1
|
Ichim AM, Barzan H, Moca VV, Nagy-Dabacan A, Ciuparu A, Hapca A, Vervaeke K, Muresan RC. The gamma rhythm as a guardian of brain health. eLife 2024; 13:e100238. [PMID: 39565646 DOI: 10.7554/elife.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Gamma oscillations in brain activity (30-150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a 'servicing' rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.
Collapse
Grants
- RO-NO-2019-0504 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERA-NET-FLAG-ERA-ModelDXConsciousness Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-UnscrAMBLY Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-FLAG-ERA-MONAD Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-IBRAA Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- ERANET-NEURON-2-RESIST-D Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-IV-P8-8.1-PRE-HE-ORG-2024-0185 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- 952096 NEUROTWIN European Commission
- INSPIRE POC 488/1/1/2014+/127725 Ministerul Investițiilor și Proiectelor Europene
Collapse
Affiliation(s)
- Ana Maria Ichim
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Preclinical MRI Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Harald Barzan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adriana Nagy-Dabacan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
| | - Adela Hapca
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Koen Vervaeke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raul Cristian Muresan
- Transylvanian Institute of Neuroscience, Department of Experimental and Theoretical Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Yaghoubi M, Orlandi JG, Colicos MA, Davidsen J. Criticality and universality in neuronal cultures during "up" and "down" states. Front Neural Circuits 2024; 18:1456558. [PMID: 39323503 PMCID: PMC11423291 DOI: 10.3389/fncir.2024.1456558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
The brain can be seen as a self-organized dynamical system that optimizes information processing and storage capabilities. This is supported by studies across scales, from small neuronal assemblies to the whole brain, where neuronal activity exhibits features typically associated with phase transitions in statistical physics. Such a critical state is characterized by the emergence of scale-free statistics as captured, for example, by the sizes and durations of activity avalanches corresponding to a cascading process of information flow. Another phenomenon observed during sleep, under anesthesia, and in in vitro cultures, is that cortical and hippocampal neuronal networks alternate between "up" and "down" states characterized by very distinct firing rates. Previous theoretical work has been able to relate these two concepts and proposed that only up states are critical whereas down states are subcritical, also indicating that the brain spontaneously transitions between the two. Using high-speed high-resolution calcium imaging recordings of neuronal cultures, we test this hypothesis here by analyzing the neuronal avalanche statistics in populations of thousands of neurons during "up" and "down" states separately. We find that both "up" and "down" states can exhibit scale-free behavior when taking into account their intrinsic time scales. In particular, the statistical signature of "down" states is indistinguishable from those observed previously in cultures without "up" states. We show that such behavior can not be explained by network models of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression, even when realistic noise levels, spatial network embeddings, and heterogeneous populations are taken into account, which instead exhibits behavior consistent with previous theoretical models. Similar differences were also observed when taking into consideration finite-size scaling effects, suggesting that the intrinsic dynamics and self-organization mechanisms of these cultures might be more complex than previously thought. In particular, our findings point to the existence of different mechanisms of neuronal communication, with different time scales, acting during either high-activity or low-activity states, potentially requiring different plasticity mechanisms.
Collapse
Affiliation(s)
- Mohammad Yaghoubi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Javier G. Orlandi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael A. Colicos
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Huo C, Lombardi F, Blanco-Centurion C, Shiromani PJ, Ivanov PC. Role of the Locus Coeruleus Arousal Promoting Neurons in Maintaining Brain Criticality across the Sleep-Wake Cycle. J Neurosci 2024; 44:e1939232024. [PMID: 38951035 PMCID: PMC11358608 DOI: 10.1523/jneurosci.1939-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Sleep control depends on a delicate interplay among brain regions. This generates a complex temporal architecture with numerous sleep-stage transitions and intermittent fluctuations to micro-states and brief arousals. These temporal dynamics exhibit hallmarks of criticality, suggesting that tuning to criticality is essential for spontaneous sleep-stage and arousal transitions. However, how the brain maintains criticality remains not understood. Here, we investigate θ- and δ-burst dynamics during the sleep-wake cycle of rats (Sprague-Dawley, adult male) with lesion in the wake-promoting locus coeruleus (LC). We show that, in control rats, θ- and δ-bursts exhibit power-law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, as well as power-law long-range temporal correlations (LRTCs)-typical of non-equilibrium systems self-organizing at criticality. Furthermore, consecutive θ- and δ-bursts durations are characterized by anti-correlated coupling, indicating a new class of self-organized criticality that emerges from underlying feedback between neuronal populations and brain areas involved in generating arousals and sleep states. In contrast, we uncover that LC lesion leads to alteration of θ- and δ-burst critical features, with change in duration distributions and correlation properties, and increase in θ-δ coupling. Notably, these LC-lesion effects are opposite to those observed for lesions in the sleep-promoting ventrolateral preoptic (VLPO) nucleus. Our findings indicate that critical dynamics of θ- and δ-bursts arise from a balanced interplay of LC and VLPO, which maintains brain tuning to criticality across the sleep-wake cycle-a non-equilibrium behavior in sleep micro-architecture at short timescales that coexists with large-scale sleep-wake homeostasis.
Collapse
Affiliation(s)
- Chengyu Huo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215
- School of Electronic Information Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Fabrizio Lombardi
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Carlos Blanco-Centurion
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Priyattam J Shiromani
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson Veterans Healthcare System Charleston, Charleston, South Carolina 29401
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, Massachusetts 02115
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
| |
Collapse
|
4
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. Sci Rep 2024; 14:19329. [PMID: 39164334 PMCID: PMC11335857 DOI: 10.1038/s41598-024-70014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2, reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2, even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582056. [PMID: 38464324 PMCID: PMC10925085 DOI: 10.1101/2024.02.26.582056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2 , reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2 , even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Tiago L. Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Pailthorpe BA. Simulated dynamical transitions in a heterogeneous marmoset pFC cluster. Front Comput Neurosci 2024; 18:1398898. [PMID: 38863681 PMCID: PMC11165126 DOI: 10.3389/fncom.2024.1398898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Network analysis of the marmoset cortical connectivity data indicates a significant 3D cluster in and around the pre-frontal cortex. A multi-node, heterogeneous neural mass model of this six-node cluster was constructed. Its parameters were informed by available experimental and simulation data so that each neural mass oscillated in a characteristic frequency band. Nodes were connected with directed, weighted links derived from the marmoset structural connectivity data. Heterogeneity arose from the different link weights and model parameters for each node. Stimulation of the cluster with an incident pulse train modulated in the standard frequency bands induced a variety of dynamical state transitions that lasted in the range of 5-10 s, suggestive of timescales relevant to short-term memory. A short gamma burst rapidly reset the beta-induced transition. The theta-induced transition state showed a spontaneous, delayed reset to the resting state. An additional, continuous gamma wave stimulus induced a new beating oscillatory state. Longer or repeated gamma bursts were phase-aligned with the beta oscillation, delivering increasing energy input and causing shorter transition times. The relevance of these results to working memory is yet to be established, but they suggest interesting opportunities.
