1
|
Zhang X, Zhang D, Zhong C, Li W, Dinesh-Kumar SP, Zhang Y. Orchestrating ROS regulation: coordinated post-translational modification switches in NADPH oxidases. THE NEW PHYTOLOGIST 2025; 245:510-522. [PMID: 39468860 DOI: 10.1111/nph.20231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Koumantou D, Adiko AC, Bourdely P, Nugue M, Boedec E, El‐Benna J, Monteiro R, Saveanu C, Laffargue M, Wymann MP, Dalod M, Guermonprez P, Saveanu L. Specific Requirement of the p84/p110γ Complex of PI3Kγ for Antibody-Activated, Inducible Cross-Presentation in Murine Type 2 DCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401179. [PMID: 39382167 PMCID: PMC11600261 DOI: 10.1002/advs.202401179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Cross-presentation by MHCI is optimally efficient in type 1 dendritic cells (DC) due to their high capacity for antigen processing. However, through specific pathways, other DCs, such as type 2 DCs and inflammatory DCs (iDCs) can also cross-present antigens. FcγR-mediated uptake by type 2 DC and iDC subsets mediates antibody-dependent cross-presentation and activation of CD8+ T cell responses. Here, an important role for the p84 regulatory subunit of PI3Kγ in mediating efficient cross-presentation of exogenous antigens in otherwise inefficient cross-presenting cells, such as type 2 DCs and GM-CSF-derived iDCs is identified. FcγR-mediated cross-presentation is shown in type 2 and iDCs depend on the enzymatic activity of the p84/p110γ complex of PI3Kγ, which controls the activity of the NADPH oxidase NOX2 and ROS production in murine spleen type 2 DCs and GM-CSF-derived iDCs. In contrast, p84/p110γ is largely dispensable for cross-presentation by type 1 DCs. These findings suggest that PI3Kγ-targeted therapies, currently considered for oncological practice, may interfere with the ability of type 2 DCs and iDCs to cross-present antigens contained in immune complexes.
Collapse
Affiliation(s)
- Despoina Koumantou
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Aimé Cézaire Adiko
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Pierre Bourdely
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- CNRSINSERMInstitut CochinParis75014France
| | - Mathilde Nugue
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Erwan Boedec
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Jamel El‐Benna
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Renato Monteiro
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Cosmin Saveanu
- Institut PasteurRNA Biology of Fungal PathogensUniversité Paris CitéParis75015France
| | | | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 28BaselCH‐4058Switzerland
| | - Marc Dalod
- CNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsAix‐Marseille UniversityMarseille13007France
| | - Pierre Guermonprez
- “Dendritic cells and adaptive immunity”Immunology departmentPasteur InstituteParis75015France
- CNRS UMR3738, Département Biologie du Développement et Cellules SouchesInstitut Pasteur, Université Paris Cité25‐28 rue du Docteur RouxParis75015France
| | - Loredana Saveanu
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| |
Collapse
|
3
|
Aimeur S, Fas BA, Serfaty X, Santuz H, Sacquin-Mora S, Bizouarn T, Taly A, Baciou L. Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge. J Biol Chem 2024:107943. [PMID: 39481598 DOI: 10.1016/j.jbc.2024.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.
Collapse
Affiliation(s)
- Sana Aimeur
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Burcu Aykac Fas
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Xavier Serfaty
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Hubert Santuz
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, UPR 9080, Université Paris-Cité, 75005, Paris, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
4
|
Jiang H, Nechipurenko DY, Panteleev MA, Xu K, Qiao J. Redox regulation of platelet function and thrombosis. J Thromb Haemost 2024; 22:1550-1557. [PMID: 38460839 DOI: 10.1016/j.jtha.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Platelets are well-known players in several cardiovascular diseases such as atherosclerosis and venous thrombosis. There is increasing evidence demonstrating that reactive oxygen species (ROS) are generated within activated platelets. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major source of ROS generation in platelets. Ligand binding to platelet receptor glycoprotein (GP) VI stimulates intracellular ROS generation consisting of a spleen tyrosine kinase-independent production involving NOX activation and a following spleen tyrosine kinase-dependent generation. In addition to GPVI, stimulation of platelet thrombin receptors (protease-activated receptors [PARs]) can also trigger NOX-derived ROS production. Our recent study found that mitochondria-derived ROS production can be induced by engagement of thrombin receptors but not by GPVI, indicating that mitochondria are another source of PAR-dependent ROS generation apart from NOX. However, mitochondria are not involved in GPVI-dependent ROS generation. Once generated, the intracellular ROS are also involved in modulating platelet function and thrombus formation; therefore, the site-specific targeting of ROS production or clearance of excess ROS within platelets is a potential intervention and treatment option for thrombotic events. In this review, we will summarize the signaling pathways involving regulation of platelet ROS production and their role in platelet function and thrombosis, with a focus on GPVI- and PAR-dependent platelet responses.
Collapse
Affiliation(s)
- Huimin Jiang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Dmitry Yu Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
5
|
Develin A, Fuglestad B. Inositol Hexaphosphate as an Inhibitor and Potential Regulator of p47 phox Membrane Anchoring. Biochemistry 2024; 63:1097-1106. [PMID: 38669178 PMCID: PMC11080064 DOI: 10.1021/acs.biochem.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.
