1
|
Dehaghani NS, Zarei M. Pre-stimulus activities affect subsequent visual processing: Empirical evidence and potential neural mechanisms. Brain Behav 2025; 15:e3654. [PMID: 39907172 DOI: 10.1002/brb3.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 02/06/2025] Open
Abstract
PURPOSE Humans obtain most of their information from visual stimuli. The perception of these stimuli may be modulated by the ongoing pre-stimulus brain activities. Depending on the task design, the processing of different cognitive functions such as spatial attention, feature-based attention, temporal attention, arousal, and mental imagery may start prior to the stimulus onset. METHOD This process is typically accompanied by changes in pre-stimulus oscillatory activities including power, phase, or connectivity in different frequency bands. To explain the effect of these changes, several mechanisms have been proposed. In this article, we review these changes and the potential mechanisms in the context of the pre-stimulus enabled cognitive functions. We provide evidence both in favor of and against the most documented mechanisms and conclude that no single mechanism can solely delineate the effects of pre-stimulus brain activities on later processing. Instead, multiple mechanisms may work in tandem to guide pre-stimulus brain activities. FINDING Additionally, our findings indicate that in many studies a combination of these cognitive functions begins prior to stimulus onset. CONCLUSION Thus, dissociating these cognitive functions is challenging based on the current literature, and the need for precise task designs in later studies to differentiate between them is crucial.
Collapse
Affiliation(s)
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Koenig L, He BJ. Spontaneous slow cortical potentials and brain oscillations independently influence conscious visual perception. PLoS Biol 2025; 23:e3002964. [PMID: 39820589 PMCID: PMC11737857 DOI: 10.1371/journal.pbio.3002964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025] Open
Abstract
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown. Here, we addressed this question in 2 independent magnetoencephalography (MEG) data sets involving near-threshold visual perception tasks in humans using low-level (Gabor patches) and high-level (objects, faces, houses, animals) stimuli, respectively. We found that oscillatory power and large-scale SCP activity influence conscious perception through independent mechanisms that do not have shared variance. In addition, through mediation analysis, we show that pre-stimulus oscillatory power and SCP activity have different relations to pupil size-an index of arousal-in their influences on conscious perception. Together, these findings suggest that oscillatory power and SCPs independently contribute to perceptual awareness, with distinct relations to pupil-linked arousal.
Collapse
Affiliation(s)
- Lua Koenig
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Biyu J. He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Departments of Neurology, Neuroscience & Physiology, Radiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York, United States of America
| |
Collapse
|
3
|
Çatal Y, Keskin K, Wolman A, Klar P, Smith D, Northoff G. Flexibility of intrinsic neural timescales during distinct behavioral states. Commun Biol 2024; 7:1667. [PMID: 39702547 DOI: 10.1038/s42003-024-07349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Recent neuroimaging studies demonstrate a heterogeneity of timescales prevalent in the brain's ongoing spontaneous activity, labeled intrinsic neural timescales (INT). At the same time, neural timescales also reflect stimulus- or task-related activity. The relationship of the INT during the brain's spontaneous activity with their involvement in task states including behavior remains unclear. To address this question, we combined calcium imaging data of spontaneously behaving mice and human electroencephalography (EEG) during rest and task states with computational modeling. We obtained four primary findings: (i) the distinct behavioral states can be accurately predicted from INT, (ii) INT become longer during behavioral states compared to rest, (iii) INT change from rest to task is correlated negatively with the variability of INT during rest, (iv) neural mass modeling shows a key role of recurrent connections in mediating the rest-task change of INT. Extending current findings, our results show the dynamic nature of the brain's INT in reflecting continuous behavior through their flexible rest-task modulation possibly mediated by recurrent connections.
Collapse
Affiliation(s)
- Yasir Çatal
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada.
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Kaan Keskin
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychiatry, Ege University, Izmir, Turkey
- SoCAT Lab, Ege University, Izmir, Turkey
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - David Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
4
|
Allam A, Allam V, Reddy S, Rohren EM, Sheth SA, Froudarakis E, Papageorgiou TD. Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230083. [PMID: 39428879 PMCID: PMC11491853 DOI: 10.1098/rstb.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
This proof-of-concept study uses individualized functional magnetic resonance imaging neuromodulation (iNM) to explore the mechanisms that enhance BOLD signals in visuospatial perception (VP) networks that are crucial for navigation. Healthy participants (n = 8) performed a VP up- and down-direction discrimination task at full and subthreshold coherence through peripheral vision, and superimposed direction through visual imagery (VI) at central space under iNM and control conditions. iNM targets individualized anatomical and functional middle- and medial-superior temporal (MST) networks that control VP. We found that iNM engaged selective exteroceptive and interoceptive attention (SEIA) and motor planning (MP) networks. Specifically, iNM increased overall: (i) area under the curve of the BOLD magnitude: 100% in VP (but decreased for weak coherences), 21-47% in VI, 26-59% in MP and 48-76% in SEIA through encoding; and (ii) classification performance for each direction, coherence and network through decoding, predicting stimuli from brain maps. Our findings, derived from encoding and decoding models, suggest that mechanisms induced by iNM are causally linked in enhancing visuospatial networks and demonstrate iNM as a feasibility treatment for low-vision patients with cortical blindness or visuospatial impairments that precede cognitive decline.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Anthony Allam
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vincent Allam
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Sandy Reddy
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eric M. Rohren
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A. Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - T. Dorina Papageorgiou
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| |
Collapse
|
5
|
Rebouillat B, Barascud N, Kouider S. Partial awareness during voluntary endogenous decision. Conscious Cogn 2024; 125:103769. [PMID: 39413689 DOI: 10.1016/j.concog.2024.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Despite our feeling of control over decisions, our ability to consciously access choices before execution remains debated. Recent research reveals prospective access to intention to act, allowing potential vetoes of impending decisions. However, whether the content of impending decision can be accessed remain debated. Here we track neural signals during participants' early deliberation in free decisions. Participants chose freely between two options but sometimes had to reject their current decision just before execution. The initially preferred option, tracked in real time, significantly predicts the upcoming choice, but remain mostly outside of conscious awareness. Participants often display overconfidence in their access to this content. Instead, confidence is associated with a neural marker of self-initiated decision, indicating a qualitative confusion in the confidence evaluation process. Our results challenge the notion of complete agency over choices, suggesting inflated awareness of forthcoming decisions and providing insights into metacognitive processes in free decision-making.
Collapse
Affiliation(s)
- Benjamin Rebouillat
- Laboratoire DysCo, Université Paris 8, Saint-Denis, France; Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France; Ecole Doctorale Cerveau Cognition Comportement, ENS/ Paris VI / Paris V, Paris 75005, France.
| | - Nicolas Barascud
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, CNRS), Département d'Études Cognitives, École Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
6
|
Zaretskaya N. When sensory input meets spontaneous brain activity. Trends Neurosci 2024; 47:749-750. [PMID: 39218722 DOI: 10.1016/j.tins.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
A recent study by Wu, Podvalny, and colleagues investigated how ongoing spontaneous brain activity interacts with sensory input and shapes conscious perception. It reports diverse effects of prestimulus activity in several key networks, revealing new roles of the prefrontal cortex and the default mode network in perception and consciousness.
Collapse
Affiliation(s)
- Natalia Zaretskaya
- Department of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
7
|
Hirayama K, Takahashi T, Yan X, Koga T, Osu R. Somatosensory stimulation on the wrist enhances the subsequent hand-choice by biasing toward the stimulated hand. Sci Rep 2024; 14:22726. [PMID: 39349935 PMCID: PMC11442949 DOI: 10.1038/s41598-024-73245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Hand choice is an unconscious decision frequently made in daily life. The electroencephalogram before target presentation correlates with hand choice for the target where hand choice probability reaches equilibrium. However, whether neurophysiological interventions before target presentation influence hand choice remains unknown. Therefore, this study determined whether instantaneous somatosensory electrical stimulation administered to the unilateral wrist at 0, 300, or 600 ms before the target presentation facilitates or inhibits stimulated hand choice for targets around the hand selection equilibrium point. A single electrical stimulation comprised five trains of 1 ms electrical pulses, with a 20 ms inter-pulse interval. The stimulus intensity was set at 80% of the motor threshold. This study included 14 right-handed healthy adults (five females and nine males; mean age, 25.1 ± 4.64 years). Unilateral wrist stimulation significantly increased the probability of choosing the stimulated hand and led to a faster reaction time than bilateral wrist stimulation and no-stimulation conditions. The results suggest that prior somatosensory stimulation significantly affects the hand-choice process, effectively promoting the selection of the stimulated hand. These findings highlight the potential application of this stimulation method in stroke rehabilitation to facilitate the use of the paretic hand.
