showed that antagonistic mechanism is diverse depending on each antagonist structure. Additionally, HDX-MS was proven to be very useful for investigations of protein structure alterations resulting from ligand binding.
Collapse
Affiliation(s)
- Akira Kato
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yasuaki Anami
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University , 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
26
|
Abstract
PPARγ activation helix 12 can exist in an antagonist form: evidence from high-throughput accelerated molecular dynamics and metadynamics.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering
- Bulgarian Academy of Sciences
- Block 105
- Bulgaria
| |
Collapse
|
27
|
Fratev F, Tsakovska I, Al Sharif M, Mihaylova E, Pajeva I. Structural and Dynamical Insight into PPARγ Antagonism: In Silico Study of the Ligand-Receptor Interactions of Non-Covalent Antagonists. Int J Mol Sci 2015; 16:15405-24. [PMID: 26184155 PMCID: PMC4519905 DOI: 10.3390/ijms160715405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/14/2023] Open
Abstract
The structural and dynamical properties of the peroxisome proliferator-activated receptor γ (PPARγ) nuclear receptor have been broadly studied in its agonist state but little is known about the key features required for the receptor antagonistic activity. Here we report a series of molecular dynamics (MD) simulations in combination with free energy estimation of the recently discovered class of non-covalent PPARγ antagonists. Their binding modes and dynamical behavior are described in details. Two key interactions have been detected within the cavity between helices H3, H11 and the activation helix H12, as well as with H12. The strength of the ligand-amino acid residues interactions has been analyzed in relation to the specificity of the ligand dynamical and antagonistic features. According to our results, the PPARγ activation helix does not undergo dramatic conformational changes, as seen in other nuclear receptors, but rather perturbations that occur through a significant ligand-induced reshaping of the ligand-receptor and the receptor-coactivator binding pockets. The H12 residue Tyr473 and the charge clamp residue Glu471 play a central role for the receptor transformations. Our results also demonstrate that MD can be a helpful tool for the compound phenotype characterization (full agonists, partial agonists or antagonists) when insufficient experimental data are available.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
- Micar21 Ltd., 1407 Sofia, Bulgaria.
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Merilin Al Sharif
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | | | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
28
|
Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:13403-20. [DOI: 10.1039/c5cp00327j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ERα dimer formation reshapes the helix 12 conformational landscape and is a leading factor for the activation helix conformation.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
- Micar21 Ltd
| |
Collapse
|
29
|
Marciano DP, Dharmarajan V, Griffin PR. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Curr Opin Struct Biol 2014; 28:105-11. [PMID: 25179005 DOI: 10.1016/j.sbi.2014.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook.
Collapse
Affiliation(s)
- David P Marciano
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | | | - Patrick R Griffin
- Molecular Therapeutics Department, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
30
|
Ng HW, Perkins R, Tong W, Hong H. Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:8709-42. [PMID: 25162709 PMCID: PMC4198987 DOI: 10.3390/ijerph110908709] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/20/2022]
Abstract
The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands.
Collapse
Affiliation(s)
- Hui Wen Ng
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Roger Perkins
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
31
|
Tice CM, Noto PB, Fan KY, Zhuang L, Lala DS, Singh SB. The Medicinal Chemistry of Liver X Receptor (LXR) Modulators. J Med Chem 2014; 57:7182-205. [PMID: 24832115 DOI: 10.1021/jm500442z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Colin M. Tice
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Paul B. Noto
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Kristi Yi Fan
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Linghang Zhuang
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Deepak S. Lala
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Suresh B. Singh
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| |
Collapse
|
32
|
Xu D, Chatakonda VK, Kourtidis A, Conklin DS, Shi H. In search of novel drug target sites on estrogen receptors using RNA aptamers. Nucleic Acid Ther 2014; 24:226-38. [PMID: 24588102 DOI: 10.1089/nat.2013.0474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Estrogen receptor α (ERα) is a well-validated drug target for a majority of breast cancers. But the target sites on this receptor are far from exhaustively defined. Almost all ER antagonists in clinical use function by binding to the ligand-binding pocket to occlude agonist access. Resistance to this type of drugs may develop over time, not caused by the change of ERα itself, but by changes in ER associated proteins. This observation is fueling the development of reagents that downregulate ER activity through novel binding sites. However, it is challenging to find general ER antagonists that act independently from other known ER ligands. In this report, we describe the utility of RNA aptamers in the search for new drug target sites on ERα. We have identified three high affinity aptamers and characterized one of them in detail. This aptamer interacted with ERα in a way not affected by the presence or absence of either the steroidal ligands or the estrogen response DNA elements, and effectively inhibited ER-mediated transcriptional activation in a breast cancer cell line. Serving as a novel drug lead, it may also be used to guide the rational chemical synthesis of small molecule drugs or to perform screens of small molecule libraries for those that are able to displace the aptamer from its binding site.
