1
|
Papadakos SP, Chatzikalil E, Vakadaris G, Reppas L, Arvanitakis K, Koufakis T, Siakavellas SI, Manolakopoulos S, Germanidis G, Theocharis S. Exploring the Role of GITR/GITRL Signaling: From Liver Disease to Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2609. [PMID: 39061246 PMCID: PMC11275207 DOI: 10.3390/cancers16142609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and presents a continuously growing incidence and high mortality rates worldwide. Besides advances in diagnosis and promising results of pre-clinical studies, established curative therapeutic options for HCC are not currently available. Recent progress in understanding the tumor microenvironment (TME) interactions has turned the scientific interest to immunotherapy, revolutionizing the treatment of patients with advanced HCC. However, the limited number of HCC patients who benefit from current immunotherapeutic options creates the need to explore novel targets associated with improved patient response rates and potentially establish them as a part of novel combinatorial treatment options. Glucocorticoid-induced TNFR-related protein (GITR) belongs to the TNFR superfamily (TNFRSF) and promotes CD8+ and CD4+ effector T-cell function with simultaneous inhibition of Tregs function, when activated by its ligand, GITRL. GITR is currently considered a potential immunotherapy target in various kinds of neoplasms, especially with the concomitant use of programmed cell-death protein-1 (PD-1) blockade. Regarding liver disease, a high GITR expression in liver progenitor cells has been observed, associated with impaired hepatocyte differentiation, and decreased progenitor cell-mediated liver regeneration. Considering real-world data proving its anti-tumor effect and recently published evidence in pre-clinical models proving its involvement in pre-cancerous liver disease, the idea of its inclusion in HCC therapeutic options theoretically arises. In this review, we aim to summarize the current evidence supporting targeting GITR/GITRL signaling as a potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Georgios Vakadaris
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Lampros Reppas
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Spyros I. Siakavellas
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Liver-GI Unit, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 114 Vas. Sofias str, 11527 Athens, Greece; (S.I.S.); (S.M.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.V.); (K.A.)
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
2
|
Davar D, Zappasodi R, Wang H, Naik GS, Sato T, Bauer T, Bajor D, Rixe O, Newman W, Qi J, Holland A, Wong P, Sifferlen L, Piper D, Sirard CA, Merghoub T, Wolchok JD, Luke JJ. Phase IB Study of GITR Agonist Antibody TRX518 Singly and in Combination with Gemcitabine, Pembrolizumab, or Nivolumab in Patients with Advanced Solid Tumors. Clin Cancer Res 2022; 28:3990-4002. [PMID: 35499569 PMCID: PMC9475244 DOI: 10.1158/1078-0432.ccr-22-0339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE TRX518 is a mAb engaging the glucocorticoid-induced TNF receptor-related protein (GITR). This open-label, phase I study (TRX518-003) evaluated the safety and efficacy of repeated dose TRX518 monotherapy and in combination with gemcitabine, pembrolizumab, or nivolumab in advanced solid tumors. PATIENTS AND METHODS TRX518 monotherapy was dose escalated (Part A) and expanded (Part B) up to 4 mg/kg loading, 1 mg/kg every 3 weeks. Parts C-E included dose-escalation (2 and 4 mg/kg loading followed by 1 mg/kg) and dose-expansion (4 mg/kg loading) phases with gemcitabine (Part C), pembrolizumab (Part D), or nivolumab (Part E). Primary endpoints included incidence of dose-limiting toxicities (DLT), serious adverse events (SAE), and pharmacokinetics. Secondary endpoints were efficacy and pharmacodynamics. RESULTS A total of 109 patients received TRX518: 43 (Parts A+B), 30 (Part C), 26 (Part D), and 10 (Part E), respectively. A total of 67% of patients in Parts D+E had received prior anti-PD(L)1 or anti-CTLA-4. No DLTs, treatment-related SAEs, and/or grade 4 or 5 AEs were observed with TRX518 monotherapy. In Parts C-E, no DLTs were observed, although TRX518-related SAEs were reported in 3.3% (Part C) and 10.0% (Part E), respectively. Objective response rate was 3.2%, 3.8%, 4%, and 12.5% in Parts A+B, C, D, and E, respectively. TRX518 affected peripheral and intratumoral regulatory T cells (Treg) with different kinetics depending on the combination regimen. Responses with TRX518 monotherapy+anti-PD1 combination were associated with intratumoral Treg reductions and CD8 increases and activation after treatment. CONCLUSIONS TRX518 showed an acceptable safety profile with pharmacodynamic activity. Repeated dose TRX518 monotherapy and in combination resulted in limited clinical responses associated with immune activation. See related commentary by Hernandez-Guerrero and Moreno, p. 3905.
Collapse
Affiliation(s)
- Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Hong Wang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Todd Bauer
- Phase I Drug Development Unit, Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee
| | - David Bajor
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Olivier Rixe
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | | | - Jingjing Qi
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aliya Holland
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phillip Wong
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Taha Merghoub
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Jedd D. Wolchok
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Jason J. Luke
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Liu H, Wu W, Sun G, Chia T, Cao L, Liu X, Guan J, Fu F, Yao Y, Wu Z, Zhou S, Wang J, Lu J, Kuang Z, Wu M, He L, Shao Z, Wu D, Chen B, Xu W, Wang Z, He K. Optimal target saturation of ligand-blocking anti-GITR antibody IBI37G5 dictates FcγR-independent GITR agonism and antitumor activity. Cell Rep Med 2022; 3:100660. [PMID: 35732156 PMCID: PMC9245059 DOI: 10.1016/j.xcrm.2022.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/26/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a co-stimulatory receptor and an important target for cancer immunotherapy. We herein present a potent FcγR-independent GITR agonist IBI37G5 that can effectively activate effector T cells and synergize with anti-programmed death 1 (PD1) antibody to eradicate established tumors. IBI37G5 depends on both antibody bivalency and GITR homo-dimerization for efficient receptor cross-linking. Functional analyses reveal bell-shaped dose responses due to the unique 2:2 antibody-receptor stoichiometry required for GITR activation. Antibody self-competition is observed after concentration exceeded that of 100% receptor occupancy (RO), which leads to antibody monovalent binding and loss of activity. Retrospective pharmacokinetics/pharmacodynamics analysis demonstrates that the maximal efficacy is achieved at medium doses with drug exposure near saturating GITR occupancy during the dosing cycle. Finally, we propose an alternative dose-finding strategy that does not rely on the traditional maximal tolerated dose (MTD)-based paradigm but instead on utilizing the RO-function relations as biomarker to guide the clinical translation of GITR and similar co-stimulatory agonists.