Collapse
Affiliation(s)
- Angela
M. Develin
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
| | - Brian Fuglestad
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 22384, United States
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
6
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
7
|
Al Abyad D, Serfaty X, Lefrançois P, Arbault S, Baciou L, Dupré-Crochet S, Kouzayha A, Bizouarn T. Role of the phospholipid binding sites, PX of p47 phox and PB region of Rac1, in the formation of the phagocyte NADPH oxidase complex NOX2. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184180. [PMID: 37245861 DOI: 10.1016/j.bbamem.2023.184180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In phagocytes, superoxide anion (O2-), the precursor of reactive oxygen species, is produced by the NADPH oxidase complex to kill pathogens. Phagocyte NADPH oxidase consists of the transmembrane cytochrome b558 (cyt b558) and four cytosolic components: p40phox, p47phox, p67phox, and Rac1/2. The phagocyte activation by stimuli leads to activation of signal transduction pathways. This is followed by the translocation of cytosolic components to the membrane and their association with cyt b558 to form the active enzyme. To investigate the roles of membrane-interacting domains of the cytosolic proteins in the NADPH oxidase complex assembly and activity, we used giant unilamellar phospholipid vesicles (GUV). We also used the neutrophil-like cell line PLB-985 to investigate these roles under physiological conditions. We confirmed that the isolated proteins must be activated to bind to the membrane. We showed that their membrane binding was strengthened by the presence of the other cytosolic partners, with a key role for p47phox. We also used a fused chimera consisting of p47phox(aa 1-286), p67phox(aa 1-212) and Rac1Q61L, as well as mutated versions in the p47phox PX domain and the Rac polybasic region (PB). We showed that these two domains have a crucial role in the trimera membrane-binding and in the trimera assembly to cyt b558. They also have an impact on O2.- production in vitro and in cellulo: the PX domain strongly binding to GUV made of a mix of polar lipids; and the PB region strongly binding to the plasma membrane of neutrophils and resting PLB-985 cells.
Collapse
Affiliation(s)
- Dina Al Abyad
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France; Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Xavier Serfaty
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Pauline Lefrançois
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France
| | - Stephane Arbault
- Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33402 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Laura Baciou
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Sophie Dupré-Crochet
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France
| | - Achraf Kouzayha
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, Tripoli 1300, Lebanon
| | - Tania Bizouarn
- Université Paris Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405 Orsay Cedex, France.
| |
Collapse
|
8
|
NADPH Oxidases in Aortic Aneurysms. Antioxidants (Basel) 2022; 11:antiox11091830. [PMID: 36139902 PMCID: PMC9495752 DOI: 10.3390/antiox11091830] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a progressive dilation of the infrarenal aorta and are characterized by inflammatory cell infiltration, smooth muscle cell migration and proliferation, and degradation of the extracellular matrix. Oxidative stress and the production of reactive oxygen species (ROS) have been shown to play roles in inflammatory cell infiltration, and smooth muscle cell migration and apoptosis in AAAs. In this review, we discuss the principles of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase/NOX) signaling and activation. We also discuss the effects of some of the major mediators of NOX signaling in AAAs. Separately, we also discuss the influence of genetic or pharmacologic inhibitors of NADPH oxidases on experimental pre-clinical AAAs. Experimental evidence suggests that NADPH oxidases may be a promising future therapeutic target for developing pharmacologic treatment strategies for halting AAA progression or rupture prevention in the management of clinical AAAs.
Collapse
|
9
|
Impact of Zinc on Oxidative Signaling Pathways in the Development of Pulmonary Vasoconstriction Induced by Hypobaric Hypoxia. Int J Mol Sci 2022; 23:ijms23136974. [PMID: 35805984 PMCID: PMC9266543 DOI: 10.3390/ijms23136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Hypobaric hypoxia is a condition that occurs at high altitudes (>2500 m) where the partial pressure of gases, particularly oxygen (PO2), decreases. This condition triggers several physiological and molecular responses. One of the principal responses is pulmonary vascular contraction, which seeks to optimize gas exchange under this condition, known as hypoxic pulmonary vasoconstriction (HPV); however, when this physiological response is exacerbated, it contributes to the development of high-altitude pulmonary hypertension (HAPH). Increased levels of zinc (Zn2+) and oxidative stress (known as the “ROS hypothesis”) have been demonstrated in the vasoconstriction process. Therefore, the aim of this review is to determine the relationship between molecular pathways associated with altered Zn2+ levels and oxidative stress in HPV in hypobaric hypoxic conditions. The results indicate an increased level of Zn2+, which is related to increasing mitochondrial ROS (mtROS), alterations in nitric oxide (NO), metallothionein (MT), zinc-regulated, iron-regulated transporter-like protein (ZIP), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-induced protein kinase C epsilon (PKCε) activation in the development of HPV. In conclusion, there is an association between elevated Zn2+ levels and oxidative stress in HPV under different models of hypoxia, which contribute to understanding the molecular mechanism involved in HPV to prevent the development of HAPH.
Collapse
|
10
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Ellson CD, Goretti Riça I, Kim JS, Huang YMM, Lim D, Mitra T, Hsu A, Wei EX, Barrett CD, Wahl M, Delbrück H, Heinemann U, Oschkinat H, Chang CEA, Yaffe MB. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434:167533. [DOI: 10.1016/j.jmb.2022.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
12
|
Wakatsuki S, Takahashi Y, Shibata M, Araki T. Selective phosphorylation of serine 345 on p47-phox serves as a priming signal of ROS-mediated axonal degeneration. Exp Neurol 2022; 352:114024. [PMID: 35218706 DOI: 10.1016/j.expneurol.2022.114024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/15/2022]
Abstract
Oxidative stress is a well-known inducer of two major neurodegenerative pathways, neuronal cell death and neurite degeneration. We previously reported that reactive oxygen species (ROS) generated by NADPH oxidases induces EGFR-dependent phosphorylation and activation of ZNRF1 ubiquitin ligase in neurons, which promotes neuronal cell death and neurite degeneration. While these findings provide a potential therapeutic avenue for neurodegeneration, a deeper understanding of the molecular mechanisms of this pathway have emerged as key points of interest. Here, we show that a NADPH oxidase subunit p47-phox/neutrophil cytosolic factor 1 regulates ZNRF1 activity. Using an in vitro neurite degeneration model, we demonstrate that transection-induced phosphorylation of p47-phox at the 345th serine residue by p38 MAPK serves as an initiating signal to activate ZNRF1. The phosphorylated p47 (pS345) or a phospho-mimetic mutant p47-phox binds directly to ZNRF1 whereas a phosphorylation-resistant mutant p47-phox cannot bind to ZNRF1 and its overexpression in neurites significantly suppresses ZNRF1 activation, AKT ubiquitination, and degeneration after transection, suggesting that pS345 might enhance the EGFR-mediated phosphorylation-dependent activation of ZNRF1. These results suggest that pS345 might represent an important checkpoint to initiate the ZNRF1-mediated neurite degeneration. Our findings provide novel insights into the mechanism of ROS-mediated neurodegeneration.