Collapse
Affiliation(s)
- Bernard A. Pailthorpe
- Brain Dynamics Group, School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Van Schependom J, Baetens K, Nagels G, Olmi S, Beste C. Neurophysiological avenues to better conceptualizing adaptive cognition. Commun Biol 2024; 7:626. [PMID: 38789522 PMCID: PMC11126671 DOI: 10.1038/s42003-024-06331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
We delve into the human brain's remarkable capacity for adaptability and sustained cognitive functioning, phenomena traditionally encompassed as executive functions or cognitive control. The neural underpinnings that enable the seamless navigation between transient thoughts without detracting from overarching goals form the core of our article. We discuss the concept of "metacontrol," which builds upon conventional cognitive control theories by proposing a dynamic balancing of processes depending on situational demands. We critically discuss the role of oscillatory processes in electrophysiological activity at different scales and the importance of desynchronization and partial phase synchronization in supporting adaptive behavior including neural noise accounts, transient dynamics, phase-based measures (coordination dynamics) and neural mass modelling. The cognitive processes focused and neurophysiological avenues outlined are integral to understanding diverse psychiatric disorders thereby contributing to a more nuanced comprehension of cognitive control and its neural bases in both health and disease.
Collapse
Affiliation(s)
- Jeroen Van Schependom
- AIMS Lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Baetens
- Brain, Body and Cognition, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Nagels
- AIMS Lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- UZ Brussel, Department of Neurology, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, United Kingdom
| | - Simona Olmi
- CNR-Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Keppler J. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Front Hum Neurosci 2024; 18:1379191. [PMID: 38736531 PMCID: PMC11082359 DOI: 10.3389/fnhum.2024.1379191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Empirical evidence indicates that conscious states, distinguished by the presence of phenomenal qualities, are closely linked to synchronized neural activity patterns whose dynamical characteristics can be attributed to self-organized criticality and phase transitions. These findings imply that insight into the mechanism by which the brain controls phase transitions will provide a deeper understanding of the fundamental mechanism by which the brain manages to transcend the threshold of consciousness. This article aims to show that the initiation of phase transitions and the formation of synchronized activity patterns is due to the coupling of the brain to the zero-point field (ZPF), which plays a central role in quantum electrodynamics (QED). The ZPF stands for the presence of ubiquitous vacuum fluctuations of the electromagnetic field, represented by a spectrum of normal modes. With reference to QED-based model calculations, the details of the coupling mechanism are revealed, suggesting that critical brain dynamics is governed by the resonant interaction of the ZPF with the most abundant neurotransmitter glutamate. The pyramidal neurons in the cortical microcolumns turn out to be ideally suited to control this interaction. A direct consequence of resonant glutamate-ZPF coupling is the amplification of specific ZPF modes, which leads us to conclude that the ZPF is the key to the understanding of consciousness and that the distinctive feature of neurophysiological processes associated with conscious experience consists in modulating the ZPF. Postulating that the ZPF is an inherently sentient field and assuming that the spectrum of phenomenal qualities is represented by the normal modes of the ZPF, the significance of resonant glutamate-ZPF interaction for the formation of conscious states becomes apparent in that the amplification of specific ZPF modes is inextricably linked with the excitation of specific phenomenal qualities. This theory of consciousness, according to which phenomenal states arise through resonant amplification of zero-point modes, is given the acronym TRAZE. An experimental setup is specified that can be used to test a corollary of the theory, namely, the prediction that normally occurring conscious perceptions are absent under experimental conditions in which resonant glutamate-ZPF coupling is disrupted.
Collapse
|
9
|
Zeng L, Feng J, Lu W. A general description of criticality in neural network models. Heliyon 2024; 10:e27183. [PMID: 38562505 PMCID: PMC10982970 DOI: 10.1016/j.heliyon.2024.e27183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Recent experimental observations have supported the hypothesis that the cerebral cortex operates in a dynamical regime near criticality, where the neuronal network exhibits a mixture of ordered and disordered patterns. However, A comprehensive study of how criticality emerges and how to reproduce it is still lacking. In this study, we investigate coupled networks with conductance-based neurons and illustrate the co-existence of different spiking patterns, including asynchronous irregular (AI) firing and synchronous regular (SR) state, along with a scale-invariant neuronal avalanche phenomenon (criticality). We show that fast-acting synaptic coupling can evoke neuronal avalanches in the mean-dominated regime but has little effect in the fluctuation-dominated regime. In a narrow region of parameter space, the network exhibits avalanche dynamics with power-law avalanche size and duration distributions. We conclude that three stages which may be responsible for reproducing the synchronized bursting: mean-dominated subthreshold dynamics, fast-initiating a spike event, and time-delayed inhibitory cancellation. Remarkably, we illustrate the mechanisms underlying critical avalanches in the presence of noise, which can be explained as a stochastic crossing state around the Hopf bifurcation under the mean-dominated regime. Moreover, we apply the ensemble Kalman filter to determine and track effective connections for the neuronal network. The method is validated on noisy synthetic BOLD signals and could exactly reproduce the corresponding critical network activity. Our results provide a special perspective to understand and model the criticality, which can be useful for large-scale modeling and computation of brain dynamics.
Collapse
Affiliation(s)
- Longbin Zeng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, China
| | - Wenlian Lu
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Liang J, Yang Z, Zhou C. Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist 2024:10738584231221766. [PMID: 38291889 DOI: 10.1177/10738584231221766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Zhuda Yang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
11
|
Ouyang G, Wang S, Liu M, Zhang M, Zhou C. Multilevel and multifaceted brain response features in spiking, ERP and ERD: experimental observation and simultaneous generation in a neuronal network model with excitation-inhibition balance. Cogn Neurodyn 2023; 17:1417-1431. [PMID: 37969943 PMCID: PMC10640466 DOI: 10.1007/s11571-022-09889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Brain as a dynamic system responds to stimulations with specific patterns affected by its inherent ongoing dynamics. The patterns are manifested across different levels of organization-from spiking activity of neurons to collective oscillations in local field potential (LFP) and electroencephalogram (EEG). The multilevel and multifaceted response activities show patterns seemingly distinct and non-comparable from each other, but they should be coherently related because they are generated from the same underlying neural dynamic system. A coherent understanding of the interrelationships between different levels/aspects of activity features is important for understanding the complex brain functions. Here, based on analysis of data from human EEG, monkey LFP and neuronal spiking, we demonstrated that the brain response activities from different levels of neural system are highly coherent: the external stimulus simultaneously generated event-related potentials, event-related desynchronization, and variation in neuronal spiking activities that precisely match with each other in the temporal unfolding. Based on a biologically plausible but generic network of conductance-based integrate-and-fire excitatory and inhibitory neurons with dense connections, we showed that the multiple key features can be simultaneously produced at critical dynamical regimes supported by excitation-inhibition (E-I) balance. The elucidation of the inherent coherency of various neural response activities and demonstration of a simple dynamical neural circuit system having the ability to simultaneously produce multiple features suggest the plausibility of understanding high-level brain function and cognition from elementary and generic neuronal dynamics. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09889-w.