Collapse
Affiliation(s)
- Huisi Liu
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Weiwei Wu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Gangyu Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tiongsun Chia
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Lei Cao
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Xiaodan Liu
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jian Guan
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Fenggen Fu
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Ying Yao
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Zhihai Wu
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Shuaixiang Zhou
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jie Wang
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jia Lu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Zhihui Kuang
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Min Wu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Luan He
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Zhiyuan Shao
- Department of Antibody Discovery and Protein Engineering, Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Dongdong Wu
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Bingliang Chen
- Department of Pharmacology and Preclinical Studies, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Kaijie He
- Department of Immunology, Innovent Guoqing Academy, Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China.
| |
Collapse
|
4
|
An anti-PD-1–GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. NATURE CANCER 2022; 3:337-354. [PMID: 35256819 PMCID: PMC8960412 DOI: 10.1038/s43018-022-00334-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Costimulatory receptors such as glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR) play key roles in regulating the effector functions of T cells. In human clinical trials, however, GITR agonist antibodies have shown limited therapeutic effect, which may be due to suboptimal receptor clustering-mediated signaling. To overcome this potential limitation, a rational protein engineering approach is needed to optimize GITR agonist-based immunotherapies. Here we show a bispecific molecule consisting of an anti-PD-1 antibody fused with a multimeric GITR ligand (GITR-L) that induces PD-1-dependent and FcγR-independent GITR clustering, resulting in enhanced activation, proliferation and memory differentiation of primed antigen-specific GITR+PD-1+ T cells. The anti-PD-1–GITR-L bispecific is a PD-1-directed GITR-L construct that demonstrated dose-dependent, immunologically driven tumor growth inhibition in syngeneic, genetically engineered and xenograft humanized mouse tumor models, with a dose-dependent correlation between target saturation and Ki67 and TIGIT upregulation on memory T cells. Anti-PD-1–GITR-L thus represents a bispecific approach to directing GITR agonism for cancer immunotherapy. Alvarez and colleagues develop a bispecific anti-PD-1–GITR-L agonist that activates T cells via a mechanism distinct from those found with individual PD-1 and GITR-L agonists and demonstrate its antitumor activity in mice and nonhuman primates.
Collapse
|
5
|
He C, Maniyar RR, Avraham Y, Zappasodi R, Rusinova R, Newman W, Heath H, Wolchok JD, Dahan R, Merghoub T, Meyerson JR. Therapeutic antibody activation of the glucocorticoid-induced TNF receptor by a clustering mechanism. SCIENCE ADVANCES 2022; 8:eabm4552. [PMID: 35213218 PMCID: PMC8880771 DOI: 10.1126/sciadv.abm4552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/12/2022] [Indexed: 05/11/2023]
Abstract
GITR is a TNF receptor, and its activation promotes immune responses and drives antitumor activity. The receptor is activated by the GITR ligand (GITRL), which is believed to cluster receptors into a high-order array. Immunotherapeutic agonist antibodies also activate the receptor, but their mechanisms are not well characterized. We solved the structure of full-length mouse GITR bound to Fabs from the antibody DTA-1. The receptor is a dimer, and each subunit binds one Fab in an orientation suggesting that the antibody clusters receptors. Binding experiments with purified proteins show that DTA-1 IgG and GITRL both drive extensive clustering of GITR. Functional data reveal that DTA-1 and the anti-human GITR antibody TRX518 activate GITR in their IgG forms but not as Fabs. Thus, the divalent character of the IgG agonists confers an ability to mimic GITRL and cluster and activate GITR. These findings will inform the clinical development of this class of antibodies for immuno-oncology.
Collapse
Affiliation(s)
- Changhao He
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Rachana R. Maniyar
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yahel Avraham
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Jedd D. Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel R. Meyerson
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
6
|
Zhao M, Fu L, Chai Y, Sun M, Li Y, Wang S, Qi J, Zeng B, Kang L, Gao GF, Tan S. Atypical TNF-TNFR superfamily binding interface in the GITR-GITRL complex for T cell activation. Cell Rep 2021; 36:109734. [PMID: 34551288 DOI: 10.1016/j.celrep.2021.109734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is a critical regulatory molecule in modulation of T cell immune responses. Here we report the mouse GITR (mGITR) and mGITR ligand (mGITRL) complex structure and find that the binding interface of mGITR and mGITRL is distinct from the typical tumor necrosis factor superfamily (TNFSF)/TNF receptor superfamily (TNFRSF) members. mGITR binds to its ligand with a single domain, whereas the binding interface on mGITRL is located on the side, which is distal from conserved binding sites of TNFSF molecules. Mutational analysis reveals that the binding interface of GITR/GITRL in humans is conserved with that in the mouse. Substitution of key interacting D93-I94-V95 (DIV) in mGITR with the corresponding K93-F94-S95 (KFS) in human GITR enables cross-recognition with human GITRL and cross-activation of receptor signaling. The findings of this study substantially expand our understanding of the interaction of TNFSF/TNFRSF superfamily molecules and can benefit the future design of biologics by targeting GITR/GITRL.