Collapse
Affiliation(s)
- Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| | - Yoko Takahashi
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Megumi Shibata
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
13
|
Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021; 13:736734. [PMID: 34803655 PMCID: PMC8602359 DOI: 10.3389/fnagi.2021.736734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by neuronal loss and tissue atrophy mainly in the striatum and cortex. In the early stages of the disease, impairment of neuronal function, synaptic dysfunction and white matter loss precedes neuronal death itself. Relative to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease and Amyotrophic Lateral Sclerosis, where the effects of either microglia or NADPH oxidases (NOXs) are recognized as important contributors to disease pathogenesis and progression, there is a pronounced lack of information in HD. This information void contrasts with evidence from human HD patients where blood monocytes and microglia are activated well before HD clinical symptoms (PET scans), and the clear signs of oxidative stress and inflammation in post mortem HD brain. Habitually, NOX activity and oxidative stress in the central nervous system (CNS) are equated with microglia, but research of the last two decades has carved out important roles for NOX enzyme function in neurons. Here, we will convey recent information about the function of NOX enzymes in neurons, and contemplate on putative roles of neuronal NOX in HD. We will focus on NOX-produced reactive oxygen species (ROS) as redox signaling molecules in/among neurons, and the specific roles of NOXs in important processes such as neurogenesis and lineage specification, neurite outgrowth and growth cone dynamics, and synaptic plasticity where NMDAR-dependent signaling, and long-term depression/potentiation are redox-regulated phenomena. HD animal models and induced pluripotent stem cell (iPSC) studies have made it clear that the very same physiological processes are also affected in HD, and we will speculate on possible roles for NOX in the pathogenesis and development of disease. Finally, we also take into account the limited information on microglia in HD and relate this to any contribution of NOX enzymes.
Collapse
Affiliation(s)
- Luisana Villegas
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Goulielmos GN, Zervou MI, Eliopoulos E. Comment on: homozygous variant p. Arg90His in NCF1 is associated with early-onset interferonopathy: a case report. Pediatr Rheumatol Online J 2021; 19:125. [PMID: 34399789 PMCID: PMC8365899 DOI: 10.1186/s12969-021-00612-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/06/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- George N. Goulielmos
- grid.8127.c0000 0004 0576 3437Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece ,grid.412481.aDepartment of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Maria I. Zervou
- grid.8127.c0000 0004 0576 3437Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Eliopoulos
- grid.10985.350000 0001 0794 1186Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
15
|
Merő B, Koprivanacz K, Cserkaszky A, Radnai L, Vas V, Kudlik G, Gógl G, Sok P, Póti ÁL, Szeder B, Nyitray L, Reményi A, Geiszt M, Buday L. Characterization of the Intramolecular Interactions and Regulatory Mechanisms of the Scaffold Protein Tks4. Int J Mol Sci 2021; 22:ijms22158103. [PMID: 34360869 PMCID: PMC8348221 DOI: 10.3390/ijms22158103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called “tandem SH3”) and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.
Collapse
Affiliation(s)
- Balázs Merő
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Anna Cserkaszky
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Radnai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Péter Sok
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Ádám L. Póti
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Attila Reményi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary;
| | - László Buday
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
16
|
Kervin TA, Wiseman BC, Overduin M. Phosphoinositide Recognition Sites Are Blocked by Metabolite Attachment. Front Cell Dev Biol 2021; 9:690461. [PMID: 34368138 PMCID: PMC8340361 DOI: 10.3389/fcell.2021.690461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane readers take part in trafficking and signaling processes by localizing proteins to organelle surfaces and transducing molecular information. They accomplish this by engaging phosphoinositides (PIs), a class of lipid molecules which are found in different proportions in various cellular membranes. The prototypes are the PX domains, which exhibit a range of specificities for PIs. Our meta-analysis indicates that recognition of membranes by PX domains is specifically controlled by modification of lysine and arginine residues including acetylation, hydroxyisobutyrylation, glycation, malonylation, methylation and succinylation of sidechains that normally bind headgroups of phospholipids including organelle-specific PI signals. Such metabolite-modulated residues in lipid binding elements are named MET-stops here to highlight their roles as erasers of membrane reader functions. These modifications are concentrated in the membrane binding sites of half of all 49 PX domains in the human proteome and correlate with phosphoregulatory sites, as mapped using the Membrane Optimal Docking Area (MODA) algorithm. As these motifs are mutated and modified in various cancers and the responsible enzymes serve as potential drug targets, the discovery of MET-stops as a widespread inhibitory mechanism may aid in the development of diagnostics and therapeutics aimed at the readers, writers and erasers of the PI code.
Collapse
Affiliation(s)
- Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brittany C Wiseman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Molecular and Cellular Biology, MacEwan University, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| |
Collapse
|
17
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
18
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic Res 2020; 54:695-721. [PMID: 33059489 DOI: 10.1080/10715762.2020.1836368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells. NOX2 is a widely-expressed and well-studied NOX family member, which is activated upon assembly of its membrane subunits gp91 phox and p22 phox with its cytosolic subunits p40 phox , p47 phox , p67 phox , and Rac, facilitating ROS production. NOX2 activation is also enhanced by GTP and inhibited by GDP. However, there remains a lack of a mechanistic, quantitative, and integrated understanding of the kinetics and regulation of the assembly of these subunits and their relative contributions toward NOX2 activation and ROS production. Toward this end, we have developed a mechanistic computational model, which incorporates a generalized random rapid equilibrium binding mechanism for NOX2 assembly and activation as well as regulations by GTP (activation), GDP (inhibition), and individual subunits enhancing the binding of other subunits (mutual binding enhancement). The resulting model replicates diverse published kinetic data, including subunit concentration-dependent NOX2 activation and ROS production, under different assay conditions, with appropriate estimates of the unknown model parameters. The model provides a mechanistic, quantitative, and integrated framework for investigating the critical roles of NOX2 subunits in NOX2 assembly and activation facilitating ROS production in a variety of physiological and pathophysiological conditions. However, there is also a need for better quantitative kinetic data based on current understanding of NOX2 assembly and activation in order to test and further develop this model.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WIS, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| |
Collapse
|
19
|
Song Z, Hudik E, Le Bars R, Roux B, Dang PMC, El Benna J, Nüsse O, Dupré-Crochet S. Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils. Biochem Pharmacol 2020; 178:114088. [PMID: 32531347 DOI: 10.1016/j.bcp.2020.114088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67phox, p47phox, and p40phox) and Rac with the membrane subunits (gp91phox and p22phox). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by β2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3Kβ, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67phox and p47phox from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47phox at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47phox from the plasma membrane may involve its PX domains that bind PI3K products.