Collapse
Affiliation(s)
- Guang Ouyang
- Faculty of Education, The University of Hong Kong, Pok Fu Lam, Hong Kong China
| | - Shengjun Wang
- Department of Physics, Shaanxi Normal University, Xi’an, 710119 China
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| |
Collapse
|
12
|
Romano A, Troisi Lopez E, Cipriano L, Liparoti M, Minino R, Polverino A, Cavaliere C, Aiello M, Granata C, Sorrentino G, Sorrentino P. Topological changes of fast large-scale brain dynamics in mild cognitive impairment predict early memory impairment: a resting-state, source reconstructed, magnetoencephalography study. Neurobiol Aging 2023; 132:36-46. [PMID: 37717553 DOI: 10.1016/j.neurobiolaging.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Functional connectivity has been used as a framework to investigate widespread brain interactions underlying cognitive deficits in mild cognitive impairment (MCI). However, many functional connectivity metrics focus on the average of the periodic activities, disregarding the aperiodic bursts of activity (i.e., the neuronal avalanches) characterizing the large-scale dynamic activities of the brain. Here, we apply the recently described avalanche transition matrix framework to source-reconstructed magnetoencephalography signals in a cohort of 32 MCI patients and 32 healthy controls to describe the spatio-temporal features of neuronal avalanches and explore their topological properties. Our results showed that MCI patients showed a more centralized network (as assessed by higher values of the degree divergence and leaf fraction) as compared to healthy controls. Furthermore, we found that the degree divergence (in the theta band) was predictive of hippocampal memory impairment. These findings highlight the role of the changes of aperiodic bursts in clinical conditions and may contribute to a more thorough phenotypical assessment of patients.
Collapse
Affiliation(s)
- Antonella Romano
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Emahnuel Troisi Lopez
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Lorenzo Cipriano
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Marianna Liparoti
- Department of Developmental and Social Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Roberta Minino
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Arianna Polverino
- Institute of Diagnosis and Treatment, Hermitage Capodimonte, Naples, Italy
| | - Carlo Cavaliere
- IRCCS SYNLAB-SDN, Naples Via Emanuele Gianturco, Naples, Italy
| | - Marco Aiello
- IRCCS SYNLAB-SDN, Naples Via Emanuele Gianturco, Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Giuseppe Sorrentino
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Treatment, Hermitage Capodimonte, Naples, Italy; Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy.
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy; Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, Marseille, France
| |
Collapse
|
13
|
Rabus A, Curic D, Ivan VE, Esteves IM, Gruber AJ, Davidsen J. Changes in functional connectivity preserve scale-free neuronal and behavioral dynamics. Phys Rev E 2023; 108:L052301. [PMID: 38115411 DOI: 10.1103/physreve.108.l052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 12/21/2023]
Abstract
Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine that is associated with an altered state of consciousness fundamentally alters the functional connectivity in the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening up a new perspective on how the adaptive nature of functional networks may lead to optimality of information transmission in the brain.
Collapse
Affiliation(s)
- Anja Rabus
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Davor Curic
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Victorita E Ivan
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ingrid M Esteves
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Aaron J Gruber
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
14
|
Lombardi F, Herrmann HJ, Parrino L, Plenz D, Scarpetta S, Vaudano AE, de Arcangelis L, Shriki O. Beyond pulsed inhibition: Alpha oscillations modulate attenuation and amplification of neural activity in the awake resting state. Cell Rep 2023; 42:113162. [PMID: 37777965 PMCID: PMC10842118 DOI: 10.1016/j.celrep.2023.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Alpha oscillations are a distinctive feature of the awake resting state of the human brain. However, their functional role in resting-state neuronal dynamics remains poorly understood. Here we show that, during resting wakefulness, alpha oscillations drive an alternation of attenuation and amplification bouts in neural activity. Our analysis indicates that inhibition is activated in pulses that last for a single alpha cycle and gradually suppress neural activity, while excitation is successively enhanced over a few alpha cycles to amplify neural activity. Furthermore, we show that long-term alpha amplitude fluctuations-the "waxing and waning" phenomenon-are an attenuation-amplification mechanism described by a power-law decay of the activity rate in the "waning" phase. Importantly, we do not observe such dynamics during non-rapid eye movement (NREM) sleep with marginal alpha oscillations. The results suggest that alpha oscillations modulate neural activity not only through pulses of inhibition (pulsed inhibition hypothesis) but also by timely enhancement of excitation (or disinhibition).
Collapse
Affiliation(s)
- Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy.
| | - Hans J Herrmann
- Departamento de Fisica, Universitade Federal do Ceara, Fortaleza 60451-970, Ceara, Brazil; PMMH, ESPCI, 7 quai St. Bernard, 75005 Paris, France
| | - Liborio Parrino
- Sleep Disorders Center, Department of Neurosciences, University of Parma, 43121 Parma, Italy
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, NIH, Bethesda, MD 20892, USA
| | - Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy; INFN sez, Napoli Gr. Coll, 84084 Fisciano, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lucilla de Arcangelis
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, 81100 Caserta, Italy.
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-sheva, Israel.
| |
Collapse
|
15
|
Scarpetta S, Morisi N, Mutti C, Azzi N, Trippi I, Ciliento R, Apicella I, Messuti G, Angiolelli M, Lombardi F, Parrino L, Vaudano AE. Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture. iScience 2023; 26:107840. [PMID: 37766992 PMCID: PMC10520337 DOI: 10.1016/j.isci.2023.107840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep plays a key role in preserving brain function, keeping brain networks in a state that ensures optimal computation. Empirical evidence indicates that this state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the connection between sleep architecture and brain tuning to criticality remains poorly understood. Here, we characterize the critical behavior of avalanches and study their relationship with sleep macro- and micro-architectures, in particular, the cyclic alternating pattern (CAP). We show that avalanches exhibit robust scaling behaviors, with exponents obeying scaling relations consistent with the mean-field directed percolation universality class. We demonstrate that avalanche dynamics is modulated by the NREM-REM cycles and that, within NREM sleep, avalanche occurrence correlates with CAP activation phases-indicating a potential link between CAP and brain tuning to criticality. The results open new perspectives on the collective dynamics underlying CAP function, and on the relationship between sleep architecture, avalanches, and self-organization to criticality.