Collapse
Affiliation(s)
- Kento Hirayama
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St., Los Angeles, CA, 90089, USA
| | - Toru Takahashi
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Xiang Yan
- Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Takayuki Koga
- Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
8
|
Zivony A, Eimer M. A dissociation between the effects of expectations and attention in selective visual processing. Cognition 2024; 250:105864. [PMID: 38906015 DOI: 10.1016/j.cognition.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
It is often claimed that probabilistic expectations affect visual perception directly, without mediation by selective attention. However, these claims have been disputed, as effects of expectation and attention are notoriously hard to dissociate experimentally. In this study, we used a new approach to separate expectations from attention. In four experiments (N = 60), participants searched for a target in a rapid serial visual presentation (RSVP) stream and had to identify a digit or a letter defined by a low-level cue (colour or shape). Expectations about the target's alphanumeric category were probabilistically manipulated. Since category membership is a high-level feature and since the target was embedded among many distractors that shared its category, targets from the expected category should not attract attention more than targets from the unexpected category. In the first experiment, these targets were more likely to be identified relative to targets from the unexpected category. Importantly, in the following experiments, we also included behavioural and electrophysiological indices of attentional guidance and engagement. This allowed us to examine whether expectations also modulated these or earlier attentional processes. Results showed that category-based expectations had no modulatory effects on attention, and only affected processing at later encoding-related stages. Alternative interpretation of expectation effects in terms of repetition priming or response bias were also ruled out. These observations provide new evidence for direct attention-independent expectation effects on perception. We suggest that expectations can adjust the threshold required for encoding expectations-congruent information, thereby affecting the speed with which target objects are encoded in working memory.
Collapse
Affiliation(s)
- Alon Zivony
- Department of Psychology, University of Shefeld, Portobello, Shefeld S1 4DP, United Kingdom.
| | - Martin Eimer
- Department of Psychological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
9
|
Türker B, Manasova D, Béranger B, Naccache L, Sergent C, Sitt JD. Distinct dynamic connectivity profiles promote enhanced conscious perception of auditory stimuli. Commun Biol 2024; 7:856. [PMID: 38997514 PMCID: PMC11245546 DOI: 10.1038/s42003-024-06533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The neuroscience of consciousness aims to identify neural markers that distinguish brain dynamics in healthy individuals from those in unconscious conditions. Recent research has revealed that specific brain connectivity patterns correlate with conscious states and diminish with loss of consciousness. However, the contribution of these patterns to shaping conscious processing remains unclear. Our study investigates the functional significance of these neural dynamics by examining their impact on participants' ability to process external information during wakefulness. Using fMRI recordings during an auditory detection task and rest, we show that ongoing dynamics are underpinned by brain patterns consistent with those identified in previous research. Detection of auditory stimuli at threshold is specifically improved when the connectivity pattern at stimulus presentation corresponds to patterns characteristic of conscious states. Conversely, the occurrence of these conscious state-associated patterns increases after detection, indicating a mutual influence between ongoing brain dynamics and conscious perception. Our findings suggest that certain brain configurations are more favorable to the conscious processing of external stimuli. Targeting these favorable patterns in patients with consciousness disorders may help identify windows of greater receptivity to the external world, guiding personalized treatments.
Collapse
Affiliation(s)
- Başak Türker
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, 75013, France.
| | - Dragana Manasova
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, 75013, France
- Université Paris Cité, Paris, 75006, France
| | - Benoît Béranger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, 75013, France
| | - Lionel Naccache
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, 75013, France
| | - Claire Sergent
- Université Paris Cité, Paris, 75006, France
- Integrative Neuroscience and Cognition Center-INCC, UMR 8002, Paris, 75006, France
| | - Jacobo D Sitt
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, 75013, France.
| |
Collapse
|
10
|
Wu YH, Podvalny E, Levinson M, He BJ. Network mechanisms of ongoing brain activity's influence on conscious visual perception. Nat Commun 2024; 15:5720. [PMID: 38977709 PMCID: PMC11231278 DOI: 10.1038/s41467-024-50102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Sensory inputs enter a constantly active brain, whose state is always changing from one moment to the next. Currently, little is known about how ongoing, spontaneous brain activity participates in online task processing. We employed 7 Tesla fMRI and a threshold-level visual perception task to probe the effects of prestimulus ongoing brain activity on perceptual decision-making and conscious recognition. Prestimulus activity originating from distributed brain regions, including visual cortices and regions of the default-mode and cingulo-opercular networks, exerted a diverse set of effects on the sensitivity and criterion of conscious recognition, and categorization performance. We further elucidate the mechanisms underlying these behavioral effects, revealing how prestimulus activity modulates multiple aspects of stimulus processing in highly specific and network-dependent manners. These findings reveal heretofore unknown network mechanisms underlying ongoing brain activity's influence on conscious perception, and may hold implications for understanding the precise roles of spontaneous activity in other brain functions.
Collapse
Affiliation(s)
- Yuan-Hao Wu
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Max Levinson
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Northoff G, Zilio F, Zhang J. Beyond task response-Pre-stimulus activity modulates contents of consciousness. Phys Life Rev 2024; 49:19-37. [PMID: 38492473 DOI: 10.1016/j.plrev.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
The current discussion on the neural correlates of the contents of consciousness (NCCc) focuses mainly on the post-stimulus period of task-related activity. This neglects the substantial impact of the spontaneous or ongoing activity of the brain as manifest in pre-stimulus activity. Does the interaction of pre- and post-stimulus activity shape the contents of consciousness? Addressing this gap in our knowledge, we review and converge two recent lines of findings, that is, pre-stimulus alpha power and pre- and post-stimulus alpha trial-to-trial variability (TTV). The data show that pre-stimulus alpha power modulates post-stimulus activity including specifically the subjective features of conscious contents like confidence and vividness. At the same time, alpha pre-stimulus variability shapes post-stimulus TTV reduction including the associated contents of consciousness. We propose that non-additive rather than merely additive interaction of the internal pre-stimulus activity with the external stimulus in the alpha band is key for contents to become conscious. This is mediated by mechanisms on different levels including neurophysiological, neurocomputational, neurodynamic, neuropsychological and neurophenomenal levels. Overall, considering the interplay of pre-stimulus intrinsic and post-stimulus extrinsic activity across wider timescales, not just evoked responses in the post-stimulus period, is critical for identifying neural correlates of consciousness. This is well in line with both processing and especially the Temporo-spatial theory of consciousness (TTC).
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
12
|
Panagiotaropoulos TI. An integrative view of the role of prefrontal cortex in consciousness. Neuron 2024; 112:1626-1641. [PMID: 38754374 DOI: 10.1016/j.neuron.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The involvement of the prefrontal cortex (PFC) in consciousness is an ongoing focus of intense investigation. An important question is whether representations of conscious contents and experiences in the PFC are confounded by post-perceptual processes related to cognitive functions. Here, I review recent findings suggesting that neuronal representations of consciously perceived contents-in the absence of post-perceptual processes-can indeed be observed in the PFC. Slower ongoing fluctuations in the electrophysiological state of the PFC seem to control the stability and updates of these prefrontal representations of conscious awareness. In addition to conscious perception, the PFC has been shown to play a critical role in controlling the levels of consciousness as observed during anesthesia, while prefrontal lesions can result in severe loss of perceptual awareness. Together, the convergence of these processes in the PFC suggests its integrative role in consciousness and highlights the complex nature of consciousness itself.
Collapse
|
13
|
Noda T, Takahashi H. Stochastic resonance in sparse neuronal network: functional role of ongoing activity to detect weak sensory input in awake auditory cortex of rat. Cereb Cortex 2024; 34:bhad428. [PMID: 37955660 PMCID: PMC10793590 DOI: 10.1093/cercor/bhad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
The awake cortex is characterized by a higher level of ongoing spontaneous activity, but it has a better detectability of weak sensory inputs than the anesthetized cortex. However, the computational mechanism underlying this paradoxical nature of awake neuronal activity remains to be elucidated. Here, we propose a hypothetical stochastic resonance, which improves the signal-to-noise ratio (SNR) of weak sensory inputs through nonlinear relations between ongoing spontaneous activities and sensory-evoked activities. Prestimulus and tone-evoked activities were investigated via in vivo extracellular recording with a dense microelectrode array covering the entire auditory cortex in rats in both awake and anesthetized states. We found that tone-evoked activities increased supralinearly with the prestimulus activity level in the awake state and that the SNR of weak stimulus representation was optimized at an intermediate level of prestimulus ongoing activity. Furthermore, the temporally intermittent firing pattern, but not the trial-by-trial reliability or the fluctuation of local field potential, was identified as a relevant factor for SNR improvement. Since ongoing activity differs among neurons, hypothetical stochastic resonance or "sparse network stochastic resonance" might offer beneficial SNR improvement at the single-neuron level, which is compatible with the sparse representation in the sensory cortex.