Collapse
Affiliation(s)
- Min Zhao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Fu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Chai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuo Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Zeng
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuguang Tan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open 2021; 4:e000738. [PMID: 32817129 PMCID: PMC7451269 DOI: 10.1136/esmoopen-2020-000738] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, immunotherapies have revolutionised anticancer treatment. However, there is still a number of patients that do not respond or acquire resistance to these treatments. Despite several efforts to combine immunotherapy with other strategies like chemotherapy, or other immunotherapy, there is an 'urgent' need to better understand the immune landscape of the tumour microenvironment. New promising approaches, in addition to blocking co-inhibitory pathways, such those cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 mediated, consist of activating co-stimulatory pathways to enhance antitumour immune responses. Among several new targets, glucocorticoid-induced TNFR-related gene (GITR) activation can promote effector T-cell function and inhibit regulatory T-cell (Treg) function. Preclinical data on GITR-agonist monoclonal antibodies (mAbs) demonstrated antitumour activity in vitro and in vivo enhancing CD8+ and CD4+ effector T-cell activity and depleting tumour-infiltrating Tregs. Phase I clinical trials reported a manageable safety profile of GITR mAbs. However, monotherapy seems not to be effective, whereas responses have been reported in combination therapy, in particular adding PD-1 blockade. Several clinical studies are ongoing and results are awaited to further develop GITR-stimulating treatments.
Collapse
Affiliation(s)
- Giulia Buzzatti
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Chiara Dellepiane
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucia Del Mastro
- U.O. Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Wang F, Chau B, West SM, Kimberlin CR, Cao F, Schwarz F, Aguilar B, Han M, Morishige W, Bee C, Dollinger G, Rajpal A, Strop P. Structures of mouse and human GITR-GITRL complexes reveal unique TNF superfamily interactions. Nat Commun 2021; 12:1378. [PMID: 33654081 PMCID: PMC7925557 DOI: 10.1038/s41467-021-21563-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) are members of the tumor necrosis superfamily that play a role in immune cell signaling, activation, and survival. GITR is a therapeutic target for directly activating effector CD4 and CD8 T cells, or depleting GITR-expressing regulatory T cells (Tregs), thereby promoting anti-tumor immune responses. GITR activation through its native ligand is important for understanding immune signaling, but GITR structure has not been reported. Here we present structures of human and mouse GITR receptors bound to their cognate ligands. Both species share a receptor–ligand interface and receptor–receptor interface; the unique C-terminal receptor–receptor enables higher order structures on the membrane. Human GITR–GITRL has potential to form a hexameric network of membrane complexes, while murine GITR–GITRL complex forms a linear chain due to dimeric interactions. Mutations at the receptor–receptor interface in human GITR reduce cell signaling with in vitro ligand binding assays and minimize higher order membrane structures when bound by fluorescently labeled ligand in cell imaging experiments. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and GITR ligand (GITRL) regulate immune cell activities, including anti-tumor immune responses. Structures and visualization of human and mouse GITR–GITRL complexes offer insight into the architecture of higher-order membrane assemblies, and their signaling.
Collapse
Affiliation(s)
- Feng Wang
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Bryant Chau
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Sean M West
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | | | - Fei Cao
- Discovery Chemistry, Bristol Myers Squibb, Redwood City, CA, USA
| | - Flavio Schwarz
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Barbara Aguilar
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Minhua Han
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, Redwood City, CA, USA
| | - Winse Morishige
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Christine Bee
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA
| | - Arvind Rajpal
- Genentech Research and Early Development, South San Francisco, CA, USA
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, Redwood City, CA, USA.
| |
Collapse
|
9
|
Mock J, Pellegrino C, Neri D. A universal reporter cell line for bioactivity evaluation of engineered cytokine products. Sci Rep 2020; 10:3234. [PMID: 32094407 PMCID: PMC7040017 DOI: 10.1038/s41598-020-60182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 12/24/2022] Open
Abstract
Engineered cytokine products represent a growing class of therapeutic proteins which need to be tested for biological activity at various stages of pharmaceutical development. In most cases, dedicated biological assays are established for different products, in a process that can be time-consuming and cumbersome. Here we describe the development and implementation of a universal cell-based reporter system for various classes of immunomodulatory proteins. The novel system capitalizes on the fact that the signaling of various types of pro-inflammatory agents (e.g., cytokines, chemokines, Toll-like receptor agonists) may involve transcriptional activation by NF-κB. Using viral transduction, we generated stably-transformed cell lines of B or T lymphocyte origin and compared the new reporter cell lines with conventional bioassays. The experimental findings with various interleukins and with members of the TNF superfamily revealed that the newly-developed “universal” bioassay method yielded bioactivity data which were comparable to the ones obtained with dedicated conventional methods. The engineered cell lines with reporters for NF-κB were tested with several antibody-cytokine fusions and may be generally useful for the characterization of novel immunomodulatory products. The newly developed methodology also revealed a mechanism for cytokine potentiation, based on the antibody-mediated clustering of TNF superfamily members on tumor-associated extracellular matrix components.