Collapse
Affiliation(s)
- Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
| | - Niccolò Morisi
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Nicoletta Azzi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Irene Trippi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Rosario Ciliento
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Ilenia Apicella
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
- Department of Physics, University of Naples “Federico II”, 80126 Napoli, Italy
| | - Giovanni Messuti
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
| | - Marianna Angiolelli
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
- Engineering Department, University Campus Bio-Medico of Rome, 00128 Roma, Italy
| | - Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
16
|
Mastwal S, Li X, Stowell R, Manion M, Zhang W, Kim NS, Yoon KJ, Song H, Ming GL, Wang KH. Adolescent neurostimulation of dopamine circuit reverses genetic deficits in frontal cortex function. eLife 2023; 12:RP87414. [PMID: 37830916 PMCID: PMC10575630 DOI: 10.7554/elife.87414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Dopamine system dysfunction is implicated in adolescent-onset neuropsychiatric disorders. Although psychosis symptoms can be alleviated by antipsychotics, cognitive symptoms remain unresponsive and novel paradigms investigating the circuit substrates underlying cognitive deficits are critically needed. The frontal cortex and its dopaminergic input from the midbrain are implicated in cognitive functions and undergo maturational changes during adolescence. Here, we used mice carrying mutations in Arc or Disc1 to model mesofrontal dopamine circuit deficiencies and test circuit-based neurostimulation strategies to restore cognitive functions. We found that in a memory-guided spatial navigation task, frontal cortical neurons were activated coordinately at the decision-making point in wild-type but not Arc-/- mice. Chemogenetic stimulation of midbrain dopamine neurons or optogenetic stimulation of frontal cortical dopamine axons in a limited adolescent period consistently reversed genetic defects in mesofrontal innervation, task-coordinated neuronal activity, and memory-guided decision-making at adulthood. Furthermore, adolescent stimulation of dopamine neurons also reversed the same cognitive deficits in Disc1+/- mice. Our findings reveal common mesofrontal circuit alterations underlying the cognitive deficits caused by two different genes and demonstrate the feasibility of adolescent neurostimulation to reverse these circuit and behavioral deficits. These results may suggest developmental windows and circuit targets for treating cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Surjeet Mastwal
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
| | - Xinjian Li
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
| | - Rianne Stowell
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Matthew Manion
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
| | - Wenyu Zhang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| | - Nam-Shik Kim
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ki-Jun Yoon
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical CenterRochesterUnited States
| |
Collapse
|
17
|
Habibollahi F, Kagan BJ, Burkitt AN, French C. Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks. Nat Commun 2023; 14:5287. [PMID: 37648737 PMCID: PMC10469171 DOI: 10.1038/s41467-023-41020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Understanding how brains process information is an incredibly difficult task. Amongst the metrics characterising information processing in the brain, observations of dynamic near-critical states have generated significant interest. However, theoretical and experimental limitations associated with human and animal models have precluded a definite answer about when and why neural criticality arises with links from attention, to cognition, and even to consciousness. To explore this topic, we used an in vitro neural network of cortical neurons that was trained to play a simplified game of 'Pong' to demonstrate Synthetic Biological Intelligence (SBI). We demonstrate that critical dynamics emerge when neural networks receive task-related structured sensory input, reorganizing the system to a near-critical state. Additionally, better task performance correlated with proximity to critical dynamics. However, criticality alone is insufficient for a neuronal network to demonstrate learning in the absence of additional information regarding the consequences of previous actions. These findings offer compelling support that neural criticality arises as a base feature of incoming structured information processing without the need for higher order cognition.
Collapse
Affiliation(s)
- Forough Habibollahi
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Brett J Kagan
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia.
| | - Anthony N Burkitt
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
- Neurology Department, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
18
|
Galinsky VL, Frank LR. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves? FRONTIERS OF PHYSICS 2023; 18:45301. [PMID: 37008280 PMCID: PMC10062440 DOI: 10.1007/s11467-023-1273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
Collapse
Affiliation(s)
- Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
- Center for Functional MRI, University of California at San Diego, La Jolla, CA 92037-0677, USA
| |
Collapse
|
19
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Empirical mode decomposition of local field potential data from optogenetic experiments. Front Comput Neurosci 2023; 17:1223879. [PMID: 37476356 PMCID: PMC10354259 DOI: 10.3389/fncom.2023.1223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study investigated the effects of cocaine administration and parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic tools. Methods The local network was subject to a brief 10 ms laser pulse, and the response was recorded for 2 s over 100 trials for each of the six subjects who showed stable coupling between the mPFC and the optrode. Due to the strong non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven, Empirical Mode Decomposition (EMD) method to decompose the signal into orthogonal Intrinsic Mode Functions (IMFs). Results Through trial and error, we found that seven is the optimum number of orthogonal IMFs that overlaps with known frequency bands of brain activity. We found that the Index of Orthogonality (IO) of IMF amplitudes was close to zero. The Index of Energy Conservation (IEC) for each decomposition was close to unity, as expected for orthogonal decompositions. We found that the power density distribution vs. frequency follows a power law with an average scaling exponent of ~1.4 over the entire range of IMF frequencies 2-2,000 Hz. Discussion The scaling exponent is slightly smaller for cocaine than the control, suggesting that neural activity avalanches under cocaine have longer life spans and sizes.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
20
|
Sormunen S, Gross T, Saramäki J. Critical Drift in a Neuro-Inspired Adaptive Network. PHYSICAL REVIEW LETTERS 2023; 130:188401. [PMID: 37204886 DOI: 10.1103/physrevlett.130.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/04/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
It has been postulated that the brain operates in a self-organized critical state that brings multiple benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has typically been depicted as a one-dimensional process, where one parameter is tuned to a critical value. However, the number of adjustable parameters in the brain is vast, and hence critical states can be expected to occupy a high-dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, where the system is poised between inactivity and persistent activity. During the drift, global network parameters continue to change while the system remains at criticality.
Collapse
Affiliation(s)
- Silja Sormunen
- Department of Computer Science, Aalto University, 00076 Espoo, Finland
| | - Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg 26129, Germany
- Alfred-Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University, Oldenburg 26129, Germany
| | - Jari Saramäki
- Department of Computer Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
21
|
Capek E, Ribeiro TL, Kells P, Srinivasan K, Miller SR, Geist E, Victor M, Vakili A, Pajevic S, Chialvo DR, Plenz D. Parabolic avalanche scaling in the synchronization of cortical cell assemblies. Nat Commun 2023; 14:2555. [PMID: 37137888 PMCID: PMC10156782 DOI: 10.1038/s41467-023-37976-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Neurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration. The quadratic avalanche scaling was only found for correlated neurons, required temporal coarse-graining to compensate for spatial subsampling of the imaged cortex, and suggested cortical dynamics to be critical as demonstrated in simulations of balanced E/I-networks. The corresponding time course of an inverted parabola with exponent of χ = 2 described cortical avalanches of coincident firing for up to 5 s duration over an area of 1 mm2. These parabolic avalanches maximized temporal complexity in the ongoing activity of prefrontal and somatosensory cortex and in visual responses of primary visual cortex. Our results identify a scale-invariant temporal order in the synchronization of highly diverse cortical cell assemblies in the form of parabolic avalanches.
Collapse
Affiliation(s)
- Elliott Capek
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Stephanie R Miller
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Elias Geist
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Mitchell Victor
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Ali Vakili
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Sinisa Pajevic
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Dante R Chialvo
- CEMSC3, Escuela de Ciencia y Tecnologia, UNSAM, San Martín, P. Buenos Aires, Argentina
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Salners T, Avila KE, Nicholson B, Myers CR, Beggs J, Dahmen KA. Recurrent activity in neuronal avalanches. Sci Rep 2023; 13:4871. [PMID: 36964158 PMCID: PMC10039060 DOI: 10.1038/s41598-023-31851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
A new statistical analysis of large neuronal avalanches observed in mouse and rat brain tissues reveals a substantial degree of recurrent activity and cyclic patterns of activation not seen in smaller avalanches. To explain these observations, we adapted a model of structural weakening in materials. In this model, dynamical weakening of neuron firing thresholds closely replicates experimental avalanche size distributions, firing number distributions, and patterns of cyclic activity. This agreement between model and data suggests that a mechanism like dynamical weakening plays a key role in recurrent activity found in large neuronal avalanches. We expect these results to illuminate the causes and dynamics of large avalanches, like those seen in seizures.