Collapse
Affiliation(s)
- Zhimin Song
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Elodie Hudik
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Romain Le Bars
- Light microscopy core facility, Imagerie-Gif, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Blandine Roux
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Pham My-Chan Dang
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Jamel El Benna
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France.
| |
Collapse
|
20
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
21
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
23
|
Kwon YC, Chun S, Kim K, Mak A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019; 8:cells8101180. [PMID: 31575058 PMCID: PMC6829439 DOI: 10.3390/cells8101180] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of complex etiology that primarily affects women of childbearing age. The development of SLE is attributed to the breach of immunological tolerance and the interaction between SLE-susceptibility genes and various environmental factors, resulting in the production of pathogenic autoantibodies. Working in concert with the innate and adaptive arms of the immune system, lupus-related autoantibodies mediate immune-complex deposition in various tissues and organs, leading to acute and chronic inflammation and consequent end-organ damage. Over the past two decades or so, the impact of genetic susceptibility on the development of SLE has been well demonstrated in a number of large-scale genetic association studies which have uncovered a large fraction of genetic heritability of SLE by recognizing about a hundred SLE-susceptibility loci. Integration of genetic variant data with various omics data such as transcriptomic and epigenomic data potentially provides a unique opportunity to further understand the roles of SLE risk variants in regulating the molecular phenotypes by various disease-relevant cell types and in shaping the immune systems with high inter-individual variances in disease susceptibility. In this review, the catalogue of SLE susceptibility loci will be updated, and biological signatures implicated by the SLE-risk variants will be critically discussed. It is optimistically hoped that identification of SLE risk variants will enable the prognostic and therapeutic biomarker armamentarium of SLE to be strengthened, a major leap towards precision medicine in the management of the condition.
Collapse
Affiliation(s)
- Young-Chang Kwon
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222–1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Sehwan Chun
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: (K.K.); (A.M.); Tel.: +82-29610604 (K.K.); +65-82338216 (A.M.)
| | - Anselm Mak
- Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (K.K.); (A.M.); Tel.: +82-29610604 (K.K.); +65-82338216 (A.M.)
| |
Collapse
|
24
|
Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front Cardiovasc Med 2019; 6:89. [PMID: 31428618 PMCID: PMC6688526 DOI: 10.3389/fcvm.2019.00089] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this process is the development of subclinical non-atherosclerotic intimal lesions before the appearance of pathologic intimal thickening and advanced atherosclerotic plaques. Intimal thickening is associated with several risk factors, including oxidative stress due to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH) oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation, and migration. Lineage tracing studies using murine models of subclinical atherosclerosis have revealed the contributory role of medial smooth muscle cells (SMCs), resident vascular stem cells, circulating bone-marrow progenitors and endothelial cells that undergo endothelial-mesenchymal-transition (EndMT). This review will address the putative physiological and patho-physiological roles of ROS in controlling vascular cell fate and ROS contribution to vascular regeneration and disease progression.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Eileen M Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Ian L Megson
- Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Paul A Cahill
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
25
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
26
|
Sumimoto H, Minakami R, Miyano K. Soluble Regulatory Proteins for Activation of NOX Family NADPH Oxidases. Methods Mol Biol 2019; 1982:121-137. [PMID: 31172470 DOI: 10.1007/978-1-4939-9424-3_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.
Collapse
Affiliation(s)
- Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Reiko Minakami
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kei Miyano
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
27
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
28
|
Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PMC, El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest 2018; 48 Suppl 2:e12951. [PMID: 29757466 DOI: 10.1111/eci.12951] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Neutrophils are key cells of innate immunity and during inflammation. Upon activation, they produce large amounts of superoxide anion (O2 -. ) and ensuing reactive oxygen species (ROS) to kill phagocytized microbes. The enzyme responsible for O2 -. production is called the phagocyte NADPH oxidase. This is a multicomponent enzyme system that becomes active after assembly of four cytosolic proteins (p47phox , p67phox , p40phox and Rac2) with the transmembrane proteins (p22phox and gp91phox , which form the cytochrome b558 ). gp91phox represents the catalytic subunit of the NADPH oxidase and is also called NOX2. NADPH oxidase-derived ROS are essential for microbial killing and innate immunity; however, excessive ROS production induces tissue injury and prolonged inflammatory reactions that contribute to inflammatory diseases. Thus, NADPH oxidase activation must be tightly regulated in time and space to limit ROS production. NADPH oxidase activation is regulated by several processes such as phosphorylation of its components, exchange of GDP/GTP on Rac2 and binding of p47phox and p40phox to phospholipids. This review aims to provide new insights into the role of the phosphorylation of the NADPH oxidase components, that is gp91phox , p22phox , p47phox , p67phox and p40phox , in the activation of this enzyme.
Collapse
Affiliation(s)
- Sahra A Belambri
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Laboratoire de Biochimie Appliquée, Équipe de Recherche: Stress Oxydatif et Inflammation, Département de Biochimie, Faculté des Sciences De la Nature et de la Vie, Université Ferhat Abbes 1, Sétif, Algérie
| | - Loïc Rolas
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Houssam Raad
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| |
Collapse
|
29
|
Zhong J, Olsson LM, Urbonaviciute V, Yang M, Bäckdahl L, Holmdahl R. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med 2018. [PMID: 29526808 DOI: 10.1016/j.freeradbiomed.2018.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single nucleotide polymorphism in Ncf1 has been found with a major effect on chronic inflammatory autoimmune diseases in the rat with the surprising observation that a lower reactive oxygen response led to more severe diseases. This finding was subsequently reproduced in the mouse and the effect operates in many different murine diseases through different pathogenic pathways; like models for rheumatoid arthritis, encephalomyelitis, lupus, gout, psoriasis and psoriatic arthritis. The human gene is located in an unstable region with many variable sequence repetitions, which means it has not been included in any genome wide associated screens so far. However, identification of copy number variations and single nucleotide polymorphisms has now clearly shown that major autoimmune diseases are strongly associated with the Ncf1 locus. In systemic lupus erythematosus the associated Ncf1 polymorphism (leading to an amino acid substitution at position 90) is the strongest locus and is associated with a lower reactive oxidative burst response. In addition, more precise mapping analysis of polymorphism of other NOX2 genes reveals that these are also associated with autoimmunity. The identified genetic association shows the importance of redox control and that ROS regulate chronic inflammation instead of promoting it. The genetic identification of Ncf1 polymorphisms now opens for relevant studies of the regulatory mechanisms involved, effects that will have severe consequences in many different pathogenic pathways and understanding of the origin of autoimmune diseases.