Collapse
Affiliation(s)
- Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
10
|
Richards DM, Marschall V, Billian-Frey K, Heinonen K, Merz C, Redondo Müller M, Sefrin JP, Schröder M, Sykora J, Fricke H, Hill O, Gieffers C, Thiemann M. HERA-GITRL activates T cells and promotes anti-tumor efficacy independent of FcγR-binding functionality. J Immunother Cancer 2019; 7:191. [PMID: 31324216 PMCID: PMC6642547 DOI: 10.1186/s40425-019-0671-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
Background Glucocorticoid-induced TNFR-related protein (TNFRSF18, GITR, CD357), expressed by T cells, and its ligand (TNFSF18, GITRL), expressed by myeloid populations, provide co-stimulatory signals that boost T cell activity. Due to the important role that GITR plays in regulating immune functions, agonistic stimulation of GITR is a promising therapeutic concept. Multiple strategies to induce GITR signaling have been investigated. The limited clinical efficacy of antibody-based GITR agonists results from structural and functional characteristics of antibodies that are unsuitable for stimulating the well-defined trimeric members of the TNFRSF. Methods To overcome limitations of antibody-based TNFRSF agonists, we have developed HERA-GITRL, a fully human hexavalent TNF receptor agonist (HERA) targeting GITR and mimicking the natural signaling concept. HERA-GITRL is composed of a trivalent but single-chain GITRL-receptor-binding-domain (scGITRL-RBD) unit fused to an IgG1 derived silenced Fc-domain serving as dimerization scaffold. A specific mouse surrogate, mmHERA-GITRL, was also generated to examine in vivo activity in respective mouse tumor models. Results For functional characterization of HERA-GITRL in vitro, human immune cells were isolated from healthy-donor blood and stimulated with anti-CD3 antibody in the presence of HERA-GITRL. Consistently, HERA-GITRL increased the activity of T cells, including proliferation and differentiation, even in the presence of regulatory T cells. In line with these findings, mmHERA-GITRL enhanced antigen-specific clonal expansion of both CD4+ (OT-II) and CD8+ (OT-I) T cells in vivo while having no effect on non-specific T cells. In addition, mmHERA-GITRL showed single-agent anti-tumor activity in two subcutaneous syngeneic colon cancer models (CT26wt and MC38-CEA). Importantly, this activity is independent of its FcγR-binding functionality, as both mmHERA-GITRL with a functional Fc- and a silenced Fc-domain showed similar tumor growth inhibition. Finally, in a direct in vitro comparison to a bivalent clinical benchmark anti-GITR antibody and a trivalent GITRL, only the hexavalent HERA-GITRL showed full biological activity independent of additional crosslinking. Conclusion In this manuscript, we describe the development of HERA-GITRL, a true GITR agonist with a clearly defined mechanism of action. By clustering six receptor chains in a spatially well-defined manner, HERA-GITRL induces potent agonistic activity without being dependent on additional FcγR-mediated crosslinking. Electronic supplementary material The online version of this article (10.1186/s40425-019-0671-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Richards
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Katharina Billian-Frey
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Karl Heinonen
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Julian P Sefrin
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Matthias Schröder
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Jaromir Sykora
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | | | - Oliver Hill
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Christian Gieffers
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Meinolf Thiemann
- Research and Development, Apogenix AG, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Beha N, Harder M, Ring S, Kontermann RE, Müller D. IL15-Based Trifunctional Antibody-Fusion Proteins with Costimulatory TNF-Superfamily Ligands in the Single-Chain Format for Cancer Immunotherapy. Mol Cancer Ther 2019; 18:1278-1288. [PMID: 31040163 DOI: 10.1158/1535-7163.mct-18-1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
Collapse
Affiliation(s)
- Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Markus Harder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
12
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
13
|
Bitra A, Doukov T, Destito G, Croft M, Zajonc DM. Crystal structure of the m4-1BB/4-1BBL complex reveals an unusual dimeric ligand that undergoes structural changes upon 4-1BB receptor binding. J Biol Chem 2018; 294:1831-1845. [PMID: 30545939 DOI: 10.1074/jbc.ra118.006297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
The interaction between the receptor 4-1BB and its ligand 4-1BBL provides co-stimulatory signals for T-cell activation and proliferation. However, differences in the mouse and human molecules might result in differential engagement of this pathway. Here, we report the crystal structure of mouse 4-1BBL and of the mouse 4-1BB/4-1BBL complex, which together provided insights into the molecular mechanism by which m4-1BBL and its cognate receptor recognize each other. Unlike all human or mouse tumor necrosis factor ligands that form noncovalent and mostly trimeric assemblies, the m4-1BBL structure formed a disulfide-linked dimeric assembly. The structure disclosed that certain differences in the amino acid composition along the intramolecular interface, together with two specific residues (Cys-246 and Ser-256) present exclusively in m4-1BBL, are responsible for this unique dimerization. Unexpectedly, upon m4-1BB binding, m4-1BBL undergoes structural changes within each protomer; moreover, the individual m4-1BBL protomers rotate relative to each other, yielding a dimerization interface with more inter-subunit interactions. We also observed that in the m4-1BB/4-1BBL complex, each receptor monomer binds exclusively to a single ligand subunit with contributions of cysteine-rich domain 1 (CRD1), CRD2, and CRD3. Furthermore, structure-guided mutagenesis of the binding interface revealed that novel binding interactions with the GH loop, rather than the DE loop, are energetically critical and define the m4-1BB receptor selectivity for m4-1BBL. A comparison with the human 4-1BB/4-1BBL complex highlighted several differences between the ligand- and receptor-binding interfaces, providing an explanation for the absence of inter-species cross-reactivity between human and mouse 4-1BB and 4-1BBL molecules.
Collapse
Affiliation(s)
- Aruna Bitra
- From the Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037
| | - Tzanko Doukov
- the Stanford Synchrotron Radiation Lightsource, SLAC, Menlo Park, California 94025
| | - Giuseppe Destito
- Kirin Kyowa Hakko Pharmaceutical Research, La Jolla, California 92037
| | - Michael Croft
- From the Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037.,the Department of Medicine, University of California San Diego, La Jolla, California 92037, and
| | - Dirk M Zajonc
- From the Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California 92037, .,the Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Acúrcio RC, Scomparin A, Conniot J, Salvador JAR, Satchi-Fainaro R, Florindo HF, Guedes RC. Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. J Med Chem 2018; 61:10957-10975. [DOI: 10.1021/acs.jmedchem.8b00541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, and Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
16
|
The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov 2018; 17:509-527. [PMID: 29904196 DOI: 10.1038/nrd.2018.75] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune cell functions are regulated by co-inhibitory and co-stimulatory receptors. The first two generations of cancer immunotherapy agents consist primarily of antagonist antibodies that block negative immune checkpoints, such as programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte protein 4 (CTLA4). Looking ahead, there is substantial promise in targeting co-stimulatory receptors with agonist antibodies, and a growing number of these agents are making their way through various stages of development. This Review discusses the key considerations and potential pitfalls of immune agonist antibody design and development, their differentiating features from antagonist antibodies and the landscape of agonist antibodies in clinical development for cancer treatment.