Collapse
Affiliation(s)
- Takahiro Noda
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirokazu Takahashi
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Weilnhammer V, Stuke H, Standvoss K, Sterzer P. Sensory processing in humans and mice fluctuates between external and internal modes. PLoS Biol 2023; 21:e3002410. [PMID: 38064502 PMCID: PMC10732408 DOI: 10.1371/journal.pbio.3002410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/20/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
Perception is known to cycle through periods of enhanced and reduced sensitivity to external information. Here, we asked whether such slow fluctuations arise as a noise-related epiphenomenon of limited processing capacity or, alternatively, represent a structured mechanism of perceptual inference. Using 2 large-scale datasets, we found that humans and mice alternate between externally and internally oriented modes of sensory analysis. During external mode, perception aligns more closely with the external sensory information, whereas internal mode is characterized by enhanced biases toward perceptual history. Computational modeling indicated that dynamic changes in mode are enabled by 2 interlinked factors: (i) the integration of subsequent inputs over time and (ii) slow antiphase oscillations in the impact of external sensory information versus internal predictions that are provided by perceptual history. We propose that between-mode fluctuations generate unambiguous error signals that enable optimal inference in volatile environments.
Collapse
Affiliation(s)
- Veith Weilnhammer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Heiner Stuke
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Kai Standvoss
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Sterzer
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Rolon-Mérette D, Rolon-Mérette T, Chartier S. A multilayered bidirectional associative memory model for learning nonlinear tasks. Neural Netw 2023; 167:244-265. [PMID: 37660673 DOI: 10.1016/j.neunet.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/14/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
A multilayered bidirectional associative memory neural network is proposed to account for learning nonlinear types of association. The model (denoted as the MF-BAM) is composed of two modules, the Multi-Feature extracting bidirectional associative memory (MF), which contains various unsupervised network layers, and a modified Bidirectional Associative Memory (BAM), which consists of a single supervised network layer. The MF generates successive feature patterns from the original inputs. These patterns change the relationship between the inputs and targets in a way that the BAM can learn. The model was tested on different nonlinear tasks, such as the N-bit, Double Moon and its variants, and the 3-class spiral task. Behaviors were reported through learning errors, decision zones, and recall performances. Results showed that it was possible to learn all tasks consistently. By manipulating the number of units per layer and the number of unsupervised network layers in the MF, it was possible to change the level of nonlinearity observed in the decision boundaries. Furthermore, results indicated that different behaviors were achieved from the same set of inputs by using the different generated patterns. These findings are significant as they showed how a BAM-inspired model could solve nonlinear tasks in a more cognitively plausible fashion.
Collapse
|
16
|
Menétrey MQ, Herzog MH, Pascucci D. Pre-stimulus alpha activity modulates long-lasting unconscious feature integration. Neuroimage 2023; 278:120298. [PMID: 37517573 DOI: 10.1016/j.neuroimage.2023.120298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023] Open
Abstract
Pre-stimulus alpha (α) activity can influence perception of shortly presented, low-contrast stimuli. The underlying mechanisms are often thought to affect perception exactly at the time of presentation. In addition, it is suggested that α cycles determine temporal windows of integration. However, in everyday situations, stimuli are usually presented for periods longer than ∼100 ms and perception is often an integration of information across space and time. Moving objects are just one example. Hence, the question is whether α activity plays a role also in temporal integration, especially when stimuli are integrated over several α cycles. Using electroencephalography (EEG), we investigated the relationship between pre-stimulus brain activity and long-lasting integration in the sequential metacontrast paradigm (SQM), where two opposite vernier offsets, embedded in a stream of lines, are unconsciously integrated into a single percept. We show that increases in α power, even 300 ms before the stimulus, affected the probability of reporting the first offset, shown at the very beginning of the SQM. This effect was mediated by the systematic slowing of the α rhythm that followed the peak in α power. No phase effects were found. Together, our results demonstrate a cascade of neural changes, following spontaneous bursts of α activity and extending beyond a single moment, which influences the sensory representation of visual features for hundreds of milliseconds. Crucially, as feature integration in the SQM occurs before a conscious percept is elicited, this also provides evidence that α activity is linked to mechanisms regulating unconscious processing.
Collapse
Affiliation(s)
- Maëlan Q Menétrey
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Pascucci
- Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Naik S, Adibpour P, Dubois J, Dehaene-Lambertz G, Battaglia D. Event-related variability is modulated by task and development. Neuroimage 2023; 276:120208. [PMID: 37268095 DOI: 10.1016/j.neuroimage.2023.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials (ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions the representability of such mean events. We explored here whether this variability is an unwanted noise, or an informative part of the neural response. We took advantage of the rapid changes in the visual system during human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories of individual trials always remain very far from ERP components, only moderately bending their direction with a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of acceleration and deceleration when approaching ERP components, as if they were under the active influence of steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of response variability, both between and within trials, had a rich sequential organization, which in infants, was modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in human infants.
Collapse
Affiliation(s)
- Shruti Naik
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France
| | - Parvaneh Adibpour
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France
| | - Jessica Dubois
- Cognitive Neuroimaging Unit U992, NeuroSpin Center, F-91190 Gif/Yvette, France; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | | - Demian Battaglia
- Institute for System Neuroscience U1106, Aix-Marseille Université, F-13005 Marseille, France; University of Strasbourg Institute for Advanced Studies (USIAS), F-67000 Strasbourg, France.
| |
Collapse
|
18
|
Jacob M, Ford J, Deacon T. Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI. Front Hum Neurosci 2023; 17:976036. [PMID: 37113322 PMCID: PMC10126302 DOI: 10.3389/fnhum.2023.976036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a living organ with distinct metabolic constraints. However, these constraints are typically considered as secondary or supportive of information processing which is primarily performed by neurons. The default operational definition of neural information processing is that (1) it is ultimately encoded as a change in individual neuronal firing rate as this correlates with the presentation of a peripheral stimulus, motor action or cognitive task. Two additional assumptions are associated with this default interpretation: (2) that the incessant background firing activity against which changes in activity are measured plays no role in assigning significance to the extrinsically evoked change in neural firing, and (3) that the metabolic energy that sustains this background activity and which correlates with differences in neuronal firing rate is merely a response to an evoked change in neuronal activity. These assumptions underlie the design, implementation, and interpretation of neuroimaging studies, particularly fMRI, which relies on changes in blood oxygen as an indirect measure of neural activity. In this article we reconsider all three of these assumptions in light of recent evidence. We suggest that by combining EEG with fMRI, new experimental work can reconcile emerging controversies in neurovascular coupling and the significance of ongoing, background activity during resting-state paradigms. A new conceptual framework for neuroimaging paradigms is developed to investigate how ongoing neural activity is "entangled" with metabolism. That is, in addition to being recruited to support locally evoked neuronal activity (the traditional hemodynamic response), changes in metabolic support may be independently "invoked" by non-local brain regions, yielding flexible neurovascular coupling dynamics that inform the cognitive context. This framework demonstrates how multimodal neuroimaging is necessary to probe the neurometabolic foundations of cognition, with implications for the study of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael Jacob
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Judith Ford
- Mental Health Service, San Francisco VA Healthcare System, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Terrence Deacon
- Department of Anthropology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
19
|
Dwarakanath A, Kapoor V, Werner J, Safavi S, Fedorov LA, Logothetis NK, Panagiotaropoulos TI. Bistability of prefrontal states gates access to consciousness. Neuron 2023; 111:1666-1683.e4. [PMID: 36921603 DOI: 10.1016/j.neuron.2023.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023]
Abstract
Access of sensory information to consciousness has been linked to the ignition of content-specific representations in association cortices. How does ignition interact with intrinsic cortical state fluctuations to give rise to conscious perception? We addressed this question in the prefrontal cortex (PFC) by combining multi-electrode recordings with a binocular rivalry (BR) paradigm inducing spontaneously driven changes in the content of consciousness, inferred from the reflexive optokinetic nystagmus (OKN) pattern. We find that fluctuations between low-frequency (LF, 1-9 Hz) and beta (∼20-40 Hz) local field potentials (LFPs) reflect competition between spontaneous updates and stability of conscious contents, respectively. Both LF and beta events were locally modulated. The phase of the former locked differentially to the competing populations just before a spontaneous transition while the latter synchronized the neuronal ensemble coding the consciously perceived content. These results suggest that prefrontal state fluctuations gate conscious perception by mediating internal states that facilitate perceptual update and stability.