Collapse
Affiliation(s)
- Jianghong Zhong
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Lina M Olsson
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Vilma Urbonaviciute
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Min Yang
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Liselotte Bäckdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Rikard Holmdahl
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
30
|
Thomas DC. How the phagocyte NADPH oxidase regulates innate immunity. Free Radic Biol Med 2018; 125:44-52. [PMID: 29953922 DOI: 10.1016/j.freeradbiomed.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
The phagocyte NADPH oxidase is a multi subunit protein complex that generates reactive oxygen species at cell membranes and within phagosomes. It is essential for host defence as evidenced by the severe immunodeficiency syndrome caused by a loss of one of the subunits. This is known as chronic granulomatous disease (CGD). However, the phagocyte NADPH oxidase also has a key role to play in regulating immunity and it is notable that chronic granulomatous disease is also characterised by autoimmune and autoinflammatory manifestations. This is because reactive oxygen species play a role in regulating signalling through their ability to post-translationally modify amino acid residues such as cysteine and methionine. In this review, I will outline the major aspects of innate immunity that are regulated by the phagocyte NADPH oxidase, including control of transcription, autophagy, the inflammasome and type 1 interferon signalling.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge School of Clinical Medicine, Box 157 Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
31
|
Yang H, Zhu L, Chao Y, Gu Y, Kong X, Chen M, Ye P, Luo J, Chen S. Hyaluronidase2 (Hyal2) modulates low shear stress-induced glycocalyx impairment via the LKB1/AMPK/NADPH oxidase-dependent pathway. J Cell Physiol 2018; 233:9701-9715. [PMID: 30078213 DOI: 10.1002/jcp.26944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
The endothelium glycocalyx layer (ECL), presents on the apical surface of endothelial cells, creates a barrier between circulating blood and the vessel wall. Low shear stress (LSS) may accelerate the degradation of the glycocalyx via hyaluronidase2 (Hyal2) and then alter the cell polarity. Yet the liver kinase B1 (LKB1) signaling pathway plays an important role in regulating cell polarity. However, the relationship between LKB1 and glycocalyx during LSS is not clear. In the current study, we demonstrate that LSS attenuates LKB1 and AMP-activated protein kinase activation as well as activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p47phox ) and Hyal2 in the human umbilical vein endothelial cell (HUVEC). Pretreatment with 5-Aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR), or diphenyleneiodonium (DPI chloride) and transfection with LKB1 overexpression vector and p47phox small interfering RNA downregulated LSS-induced Hyal2 activation. By coimmunoprecipitation, we discovered the existence of p47phox /Hyal2 complex. LSS induced the dissociation of p47phox /Hyal2 complex, which was inhibited by LKB1 overexpression and AICAR. Furthermore, knockdown of Hyal2 performed a positive feedback on LKB1 activity. In addition, we also show that LSS enhanced LKB1 translocation from the cytosol to the nucleus. Taken together, these data indicate that Hyal2 regulates LSS-induced injury of the glycocalyx via LKB1/AMPK/NADPH oxidase signaling cascades.
Collapse
Affiliation(s)
- Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mingxing Chen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Beghin A, Comini M, Soresina A, Imberti L, Zucchi M, Plebani A, Montanelli A, Porta F, Lanfranchi A. Chronic Granulomatous Disease in children: a single center experience. Clin Immunol 2018; 188:12-19. [DOI: 10.1016/j.clim.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
|
33
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
34
|
Gonzalez-Gonzalez FJ, Chandel NS, Jain M, Budinger GRS. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl Res 2017; 190:61-68. [PMID: 29080401 PMCID: PMC5730357 DOI: 10.1016/j.trsl.2017.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis is a relatively rare but devastating disease characterized by the excessive deposition of extracellular matrix. The increased matrix results in reduced lung compliance and increased work of breathing, while the obliteration of alveolar-capillary structures can result in hypoxemia and pulmonary hypertension, which manifests clinically as worsening shortness of breath, respiratory failure, and death. Unbiased genome-wide association studies combined with animal models suggest that damage to the alveolar epithelium is the initiating factor in pulmonary fibrosis. This epithelial injury leads to the activation and proliferation of myofibroblasts that secrete extracellular matrix proteins characteristic of fibrosis. The best described molecular link between alveolar epithelial dysfunction and myofibroblast activation and proliferation is the profibrotic cytokine transforming growth factor-β (TGF-β). We and others have found that mitochondrial and NAD(P)H oxidase-generated reactive oxygen species (ROS) play a signaling role to enhance TGF-β signaling and promote fibrosis. The purpose of this article is to review how ROS signaling leads to the activation of TGF-β. We suggest that an improved understanding of these pathways might explain the failure of nonselective antioxidants to improve outcomes in patients with pulmonary fibrosis and might identify novel targets for therapy.