Collapse
|
17
|
Bitra A, Doukov T, Wang J, Picarda G, Benedict CA, Croft M, Zajonc DM. Crystal structure of murine 4-1BB and its interaction with 4-1BBL support a role for galectin-9 in 4-1BB signaling. J Biol Chem 2018; 293:1317-1329. [PMID: 29242193 PMCID: PMC5787808 DOI: 10.1074/jbc.m117.814905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/01/2017] [Indexed: 11/06/2022] Open
Abstract
4-1BB (CD137) is a TNF receptor superfamily (TNFRSF) member that is thought to undergo receptor trimerization upon binding to its trimeric TNF superfamily ligand (4-1BBL) to stimulate immune responses. 4-1BB also can bind to the tandem repeat-type lectin galectin-9 (Gal-9), and signaling through mouse (m)4-1BB is reduced in galectin-9 (Gal-9)-deficient mice, suggesting a pivotal role of Gal-9 in m4-1BB activation. Here, using sulfur-SAD phasing, we determined the crystal structure of m4-1BB to 2.2-Å resolution. We found that similar to other TNFRSFs, m4-1BB has four cysteine-rich domains (CRDs). However, the organization of CRD1 and the orientation of CRD3 and CRD4 with respect to CRD2 in the m4-1BB structure distinctly differed from those of other TNFRSFs. Moreover, we mapped two Asn residues within CRD4 that are N-linked glycosylated and mediate m4-1BB binding to Gal-9. Kinetics studies of m4-1BB disclosed a very tight nanomolar binding affinity to m4-1BBL with an unexpectedly strong avidity effect. Both N- and C-terminal domains of Gal-9 bound m4-1BB, but with lower affinity compared with m4-1BBL. Although the TNF homology domain (THD) of human (h)4-1BBL forms non-covalent trimers, we found that m4-1BBL formed a covalent dimer via 2 cysteines absent in h4-1BBL. As multimerization and clustering is a prerequisite for TNFR intracellular signaling, and as m4-1BBL can only recruit two m4-1BB monomers, we hypothesize that m4-1BBL and Gal-9 act together to aid aggregation of m4-1BB monomers to efficiently initiate m4-1BB signaling.
Collapse
Affiliation(s)
- Aruna Bitra
- From the Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California 92037
| | - Tzanko Doukov
- the Stanford Synchrotron Radiation Light Source, Menlo Park, California 94025
| | - Jing Wang
- From the Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California 92037
| | - Gaelle Picarda
- From the Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California 92037
| | - Chris A Benedict
- From the Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California 92037
| | - Michael Croft
- From the Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California 92037
- the Department of Medicine, University of California San Diego, La Jolla, California 92037, and
| | - Dirk M Zajonc
- From the Division of Immune Regulation, La Jolla Institute for Allergy and Immunology (LJI), La Jolla, California 92037
- the Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Chang YH, Wang KC, Chu KL, Clouthier DL, Tran AT, Torres Perez MS, Zhou AC, Abdul-Sater AA, Watts TH. Dichotomous Expression of TNF Superfamily Ligands on Antigen-Presenting Cells Controls Post-priming Anti-viral CD4 + T Cell Immunity. Immunity 2017; 47:943-958.e9. [PMID: 29150240 DOI: 10.1016/j.immuni.2017.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
T cell antigen-presenting cell (APC) interactions early during chronic viral infection are crucial for determining viral set point and disease outcome, but how and when different APC subtypes contribute to these outcomes is unclear. The TNF receptor superfamily (TNFRSF) member GITR is important for CD4+ T cell accumulation and control of chronic lymphocytic choriomeningitis virus (LCMV). We found that type I interferon (IFN-I) induced TNFSF ligands GITRL, 4-1BBL, OX40L, and CD70 predominantly on monocyte-derived APCs and CD80 and CD86 predominantly on classical dendritic cells (cDCs). Mice with hypofunctional GITRL in Lyz2+ cells had decreased LCMV-specific CD4+ T cell accumulation and increased viral load. GITR signals in CD4+ T cells occurred after priming to upregulate OX40, CD25, and chemokine receptor CX3CR1. Thus IFN-I (signal 3) induced a post-priming checkpoint (signal 4) for CD4+ T cell accumulation, revealing a division of labor between cDCs and monocyte-derived APCs in regulating T cell expansion.
Collapse
Affiliation(s)
- Yu-Han Chang
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kuan Chung Wang
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kuan-Lun Chu
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Derek L Clouthier
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anh T Tran
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Angela C Zhou
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ali A Abdul-Sater
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Leyland R, Watkins A, Mulgrew KA, Holoweckyj N, Bamber L, Tigue NJ, Offer E, Andrews J, Yan L, Mullins S, Oberst MD, Coates Ulrichsen J, Leinster DA, McGlinchey K, Young L, Morrow M, Hammond SA, Mallinder P, Herath A, Leow CC, Wilkinson RW, Stewart R. A Novel Murine GITR Ligand Fusion Protein Induces Antitumor Activity as a Monotherapy That Is Further Enhanced in Combination with an OX40 Agonist. Clin Cancer Res 2017; 23:3416-3427. [DOI: 10.1158/1078-0432.ccr-16-2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
|
20
|
Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer 2016; 67:1-10. [PMID: 27591414 DOI: 10.1016/j.ejca.2016.06.028] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/18/2022]
Abstract
Over the past decade, our understanding of cancer immunotherapy has evolved from assessing peripheral responses in the blood to monitoring changes in the tumour microenvironment. Both preclinical and clinical experience has taught us that modulation of the tumour microenvironment has significant implications to generating robust antitumour immunity. Clinical benefit has been well documented to correlate with a tumour microenvironment that contains a dense infiltration of CD8+CD45RO+ T effectors and a high ratio of CD8+ T cells to FoxP3+ regulatory T cells (Tregs). In preclinical tumour models, modulation of the Glucocorticoid induced TNF receptor (GITR)/GITR ligand (GITRL) axis suggests this pathway may provide the desired biological outcome of inhibiting Treg function while activating CD8+ T effector cells. This review will focus on the scientific rationale and considerations for the therapeutic targeting of GITR for cancer immunotherapy and will discuss possible combination strategies to enhance clinical benefit.
Collapse
Affiliation(s)
- Deborah A Knee
- Department of Cancer Immunotherapeutics, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| | - Becker Hewes
- Department of Translational & Clinical Oncology, Novartis Institute for Biomedical Research, 220 Massachusetts Ave, Cambridge, MA, USA.
| | - Jennifer L Brogdon
- Department of Exploratory Immuno-Oncology, Novartis Institute for Biomedical Research, 250 Massachusetts Ave, Cambridge, MA, USA.
| |
Collapse
|
21
|
Nocentini G, Cari L, Ronchetti S, Riccardi C. Modulation of tumor immunity: a patent evaluation of WO2015026684A1. Expert Opin Ther Pat 2016; 26:417-25. [DOI: 10.1517/13543776.2016.1118061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22:1727-41. [PMID: 26292758 PMCID: PMC4648319 DOI: 10.1038/cdd.2015.109] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.