Collapse
Affiliation(s)
- Daiying Xu
- 1 Department of Biological Sciences, University at Albany, State University of New York , Albany, New York
| | | | | | | | | |
Collapse
|
33
|
Marciano DP, Chang MR, Corzo CA, Goswami D, Lam VQ, Pascal BD, Griffin PR. The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Cell Metab 2014; 19:193-208. [PMID: 24440037 DOI: 10.1016/j.cmet.2013.12.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear receptors (NRs) play central roles in metabolic syndrome, making them attractive drug targets despite the challenge of achieving functional selectivity. For instance, members of the thiazolidinedione class of insulin sensitizers offer robust efficacy but have been limited due to adverse effects linked to activation of genes not involved in insulin sensitization. Studies reviewed here provide strategies for targeting subsets of PPARγ target genes, enabling development of next-generation modulators with improved therapeutic index. Additionally, emerging evidence suggests that targeting the NRs ROR and Rev-erb holds promise for treating metabolic syndrome based on their involvement in circadian rhythm and metabolism.
Collapse
Affiliation(s)
- David P Marciano
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Mi Ra Chang
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Cesar A Corzo
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Devrishi Goswami
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Vinh Q Lam
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Bruce D Pascal
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
34
|
Højfeldt JW, Cruz-Rodríguez O, Imaeda Y, Van Dyke AR, Carolan JP, Mapp AK, Iñiguez-Lluhí JA. Bifunctional ligands allow deliberate extrinsic reprogramming of the glucocorticoid receptor. Mol Endocrinol 2014; 28:249-59. [PMID: 24422633 DOI: 10.1210/me.2013-1343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics.
Collapse
Affiliation(s)
- Jonas W Højfeldt
- Department of Chemistry (J.W.H.,Y.I., J.P.C., A.K.M.), University of Michigan, and Department of Pharmacology (O.C.-R., J.A.I.-L.), University of Michigan Medical School, Ann Arbor, Michigan 48109; and Department of Chemistry and Biochemistry (A.R.V.D.), Fairfield University, Fairfield, Connecticut 06824
| | | | | | | | | | | | | |
Collapse
|
35
|
Simons SS, Edwards DP, Kumar R. Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Mol Endocrinol 2013; 28:173-82. [PMID: 24284822 DOI: 10.1210/me.2013-1334] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapeutic targeting of nuclear receptors (NRs) is presently restricted due to 2 constraints: 1) a limited knowledge of the structural dynamics of intact receptor when complexed to DNA and coregulatory proteins; and 2) the inability to more selectively modulate NR actions at specific organ/gene targets. A major obstacle has been the current lack of understanding about the function and structure of the intrinsically disordered N-terminal domain that contains a major regulatory transcriptional activation function (AF1). Current studies of both mechanism of action and small molecule-selective receptor modulators for clinical uses target the structured pocket of the ligand-binding domain to modulate coregulatory protein interactions with the other activation function AF2. However, these approaches overlook AF1 activity. Recent studies have shown that highly flexible intrinsically disordered regions of transcription factors, including that of the N-terminal domain AF1 of NRs, not only are critical for several aspects of NR action but also can be exploited as drug targets, thereby opening unique opportunities for endocrine-based therapies. In this review article, we discuss the role of structural flexibilities in the allosteric modulation of NR activity and future perspectives for therapeutic interventions.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section (S.S.S.), Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Departments of Molecular & Cellular Biology and Pathology & Immunology (D.P.E.), Baylor College of Medicine, Houston, Texas 77030; and Department of Basic Sciences (R.K.), The Commonwealth Medical College, Scranton, Pennsylvania 18510
| | | | | |
Collapse
|
36
|
Boerma LJ, Xia G, Qui C, Cox BD, Chalmers MJ, Smith CD, Lobo-Ruppert S, Griffin PR, Muccio DD, Renfrow MB. Defining the communication between agonist and coactivator binding in the retinoid X receptor α ligand binding domain. J Biol Chem 2013; 289:814-26. [PMID: 24187139 DOI: 10.1074/jbc.m113.476861] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptors (RXRs) are obligate partners for several other nuclear receptors, and they play a key role in several signaling processes. Despite being a promiscuous heterodimer partner, this nuclear receptor is a target of therapeutic intervention through activation using selective RXR agonists (rexinoids). Agonist binding to RXR initiates a large conformational change in the receptor that allows for coactivator recruitment to its surface and enhanced transcription. Here we reveal the structural and dynamical changes produced when a coactivator peptide binds to the human RXRα ligand binding domain containing two clinically relevant rexinoids, Targretin and 9-cis-UAB30. Our results show that the structural changes are very similar for each rexinoid and similar to those for the pan-agonist 9-cis-retinoic acid. The four structural changes involve key residues on helix 3, helix 4, and helix 11 that move from a solvent-exposed environment to one that interacts extensively with helix 12. Hydrogen-deuterium exchange mass spectrometry reveals that the dynamics of helices 3, 11, and 12 are significantly decreased when the two rexinoids are bound to the receptor. When the pan-agonist 9-cis-retinoic acid is bound to the receptor, only the dynamics of helices 3 and 11 are reduced. The four structural changes are conserved in all x-ray structures of the RXR ligand-binding domain in the presence of agonist and coactivator peptide. They serve as hallmarks for how RXR changes conformation and dynamics in the presence of agonist and coactivator to initiate signaling.