Collapse
Affiliation(s)
- Francisco J Gonzalez-Gonzalez
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
35
|
Valdespino-Castillo PM, Alcántara-Hernández RJ, Merino-Ibarra M, Alcocer J, Macek M, Moreno-Guillén OA, Falcón LI. Phylotype Dynamics of Bacterial P Utilization Genes in Microbialites and Bacterioplankton of a Monomictic Endorheic Lake. MICROBIAL ECOLOGY 2017; 73:296-309. [PMID: 27726035 DOI: 10.1007/s00248-016-0862-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Microbes can modulate ecosystem function since they harbor a vast genetic potential for biogeochemical cycling. The spatial and temporal dynamics of this genetic diversity should be acknowledged to establish a link between ecosystem function and community structure. In this study, we analyzed the genetic diversity of bacterial phosphorus utilization genes in two microbial assemblages, microbialites and bacterioplankton of Lake Alchichica, a semiclosed (i.e., endorheic) system with marked seasonality that varies in nutrient conditions, temperature, dissolved oxygen, and water column stability. We focused on dissolved organic phosphorus (DOP) utilization gene dynamics during contrasting mixing and stratification periods. Bacterial alkaline phosphatases (phoX and phoD) and alkaline beta-propeller phytases (bpp) were surveyed. DOP utilization genes showed different dynamics evidenced by a marked change within an intra-annual period and a differential circadian pattern of expression. Although Lake Alchichica is a semiclosed system, this dynamic turnover of phylotypes (from lake circulation to stratification) points to a different potential of DOP utilization by the microbial communities within periods. DOP utilization gene dynamics was different among genetic markers and among assemblages (microbialite vs. bacterioplankton). As estimated by the system's P mass balance, P inputs and outputs were similar in magnitude (difference was <10 %). A theoretical estimation of water column P monoesters was used to calculate the potential P fraction that can be remineralized on an annual basis. Overall, bacterial groups including Proteobacteria (Alpha and Gamma) and Bacteroidetes seem to be key participants in DOP utilization responses.
Collapse
Affiliation(s)
- Patricia M Valdespino-Castillo
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Secretaría de Ciencia, Tecnología e Innovación del Distrito Federal-Centro Latino-Americano de Física, Olivo 39, Col. Florida, 01030, Mexico City, Mexico
| | | | - Martín Merino-Ibarra
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Javier Alcocer
- Proyecto de Investigación en Limnología Tropical, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, 54090, Tlalnepantla, State of Mexico, Mexico
| | - Miroslav Macek
- Proyecto de Investigación en Limnología Tropical, FES Iztacala, UNAM, Av. de los Barrios No. 1, Los Reyes Iztacala, 54090, Tlalnepantla, State of Mexico, Mexico
- Biology Centre v. v. i., Institute of Hydrobiology, Academy of Sciences of the Czech Republic, 37001, České Budějovice, Czech Republic
| | - Octavio A Moreno-Guillén
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
36
|
Zhao J, Ma J, Deng Y, Kelly JA, Kim K, Bang SY, Lee HS, Li QZ, Wakeland EK, Qiu R, Liu M, Guo J, Li Z, Tan W, Rasmussen A, Lessard CJ, Sivils KL, Hahn BH, Grossman JM, Kamen DL, Gilkeson GS, Bae SC, Gaffney PM, Shen N, Tsao BP. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet 2017; 49:433-437. [PMID: 28135245 DOI: 10.1038/ng.3782] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a strong genetic component characterized by autoantibody production and a type I interferon signature. Here we report a missense variant (g.74779296G>A; p.Arg90His) in NCF1, encoding the p47phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by the Immunochip in the GTF2IRD1-GTF2I region at 7q11.23 with a complex genomic structure. We show that the p.Arg90His substitution, which is reported to cause reduced reactive oxygen species (ROS) production, predisposes to SLE (odds ratio (OR) = 3.47 in Asians (Pmeta = 3.1 × 10-104), OR = 2.61 in European Americans, OR = 2.02 in African Americans) and other autoimmune diseases, including primary Sjögren's syndrome (OR = 2.45 in Chinese, OR = 2.35 in European Americans) and rheumatoid arthritis (OR = 1.65 in Koreans). Additionally, decreased and increased copy numbers of NCF1 predispose to and protect against SLE, respectively. Our data highlight the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases.
Collapse
Affiliation(s)
- Jian Zhao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rong Qiu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Mengru Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Wenfeng Tan
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Astrid Rasmussen
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher J Lessard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bevra H Hahn
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Jennifer M Grossman
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Collaborative Innovation Center for Translational Medicine at Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
37
|
Rastogi R, Geng X, Li F, Ding Y. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. Front Cell Neurosci 2017; 10:301. [PMID: 28119569 PMCID: PMC5222855 DOI: 10.3389/fncel.2016.00301] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.
Collapse
Affiliation(s)
- Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of MedicineDetroit, MI, USA; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
38
|
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal 2016; 25:657-684. [PMID: 26906673 PMCID: PMC5069735 DOI: 10.1089/ars.2016.6664] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.
Collapse
Affiliation(s)
- Jay C Jha
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Claudine Banal
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Bryna S M Chow
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Mark E Cooper
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| | - Karin Jandeleit-Dahm
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
39
|
Ferreira LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med 2016; 98:18-28. [PMID: 27184955 PMCID: PMC4975970 DOI: 10.1016/j.freeradbiomed.2016.05.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/31/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| |
Collapse
|
40
|
Itoh T, Fujiwara A, Ninomiya M, Maeda T, Ando M, Tsukamasa Y, Koketsu M. Inhibitory Effects of Echinochrome A, Isolated from Shell of the Sea Urchin Anthocidaris crassispina, on Antigen-Stimulated Degranulation in Rat Basophilic Leukemia RBL-2H3 Cells through Suppression of Lyn Activation. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Echinochrome A (Echi-A) was isolated from the sea urchin Anthocidaris crassispina and its structure determined using 1D and 2D-NMR. In the present study, we examined the inhibitory effect of Echi-A on antigen-stimulated degranulation in rat basophilic leukemia RBL-2H3 cells, which were suppressed in a dose dependent manner. The antigens bind to the high affinity immunoglobulin E receptor, which is expressed on the surface of mast cells and basophils and activate intracellular signal transduction, resulting in the release of biologically active mediators such as histamine. In order to disclose the inhibitory mechanisms of degranulation by Echi-A, we examined the elevation in intracellular Ca2+ concentration ([Ca2+]i), production levels of intracellular reactive oxygen species (ROS) and early intracellular signaling events. Both elevation of [Ca2+]i and intracellular ROS production were markedly suppressed in cells treated with Echi-A. Echi-A also suppressed the activation of Lyn, Syk, and PLCγ1/2 in antigen-stimulated cells. These results indicated that inhibition of antigen-stimulated degranulation in RBL-2H3 cells by Echi-A is mainly due to the inactivation of Lyn/Syk/PLCγ signaling pathways. Our findings suggest that Echi-A could be a beneficial agent for alleviating the symptoms of type I allergy.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory for Molecular Chemistry of Aquatic Materials, Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Azusa Fujiwara