Collapse
Affiliation(s)
- Abhilash Dwarakanath
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| | - Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Joachim Werner
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; International Max Planck Research School, Tübingen 72076, Germany
| | - Leonid A Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, UK; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| | - Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Energie Atomique et aux énergies alternatives, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Conscious interpretation: A distinct aspect for the neural markers of the contents of consciousness. Conscious Cogn 2023; 108:103471. [PMID: 36736210 DOI: 10.1016/j.concog.2023.103471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Progress in the science of consciousness depends on the experimental paradigms and varieties of contrastive analysis available to researchers. Here we highlight paradigms where the object is represented in consciousness as a set of its features but the interpretation of this set alternates in consciousness. We group experimental paradigms with this property under the label "conscious interpretation". We compare the paradigms studying conscious interpretation of the already consciously perceived objects with other types of experimental paradigms. We review previous and recent studies investigating this interpretative aspect of consciousness and propose future directions. We put forward the hypothesis that there are types of stimuli with a hierarchy of interpretations for which the rule applies: conscious experience is drawn towards higher-level interpretation and reverting back to the lower level of interpretation is impossible. We discuss how theories of consciousness might incorporate knowledge and constraints arising from the characteristics of conscious interpretation.
Collapse
|
21
|
Liu M, Liang Y, Song C, Knöpfel T, Zhou C. Cortex-wide spontaneous activity non-linearly steers propagating sensory-evoked activity in awake mice. Cell Rep 2022; 41:111740. [PMID: 36476858 DOI: 10.1016/j.celrep.2022.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/27/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
The brain responds highly variably to identical sensory inputs, but there is no consensus on the nature of this variability. We explore this question using cortex-wide optical voltage imaging and whisker stimulation in awake mice. Clustering analysis reveals that the sensory-evoked activity propagates over the cortex via distinct pathways associated with distinct behavioral states. The pathway taken by each trial is independent of the level of primary sensory-evoked activation but is partially predictable by the spatiotemporal features of the preceding cortical spontaneous activity patterns. The sensory inputs reduce trial-to-trial variability in brain activity and alter temporal autocorrelation in spatial activity pattern evolutions, suggesting non-linear interactions between evoked activities and spontaneous activities. Further, evoked activities and spontaneous activities occupy different positions in the state space, suggesting that sensory inputs can intricately interact with the internal state to generate large-scale evoked activity patterns not frequented by spontaneous brain states.
Collapse
Affiliation(s)
- Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yuqi Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Imperial College London, London, UK.
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Virtual University Park Building, South Area Hi-tech Industrial Park, Shenzhen, China.
| |
Collapse
|
22
|
Stephani T, Nierula B, Villringer A, Eippert F, Nikulin VV. Cortical response variability is driven by local excitability changes with somatotopic organization. Neuroimage 2022; 264:119687. [PMID: 36257491 DOI: 10.1016/j.neuroimage.2022.119687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Identical sensory stimuli can lead to different neural responses depending on the instantaneous brain state. Specifically, neural excitability in sensory areas may shape the brain´s response already from earliest cortical processing onwards. However, whether these dynamics affect a given sensory domain as a whole or occur on a spatially local level is largely unknown. We studied this in the somatosensory domain of 38 human participants with EEG, presenting stimuli to the median and tibial nerves alternatingly, and testing the co-variation of initial cortical responses in hand and foot areas, as well as their relation to pre-stimulus oscillatory states. We found that amplitude fluctuations of initial cortical responses to hand and foot stimulation - the N20 and P40 components of the somatosensory evoked potential (SEP), respectively - were not related, indicating local excitability changes in primary sensory regions. In addition, effects of pre-stimulus alpha (8-13 Hz) and beta (18-23 Hz) band amplitude on hand-related responses showed a robust somatotopic organization, thus further strengthening the notion of local excitability fluctuations. However, for foot-related responses, the spatial specificity of pre-stimulus effects was less consistent across frequency bands, with beta appearing to be more foot-specific than alpha. Connectivity analyses in source space suggested this to be due to a somatosensory alpha rhythm that is primarily driven by activity in hand regions while beta frequencies may operate in a more hand-region-independent manner. Altogether, our findings suggest spatially distinct excitability dynamics within the primary somatosensory cortex, yet with the caveat that frequency-specific processes in one sub-region may not readily generalize to other sub-regions.
Collapse
Affiliation(s)
- T Stephani
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School NeuroCom, Leipzig, Germany.
| | - B Nierula
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - F Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Neurophysics Group, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany.
| |
Collapse
|
23
|
Spontaneous activity patterns in human motor cortex replay evoked activity patterns for hand movements. Sci Rep 2022; 12:16867. [PMID: 36207360 PMCID: PMC9546868 DOI: 10.1038/s41598-022-20866-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Spontaneous brain activity, measured with resting state fMRI (R-fMRI), is correlated among regions that are co-activated by behavioral tasks. It is unclear, however, whether spatial patterns of spontaneous activity within a cortical region correspond to spatial patterns of activity evoked by specific stimuli, actions, or mental states. The current study investigated the hypothesis that spontaneous activity in motor cortex represents motor patterns commonly occurring in daily life. To test this hypothesis 15 healthy participants were scanned while performing four different hand movements. Three movements (Grip, Extend, Pinch) were ecological involving grip and grasp hand movements; one control movement involving the rotation of the wrist was not ecological and infrequent (Shake). They were also scanned at rest before and after the execution of the motor tasks (resting-state scans). Using the task data, we identified movement-specific patterns in the primary motor cortex. These task-defined patterns were compared to resting-state patterns in the same motor region. We also performed a control analysis within the primary visual cortex. We found that spontaneous activity patterns in the primary motor cortex were more like task patterns for ecological than control movements. In contrast, there was no difference between ecological and control hand movements in the primary visual area. These findings provide evidence that spontaneous activity in human motor cortex forms fine-scale, patterned representations associated with behaviors that frequently occur in daily life.
Collapse
|
24
|
Palmucci M, Tagliazucchi E. Divergences Between Resting State Networks and Meta-Analytic Maps Of Task-Evoked Brain Activity. Open Neuroimag J 2022. [DOI: 10.2174/18744400-v15-e2206270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Spontaneous human neural activity is organized into resting state networks, complex patterns of synchronized activity that account for the major part of brain metabolism. The correspondence between these patterns and those elicited by the performance of cognitive tasks would suggest that spontaneous brain activity originates from the stream of ongoing cognitive processing.
Objective:
To investigate a large number of meta-analytic activation maps obtained from Neurosynth (www.neurosynth.org), establishing the extent of task-rest similarity in large-scale human brain activity.
Methods:
We applied a hierarchical module detection algorithm to the Neurosynth activation map similarity network, and then compared the average activation maps for each module with a set of resting state networks by means of spatial correlations.
Results:
We found that the correspondence between resting state networks and task-evoked activity tended to hold only for the largest spatial scales. We also established that this correspondence could be biased by the inclusion of maps related to neuroanatomical terms in the database (e.g. “parietal”, “occipital”, “cingulate”, etc.).
Conclusion:
Our results establish divergences between brain activity patterns related to spontaneous cognition and the spatial configuration of RSN, suggesting that anatomically-constrained homeostatic processes could play an important role in the inception and shaping of human resting state activity fluctuations.
Collapse
|
25
|
Wilding M, Körner C, Ischebeck A, Zaretskaya N. Increased insula activity precedes the formation of subjective illusory Gestalt. Neuroimage 2022; 257:119289. [PMID: 35537599 DOI: 10.1016/j.neuroimage.2022.119289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
The constructive nature of human perception sometimes leads us to perceiving rather complex impressions from simple sensory input: for example, recognizing animal contours in cloud formations or seeing living creatures in shadows of objects. A special type of bistable stimuli gives us a rare opportunity to study the neural mechanisms behind this process. Such stimuli can be visually interpreted either as simple or as more complex illusory content on the basis of the same sensory input. Previous studies demonstrated increased activity in the superior parietal cortex during the perception of an illusory Gestalt impression compared to a simpler interpretation. Here, we examined the role of slow fluctuations of resting-state fMRI activity in shaping the subsequent illusory interpretation by investigating activity related to the illusory Gestalt not only during, but also prior to its perception. We presented 31 participants with a bistable motion stimulus, which can be perceived either as four moving dot pairs (local) or two moving illusory squares (global). fMRI was used to measure brain activity in a slow event-related design. We observed stronger IPS and putamen responses to the stimulus when participants perceived the global interpretation compared to the local, confirming the findings of previous studies. Most importantly, we also observed that the global stimulus interpretation was preceded by an increased activity of the bilateral dorsal insula, which is known to process saliency and gate information for conscious access. Our data suggest an important role of the dorsal insula in shaping complex illusory interpretations of the sensory input.