Collapse
|
37
|
Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL, Li S, Supattapone S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013; 21:2061-8. [PMID: 24120764 DOI: 10.1016/j.str.2013.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 12/12/2022]
Abstract
The spread of misfolded proteins may occur in many neurodegenerative diseases. Mammalian prions are currently the only misfolded proteins in which high specific biological infectivity can be produced in vitro. Using a system that generates infectious prions de novo from purified recombinant PrP and conversion cofactors palmitoyl-oleoyl-phosphatidylglycerol (POPG) and RNA, we examined by deuterium exchange mass spectrometry (DXMS) the stepwise protein conformational changes that occur during prion formation. We found that initial incubation with POPG causes major structural changes in PrP involving all three α helices and one β strand, with subsequent addition of RNA rendering the N terminus highly exposed. Final conversion into the infectious PrP(Sc) form was accompanied by globally decreased solvent exposure, with persistence of the major cofactor-induced conformational features. Thus, we report that cofactor molecules appear to induce major structural rearrangements during prion formation, initiating a dynamic sequence of conformational changes resulting in biologically active prions.
Collapse
Affiliation(s)
- Michael B Miller
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Landgraf RR, Goswami D, Rajamohan F, Harris MS, Calabrese MF, Hoth LR, Magyar R, Pascal BD, Chalmers MJ, Busby SA, Kurumbail RG, Griffin PR. Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange mass spectrometry. Structure 2013; 21:1942-53. [PMID: 24076403 DOI: 10.1016/j.str.2013.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/13/2013] [Accepted: 08/23/2013] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) monitors cellular energy, regulates genes involved in ATP synthesis and consumption, and is allosterically activated by nucleotides and synthetic ligands. Analysis of the intact enzyme with hydrogen/deuterium exchange mass spectrometry reveals conformational perturbations of AMPK in response to binding of nucleotides, cyclodextrin, and a synthetic small molecule activator, A769662. Results from this analysis clearly show that binding of AMP leads to conformational changes primarily in the γ subunit of AMPK and subtle changes in the α and β subunits. In contrast, A769662 causes profound conformational changes in the glycogen binding module of the β subunit and in the kinase domain of the α subunit, suggesting that the molecular binding site of the latter resides between the α and β subunits. The distinct short- and long-range perturbations induced upon binding of AMP and A769662 suggest fundamentally different molecular mechanisms for activation of AMPK by these two ligands.