Collapse
Affiliation(s)
- Tyler Salners
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA.
| | - Karina E Avila
- Physics Department, University Kaiserslautern, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany
| | - Benjamin Nicholson
- Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, NY, 14853-2501, USA
| | - Christopher R Myers
- Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, NY, 14853-2501, USA
- Center for Advanced Computing, Cornell University, Ithaca, NY, 14853, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, IN, 47405, USA
| | - Karin A Dahmen
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
| |
Collapse
|
24
|
Alvankar Golpayegan H, de Candia A. Bistability and criticality in the stochastic Wilson-Cowan model. Phys Rev E 2023; 107:034404. [PMID: 37073019 DOI: 10.1103/physreve.107.034404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/17/2023] [Indexed: 04/20/2023]
Abstract
We study a stochastic version of the Wilson-Cowan model of neural dynamics, where the response function of neurons grows faster than linearly above the threshold. The model shows a region of parameters where two attractive fixed points of the dynamics exist simultaneously. One fixed point is characterized by lower activity and scale-free critical behavior, while the second fixed point corresponds to a higher (supercritical) persistent activity, with small fluctuations around a mean value. When the number of neurons is not too large, the system can switch between these two different states with a probability depending on the parameters of the network. Along with alternation of states, the model displays a bimodal distribution of the avalanches of activity, with a power-law behavior corresponding to the critical state, and a bump of very large avalanches due to the high-activity supercritical state. The bistability is due to the presence of a first-order (discontinuous) transition in the phase diagram, and the observed critical behavior is connected with the line where the low-activity state becomes unstable (spinodal line).
Collapse
Affiliation(s)
- Hanieh Alvankar Golpayegan
- Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Antonio de Candia
- Dipartimento di Fisica "E. Pancini", Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, 80126 Napoli, Italy
- INFN, Sezione di Napoli, Gruppo collegato di Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
25
|
Lombardi F, Pepić S, Shriki O, Tkačik G, De Martino D. Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain. NATURE COMPUTATIONAL SCIENCE 2023; 3:254-263. [PMID: 38177880 PMCID: PMC10766559 DOI: 10.1038/s43588-023-00410-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/02/2023] [Indexed: 01/06/2024]
Abstract
Neurons in the brain are wired into adaptive networks that exhibit collective dynamics as diverse as scale-specific oscillations and scale-free neuronal avalanches. Although existing models account for oscillations and avalanches separately, they typically do not explain both phenomena, are too complex to analyze analytically or intractable to infer from data rigorously. Here we propose a feedback-driven Ising-like class of neural networks that captures avalanches and oscillations simultaneously and quantitatively. In the simplest yet fully microscopic model version, we can analytically compute the phase diagram and make direct contact with human brain resting-state activity recordings via tractable inference of the model's two essential parameters. The inferred model quantitatively captures the dynamics over a broad range of scales, from single sensor oscillations to collective behaviors of extreme events and neuronal avalanches. Importantly, the inferred parameters indicate that the co-existence of scale-specific (oscillations) and scale-free (avalanches) dynamics occurs close to a non-equilibrium critical point at the onset of self-sustained oscillations.
Collapse
Affiliation(s)
- Fabrizio Lombardi
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Selver Pepić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | - Daniele De Martino
- Biofisika Institute (CSIC, UPV-EHU) and Ikerbasque Foundation, Bilbao, Spain.
| |
Collapse
|
26
|
Abstract
Analytical expressions for scaling of brain wave spectra derived from the general non-linear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent non-linear brain wave dynamics reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different non-linear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order non-linear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
Collapse
Affiliation(s)
- Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, CA, United States
- Center for Functional MRI, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
27
|
Jones SA, Barfield JH, Norman VK, Shew WL. Scale-free behavioral dynamics directly linked with scale-free cortical dynamics. eLife 2023; 12:e79950. [PMID: 36705565 PMCID: PMC9931391 DOI: 10.7554/elife.79950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.
Collapse
Affiliation(s)
- Sabrina A Jones
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Jacob H Barfield
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - V Kindler Norman
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas at FayettevilleFayettevilleUnited States
| |
Collapse
|
28
|
Neto JP, Spitzner FP, Priesemann V. Sampling effects and measurement overlap can bias the inference of neuronal avalanches. PLoS Comput Biol 2022; 18:e1010678. [PMID: 36445932 PMCID: PMC9733887 DOI: 10.1371/journal.pcbi.1010678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/09/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.
Collapse
Affiliation(s)
- Joao Pinheiro Neto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
29
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
30
|
Tian Y, Tan Z, Hou H, Li G, Cheng A, Qiu Y, Weng K, Chen C, Sun P. Theoretical foundations of studying criticality in the brain. Netw Neurosci 2022; 6:1148-1185. [PMID: 38800464 PMCID: PMC11117095 DOI: 10.1162/netn_a_00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 05/29/2024] Open
Abstract
Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information-processing capacities in the brain. While considerable evidence generally supports this hypothesis, nonnegligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the nontriviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, that is, ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistical techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
- Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China
| | - Zeren Tan
- Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China
| | - Hedong Hou
- UFR de Mathématiques, Université de Paris, Paris, France
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Aohua Cheng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yike Qiu
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Kangyu Weng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Chun Chen
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Pei Sun
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Martinez-Saito M. Discrete scaling and criticality in a chain of adaptive excitable integrators. CHAOS, SOLITONS & FRACTALS 2022; 163:112574. [DOI: 10.1016/j.chaos.2022.112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
32
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Warm D, Bassetti D, Schroer J, Luhmann HJ, Sinning A. Spontaneous Activity Predicts Survival of Developing Cortical Neurons. Front Cell Dev Biol 2022; 10:937761. [PMID: 36035995 PMCID: PMC9399774 DOI: 10.3389/fcell.2022.937761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity plays a crucial role in brain development by coordinating the integration of immature neurons into emerging cortical networks. High levels and complex patterns of spontaneous activity are generally associated with low rates of apoptosis in the cortex. However, whether spontaneous activity patterns directly encode for survival of individual cortical neurons during development remains an open question. Here, we longitudinally investigated spontaneous activity and apoptosis in developing cortical cultures, combining extracellular electrophysiology with calcium imaging. These experiments demonstrated that the early occurrence of calcium transients was strongly linked to neuronal survival. Silent neurons exhibited a higher probability of cell death, whereas high frequency spiking and burst behavior were almost exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring neurons exerted a pro-survival effect, whereas on the functional level, networks with a high modular topology were associated with lower cell death rates. Using machine learning algorithms, cell fate of individual neurons was predictable through the integration of spontaneous activity features. Our results indicate that high frequency spiking activity constrains apoptosis in single neurons through sustained calcium rises and thereby consolidates networks in which a high modular topology is reached during early development.