Collapse
Affiliation(s)
- Marilena Wilding
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria.
| | - Christof Körner
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| | - Natalia Zaretskaya
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria.
| |
Collapse
|
26
|
Northoff G, Vatansever D, Scalabrini A, Stamatakis EA. Ongoing Brain Activity and Its Role in Cognition: Dual versus Baseline Models. Neuroscientist 2022:10738584221081752. [PMID: 35611670 DOI: 10.1177/10738584221081752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
What is the role of the brain's ongoing activity for cognition? The predominant perspectives associate ongoing brain activity with resting state, the default-mode network (DMN), and internally oriented mentation. This triad is often contrasted with task states, non-DMN brain networks, and externally oriented mentation, together comprising a "dual model" of brain and cognition. In opposition to this duality, however, we propose that ongoing brain activity serves as a neuronal baseline; this builds upon Raichle's original search for the default mode of brain function that extended beyond the canonical default-mode brain regions. That entails what we refer to as the "baseline model." Akin to an internal biological clock for the rest of the organism, the ongoing brain activity may serve as an internal point of reference or standard by providing a shared neural code for the brain's rest as well as task states, including their associated cognition. Such shared neural code is manifest in the spatiotemporal organization of the brain's ongoing activity, including its global signal topography and dynamics like intrinsic neural timescales. We conclude that recent empirical evidence supports a baseline model over the dual model; the ongoing activity provides a global shared neural code that allows integrating the brain's rest and task states, its DMN and non-DMN, and internally and externally oriented cognition.
Collapse
|
27
|
Dehaghani NS, Maess B, Khosrowabadi R, Lashgari R, Braeutigam S, Zarei M. Pre-stimulus Alpha Activity Modulates Face and Object Processing in the Intra-Parietal Sulcus, a MEG Study. Front Hum Neurosci 2022; 16:831781. [PMID: 35585993 PMCID: PMC9108229 DOI: 10.3389/fnhum.2022.831781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Face perception is crucial in all social animals. Recent studies have shown that pre-stimulus oscillations of brain activity modulate the perceptual performance of face vs. non-face stimuli, specifically under challenging conditions. However, it is unclear if this effect also occurs during simple tasks, and if so in which brain regions. Here we used magnetoencephalography (MEG) and a 1-back task in which participants decided if the two sequentially presented stimuli were the same or not in each trial. The aim of the study was to explore the effect of pre-stimulus alpha oscillation on the perception of face (human and monkey) and non-face stimuli. Our results showed that pre-stimulus activity in the left occipital face area (OFA) modulated responses in the intra-parietal sulcus (IPS) at around 170 ms after the presentation of human face stimuli. This effect was also found after participants were shown images of motorcycles. In this case, the IPS was modulated by pre-stimulus activity in the right OFA and the right fusiform face area (FFA). We conclude that pre-stimulus modulation of post-stimulus response also occurs during simple tasks and is therefore independent of behavioral responses.
Collapse
Affiliation(s)
- Narjes Soltani Dehaghani
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
- Department of Neurology, Odense University Hospital, and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- *Correspondence: Mojtaba Zarei
| |
Collapse
|
28
|
Rassi E, Wutz A, Peatfield N, Wiesz N. Efficient Prestimulus Network Integration of Fusiform Face Area Biases Face Perception during Binocular Rivalry. J Cogn Neurosci 2022; 34:1001-1014. [PMID: 35258573 DOI: 10.1162/jocn_a_01843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ongoing fluctuations in neural excitability and connectivity influence whether or not a stimulus is seen. Do they also influence which stimulus is seen? We recorded magnetoencephalography data while 21 human participants viewed face or house stimuli, either one at a time or under bistable conditions induced through binocular rivalry. Multivariate pattern analysis revealed common neural substrates for rivalrous versus nonrivalrous stimuli with an additional delay of ∼36 msec for the bistable stimulus, and poststimulus signals were source-localized to the fusiform face area. Before stimulus onset followed by a face versus house report, fusiform face area showed stronger connectivity to primary visual cortex and to the rest of the cortex in the alpha frequency range (8-13 Hz), but there were no differences in local oscillatory alpha power. The prestimulus connectivity metrics predicted the accuracy of poststimulus decoding and the delay associated with rivalry disambiguation suggesting that perceptual content is shaped by ongoing neural network states.
Collapse
Affiliation(s)
- Elie Rassi
- University of Salzburg.,Radboud University, Nijmegen, The Netherlands
| | - Andreas Wutz
- University of Salzburg.,Massachusetts Institute of Technology
| | | | - Nathan Wiesz
- University of Salzburg.,University of Trento, Rovereto, Italy.,Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
29
|
Multivariate prediction of pain perception based on pre-stimulus activity. Sci Rep 2022; 12:3199. [PMID: 35217694 PMCID: PMC8881597 DOI: 10.1038/s41598-022-07208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
The perception of pain is modulated by different processes such as, for example, expectations and attention regarding the upcoming stimulus. Such processes are initiated prior to the actual stimulus and are reflected in ongoing brain activity. Different processes that are by definition also complex in itself are reflected in pre-stimulus activity and therefore the detection of this activity pattern should benefit from a multivariate approach. To identify specific pre-stimulus EEG activity patterns related to subsequent pain perception in humans, we contrasted painful with non-painful sensations delivered at the individual threshold level during EEG measurements. The results of the multivariate EEG analysis revealed a high level of accuracy (group mean 68%) in predicting the pain categorization solely based on pre-stimulus activity. In particular, fronto-central regions and activity in the higher gamma band (60:120 Hz) were of maximal importance for classification. Additional analyses supported the specific role of the pattern of high gamma band activity prior to the stimulus for predicting the behavioral outcome and demonstrated that the informational value embedded in the pre-stimulus activity is nearly as informative as the post-stimulus processing and reflects a specific preparatory state. Further, a close relation between pre- and post-stimulus processing in the high gamma band was observed. These findings support the important role of a multivariate cognitive state prior to stimulus appearance for the emergence of the subjective perception of pain and the functional role of widespread high gamma band activity.
Collapse
|
30
|
From Shorter to Longer Timescales: Converging Integrated Information Theory (IIT) with the Temporo-Spatial Theory of Consciousness (TTC). ENTROPY 2022; 24:e24020270. [PMID: 35205564 PMCID: PMC8871397 DOI: 10.3390/e24020270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Time is a key element of consciousness as it includes multiple timescales from shorter to longer ones. This is reflected in our experience of various short-term phenomenal contents at discrete points in time as part of an ongoing, more continuous, and long-term ‘stream of consciousness.’ Can Integrated Information Theory (IIT) account for this multitude of timescales of consciousness? According to the theory, the relevant spatiotemporal scale for consciousness is the one in which the system reaches the maximum cause-effect power; IIT currently predicts that experience occurs on the order of short timescales, namely, between 100 and 300 ms (theta and alpha frequency range). This can well account for the integration of single inputs into a particular phenomenal content. However, such short timescales leave open the temporal relation of specific phenomenal contents to others during the course of the ongoing time, that is, the stream of consciousness. For that purpose, we converge the IIT with the Temporo-spatial Theory of Consciousness (TTC), which, assuming a multitude of different timescales, can take into view the temporal integration of specific phenomenal contents with other phenomenal contents over time. On the neuronal side, this is detailed by considering those neuronal mechanisms driving the non-additive interaction of pre-stimulus activity with the input resulting in stimulus-related activity. Due to their non-additive interaction, the single input is not only integrated with others in the short-term timescales of 100–300 ms (alpha and theta frequencies) (as predicted by IIT) but, at the same time, also virtually expanded in its temporal (and spatial) features; this is related to the longer timescales (delta and slower frequencies) that are carried over from pre-stimulus to stimulus-related activity. Such a non-additive pre-stimulus-input interaction amounts to temporo-spatial expansion as a key mechanism of TTC for the constitution of phenomenal contents including their embedding or nesting within the ongoing temporal dynamic, i.e., the stream of consciousness. In conclusion, we propose converging the short-term integration of inputs postulated in IIT (100–300 ms as in the alpha and theta frequency range) with the longer timescales (in delta and slower frequencies) of temporo-spatial expansion in TTC.
Collapse
|
31
|
Northoff G, Zilio F. Temporo-spatial Theory of Consciousness (TTC) - Bridging the gap of neuronal activity and phenomenal states. Behav Brain Res 2022; 424:113788. [PMID: 35149122 DOI: 10.1016/j.bbr.2022.113788] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/22/2023]
Abstract
Consciousness and its neural mechanisms remain a mystery. Current neuroscientific theories focus predominantly on the external input/stimulus and the associated stimulus-related activity during conscious contents. Despite all progress, we encounter two gaps: (i) a gap between spontaneous and stimulus-related activity; (ii) a gap between neuronal and phenomenal features. A novel, different, and unique approach, Temporo-spatial theory of consciousness (TTC) aims to bridge both gaps. The TTC focuses on the brain's spontaneous activity and how its spatial topography and temporal dynamic shape stimulus-related activity and resurface in the corresponding spatial and temporal features of consciousness, i.e., 'common currency'. The TTC introduces four temporo-spatial mechanisms: expansion, globalization, alignment, and nestedness. These are associated with distinct dimensions of consciousness including phenomenal content, access, form/structure, and level/state, respectively. Following up on the first introduction of the TTC in 2017, we review updates, further develop these temporo-spatial mechanisms, and postulate specific neurophenomenal hypotheses. We conclude that the TTC offers a viable approach for (i) linking spontaneous and stimulus-related activity in conscious states; (ii) determining specific neuronal and neurophenomenal mechanisms for the distinct dimensions of consciousness; (iii) an integrative and unifying framework of different neuroscientific theories of consciousness; and (iv) offers novel empirically grounded conceptual assumptions about the biological and ontological nature of consciousness and its relation to the brain.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy.