Collapse
Affiliation(s)
- Rachelle R Landgraf
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wardell SE, Nelson ER, Chao CA, McDonnell DP. Bazedoxifene exhibits antiestrogenic activity in animal models of tamoxifen-resistant breast cancer: implications for treatment of advanced disease. Clin Cancer Res 2013; 19:2420-31. [PMID: 23536434 DOI: 10.1158/1078-0432.ccr-12-3771] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE There is compelling evidence to suggest that drugs that function as pure estrogen receptor (ER-α) antagonists, or that downregulate the expression of ER-α, would have clinical use in the treatment of advanced tamoxifen- and aromatase-resistant breast cancer. Although such compounds are currently in development, we reasoned, based on our understanding of ER-α pharmacology, that there may already exist among the most recently developed selective estrogen receptor modulators (SERM) compounds that would have usage as breast cancer therapeutics. Thus, our objective was to identify among available SERMs those with unique pharmacologic activities and to evaluate their potential clinical use with predictive models of advanced breast cancer. EXPERIMENTAL DESIGN A validated molecular profiling technology was used to classify clinically relevant SERMs based on their impact on ER-α conformation. The functional consequences of these observed mechanistic differences on (i) gene expression, (ii) receptor stability, and (iii) activity in cellular and animal models of advanced endocrine-resistant breast cancer were assessed. RESULTS The high-affinity SERM bazedoxifene was shown to function as a pure ER-α antagonist in cellular models of breast cancer and effectively inhibited the growth of both tamoxifen-sensitive and -resistant breast tumor xenografts. Interestingly, bazedoxifene induced a unique conformational change in ER-α that resulted in its proteasomal degradation, although the latter activity was dispensable for its antagonist efficacy. CONCLUSION Bazedoxifene was recently approved for use in the European Union for the treatment of osteoporosis and thus may represent a near-term therapeutic option for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
41
|
Kojetin DJ, Burris TP. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Mol Pharmacol 2012; 83:1-8. [PMID: 22869589 DOI: 10.1124/mol.112.079285] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptors are targets for a wide range of ligands, both natural and synthetic, that regulate their activity and provide a means to pharmacologically modulate the receptor. Recent emphasis in the nuclear receptor field has focused on selective nuclear receptor modulators, which can display graded transcriptional responses and tissue selective pharmacological responses that deviate from the prototypical agonist or antagonist. Understanding the molecular mechanism of action of these selective modulators will provide significant insight toward the development of the next generation of modulators. Although most nuclear receptor structural studies have primarily focused on obtaining ligand-receptor cocrystal structures, recent studies implicate an important role for protein dynamics in the mechanism of action of nuclear receptor ligands. Here we review nuclear receptor studies reporting how ligands modulate the conformational dynamics of the nuclear receptor ligand-binding domain (LBD). A particular emphasis is placed on protein NMR and hydrogen/deuterium exchange (HDX) techniques and how they provide complementary information that, when combined with crystallography, provide detailed insight into the function of nuclear receptors.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA.
| | | |
Collapse
|
42
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
43
|
Hanson RN, Hua E, Hendricks JA, Labaree D, Hochberg RB. Synthesis and evaluation of 11β-(4-substituted phenyl) estradiol analogs: transition from estrogen receptor agonists to antagonists. Bioorg Med Chem 2012; 20:3768-80. [PMID: 22608920 PMCID: PMC3581310 DOI: 10.1016/j.bmc.2012.04.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 01/27/2023]
Abstract
INTRODUCTION As part of our program to develop estrogen receptor (ER) targeted imaging and therapeutic agents we chose to evaluate 11β-substituted estradiol analogs as a representative scaffold. Previous synthetic studies provided an entry into this class of compounds and other work indicated that 11β-(substituted aryl) estradiol analogs were potent antagonists of the ER. Little information existed about the specific structural features involved in the transition from agonism to antagonism for the 11β-aryl estradiol analogs or their potential as scaffolds for drug conjugation. METHODS We prepared and characterized a series of 11β-(4-Substituted phenyl) estradiol analogs using modifications of existing synthetic methods. The new compounds, as well as standard steroidal agonists and antagonists, were evaluated as competitive ligands for the ERβ-LBD. Functional assays used the induction of alkaline phosphatase in Ishikawa cells to determine potency of the compounds as ER agonists or antagonists. RESULTS The synthetic strategy successfully generated a series of compounds in which the 4-substituent was sequentially modified from hydroxyl to methoxy to azidoethoxy/N,N-dimethylaminoethoxy and eventually to a prototypical 1,4-naphthoquinone-containing moiety. The new compounds all retained high relative binding affinity (RBA) for the ERα-LBD, ranging from 13-83% that of estradiol. No subtype selectivity was observed. More importantly, the transition from agonist to antagonist activity occurs at the 4-methoxy stage where the compound is a mixed antagonist. More notably, antagonism appeared to be more dependent upon the size of the 11β-substituent than upon the nature of the terminal group CONCLUSIONS We have developed a synthetic strategy that provides facile access to potent 11β-(4-substituted phenyl) estradiol analogs. The resultant compounds retain high affinity for the ERα-LBD and, more importantly, demonstrate potent antagonist activity in cells. Large functionalities distal to the 11β-phenyl ring had little additional effect on either affinity or efficacy, suggesting the incorporation of diverse imaging or biologically active groups can be attached without significantly compromising the ER-binding capacity. Future studies are in progress to exploit the 11β-aryl estradiol analogs as potential drug delivery systems and imaging agents.