Collapse
Affiliation(s)
- H Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Schaer DA, Hirschhorn-Cymerman D, Wolchok JD. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer 2014; 2:7. [PMID: 24855562 PMCID: PMC4030310 DOI: 10.1186/2051-1426-2-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023] Open
Abstract
With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.
Collapse
Affiliation(s)
- David A Schaer
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.,Current address: Department of Cancer Immunobiology, ImClone Systems, a wholly-owned subsidiary of Eli Lilly & Co, New York, NY 10016, USA
| | - Daniel Hirschhorn-Cymerman
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Ludwig Collaborative Lab, New York, NY 10065, USA.,Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
24
|
Clouthier DL, Watts TH. Cell-specific and context-dependent effects of GITR in cancer, autoimmunity, and infection. Cytokine Growth Factor Rev 2014; 25:91-106. [DOI: 10.1016/j.cytogfr.2013.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022]
|
25
|
Correlation of increased blood levels of GITR and GITRL with disease severity in patients with primary Sjögren's syndrome. Clin Dev Immunol 2013; 2013:340751. [PMID: 23935647 PMCID: PMC3722791 DOI: 10.1155/2013/340751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/20/2013] [Indexed: 01/22/2023]
Abstract
Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is a type I transmembrane protein belonging to the TNFR superfamily. After activated by its ligand GITRL, GITR could influence the activity of effector and regulatory T cells, participating in the development of several autoimmune and inflammatory diseases included rheumatoid arthritis and autoimmune thyroid disease. We previously reported that serum GITRL levels are increased in systemic lupus erythematosus (SLE) patients compared with healthy controls (HC). Here, we tested serum soluble GITR (sGITR) and GITRL levels in 41 primary Sjögren's syndrome (pSS) patients and 29 HC by ELISA and correlated sGITR and GITRL levels with clinical and laboratory variables. GITR and GITRL expression in labial salivary glands was detected by immunohistochemistry. pSS patients had significantly increased serum levels of sGITR and GITRL compared with controls (GITR: 5.66 ± 3.56 ng/mL versus 0.50 ± 0.31 ng/mL; P < 0.0001; GITRL: 6.17 ± 7.10 ng/mL versus 0.36 ± 0.28 ng/mL; P < 0.0001). Serum sGITR and GITRL levels were positively correlated with IgG (GITRL: r = 0.6084, P < 0.0001; sGITR: r = 0.6820, P < 0.0001) and ESR (GITRL: r = 0.8315, P < 0.0001; sGITR: r = 0.7448, P < 0.0001). Moreover, GITR and GITRL are readily detected in the lymphocytic foci and periductal areas of the LSGs. In contrast, the LSGs of HC subjects did not express GITR or GITRL. Our findings indicate the possible involvement of GITR-GITRL pathway in the pathogenesis of pSS. Further studies may facilitate the development of targeting this molecule pathway for the treatment of pSS.
Collapse
|
26
|
McKelvey L, Gutierrez H, Nocentini G, Crampton SJ, Davies AM, Riccardi CR, O'keeffe GW. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling. Biol Open 2012; 1:1016-23. [PMID: 23213379 PMCID: PMC3507174 DOI: 10.1242/bio.20121024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/05/2012] [Indexed: 01/01/2023] Open
Abstract
NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth.
Collapse
Affiliation(s)
- Laura McKelvey
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork , Cork , Ireland
| | | | | | | | | | | | | |
Collapse
|
27
|
Nocentini G, Ronchetti S, Petrillo MG, Riccardi C. Pharmacological modulation of GITRL/GITR system: therapeutic perspectives. Br J Pharmacol 2012; 165:2089-99. [PMID: 22029729 DOI: 10.1111/j.1476-5381.2011.01753.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glucocorticoid-induced TNFR-related (gitr) is a gene coding for a member of the TNF receptor superfamily. GITR activation by its ligand (GITRL) influences the activity of effector and regulatory T cells, thus participating in the development of immune response against tumours and infectious agents, as well as in autoimmune and inflammatory diseases. Notably, treating animals with GITR-Fc fusion protein ameliorates autoimmune/inflammatory diseases while GITR triggering, by treatment with anti-GITR mAb, is effective in treating viral, bacterial and parasitic infections, as well in boosting immune response against tumours. GITR modulation has been indicated as one of the top 25 most promising research areas by the American National Cancer Institute, and a clinical trial testing the efficacy of an anti-GITR mAb in melanoma patients has been started. In this review, we summarize results regarding: (i) the mechanisms by which GITRL/GITR system modulates immune response; (ii) the structural and functional studies clearly demonstrating differences between GITRL/GITR systems of mice and humans; (iii) the molecules with pharmacological activities including anti-GITR mAbs, GITR-Fc and GITRL-Fc fusion proteins, GITRL in monomer or multimer conformation; and (iv) the possible risks deriving from GITRL/GITR system pharmacological modulation. In conclusion, GITR triggering and inhibition could be useful in treating tumours, infectious diseases, as well as autoimmune and inflammatory diseases. However, differences between mouse and human GITRL/GITR systems suggest that further preclinical studies are needed to better understand how safe therapeutic results can be obtained and to design appropriate clinical trials.