| |
Collapse
|
32
|
Hartig R, Karimi A, Evrard HC. Interconnected sub-networks of the macaque monkey gustatory connectome. Front Neurosci 2022; 16:818800. [PMID: 36874640 PMCID: PMC9978403 DOI: 10.3389/fnins.2022.818800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/24/2022] [Indexed: 02/18/2023] Open
Abstract
Macroscopic taste processing connectivity was investigated using functional magnetic resonance imaging during the presentation of sour, salty, and sweet tastants in anesthetized macaque monkeys. This examination of taste processing affords the opportunity to study the interactions between sensory regions, central integrators, and effector areas. Here, 58 brain regions associated with gustatory processing in primates were aggregated, collectively forming the gustatory connectome. Regional regression coefficients (or β-series) obtained during taste stimulation were correlated to infer functional connectivity. This connectivity was then evaluated by assessing its laterality, modularity and centrality. Our results indicate significant correlations between same region pairs across hemispheres in a bilaterally interconnected scheme for taste processing throughout the gustatory connectome. Using unbiased community detection, three bilateral sub-networks were detected within the graph of the connectome. This analysis revealed clustering of 16 medial cortical structures, 24 lateral structures, and 18 subcortical structures. Across the three sub-networks, a similar pattern was observed in the differential processing of taste qualities. In all cases, the amplitude of the response was greatest for sweet, but the network connectivity was strongest for sour and salty tastants. The importance of each region in taste processing was computed using node centrality measures within the connectome graph, showing centrality to be correlated across hemispheres and, to a smaller extent, region volume. Connectome hubs exhibited varying degrees of centrality with a prominent leftward increase in insular cortex centrality. Taken together, these criteria illustrate quantifiable characteristics of the macaque monkey gustatory connectome and its organization as a tri-modular network, which may reflect the general medial-lateral-subcortical organization of salience and interoception processing networks.
Collapse
Affiliation(s)
- Renée Hartig
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Ali Karimi
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Henry C Evrard
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karl University of Tübingen, Tübingen, Germany.,Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Martin CG, He BJ, Chang C. State-related neural influences on fMRI connectivity estimation. Neuroimage 2021; 244:118590. [PMID: 34560268 PMCID: PMC8815005 DOI: 10.1016/j.neuroimage.2021.118590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
The spatiotemporal structure of functional magnetic resonance imaging (fMRI) signals has provided a valuable window into the network underpinnings of human brain function and dysfunction. Although some cross-regional temporal correlation patterns (functional connectivity; FC) exhibit a high degree of stability across individuals and species, there is growing acknowledgment that measures of FC can exhibit marked changes over a range of temporal scales. Further, FC can covary with experimental task demands and ongoing neural processes linked to arousal, consciousness and perception, cognitive and affective state, and brain-body interactions. The increased recognition that such interrelated neural processes modulate FC measurements has raised both challenges and new opportunities in using FC to investigate brain function. Here, we review recent advances in the quantification of neural effects that shape fMRI FC and discuss the broad implications of these findings in the design and analysis of fMRI studies. We also discuss how a more complete understanding of the neural factors that shape FC measurements can resolve apparent inconsistencies in the literature and lead to more interpretable conclusions from fMRI studies.
Collapse
Affiliation(s)
- Caroline G Martin
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience & Physiology, and Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
34
|
Finn ES. Is it time to put rest to rest? Trends Cogn Sci 2021; 25:1021-1032. [PMID: 34625348 PMCID: PMC8585722 DOI: 10.1016/j.tics.2021.09.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
The so-called resting state, in which participants lie quietly with no particular inputs or outputs, represented a paradigm shift from conventional task-based studies in human neuroimaging. Our foray into rest was fruitful from both a scientific and methodological perspective, but at this point, how much more can we learn from rest on its own? While rest still dominates in many subfields, data from tasks have empirically demonstrated benefits, as well as the potential to provide insights about the mind in addition to the brain. I argue that we can accelerate progress in human neuroscience by de-emphasizing rest in favor of more grounded experiments, including promising integrated designs that respect the prominence of self-generated activity while offering enhanced control and interpretability.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
35
|
Hardstone R, Zhu M, Flinker A, Melloni L, Devore S, Friedman D, Dugan P, Doyle WK, Devinsky O, He BJ. Long-term priors influence visual perception through recruitment of long-range feedback. Nat Commun 2021; 12:6288. [PMID: 34725348 PMCID: PMC8560909 DOI: 10.1038/s41467-021-26544-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
Perception results from the interplay of sensory input and prior knowledge. Despite behavioral evidence that long-term priors powerfully shape perception, the neural mechanisms underlying these interactions remain poorly understood. We obtained direct cortical recordings in neurosurgical patients as they viewed ambiguous images that elicit constant perceptual switching. We observe top-down influences from the temporal to occipital cortex, during the preferred percept that is congruent with the long-term prior. By contrast, stronger feedforward drive is observed during the non-preferred percept, consistent with a prediction error signal. A computational model based on hierarchical predictive coding and attractor networks reproduces all key experimental findings. These results suggest a pattern of large-scale information flow change underlying long-term priors' influence on perception and provide constraints on theories about long-term priors' influence on perception.
Collapse
Affiliation(s)
- Richard Hardstone
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Michael Zhu
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Adeen Flinker
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lucia Melloni
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Sasha Devore
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Daniel Friedman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Patricia Dugan
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Werner K Doyle
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Orrin Devinsky
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
36
|
Schwartz R, Rozier C, Seidel Malkinson T, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L, Axelrod V. Comparing stimulus-evoked and spontaneous response of the face-selective multi-units in the human posterior fusiform gyrus. Neurosci Conscious 2021; 2021:niab033. [PMID: 34667640 PMCID: PMC8520048 DOI: 10.1093/nc/niab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
The stimulus-evoked neural response is a widely explored phenomenon. Conscious awareness is associated in many cases with the corresponding selective stimulus-evoked response. For example, conscious awareness of a face stimulus is associated with or accompanied by stimulus-evoked activity in the fusiform face area (FFA). In addition to the stimulus-evoked response, spontaneous (i.e. task-unrelated) activity in the brain is also abundant. Notably, spontaneous activity is considered unconscious. For example, spontaneous activity in the FFA is not associated with conscious awareness of a face. The question is: what is the difference at the neural level between stimulus-evoked activity in a case that this activity is associated with conscious awareness of some content (e.g. activity in the FFA in response to fully visible face stimuli) and spontaneous activity in that same region of the brain? To answer this question, in the present study, we had a rare opportunity to record two face-selective multi-units in the vicinity of the FFA in a human patient. We compared multi-unit face-selective task-evoked activity with spontaneous prestimulus and a resting-state activity. We found that when activity was examined over relatively long temporal windows (e.g. 100–200 ms), face-selective stimulus-evoked firing in the recorded multi-units was much higher than the spontaneous activity. In contrast, when activity was examined over relatively short windows, we found many cases of high firing rates within the spontaneous activity that were comparable to stimulus-evoked activity. Our results thus indicate that the sustained activity is what might differentiate between stimulus-evoked activity that is associated with conscious awareness and spontaneous activity.
Collapse
Affiliation(s)
- Rina Schwartz
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| | - Camille Rozier
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Tal Seidel Malkinson
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Katia Lehongre
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Claude Adam
- Neurology Department, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit, 47-83 boulevard de l'Hôpital, Paris 75013, France
| | - Virginie Lambrecq
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Vincent Navarro
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Lionel Naccache
- Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 7225, Université Pierre-et-Marie-Curie Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière ICM, Paris 75013, France
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
37
|
Konno D, Nishimoto S, Suzuki T, Ikegaya Y, Matsumoto N. Multiple states in ongoing neural activity in the rat visual cortex. PLoS One 2021; 16:e0256791. [PMID: 34437630 PMCID: PMC8389421 DOI: 10.1371/journal.pone.0256791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.
Collapse
Affiliation(s)
- Daichi Konno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Nishimoto
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Moheimanian L, Paraskevopoulou SE, Adamek M, Schalk G, Brunner P. Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing. Neuroimage 2021; 243:118498. [PMID: 34428572 DOI: 10.1016/j.neuroimage.2021.118498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/15/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022] Open
Abstract
Despite significant interest in the neural underpinnings of behavioral variability, little light has been shed on the cortical mechanism underlying the failure to respond to perceptual-level stimuli. We hypothesized that cortical activity resulting from perceptual-level stimuli is sensitive to the moment-to-moment fluctuations in cortical excitability, and thus may not suffice to produce a behavioral response. We tested this hypothesis using electrocorticographic recordings to follow the propagation of cortical activity in six human subjects that responded to perceptual-level auditory stimuli. Here we show that for presentations that did not result in a behavioral response, the likelihood of cortical activity decreased from auditory cortex to motor cortex, and was related to reduced local cortical excitability. Cortical excitability was quantified using instantaneous voltage during a short window prior to cortical activity onset. Therefore, when humans are presented with an auditory stimulus close to perceptual-level threshold, moment-by-moment fluctuations in cortical excitability determine whether cortical responses to sensory stimulation successfully connect auditory input to a resultant behavioral response.