Collapse
|
34
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
35
|
Nandi MK, Sarracino A, Herrmann HJ, de Arcangelis L. Scaling of avalanche shape and activity power spectrum in neuronal networks. Phys Rev E 2022; 106:024304. [PMID: 36109993 DOI: 10.1103/physreve.106.024304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
Many systems in nature exhibit avalanche dynamics with scale-free features. A general scaling theory has been proposed for critical avalanche profiles in crackling noise, predicting the collapse onto a universal avalanche shape, as well as the scaling behavior of the activity power spectrum as Brown noise. Recently, much attention has been given to the profile of neuronal avalanches, measured in neuronal systems in vitro and in vivo. Although a universal profile was evidenced, confirming the validity of the general scaling theory, the parallel study of the power spectrum scaling under the same conditions was not performed. The puzzling observation is that in the majority of healthy neuronal systems the power spectrum exhibits a behavior close to 1/f, rather than Brown, noise. Here we perform a numerical study of the scaling behavior of the avalanche shape and the power spectrum for a model of integrate and fire neurons with a short-term plasticity parameter able to tune the system to criticality. We confirm that, at criticality, the average avalanche size and the avalanche profile fulfill the general avalanche scaling theory. However, the power spectrum consistently exhibits Brown noise behavior, for both fully excitatory networks and systems with 30% inhibitory networks. Conversely, a behavior closer to 1/f noise is observed in systems slightly off criticality. Results suggest that the power spectrum is a good indicator to determine how close neuronal activity is to criticality.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Alessandro Sarracino
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Hans J Herrmann
- PMMH, ESPCI, 7 Quai Saint Bernard, Paris 75005, France
- Departamento de Fisica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
| | - Lucilla de Arcangelis
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| |
Collapse
|
36
|
Rocha RP, Koçillari L, Suweis S, De Filippo De Grazia M, de Schotten MT, Zorzi M, Corbetta M. Recovery of neural dynamics criticality in personalized whole-brain models of stroke. Nat Commun 2022; 13:3683. [PMID: 35760787 PMCID: PMC9237050 DOI: 10.1038/s41467-022-30892-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/16/2022] [Indexed: 01/13/2023] Open
Abstract
The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.
Collapse
Affiliation(s)
- Rodrigo P Rocha
- Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Padova Neuroscience Center, Università di Padova, Padova, Italy.
| | - Loren Koçillari
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
- Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy
| | - Samir Suweis
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy
| | | | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
37
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Vassanelli S, Suweis S. Disentangling the critical signatures of neural activity. Sci Rep 2022; 12:10770. [PMID: 35750684 PMCID: PMC9232560 DOI: 10.1038/s41598-022-13686-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
The critical brain hypothesis has emerged as an attractive framework to understand neuronal activity, but it is still widely debated. In this work, we analyze data from a multi-electrodes array in the rat's cortex and we find that power-law neuronal avalanches satisfying the crackling-noise relation coexist with spatial correlations that display typical features of critical systems. In order to shed a light on the underlying mechanisms at the origin of these signatures of criticality, we introduce a paradigmatic framework with a common stochastic modulation and pairwise linear interactions inferred from our data. We show that in such models power-law avalanches that satisfy the crackling-noise relation emerge as a consequence of the extrinsic modulation, whereas scale-free correlations are solely determined by internal interactions. Moreover, this disentangling is fully captured by the mutual information in the system. Finally, we show that analogous power-law avalanches are found in more realistic models of neural activity as well, suggesting that extrinsic modulation might be a broad mechanism for their generation.
Collapse
Affiliation(s)
| | - Giorgio Nicoletti
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padua, Italy.
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| | - Samir Suweis
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
38
|
Mellor NG, Graham ES, Unsworth CP. Critical Spatial-Temporal Dynamics and Prominent Shape Collapse of Calcium Waves Observed in Human hNT Astrocytes in Vitro. Front Physiol 2022; 13:808730. [PMID: 35784870 PMCID: PMC9247335 DOI: 10.3389/fphys.2022.808730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Networks of neurons are typically studied in the field of Criticality. However, the study of astrocyte networks in the brain has been recently lauded to be of equal importance to that of the neural networks. To date criticality assessments have only been performed on networks astrocytes from healthy rats, and astrocytes from cultured dissociated resections of intractable epilepsy. This work, for the first time, presents studies of the critical dynamics and shape collapse of calcium waves observed in cultures of healthy human astrocyte networks in vitro, derived from the human hNT cell line. In this article, we demonstrate that avalanches of spontaneous calcium waves display strong critical dynamics, including power-laws in both the size and duration distributions. In addition, the temporal profiles of avalanches displayed self-similarity, leading to shape collapse of the temporal profiles. These findings are significant as they suggest that cultured networks of healthy human hNT astrocytes self-organize to a critical point, implying that healthy astrocytic networks operate at a critical point to process and transmit information. Furthermore, this work can serve as a point of reference to which other astrocyte criticality studies can be compared.
Collapse
Affiliation(s)
- Nicholas G. Mellor
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
- *Correspondence: Nicholas G. Mellor,
| | - E. Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Charles P. Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Mikaberidze G, D'Souza RM. Sandpile cascades on oscillator networks: The BTW model meets Kuramoto. CHAOS (WOODBURY, N.Y.) 2022; 32:053121. [PMID: 35649989 DOI: 10.1063/5.0095094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Cascading failures abound in complex systems and the Bak-Tang-Weisenfeld (BTW) sandpile model provides a theoretical underpinning for their analysis. Yet, it does not account for the possibility of nodes having oscillatory dynamics, such as in power grids and brain networks. Here, we consider a network of Kuramoto oscillators upon which the BTW model is unfolding, enabling us to study how the feedback between the oscillatory and cascading dynamics can lead to new emergent behaviors. We assume that the more out-of-sync a node is with its neighbors, the more vulnerable it is and lower its load-carrying capacity accordingly. Also, when a node topples and sheds load, its oscillatory phase is reset at random. This leads to novel cyclic behavior at an emergent, long timescale. The system spends the bulk of its time in a synchronized state where load builds up with minimal cascades. Yet, eventually, the system reaches a tipping point where a large cascade triggers a "cascade of larger cascades," which can be classified as a dragon king event. The system then undergoes a short transient back to the synchronous, buildup phase. The coupling between capacity and synchronization gives rise to endogenous cascade seeds in addition to the standard exogenous ones, and we show their respective roles. We establish the phenomena from numerical studies and develop the accompanying mean-field theory to locate the tipping point, calculate the load in the system, determine the frequency of the long-time oscillations, and find the distribution of cascade sizes during the buildup phase.
Collapse
Affiliation(s)
- Guram Mikaberidze
- Department of Mathematics, University of California, Davis, Davis, California 95616, USA
| | - Raissa M D'Souza
- Department of Computer Science and Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
40
|
Pena RFO, Rotstein HG. The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability. BIOLOGICAL CYBERNETICS 2022; 116:163-190. [PMID: 35038010 DOI: 10.1007/s00422-021-00919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and (ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z) and the peak-to-trough amplitude envelope ([Formula: see text]) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in response to sinusoidal inputs) also show [Formula: see text]-resonance in response to sinusoidal inputs, but generally do not (or do it very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in a network via subthreshold oscillations and resonance and the generation of network resonance.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, USA.