Collapse
Affiliation(s)
- Robert N Hanson
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
| | | | | | | | | |
Collapse
|
44
|
Hughes TS, Chalmers MJ, Novick S, Kuruvilla DS, Chang MR, Kamenecka TM, Rance M, Johnson BA, Burris TP, Griffin PR, Kojetin DJ. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Structure 2012; 20:139-50. [PMID: 22244763 DOI: 10.1016/j.str.2011.10.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022]
Abstract
Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution nuclear magnetic resonance (NMR) studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators.
Collapse
Affiliation(s)
- Travis S Hughes
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chalmers MJ, Wang Y, Novick S, Sato M, Bryant HU, Montrose-Rafizdeh C, Griffin PR, Dodge JA. Hydrophobic Interactions Improve Selectivity to ERα for Ben-zothiophene SERMs. ACS Med Chem Lett 2012; 3:207-210. [PMID: 22582136 DOI: 10.1021/ml2002532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The discovery, pharmacology, and biophysical characterization of an ERα selective benzothiophene (BTPα) is described. BTPα (4) is a high affinity ligand with 140-fold greater selectivity for ERα (K(i)=0.25 nM) over ERbeta (K(i)=35 nM). In rodent models of estrogen action, BTPα blocks the effects of estrogen in the uterus but mimics the effects estrogen on bone. The basis of ERα selectivity for BTPα was evaluated by using protein crystallography and hydrogen/deuterium exchange (HDX) mass spectrometry. HDX data supports that the n-butyl chain of BTPα stabilizes helix 7 in ERα relative to that of ERβ which we propose leads to an enhancement of affinity to the alpha receptor sub-type.
Collapse
Affiliation(s)
- Michael J. Chalmers
- Department
of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458,
United States
| | - Yong Wang
- Lilly Research
Laboratories, Eli Lilly and Company, Indianapolis,
Indiana 46285,
United States
| | - Scott Novick
- Department
of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458,
United States
| | - Masahiko Sato
- Lilly Research
Laboratories, Eli Lilly and Company, Indianapolis,
Indiana 46285,
United States
| | - Henry U. Bryant
- Lilly Research
Laboratories, Eli Lilly and Company, Indianapolis,
Indiana 46285,
United States
| | | | - Patrick R. Griffin
- Department
of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458,
United States
| | - Jeffrey A. Dodge
- Lilly Research
Laboratories, Eli Lilly and Company, Indianapolis,
Indiana 46285,
United States
| |
Collapse
|
46
|
Landgraf RR, Chalmers MJ, Griffin PR. Automated hydrogen/deuterium exchange electron transfer dissociation high resolution mass spectrometry measured at single-amide resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:301-9. [PMID: 22131230 PMCID: PMC3796066 DOI: 10.1007/s13361-011-0298-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/12/2023]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a well established method for the measurement of solution-phase deuterium incorporation into proteins, which can provide insight into protein conformational mobility. However, most HDX measurements are constrained to regions of the protein where pepsin proteolysis allows detection at peptide resolution. Recently, single-amide resolution deuterium incorporation has been achieved by limiting gas-phase scrambling in the mass spectrometer. This was accomplished by employing a combination of soft ionization and desolvation conditions coupled with the radical-driven fragmentation technique electron transfer dissociation (ETD). Here, a hybrid LTQ-Orbitrap XL is systematically evaluated for its utility in providing single-amide deuterium incorporation for differential HDX analysis of a nuclear receptor upon binding small molecule ligands. We are able to show that instrumental parameters can be optimized to minimize scrambling and can be incorporated into an established and fully automated HDX platform making differential single-amide HDX possible for bottom-up analysis of complex systems. We have applied this system to determine differential single amide resolution HDX data for the peroxizome proliferator activated receptor bound with two ligands of interest.