Collapse
Affiliation(s)
- Ladan Moheimanian
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | | | - Markus Adamek
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Department of Neurology, Albany Medical College, Albany, NY, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Goodale SE, Ahmed N, Zhao C, de Zwart JA, Özbay PS, Picchioni D, Duyn J, Englot DJ, Morgan VL, Chang C. fMRI-based detection of alertness predicts behavioral response variability. eLife 2021; 10:62376. [PMID: 33960930 PMCID: PMC8104962 DOI: 10.7554/elife.62376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
Levels of alertness are closely linked with human behavior and cognition. However, while functional magnetic resonance imaging (fMRI) allows for investigating whole-brain dynamics during behavior and task engagement, concurrent measures of alertness (such as EEG or pupillometry) are often unavailable. Here, we extract a continuous, time-resolved marker of alertness from fMRI data alone. We demonstrate that this fMRI alertness marker, calculated in a short pre-stimulus interval, captures trial-to-trial behavioral responses to incoming sensory stimuli. In addition, we find that the prediction of both EEG and behavioral responses during the task may be accomplished using only a small fraction of fMRI voxels. Furthermore, we observe that accounting for alertness appears to increase the statistical detection of task-activated brain areas. These findings have broad implications for augmenting a large body of existing datasets with information about ongoing arousal states, enriching fMRI studies of neural variability in health and disease.
Collapse
Affiliation(s)
- Sarah E Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, United States.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, United States
| | - Nafis Ahmed
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, United States
| | - Chong Zhao
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, United States
| | - Jacco A de Zwart
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Pinar S Özbay
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Dante Picchioni
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Jeff Duyn
- Advanced MRI Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, United States.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, United States.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, United States.,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, United States.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, United States.,Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, United States.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, United States
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, United States.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, United States.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, United States
| |
Collapse
|
40
|
Taesler P, Rose M. The modulation of neural insular activity by a brain computer interface differentially affects pain discrimination. Sci Rep 2021; 11:9795. [PMID: 33963226 PMCID: PMC8105353 DOI: 10.1038/s41598-021-89206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/11/2021] [Indexed: 11/20/2022] Open
Abstract
The experience of pain is generated by activations throughout a complex pain network with the insular cortex as a central processing area. The state of ongoing oscillatory activity can influence subsequent processing throughout this network. In particular the ongoing theta-band power can be relevant for later pain processing, however a direct functional relation to post-stimulus processing or behaviour is missing. Here, we used a non-invasive brain-computer interface to either increase or decrease ongoing theta-band power originating in the insular cortex. Our results show a differential modulation of oscillatory power and even more important a transfer to independently measured pain processing and sensation. Pain evoked neural power and subjective pain discrimination were differentially affected by the induced modulations of the oscillatory state. The results demonstrate a functional relevance of insular based theta-band oscillatory states for the processing and subjective discrimination of nociceptive stimuli and offer the perspective for clinical applications.
Collapse
Affiliation(s)
- Philipp Taesler
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, W34, 20251, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, W34, 20251, Hamburg, Germany.
| |
Collapse
|
41
|
Ujiie Y, Takahashi K. Weaker McGurk Effect for Rubin's Vase-Type Speech in People With High Autistic Traits. Multisens Res 2021; 34:1-17. [PMID: 33873157 DOI: 10.1163/22134808-bja10047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
While visual information from facial speech modulates auditory speech perception, it is less influential on audiovisual speech perception among autistic individuals than among typically developed individuals. In this study, we investigated the relationship between autistic traits (Autism-Spectrum Quotient; AQ) and the influence of visual speech on the recognition of Rubin's vase-type speech stimuli with degraded facial speech information. Participants were 31 university students (13 males and 18 females; mean age: 19.2, SD: 1.13 years) who reported normal (or corrected-to-normal) hearing and vision. All participants completed three speech recognition tasks (visual, auditory, and audiovisual stimuli) and the AQ-Japanese version. The results showed that accuracies of speech recognition for visual (i.e., lip-reading) and auditory stimuli were not significantly related to participants' AQ. In contrast, audiovisual speech perception was less susceptible to facial speech perception among individuals with high rather than low autistic traits. The weaker influence of visual information on audiovisual speech perception in autism spectrum disorder (ASD) was robust regardless of the clarity of the visual information, suggesting a difficulty in the process of audiovisual integration rather than in the visual processing of facial speech.
Collapse
Affiliation(s)
- Yuta Ujiie
- Graduate School of Psychology, Chukyo University, 101-2 Yagoto Honmachi, Showa-ku, Nagoya-shi, Aichi, 466-8666, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
- Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kohske Takahashi
- School of Psychology, Chukyo University, 101-2 Yagoto Honmachi, Showa-ku, Nagoya-shi, Aichi, 466-8666, Japan
| |
Collapse
|
42
|
Jancke D, Herlitze S, Kringelbach ML, Deco G. Bridging the gap between single receptor type activity and whole-brain dynamics. FEBS J 2021; 289:2067-2084. [PMID: 33797854 DOI: 10.1111/febs.15855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023]
Abstract
What is the effect of activating a single modulatory neuronal receptor type on entire brain network dynamics? Can such effect be isolated at all? These are important questions because characterizing elementary neuronal processes that influence network activity across the given anatomical backbone is fundamental to guide theories of brain function. Here, we introduce the concept of the cortical 'receptome' taking into account the distribution and densities of expression of different modulatory receptor types across the brain's anatomical connectivity matrix. By modelling whole-brain dynamics in silico, we suggest a bidirectional coupling between modulatory neurotransmission and neuronal connectivity hardware exemplified by the impact of single serotonergic (5-HT) receptor types on cortical dynamics. As experimental support of this concept, we show how optogenetic tools enable specific activation of a single 5-HT receptor type across the cortex as well as in vivo measurement of its distinct effects on cortical processing. Altogether, we demonstrate how the structural neuronal connectivity backbone and its modulation by a single neurotransmitter system allow access to a rich repertoire of different brain states that are fundamental for flexible behaviour. We further propose that irregular receptor expression patterns-genetically predisposed or acquired during a lifetime-may predispose for neuropsychiatric disorders like addiction, depression and anxiety along with distinct changes in brain state. Our long-term vision is that such diseases could be treated through rationally targeted therapeutic interventions of high specificity to eventually recover natural transitions of brain states.
Collapse
Affiliation(s)
- Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, Germany.,International Graduate School of Neuroscience (IGSN), Ruhr University Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr University, Bochum, Germany
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,Centre for Eudaimonia and Human Flourishing, University of Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
43
|
Mochol G, Kiani R, Moreno-Bote R. Prefrontal cortex represents heuristics that shape choice bias and its integration into future behavior. Curr Biol 2021; 31:1234-1244.e6. [PMID: 33639107 PMCID: PMC8095400 DOI: 10.1016/j.cub.2021.01.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Goal-directed behavior requires integrating sensory information with prior knowledge about the environment. Behavioral biases that arise from these priors could increase positive outcomes when the priors match the true structure of the environment, but mismatches also happen frequently and could cause unfavorable outcomes. Biases that reduce gains and fail to vanish with training indicate fundamental suboptimalities arising from ingrained heuristics of the brain. Here, we report systematic, gain-reducing choice biases in highly trained monkeys performing a motion direction discrimination task where only the current stimulus is behaviorally relevant. The monkey's bias fluctuated at two distinct time scales: slow, spanning tens to hundreds of trials, and fast, arising from choices and outcomes of the most recent trials. Our findings enabled single trial prediction of biases, which influenced the choice especially on trials with weak stimuli. The pre-stimulus activity of neuronal ensembles in the monkey prearcuate gyrus represented these biases as an offset along the decision axis in the state space. This offset persisted throughout the stimulus viewing period, when sensory information was integrated, leading to a biased choice. The pre-stimulus representation of history-dependent bias was functionally indistinguishable from the neural representation of upcoming choice before stimulus onset, validating our model of single-trial biases and suggesting that pre-stimulus representation of choice could be fully defined by biases inferred from behavioral history. Our results indicate that the prearcuate gyrus reflects intrinsic heuristics that compute bias signals, as well as the mechanisms that integrate them into the oculomotor decision-making process.
Collapse
Affiliation(s)
- Gabriela Mochol
- Center for Brain and Cognition and Department of Information and Communications Technologies, Pompeu Fabra University, Barcelona, Spain.