Collapse
Affiliation(s)
- Giuseppe Nocentini
- Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
28
|
Snell LM, Lin GHY, McPherson AJ, Moraes TJ, Watts TH. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev 2012; 244:197-217. [PMID: 22017440 DOI: 10.1111/j.1600-065x.2011.01063.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GITR [glucocorticoid inducible tumor necrosis factor receptor (TNFR)-related protein] and 4-1BB are costimulatory TNFR family members that are expressed on regulatory and effector T cells as well as on other cells of the immune system. Here we discuss the role of GITR and 4-1BB on T cells during viral infections and in cancer immunotherapy. Systemic treatment with agonistic anti-4-1BB antibody leads to a number of immune system abnormalities, and clinical trials of anti-4-1BB have been terminated. However, other modes of 4-1BB ligation may be less toxic. To date, similar toxicities have not been reported for anti-GITR treatment of mice, although anti-GITR antibodies can exacerbate mouse autoimmune models. Intrinsic effects of GITR and 4-1BB on effector T cells appear to predominate over their effects on other cell types in some models. Despite their similarities in enhancing T-cell survival, 4-1BB and GITR are clearly not redundant, and both pathways are required for maximal CD8(+) T-cell responses and mouse survival following severe respiratory influenza infection. GITR uses TNFR-associated factor (TRAF) 2 and TRAF5, whereas 4-1BB recruits TRAF1 and TRAF2 to mediate survival signaling in T cells. The differential use of signaling adapters combined with their differential expression may explain the non-redundant roles of GITR and 4-1BB in the immune system.
Collapse
Affiliation(s)
- Laura M Snell
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
29
|
Modulation of GITR for cancer immunotherapy. Curr Opin Immunol 2012; 24:217-24. [PMID: 22245556 DOI: 10.1016/j.coi.2011.12.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 02/06/2023]
Abstract
Modulation of co-inhibitory and co-stimulatory receptors of the immune system has become a promising new approach for immunotherapy of cancer. With the recent FDA approval of CTLA-4 blockade serving as an important proof of principal, many new targets are now being translated into the clinic. Preclinical research has demonstrated that targeting glucocorticoid-induced tumor necrosis factor (TNF) receptor related gene (GITR), a member of TNF receptor superfamily, by agonist antibodies or natural ligand, can serve as an effective anti-tumor therapy. In this review, we will cover this research and the rationale that has led to initiation of two phase 1 clinical trials targeting GITR as a new immunotherapeutic approach for cancer.
Collapse
|
30
|
Wiens GD, Glenney GW. Origin and evolution of TNF and TNF receptor superfamilies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1324-1335. [PMID: 21527275 DOI: 10.1016/j.dci.2011.03.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/26/2011] [Accepted: 03/26/2011] [Indexed: 05/30/2023]
Abstract
The tumor necrosis factor superfamily (TNFSF) and the TNF receptor superfamily (TNFRSF) have an ancient evolutionary origin that can be traced back to single copy genes within Arthropods. In humans, 18 TNFSF and 29 TNFRSF genes have been identified. Evolutionary models account for the increase in gene number primarily through multiple whole genome duplication events as well as by lineage and/or species-specific tandem duplication and translocation. The identification and functional analyses of teleost ligands and receptors provide insight into the critical transition between invertebrates and higher vertebrates. Bioinformatic analyses of fish genomes and EST datasets identify 14 distinct ligand groups, some of which are novel to teleosts, while to date, only limited numbers of receptors have been characterized in fish. The most studied ligand is TNF of which teleost species possess between 1 and 3 copies as well as a receptor similar to TNFR1. Functional studies using zebrafish indicate a conserved role of this ligand-receptor system in the regulation of cell survival and resistance to infectious disease. The increasing interest and use of TNFSF and TNFRSF modulators in human and animal medicine underscores the need to understand the evolutionary origins as well as conserved and novel functions of these biologically important molecules.
Collapse
Affiliation(s)
- Gregory D Wiens
- USDA-ARS, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA.
| | | |
Collapse
|
31
|
Glucocorticoid-induced TNFR-related (GITR) protein and its ligand in antitumor immunity: functional role and therapeutic modulation. Clin Dev Immunol 2010; 2010:239083. [PMID: 20936139 PMCID: PMC2948872 DOI: 10.1155/2010/239083] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/02/2010] [Indexed: 12/14/2022]
Abstract
The ability of the tumor necrosis factor receptor (TNFR) family member GITR to modulate immune responses has been the subject of multiple studies. Initially thought to be critically involved in governing functions of regulatory T cells, GITR and its ligand GITRL have meanwhile been found to modulate the reactivity of various different cell types and to influence a broad variety of immunological conditions including the immune response against tumors. Not only GITR, but also GITRL is capable of transducing signals, and the consequences of GITR-GITRL interaction may vary among different effector cell types, differ upon signal transduction via the receptor, the ligand, or both, depend on the level of an ongoing immune response, and even differ among mice and men. In this paper, we address available data on GITR and its ligand in immune responses and discuss the role and potential therapeutic modulation of this molecule system in antitumor immunity.