- Corresponding Investigator, CONICET, Buenos Aires, Argentina.
- Graduate Faculty, Behavioral Neurosciences Program, Rutgers University, Newark, USA.
| |
Collapse
|
41
|
Khoshkhou M, Montakhab A. Optimal reinforcement learning near the edge of a synchronization transition. Phys Rev E 2022; 105:044312. [PMID: 35590577 DOI: 10.1103/physreve.105.044312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Recent experimental and theoretical studies have indicated that the putative criticality of cortical dynamics may correspond to a synchronization phase transition. The critical dynamics near such a critical point needs further investigation specifically when compared to the critical behavior near the standard absorbing state phase transition. Since the phenomena of learning and self-organized criticality (SOC) at the edge of synchronization transition can emerge jointly in spiking neural networks due to the presence of spike-timing dependent plasticity (STDP), it is tempting to ask the following: what is the relationship between synchronization and learning in neural networks? Further, does learning benefit from SOC at the edge of synchronization transition? In this paper, we intend to address these important issues. Accordingly, we construct a biologically inspired model of a cognitive system which learns to perform stimulus-response tasks. We train this system using a reinforcement learning rule implemented through dopamine-modulated STDP. We find that the system exhibits a continuous transition from synchronous to asynchronous neural oscillations upon increasing the average axonal time delay. We characterize the learning performance of the system and observe that it is optimized near the synchronization transition. We also study neuronal avalanches in the system and provide evidence that optimized learning is achieved in a slightly supercritical state.
Collapse
Affiliation(s)
- Mahsa Khoshkhou
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Afshin Montakhab
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
42
|
Xu L, Feng J, Yu L. Avalanche criticality in individuals, fluid intelligence, and working memory. Hum Brain Mapp 2022; 43:2534-2553. [PMID: 35146831 PMCID: PMC9057106 DOI: 10.1002/hbm.25802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
Collapse
Affiliation(s)
- Longzhou Xu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China.,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, China.,The School of Nationalities' Educators, Qinghai Normal University, Xining, China
| |
Collapse
|
43
|
Adelhöfer N, Paulus T, Mückschel M, Bäumer T, Bluschke A, Takacs A, Tóth-Fáber E, Tárnok Z, Roessner V, Weissbach A, Münchau A, Beste C. Increased scale-free and aperiodic neural activity during sensorimotor integration-a novel facet in Tourette syndrome. Brain Commun 2021; 3:fcab250. [PMID: 34805995 PMCID: PMC8599001 DOI: 10.1093/braincomms/fcab250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by multiple motor and phonic tics. Tics in Tourette syndrome resemble spontaneously occurring movements in healthy controls and are therefore sometimes difficult to distinguish from these. Tics may in fact be mis-interpreted as a meaningful action, i.e. a signal with social content, whereas they lack such information and could be conceived a surplus of action or 'motor noise'. These and other considerations have led to a 'neural noise account' of Tourette syndrome suggesting that the processing of neural noise and adaptation of the signal-to-noise ratio during information processing is relevant for the understanding of Tourette syndrome. So far, there is no direct evidence for this. Here, we tested the 'neural noise account' examining 1/f noise, also called scale-free neural activity as well as aperiodic activity, in n = 74 children, adolescents and adults with Tourette syndrome and n = 74 healthy controls during task performance using EEG data recorded during a sensorimotor integration task. In keeping with results of a previous study in adults with Tourette syndrome, behavioural data confirmed that sensorimotor integration was also stronger in this larger Tourette syndrome cohort underscoring the relevance of perceptual-action processes in this disorder. More importantly, we show that 1/f noise and aperiodic activity during sensorimotor processing is increased in patients with Tourette syndrome supporting the 'neural noise account'. This implies that asynchronous/aperiodic neural activity during sensorimotor integration is stronger in patients with Tourette syndrome compared to healthy controls, which is probably related to abnormalities of GABAergic and dopaminergic transmission in these patients. Differences in 1/f noise and aperiodic activity between patients with Tourette syndrome and healthy controls were driven by high-frequency oscillations and not lower-frequency activity currently discussed to be important in the pathophysiology of tics. This and the fact that Bayesian statistics showed that there is evidence for the absence of a correlation between neural noise and clinical measures of tics, suggest that increased 1/f noise and aperiodic activity are not directly related to tics but rather represents a novel facet of Tourette syndrome.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Theresa Paulus
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany.,Department of Neurology, University of Lübeck, 23538 Lübeck, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary.,Institute of Psychology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, 1021 Budapest, Hungary
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, 01069 Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan, 250014, China
| |
Collapse
|
44
|
Oberto VJ, Boucly CJ, Gao H, Todorova R, Zugaro MB, Wiener SI. Distributed cell assemblies spanning prefrontal cortex and striatum. Curr Biol 2021; 32:1-13.e6. [PMID: 34699783 DOI: 10.1016/j.cub.2021.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Highly synchronous neuronal assembly activity is deemed essential for cognitive brain function. In theory, such synchrony could coordinate multiple brain areas performing complementary processes. However, cell assemblies have been observed only in single structures, typically cortical areas, and little is known about their synchrony with downstream subcortical structures, such as the striatum. Here, we demonstrate distributed cell assemblies activated at high synchrony (∼10 ms) spanning prefrontal cortex and striatum. In addition to including neurons at different brain hierarchical levels, surprisingly, they synchronized functionally distinct limbic and associative sub-regions. These assembly activations occurred when members shifted their firing phase relative to ongoing 4 Hz and theta rhythms, in association with high gamma oscillations. This suggests that these rhythms could mediate the emergence of cross-structural assemblies. To test for the role of assemblies in behavior, we trained the rats to perform a task requiring cognitive flexibility, alternating between two different rules in a T-maze. Overall, assembly activations were correlated with task-relevant parameters, including impending choice, reward, rule, or rule order. Moreover, these behavioral correlates were more robustly expressed by assemblies than by their individual member neurons. Finally, to verify whether assemblies can be endogenously generated, we found that they were indeed spontaneously reactivated during sleep and quiet immobility. Thus, cell assemblies are a more general coding mechanism than previously envisioned, linking distributed neocortical and subcortical areas at high synchrony.