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshimichi Maeda
- Graduate School of Fisheries Science, Food Science and Technology, National Fisheries University, 2-7-1 Nagata-Honmachi, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Masashi Ando
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yasuyuki Tsukamasa
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
41
|
Bizouarn T, Karimi G, Masoud R, Souabni H, Machillot P, Serfaty X, Wien F, Réfrégiers M, Houée-Levin C, Baciou L. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47phoxand p67phoxvia thiol accessibility and SRCD spectroscopy. FEBS J 2016; 283:2896-910. [DOI: 10.1111/febs.13779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Tania Bizouarn
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Gilda Karimi
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Rawand Masoud
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Hager Souabni
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Paul Machillot
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Frank Wien
- Synchrotron SOLEIL, Campus Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | - Chantal Houée-Levin
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| | - Laura Baciou
- Laboratoire de Chimie Physique UMR 8000; Univ. Paris-Sud; CNRS; Université Paris Saclay; Orsay Cedex France
| |
Collapse
|
42
|
Slepchenko KG, Lu Q, Li YV. Zinc wave during the treatment of hypoxia is required for initial reactive oxygen species activation in mitochondria. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:44-51. [PMID: 27186322 PMCID: PMC4859878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are known to accumulate during chemical hypoxia, causing adverse effects on cell function and survival. Recent studies show important role zinc accumulation plays in dysfunction associated with hypoxia. It is well known that ROS accumulation also plays a major role in cellular damage by hypoxia. In this study, fluorescent imaging and pharmacological methods were used in live HeLa cells to determine role of zinc in initial ROS accumulation in mitochondria during chemical hypoxia (oxygen glucose depravation with 4 mM sodium dithionite). Accumulation of both was observed as a very rapid phenomenon with initial rapid zinc increase (zinc wave) within 60 seconds of hypoxia onset and ROS increase within 4.5 minutes. Zinc chelation with TPEN removed the initial zinc wave which in turn abolished ROS accumulation. Influx of exogenous zinc induced rapid ROS accumulation. Inhibition of NADPH oxidase with apocynin, a NADPH oxidase inhibitor, showed significant and prolonged reduction in zinc induced ROS accumulation. We proposed a novel mechanism of intracellular zinc increase that activates NADPH oxidase which in turn triggers mitochondrial ROS production.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Science and Biological Science, Ohio Heritage College of Osteopathic Medicine, Ohio University Athens Ohio, USA
| | - Qiping Lu
- Department of Biomedical Science and Biological Science, Ohio Heritage College of Osteopathic Medicine, Ohio University Athens Ohio, USA
| | - Yang V Li
- Department of Biomedical Science and Biological Science, Ohio Heritage College of Osteopathic Medicine, Ohio University Athens Ohio, USA
| |
Collapse
|
43
|
Abstract
Since its discovery in 1999, a number of studies have evaluated the role of Nox1 NADPH oxidase in the cardiovascular system. Nox1 is activated in vascular cells in response to several different agonists, with its activity regulated at the transcriptional level as well as by NADPH oxidase complex formation, protein stabilization and post-translational modification. Nox1 has been shown to decrease the bioavailability of nitric oxide, transactivate the epidermal growth factor receptor, induce pro-inflammatory signalling, and promote cell migration and proliferation. Enhanced expression and activity of Nox1 under pathologic conditions results in excessive production of reactive oxygen species and dysregulated cellular function. Indeed, studies using genetic models of Nox1 deficiency or overexpression have revealed roles for Nox1 in the pathogenesis of cardiovascular diseases ranging from atherosclerosis to hypertension, restenosis and ischaemia/reperfusion injury. These data suggest that Nox1 is a potential therapeutic target for vascular disease, and drug development efforts are ongoing to identify a specific bioavailable inhibitor of Nox1.
Collapse
|
44
|
Thymoquinone strongly inhibits fMLF-induced neutrophil functions and exhibits anti-inflammatory properties in vivo. Biochem Pharmacol 2016; 104:62-73. [PMID: 26774451 DOI: 10.1016/j.bcp.2016.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils are key players in host defense against pathogens through the robust production of superoxide anion by the NADPH oxidase and the release of antibacterial proteins from granules. However, inappropriate release of these agents in the extracellular environment induces severe tissue injury, thereby contributing to the physiopathology of acute and chronic inflammatory disorders. Many studies have been carried out to identify molecules capable of inhibiting phagocyte functions, in particular superoxide anion production, for therapeutic purposes. In the present study, we show that thymoquinone (TQ), the major component of the volatile oil from Nigella sativa (black cumin) seeds strongly inhibits fMLF-induced superoxide production and granules exocytosis in neutrophils. The inhibition of superoxide anion was not due to a scavenger effect, as TQ did not inhibit superoxide anion produced by the xanthine/xanthine oxidase system. Interestingly, TQ impaired the phosphorylation on Ser-304 and Ser-328 of p47(PHOX), a cytosolic subunit of the NADPH oxidase. TQ also attenuated specific and azurophilic granule exocytosis in fMLF-stimulated neutrophils as evidenced by decreased cell surface expression of gp91(PHOX) and CD11b, and release of myeloperoxidase. Furthermore, both the PKC and MAPK pathways, which are involved in p47(PHOX) phosphorylation and granules exocytosis, respectively, were inhibited by TQ in fMLF-stimulated neutrophils. Finally, in a model of pleurisy induced by λ-carrageenan in rats, TQ reduced neutrophil accumulation in the pleural space, showing that it not only inhibits PMN functions in vitro, but also exhibits anti-inflammatory properties in vivo. Thus, TQ possesses promising anti-inflammatory therapeutic potential.