Collapse
Affiliation(s)
- Rachelle R Landgraf
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #2A2, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
47
|
Liu T, Pantazatos D, Li S, Hamuro Y, Hilser VJ, Woods VL. Quantitative assessment of protein structural models by comparison of H/D exchange MS data with exchange behavior accurately predicted by DXCOREX. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:43-56. [PMID: 22012689 PMCID: PMC3889642 DOI: 10.1007/s13361-011-0267-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 05/12/2023]
Abstract
Peptide amide hydrogen/deuterium exchange mass spectrometry (DXMS) data are often used to qualitatively support models for protein structure. We have developed and validated a method (DXCOREX) by which exchange data can be used to quantitatively assess the accuracy of three-dimensional (3-D) models of protein structure. The method utilizes the COREX algorithm to predict a protein's amide hydrogen exchange rates by reference to a hypothesized structure, and these values are used to generate a virtual data set (deuteron incorporation per peptide) that can be quantitatively compared with the deuteration level of the peptide probes measured by hydrogen exchange experimentation. The accuracy of DXCOREX was established in studies performed with 13 proteins for which both high-resolution structures and experimental data were available. The DXCOREX-calculated and experimental data for each protein was highly correlated. We then employed correlation analysis of DXCOREX-calculated versus DXMS experimental data to assess the accuracy of a recently proposed structural model for the catalytic domain of a Ca(2+)-independent phospholipase A(2). The model's calculated exchange behavior was highly correlated with the experimental exchange results available for the protein, supporting the accuracy of the proposed model. This method of analysis will substantially increase the precision with which experimental hydrogen exchange data can help decipher challenging questions regarding protein structure and dynamics.
Collapse
Affiliation(s)
- Tong Liu
- Department of Medicine and Biomedical Sciences Graduate Program, University of California, 9500 Gilman Drive, mc 0656, La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
48
|
Shan M, Bujotzek A, Abendroth F, Wellner A, Gust R, Seitz O, Weber M, Haag R. Conformational Analysis of Bivalent Estrogen Receptor Ligands: From Intramolecular to Intermolecular Binding. Chembiochem 2011; 12:2587-98. [DOI: 10.1002/cbic.201100529] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Indexed: 11/07/2022]
|
49
|
Howe DC, Mount NM, Bess K, Brown A, Bungay P, Gibson KR, Hawcock T, Richard J, Jones G, Walley R, McLeod A, Apfeldorfer C, Ramsey S, Tweedy S, Pullen N. The translational efficacy of a nonsteroidal progesterone receptor antagonist, 4-[3-cyclopropyl-1-(mesylmethyl)-5-methyl-1H-pyrazol-4-yl]oxy,-2,6-dimethylbenzonitrile (PF-02413873), on endometrial growth in macaque and human. J Pharmacol Exp Ther 2011; 339:642-53. [PMID: 21849626 DOI: 10.1124/jpet.111.183848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is considerable ongoing investment in the research and development of selective progesterone receptor (PR) modulators for the treatment of gynecological conditions such as endometriosis. Here, we provide the first report on the clinical evaluation of a nonsteroidal progesterone receptor antagonist 4-[3-cyclopropyl-1-(mesylmethyl)-5-methyl-1H-pyrazol-4-yl]oxy,-2,6-dimethylbenzonitrile (PF-02413873) in healthy female subjects. In in vitro assays, PF-02413873 behaved as a selective and fully competitive PR antagonist, blocking progesterone binding and PR nuclear translocation. The pharmacological mode of action of PF-02413873 seems to differ from the founding member of the class of steroidal PR antagonists, 11β-4-dimethylaminophenyl-17β-hydroxy-17α-propinyl-4,9-estradiene-3-one (RU-486; mifepristone). Exposure-effect data from studies in the cynomolgus macaque, however, demonstrated that PF-02413873 reduced endometrial functionalis thickness to a comparable degree to RU-486 and this effect was accompanied by a decrease in proliferation rate (as measured by bromodeoxyuridine incorporation) for both RU-486 and high-dose PF-02413873. These data were used to underwrite a clinical assessment of PF-02413873 in a randomized, double-blinded, third-party open, placebo-controlled, dose-escalation study in healthy female volunteers with dosing for 14 days. PF-02413873 blocked the follicular phase increase in endometrial thickness, the midcycle lutenizing hormone surge, and elevation in estradiol in a dose-dependent fashion compared with placebo. This is the first report of translational efficacy data with a nonsteroidal PR antagonist in cynomolgus macaque and human subjects.
Collapse
Affiliation(s)
- David C Howe
- GlaxoSmithKline Research and Development, Stevenage, Herts, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abendroth F, Bujotzek A, Shan M, Haag R, Weber M, Seitz O. DNA-controlled bivalent presentation of ligands for the estrogen receptor. Angew Chem Int Ed Engl 2011; 50:8592-6. [PMID: 21793134 DOI: 10.1002/anie.201101655] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/02/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Frank Abendroth
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|