Collapse
Affiliation(s)
- Virginie J Oberto
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Céline J Boucly
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - HongYing Gao
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralitsa Todorova
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Michaël B Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Sidney I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
45
|
Robinson PA. Discrete spectral eigenmode-resonance network of brain dynamics and connectivity. Phys Rev E 2021; 104:034411. [PMID: 34654199 DOI: 10.1103/physreve.104.034411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
The problem of finding a compact natural representation of brain dynamics and connectivity is addressed using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be analyzed in compact form in terms of natural dynamic "atoms," each of which is a frequency resonance of an eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT) approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific brain model. This means that dynamic equations can be inferred using system identification methods from control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters. The results link brain activity and connectivity with control-systems functions such as prediction and attention via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also be tracked to provide a more direct and temporally localized representation of the dynamics than correlations and covariances, which are widely used in the field. By synthesizing many different lines of research, this work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain dynamics, and function. This underlines the need to move between coordinate and spectral representations as required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks, which are highly prone to selection effects and artifacts.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
46
|
Keppler J. Building Blocks for the Development of a Self-Consistent Electromagnetic Field Theory of Consciousness. Front Hum Neurosci 2021; 15:723415. [PMID: 34650416 PMCID: PMC8505726 DOI: 10.3389/fnhum.2021.723415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
The goal of this work is to compile the basic components for the construction of an electromagnetic field theory of consciousness that meets the standards of a fundamental theory. An essential cornerstone of the conceptual framework is the vacuum state of quantum electrodynamics which, contrary to the classical notion of the vacuum, can be viewed as a vibrant ocean of energy, termed zero-point field (ZPF). Being the fundamental substrate mediating the electromagnetic force, the ubiquitous ZPF constitutes the ultimate bedrock of all electromagnetic phenomena. In particular, resonant interaction with the ZPF is critical for understanding rapidly forming, long-range coherent activity patterns that are characteristic of brain dynamics. Assuming that the entire phenomenal color palette is rooted in the vibrational spectrum of the ZPF and that each normal mode of the ZPF is associated with an elementary shade of consciousness, it stands to reason that conscious states are caused by the coupling of the brain to a particular set of normal modes selectively filtered from the full frequency spectrum of the ZPF. From this perspective, the brain is postulated to function as a resonant oscillator that couples to a specific range of ZPF modes, using these modes as a keyboard for the composition of an enormous variety of phenomenal states. Theoretical considerations suggest that the brain-ZPF interface is controlled by altering the concentrations of neurotransmitters, placing the detailed study of the neurotransmitter-ZPF interaction at the center of future research activities.
Collapse
|
47
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
Affiliation(s)
- Benedetta Mariani
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Padova, Italy
| | | | - Samir Suweis
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
48
|
Bansal K, Garcia JO, Lauharatanahirun N, Muldoon SF, Sajda P, Vettel JM. Scale-specific dynamics of high-amplitude bursts in EEG capture behaviorally meaningful variability. Neuroimage 2021; 241:118425. [PMID: 34303795 DOI: 10.1016/j.neuroimage.2021.118425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022] Open
Abstract
Cascading high-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-state show scale-invariant dynamics, supporting the hypothesis that the brain operates near a critical point that enables long range spatial communication. In fact, it has been suggested that such scale-invariant dynamics, characterized by a power-law distribution in these avalanches, are universal in neural systems and emerge through a common mechanism. While the analysis of avalanches and subsequent criticality is increasingly seen as a framework for using complex systems theory to understand brain function, it is unclear how the framework would account for the omnipresent cognitive variability, whether across individuals or tasks. To address this, we analyzed avalanches in the EEG activity of healthy humans during rest as well as two distinct task conditions that varied in cognitive demands and produced behavioral measures unique to each individual. In both rest and task conditions we observed that avalanche dynamics demonstrate scale-invariant characteristics, but differ in their specific features, demonstrating individual variability. Using a new metric we call normalized engagement, which estimates the likelihood for a brain region to produce high-amplitude bursts, we also investigated regional features of avalanche dynamics. Normalized engagement showed not only the expected individual and task dependent variability, but also scale-specificity that correlated with individual behavior. Our results suggest that the study of avalanches in human brain activity provides a tool to assess cognitive variability. Our findings expand our understanding of avalanche features and are supportive of the emerging theoretical idea that the dynamics of an active human brain operate close to a critical-like region and not a singular critical-state.
Collapse
Affiliation(s)
- Kanika Bansal
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Javier O Garcia
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Nina Lauharatanahirun
- Department of Biomedical Engineering and Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Sarah F Muldoon
- Mathematics Department, CDSE Program, and Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA
| | - Jean M Vettel
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
49
|
Lovas JR, Yuste R. Ensemble synchronization in the reassembly of Hydra's nervous system. Curr Biol 2021; 31:3784-3796.e3. [PMID: 34297913 DOI: 10.1016/j.cub.2021.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022]
Abstract
Although much is known about how the structure of the nervous system develops, it is still unclear how its functional modularity arises. A dream experiment would be to observe the entire development of a nervous system, correlating the emergence of functional units with their associated behaviors. This is possible in the cnidarian Hydra vulgaris, which, after its complete dissociation into individual cells, can reassemble itself back together into a normal animal. We used calcium imaging to monitor the complete neuronal activity of dissociated Hydra as they reaggregated over several days. Initially uncoordinated neuronal activity became synchronized into coactive neuronal ensembles. These local modules then synchronized with others, building larger functional ensembles that eventually extended throughout the entire reaggregate, generating neuronal rhythms similar to those of intact animals. Global synchronization was not due to neurite outgrowth but to strengthening of functional connections between ensembles. We conclude that Hydra's nervous system achieves its functional reassembly through the hierarchical modularity of neuronal ensembles.
Collapse
Affiliation(s)
- Jonathan R Lovas
- Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA.
| | - Rafael Yuste
- Neurotechnology Center, Department Biological Sciences, Columbia University, New York, NY 10027, USA; Marine Biological Laboratory, Woods Hole, MA 02354, USA
| |
Collapse
|
50
|
Fekete T, Hinrichs H, Sitt JD, Heinze HJ, Shriki O. Multiscale criticality measures as general-purpose gauges of proper brain function. Sci Rep 2021; 11:14441. [PMID: 34262121 PMCID: PMC8280148 DOI: 10.1038/s41598-021-93880-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
The brain is universally regarded as a system for processing information. If so, any behavioral or cognitive dysfunction should lend itself to depiction in terms of information processing deficiencies. Information is characterized by recursive, hierarchical complexity. The brain accommodates this complexity by a hierarchy of large/slow and small/fast spatiotemporal loops of activity. Thus, successful information processing hinges upon tightly regulating the spatiotemporal makeup of activity, to optimally match the underlying multiscale delay structure of such hierarchical networks. Reduced capacity for information processing will then be expressed as deviance from this requisite multiscale character of spatiotemporal activity. This deviance is captured by a general family of multiscale criticality measures (MsCr). MsCr measures reflect the behavior of conventional criticality measures (such as the branching parameter) across temporal scale. We applied MsCr to MEG and EEG data in several telling degraded information processing scenarios. Consistently with our previous modeling work, MsCr measures systematically varied with information processing capacity: MsCr fingerprints showed deviance in the four states of compromised information processing examined in this study, disorders of consciousness, mild cognitive impairment, schizophrenia and even during pre-ictal activity. MsCr measures might thus be able to serve as general gauges of information processing capacity and, therefore, as normative measures of brain health.
Collapse
Affiliation(s)
- Tomer Fekete
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jacobo Diego Sitt
- INSERM, U 1127, Paris, France
- Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hans-Jochen Heinze
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|