Collapse
|
45
|
Miriyala S, Chandra M, Maxey B, Day A, St Clair DK, Panchatcharam M. Arjunolic acid ameliorates reactive oxygen species via inhibition of p47(phox)-serine phosphorylation and mitochondrial dysfunction. Int J Biochem Cell Biol 2015; 68:70-7. [PMID: 26319153 DOI: 10.1016/j.biocel.2015.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 12/13/2022]
Abstract
Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2,3,23-trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2(-)) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47(phox), a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47(phox) and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2(-) in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47(phox) involved in ROS generation.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Mini Chandra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Benjamin Maxey
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alicia Day
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Daret K St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA; Internal Medicine, University of Kentucky, Lexington, USA.
| |
Collapse
|
46
|
Kuchler L, Giegerich AK, Sha LK, Knape T, Wong MSK, Schröder K, Brandes RP, Heide H, Wittig I, Brüne B, von Knethen A. SYNCRIP-dependent Nox2 mRNA destabilization impairs ROS formation in M2-polarized macrophages. Antioxid Redox Signal 2014; 21:2483-97. [PMID: 24844655 DOI: 10.1089/ars.2013.5760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS During sepsis, macrophages are alternatively activated toward an M2-like phenotype on contact with apoptotic cells (ACs) or their secretion products. Simultaneously, NADPH oxidase-dependent reactive oxygen species (ROS) formation is attenuated, thus contributing to immune paralysis. However, the exact mechanism remains elusive. Here, we provide mechanistic insights into diminished mRNA stability of the NADPH oxidase Nox2 on macrophage M2 polarization and therefore reduced ROS formation in sepsis. RESULTS Murine J774A.1 macrophages were stimulated with conditioned medium (CM) of apoptotic T cells, which reduced Nox2 mRNA and protein expression, consequently decreasing ROS production. An mRNA pulldown approach coupled to mass spectrometry analysis identified the RNA-binding protein SYNCRIP attached to the Nox2 mRNA 3' untranslated region (3'UTR). The binding of SYNCRIP to the 3'UTR of Nox2 mRNA is attenuated after treatment with CM of apoptotic T cells, followed by Nox2 mRNA destabilization. In in vivo models of polymicrobial sepsis such as cecal ligation and puncture, SYNCRIP was strongly downregulated, which was associated with a decreased Nox2 expression in peritoneal macrophages. INNOVATION Downregulation of SYNCRIP in macrophages after contact to material of ACs destabilized Nox2 mRNA and impaired ROS formation, thereby contributing to an M2 phenotype shift of macrophages in sepsis. CONCLUSION M2 polarization of macrophages in sepsis results in an attenuated SYNCRIP binding to the 3'UTR of Nox2 mRNA, destabilizing Nox2 mRNA abundance and expression. Consequently, ROS formation needed to fight against recurrent infections is impaired. In conclusion, SYNCRIP-regulated Nox2 mRNA degradation mediates the hypoinflammatory phase of sepsis.
Collapse
Affiliation(s)
- Laura Kuchler
- 1 Faculty of Medicine, Institute of Biochemistry I-Pathobiochemistry, Goethe-University Frankfurt , Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the past several years, it has been demonstrated that the reactive oxygen species (ROS) may act as intracellular signalling molecules to activate or inhibit specific signalling pathways and regulate physiological cellular functions. It is now well-established that ROS regulate autophagy, an intracellular degradation process. However, the signalling mechanisms through which ROS modulate autophagy in a regulated manner have only been minimally clarified. NADPH oxidase (Nox) enzymes are membrane-bound enzymatic complexes responsible for the dedicated generation of ROS. Different isoforms of Nox exist with different functions. Recent studies demonstrated that Nox-derived ROS can promote autophagy, with Nox2 and Nox4 representing the isoforms of Nox implicated thus far. Nox2- and Nox4-dependent autophagy plays an important role in the elimination of pathogens by phagocytes and in the regulation of vascular- and cancer-cell survival. Interestingly, we recently found that Nox is also important for autophagy regulation in cardiomyocytes. We found that Nox4, but not Nox2, promotes the activation of autophagy and survival in cardiomyocytes in response to nutrient deprivation and ischaemia through activation of the PERK (protein kinase RNA-like endoplasmic reticulum kinase) signalling pathway. In the present paper, we discuss the importance of Nox family proteins and ROS in the regulation of autophagy, with a particular focus on the role of Nox4 in the regulation of autophagy in the heart.
Collapse
|
48
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 495] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
49
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
50
|
Streeter J, Schickling BM, Jiang S, Stanic B, Thiel WH, Gakhar L, Houtman JCD, Miller FJ. Phosphorylation of Nox1 regulates association with NoxA1 activation domain. Circ Res 2014; 115:911-8. [PMID: 25228390 DOI: 10.1161/circresaha.115.304267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Activation of Nox1 initiates redox-dependent signaling events crucial in the pathogenesis of vascular disease. Selective targeting of Nox1 is an attractive potential therapy, but requires a better understanding of the molecular modifications controlling its activation. OBJECTIVE To determine whether posttranslational modifications of Nox1 regulate its activity in vascular cells. METHODS AND RESULTS We first found evidence that Nox1 is phosphorylated in multiple models of vascular disease. Next, studies using mass spectroscopy and a pharmacological inhibitor demonstrated that protein kinase C-beta1 mediates phosphorylation of Nox1 in response to tumor necrosis factor-α. siRNA-mediated silencing of protein kinase C-beta1 abolished tumor necrosis factor-α-mediated reactive oxygen species production and vascular smooth muscle cell migration. Site-directed mutagenesis and isothermal titration calorimetry indicated that protein kinase C-beta1 phosphorylates Nox1 at threonine 429. Moreover, Nox1 threonine 429 phosphorylation facilitated the association of Nox1 with the NoxA1 activation domain and was necessary for NADPH oxidase complex assembly, reactive oxygen species production, and vascular smooth muscle cell migration. CONCLUSIONS We conclude that protein kinase C-beta1 phosphorylation of threonine 429 regulates activation of Nox1 NADPH oxidase.
Collapse
Affiliation(s)
- Jennifer Streeter
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Brandon M Schickling
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Shuxia Jiang
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Bojana Stanic
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - William H Thiel
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Lokesh Gakhar
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Jon C D Houtman
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.)
| | - Francis J Miller
- From the Departments of Internal Medicine (B.M.S., S.J., B.S., W.H.T., F.J.M.), Microbiology (J.C.D.H.), Anatomy and Cell Biology (J.S.), Biochemistry (L.G.), and Protein Crystallography Facility (L.G.), University of Iowa, Iowa City; and Veterans Affair Medical Center, Iowa City, IA (F.J.M.).
| |
Collapse
|