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA; Department of Psychology, New York University, New York, NY 10003, USA
| | - Rubén Moreno-Bote
- Center for Brain and Cognition and Department of Information and Communications Technologies, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
44
|
|
45
|
Abdallah D, Brooks JL. Response dependence of reversal-related ERP components in perception of ambiguous figures. Psychophysiology 2020; 57:e13685. [PMID: 32940372 DOI: 10.1111/psyp.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
Perceptual multi-stability is characterized by alternating interpretations of an unchanging stimulus input. The reversal negativity (RN) and reversal positivity (RP) ERP components show differences in electrophysiological responses between trials on which participants experience a perceptual reversal of a multi-stable stimulus versus trials without a reversal (i.e., stable). However, it is unclear to what extent these two ERP components reflect reversal-related perceptual processing rather than task and response processes. To address this, we varied task and response requirements while measuring the RN and RP. In the standard reversal task, participants indicated whether they saw a perceptual reversal on each trial. In contrast, in the identity task participants reported perceived identity of the stimulus (e.g., face or vase) without any reference to reversals. In some blocks, reversal trials required a response whereas in other blocks stable trials required a response. We found that the RN appeared independently of task and response style. However, the early latency RP component was only present when participants responded manually. For non-response trials, a component was found during the same latency as the RP but with inverted polarity. Our results suggest that the early RP component is dependent on response-related processes rather than being a pure neural signature of perceptual processes related to endogenous perceptual reversals.
Collapse
Affiliation(s)
- Diane Abdallah
- School of Psychology, University of Kent, Canterbury, UK
| | | |
Collapse
|
46
|
Goldenberg JE, Lentzou S, Ackert-Smith L, Knowlton H, Dash MB. Interindividual differences in memory system local field potential activity predict behavioral strategy on a dual-solution T-maze. Hippocampus 2020; 30:1313-1326. [PMID: 32894595 DOI: 10.1002/hipo.23258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Individuals can use diverse behavioral strategies to navigate their environment including hippocampal-dependent place strategies reliant upon cognitive maps and striatal-dependent response strategies reliant upon egocentric body turns. The existence of multiple memory systems appears to facilitate successful navigation across a wide range of environmental and physiological conditions. The mechanisms by which these systems interact to ultimately generate a unitary behavioral response, however, remain unclear. We trained 20 male, Sprague-Dawley rats on a dual-solution T-maze while simultaneously recording local field potentials that were targeted to the dorsolateral striatum and dorsal hippocampus. Eight rats spontaneously exhibited a place strategy while the remaining 12 rats exhibited a response strategy. Interindividual differences in behavioral strategy were associated with distinct patterns of LFP activity between the dorsolateral striatum and dorsal hippocampus. Specifically, striatal-hippocampal theta activity was in-phase in response rats and out-of-phase in place rats and response rats exhibited elevated striatal-hippocampal coherence across a wide range of frequency bands. These contrasting striatal-hippocampal activity regimes were (a) present during both maze-learning and a 30 min premaze habituation period and (b) could be used to train support vector machines to reliably predict behavioral strategy. Distinct patterns of neuronal activity across multiple memory systems, therefore, appear to bias behavioral strategy selection and thereby contribute to interindividual differences in behavior.
Collapse
Affiliation(s)
| | - Stergiani Lentzou
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lyn Ackert-Smith
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Harrison Knowlton
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Michael B Dash
- Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA.,Department of Psychology, Middlebury College, Middlebury, Vermont, USA
| |
Collapse
|
47
|
Alderson TH, Bokde ALW, Kelso JAS, Maguire L, Coyle D. Metastable neural dynamics underlies cognitive performance across multiple behavioural paradigms. Hum Brain Mapp 2020; 41:3212-3234. [PMID: 32301561 PMCID: PMC7375112 DOI: 10.1002/hbm.25009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/20/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Despite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies towards integration and segregation by operating in a metastable regime of their coordination dynamics. Metastability may confer important behavioural qualities by binding distributed local areas into large-scale neurocognitive networks. We tested this hypothesis by analysing fMRI data in a large cohort of healthy individuals (N = 566) and comparing the metastability of the brain's large-scale resting network architecture at rest and during the performance of several tasks. Metastability was estimated using a well-defined collective variable capturing the level of 'phase-locking' between large-scale networks over time. Task-based reasoning was principally characterised by high metastability in cognitive control networks and low metastability in sensory processing areas. Although metastability between resting state networks increased during task performance, cognitive ability was more closely linked to spontaneous activity. High metastability in the intrinsic connectivity of cognitive control networks was linked to novel problem solving or fluid intelligence, but was less important in tasks relying on previous experience or crystallised intelligence. Crucially, subjects with resting architectures similar or 'pre-configured' to a task-general arrangement demonstrated superior cognitive performance. Taken together, our findings support a key linkage between the spontaneous metastability of large-scale networks in the cerebral cortex and cognition.
Collapse
Affiliation(s)
- Thomas H. Alderson
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUnited States
| | - Arun L. W. Bokde
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - J. A. Scott Kelso
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
- Center for Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonFloridaUnited States
| | - Liam Maguire
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
| | - Damien Coyle
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
| |
Collapse
|
48
|
Li Y, Ward MJ, Richardson RM, G'Sell M, Ghuman AS. Endogenous activity modulates stimulus and circuit-specific neural tuning and predicts perceptual behavior. Nat Commun 2020; 11:4014. [PMID: 32782303 PMCID: PMC7419548 DOI: 10.1038/s41467-020-17729-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
Perception reflects not only sensory inputs, but also the endogenous state when these inputs enter the brain. Prior studies show that endogenous neural states influence stimulus processing through non-specific, global mechanisms, such as spontaneous fluctuations of arousal. It is unclear if endogenous activity influences circuit and stimulus-specific processing and behavior as well. Here we use intracranial recordings from 30 pre-surgical epilepsy patients to show that patterns of endogenous activity are related to the strength of trial-by-trial neural tuning in different visual category-selective neural circuits. The same aspects of the endogenous activity that relate to tuning in a particular neural circuit also correlate to behavioral reaction times only for stimuli from the category that circuit is selective for. These results suggest that endogenous activity can modulate neural tuning and influence behavior in a circuit- and stimulus-specific manner, reflecting a potential mechanism by which endogenous neural states facilitate and bias perception.
Collapse
Affiliation(s)
- Yuanning Li
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.
- Program in Neural Computation and Machine Learning, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| | - Michael J Ward
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Max G'Sell
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Avniel Singh Ghuman
- Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Program in Neural Computation and Machine Learning, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Northoff G, Lamme V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci Biobehav Rev 2020; 118:568-587. [PMID: 32783969 DOI: 10.1016/j.neubiorev.2020.07.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Various theories for the neural basis of consciousness have been proposed, suggesting a diversity of neural signs and mechanisms. We ask to what extent this diversity is real, or whether many theories share the same basic ideas with a potential for convergence towards a more unified theory of the neural basis of consciousness. For that purpose, we review and compare the various neural signs, measures, and mechanisms proposed in the different theories. We demonstrate that different theories focus on neural signs and measures of distinct aspects of neural activity including stimulus-related, prestimulus, and resting state activity as well as on distinct features of consciousness. Therefore, the various mechanisms proposed in the different theories may, in part, complement each other. Together, we provide insight into the shared basis and convergences (and, in part, discrepancies) of the different theories of consciousness. We conclude that the different theories concern distinct aspects of both neural activity and consciousness which, as we suppose, may be integrated and nested within the brain's overall temporo-spatial dynamics.
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Centre for Research Ethics & Bioethics, University of Uppsala, Uppsala, Sweden.
| | - Victor Lamme
- Amsterdam Brain and Cognition (ABC), Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
50
|
Glim S, Ries A, Sorg C, Wohlschläger AM. The temporal evolution of pre-stimulus slow cortical potentials is associated with an upcoming stimulus' access to visual consciousness. Conscious Cogn 2020; 84:102993. [PMID: 32771954 DOI: 10.1016/j.concog.2020.102993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023]
Abstract
Slow cortical potentials (SCPs) have been proposed to be essential for the formation of conscious experience. To examine their temporal characteristics, we recorded electroencephalography during a visual backward-masking task, which required participants to localize the missing part of a target stimulus. A subsequent confidence rating was used as a proxy for the target's access to consciousness. Event-related potentials (ERPs) of all correct trials were determined relative to a brief period immediately before the target and then compared among consciousness levels. In an interval ranging from 2 s prior to target presentation up to this period, a negative relationship between slowly fluctuating ERP values and the level of consciousness became evident. After target presentation, high conscious awareness was characterized by an enhanced visual awareness negativity, an increased P3 component, and associated positive SCPs. Together, these findings add new evidence to the proposed role of SCPs in the emergence of visual consciousness.
Collapse
Affiliation(s)
- Sarah Glim
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Anja Ries
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Department of Psychiatry, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Afra M Wohlschläger
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|