Collapse
|
32
|
Liao G, Nayak S, Regueiro JR, Berger SB, Detre C, Romero X, de Waal Malefyt R, Chatila TA, Herzog RW, Terhorst C. GITR engagement preferentially enhances proliferation of functionally competent CD4+CD25+FoxP3+ regulatory T cells. Int Immunol 2010; 22:259-70. [PMID: 20139172 PMCID: PMC2845330 DOI: 10.1093/intimm/dxq001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/06/2010] [Indexed: 12/28/2022] Open
Abstract
Naturally occurring regulatory T cells (Treg) express high levels of glucocorticoid-induced tumour necrosis factor receptor (GITR). However, studies of the role of GITR in Treg biology has been complicated by the observation that upon activation effector CD4(+) T (Teff) cells also express the receptor. Here, we dissect the contribution of GITR-induced signaling networks in the expansion and function of FoxP3(+) Treg. We demonstrate that a high-affinity soluble Fc-GITR-L dimer, in conjugation with alphaCD3, specifically enhances in vitro proliferation of Treg, which retain their phenotypic markers (CD25 and FoxP3) and their suppressor function, while minimally affecting Teff cells. Furthermore, Fc-GITR-L does not impair Teff susceptibility to suppression, as judged by cocultures employing GITR-deficient and GITR-sufficient CD4(+) T-cell subsets. Notably, this expansion of Treg could also be seen in vivo, by injecting FoxP3-IRES-GFP mice with Fc-GITR-L even in the absence of antigenic stimulation. In order to test the efficacy of these findings therapeutically, we made use of a C3H/HeJ hemophilia B-prone mouse model. The use of liver-targeted human coagulation factor IX (hF.IX) gene therapy in this model has been shown to induce liver toxicity and the subsequent failure of hF.IX expression. Interestingly, injection of Fc-GITR-L into the hemophilia-prone mice that were undergoing liver-targeted hF.IX gene therapy increased the expression of F.IX and reduced the anticoagulation factors. We conclude that GITR engagement enhances Treg proliferation both in vitro and in vivo and that Fc-GITR-L may be a useful tool for in vivo tolerance induction.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Factor IX/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Therapy
- Glucocorticoid-Induced TNFR-Related Protein
- Hemophilia B/therapy
- Humans
- Immune Tolerance
- Immunoglobulin Fc Fragments/administration & dosage
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Interleukin-2 Receptor alpha Subunit/metabolism
- Ligands
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Nerve Growth Factor/administration & dosage
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/administration & dosage
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cui D, Wang S, Chen Y, Tong J, Ma J, Tang L, Yang X, Shi Y, Tian J, Lu L, Xu H. An isoleucine-zipper motif enhances costimulation of human soluble trimeric GITR ligand. Cell Mol Immunol 2010; 7:316-22. [PMID: 20228835 DOI: 10.1038/cmi.2010.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Glucocorticoid-induced tumor-necrosis factor receptor (GITR) and its ligand, GITRL, play significant roles in regulating immune responses. It is clear that human soluble GITRL (hsGITRL) transduces signal activity through multiple oligomerization states. To develop human soluble trimeric GITRL protein as a potential therapeutic target, we explored the link of the isoleucine-zipper (ILZ) motif to the N-terminus of the human soluble GITRL with two leucine sequences. hsGITRL, with the ILZ motif (ILZ-hsGITRL), was firstly expressed in Escherichia coli, which exhibited a predominant trimer when identified by Sephadex G-100 filtration and non-reducing SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The significantly higher biological activity of the ILZ-hsGITRL compared with hsGITRL was confirmed by CD4(+) T proliferation, interferon-gamma (IFN-gamma) secretion and binding activity assay. To reveal and compare the underlying mechanisms, the level of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation was examined, indicating that ILZ-hsGITRL induced more persistent and stronger ERK1/2 activation than hsGITRL. In conclusion, the incorporation of an ILZ motif could markedly improve the costimulation of hsGITRL.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chattopadhyay K, Lazar-Molnar E, Yan Q, Rubinstein R, Zhan C, Vigdorovich V, Ramagopal UA, Bonanno J, Nathenson SG, Almo SC. Sequence, structure, function, immunity: structural genomics of costimulation. Immunol Rev 2009; 229:356-86. [PMID: 19426233 DOI: 10.1111/j.1600-065x.2009.00778.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SUMMARY Costimulatory receptors and ligands trigger the signaling pathways that are responsible for modulating the strength, course, and duration of an immune response. High-resolution structures have provided invaluable mechanistic insights by defining the chemical and physical features underlying costimulatory receptor:ligand specificity, affinity, oligomeric state, and valency. Furthermore, these structures revealed general architectural features that are important for the integration of these interactions and their associated signaling pathways into overall cellular physiology. Recent technological advances in structural biology promise unprecedented opportunities for furthering our understanding of the structural features and mechanisms that govern costimulation. In this review, we highlight unique insights that have been revealed by structures of costimulatory molecules from the immunoglobulin and tumor necrosis factor superfamilies and describe a vision for future structural and mechanistic analysis of costimulation. This vision includes simple strategies for the selection of candidate molecules for structure determination and highlights the critical role of structure in the design of mutant costimulatory molecules for the generation of in vivo structure-function correlations in a mammalian model system. This integrated 'atoms-to-animals' paradigm provides a comprehensive approach for defining atomic and molecular mechanisms.
Collapse
Affiliation(s)
- Kausik Chattopadhyay
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wyzgol A, Müller N, Fick A, Munkel S, Grigoleit GU, Pfizenmaier K, Wajant H. Trimer Stabilization, Oligomerization, and Antibody-Mediated Cell Surface Immobilization Improve the Activity of Soluble Trimers of CD27L, CD40L, 41BBL, and Glucocorticoid-Induced TNF Receptor Ligand. THE JOURNAL OF IMMUNOLOGY 2009; 183:1851-61. [DOI: 10.4049/jimmunol.0802597] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
van Olffen RW, Koning N, van Gisbergen KPJM, Wensveen FM, Hoek RM, Boon L, Hamann J, van Lier RAW, Nolte MA. GITR Triggering Induces Expansion of Both Effector and Regulatory CD4+ T Cells In Vivo. THE JOURNAL OF IMMUNOLOGY 2009; 182:7490-500. [DOI: 10.4049/jimmunol.0802751] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Human glucocorticoid-induced TNF receptor ligand regulates its signaling activity through multiple oligomerization states. Proc Natl Acad Sci U S A 2008; 105:5465-70. [PMID: 18378892 DOI: 10.1073/pnas.0711350105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligation between glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand (GITRL) provides an undefined signal that renders CD4(+)CD25(-) effector T cells resistant to the inhibitory effects of CD4(+)CD25(+) regulatory T cells. To understand the structural basis of GITRL function, we have expressed and purified the extracellular domain of human GITR ligand in Escherichia coli. Chromotography and cross-linking studies indicate that human GITRL (hGITRL) exists as dimers and trimers in solution and also can form a supercluster. To gain insight into the nature of GITRL oligomerization, we determined the crystallographic structures of hGITRL, which revealed a loosely associated open trimer with a deep cavity at the molecular center and a flexible C-terminal tail bent for trimerization. Moreover, a tetramer of trimers (i.e., supercluster) has also been observed in the crystal, consistent with the cross-linking analysis. Deletion of the C-terminal distal three residues disrupts the loosely assembled trimer and favors the formation of a dimer that has compromised receptor binding and signaling activity. Collectively, our studies identify multiple oligomeric species of hGITRL that possess distinct kinetics of ERK activation. The studies address the functional implications and structural models for a process by which hGITRL utilizes multiple oligomerization states to regulate GITR-mediated signaling during T cell costimulation.
Collapse
|