1
|
Yagishita S, Shibata M, Furuno A, Wakatsuki S, Araki T. Neuronal Excitation Induces Tau Protein Dephosphorylation via Protein Phosphatase 1 Activation to Promote Its Binding with Stable Microtubules. Neurol Int 2024; 16:653-662. [PMID: 38921953 PMCID: PMC11206689 DOI: 10.3390/neurolint16030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
The tau protein is a microtubule-associated protein that promotes microtubule stabilization. The phosphorylation of the tau protein has been linked to its dissociation from microtubules. Here, we examined the relationship between neuronal depolarization activity and tau protein phosphorylation by employing model systems in culture as well as in vivo. The KCl-evoked depolarization of cultured neurons has often been used to investigate the effects of neuronal activity. We found dephosphorylation at AT8 sites (S202, T205), T212, AT180 sites (T231, S235), and S396 in KCl-simulated cultured neurons. We also found that the KCl-induced tau protein dephosphorylation increases the level of the tau protein fractionated with stable microtubules. In an in vivo experiment, we demonstrated that the exposure of mice to a new environment activates protein phosphatase 1 in the mouse hippocampus and induces tau protein dephosphorylation. We also found an increased amount of the tau protein in a stable microtubule fraction, suggesting that the dephosphorylation of the tau protein may lead to its increased microtubule association in vivo. These results suggest that the association of microtubules with tau proteins may be regulated by the tau protein phosphorylation status affected by neuronal electrical activity.
Collapse
Affiliation(s)
| | | | | | | | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Tokyo 187-8502, Japan
| |
Collapse
|
2
|
Gong Q, Li W, Ali T, Hu Y, Mou S, Liu Z, Zheng C, Gao R, Li A, Li T, Li N, Yu Z, Li S. eIF4E phosphorylation mediated LPS induced depressive-like behaviors via ameliorated neuroinflammation and dendritic loss. Transl Psychiatry 2023; 13:352. [PMID: 37978167 PMCID: PMC10656522 DOI: 10.1038/s41398-023-02646-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The translational defect has emerged as a common feature of neurological disorders. Studies have suggested that alterations between opposing and balanced synaptic protein synthesis and turnover processes could lead to synaptic abnormalities, followed by depressive symptoms. Further studies link this phenomenon with eIF4E and TrkB/BDNF signaling. However, the interplay between the eIF4E and TrkB/BDNF signaling in the presence of neuroinflammation is yet to be explored. To illuminate the role of eIF4E activities within LPS-induced neuroinflammation and depression symptomology, we applied animal behavioral, biochemical, and pharmacological approaches. In addition, we sought to determine whether eIF4E dysregulated activities correlate with synaptic protein loss via the TrkB/BDNF pathway. Our results showed that LPS administration induced depressive-like behaviors, accompanied by neuroinflammation, reduced spine numbers, and synaptic protein dysregulation. Concurrently, LPS treatment enhanced eIF4E phosphorylation and TrkB/BDNF signaling defects. However, eFT508 treatment rescued the LPS-elicited neuroinflammation and depressive behaviors, as well as altered eIF4E phosphorylation, synaptic protein expression, and TrkB/BDNF signaling. The causal relation of eIF4E with BDNF signaling was further explored with TrkB antagonist K252a, which could reverse the effects of eFT508, validating the interplay between the eIF4E and TrkB/BDNF signaling in regulating depressive behaviors associated with neuroinflammation via synaptic protein translational regulation. In conclusion, our results support the involvement of eIF4E-associated translational dysregulation in synaptic protein loss via TrkB/BDNF signaling, eventually leading to depressiven-like behaviors upon inflammation-linked stress.
Collapse
Affiliation(s)
- Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Weifen Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Yue Hu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Shengnan Mou
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Zizhen Liu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Chengyou Zheng
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Axiang Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tao Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, 518107, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Alavi MS, Karimi G, Ghanimi HA, Roohbakhsh A. The potential of CYP46A1 as a novel therapeutic target for neurological disorders: An updated review of mechanisms. Eur J Pharmacol 2023; 949:175726. [PMID: 37062503 DOI: 10.1016/j.ejphar.2023.175726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Cholesterol is a key component of the cell membrane that impacts the permeability, fluidity, and functions of membrane-bound proteins. It also participates in synaptogenesis, synaptic function, axonal growth, dendrite outgrowth, and microtubule stability. Cholesterol biosynthesis and metabolism are in balance in the brain. Its metabolism in the brain is mediated mainly by CYP46A1 or cholesterol 24-hydroxylase. It is responsible for eliminating about 80% of the cholesterol excess from the human brain. CYP46A1 converts cholesterol to 24S-hydroxycholesterol (24HC) that readily crosses the blood-brain barrier and reaches the liver for the final elimination process. Studies show that cholesterol and 24HC levels change during neurological diseases and conditions. So, it was hypothesized that inhibition or activation of CYP46A1 would be an effective therapeutic strategy. Accordingly, preclinical studies, using genetic and pharmacological interventions, assessed the role of CYP46A1 in main neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. In addition, its role in seizures and brain injury was evaluated. The recent development of soticlestat, as a selective and potent CYP46A1 inhibitor, with significant anti-seizure effects in preclinical and clinical studies, suggests the importance of this target for future drug developments. Previous studies have shown that both activation and inhibition of CYP46A1 are of therapeutic value. This article, using recent studies, highlights the role of CYP46A1 in various brain diseases and insults.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Cheng Q, Wu J, Xia Y, Cheng Q, Zhao Y, Zhu P, Zhang W, Zhang S, Zhang L, Yuan Y, Li C, Chen G, Xue B. Disruption of protein geranylgeranylation in the cerebellum causes cerebellar hypoplasia and ataxia via blocking granule cell progenitor proliferation. Mol Brain 2023; 16:24. [PMID: 36782228 PMCID: PMC9923931 DOI: 10.1186/s13041-023-01010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The prenylation of proteins is involved in a variety of biological functions. However, it remains unknown whether it plays an important role in the morphogenesis of the cerebellum. To address this question, we generated a mouse model, in which the geranylgeranyl pyrophosphate synthase (Ggps1) gene is inactivated in neural progenitor cells in the developing cerebellum. We report that conditional knockout (cKO) of Ggps1 leads to severe ataxia and deficient locomotion. To identify the underlying mechanisms, we completed a series of cellular and molecular experiments. First, our morphological analysis revealed significantly decreased population of granule cell progenitors (GCPs) and impaired proliferation of GCPs in the developing cerebellum of Ggps1 cKO mice. Second, our molecular analysis showed increased expression of p21, an important cell cycle regulator in Ggps1 cKO mice. Together, this study highlights a critical role of Ggpps-dependent protein prenylation in the proliferation of cerebellar GCPs during cerebellar development.
Collapse
Affiliation(s)
- Qi Cheng
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Jing Wu
- grid.89957.3a0000 0000 9255 8984Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Yingqian Xia
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Qing Cheng
- grid.89957.3a0000 0000 9255 8984Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004 Jiangsu China
| | - Yinjuan Zhao
- grid.410625.40000 0001 2293 4910Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Peixiang Zhu
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Wangling Zhang
- grid.41156.370000 0001 2314 964XMedical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093 China
| | - Shihu Zhang
- grid.410745.30000 0004 1765 1045Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
| | - Lei Zhang
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Yushan Yuan
- Medical Imaging Center of Fuyang People’s Hospital, Fuyang, Anhui Province China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guiquan Chen
- Medical School of Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
6
|
Singh A, Rattan S. BDNF rescues aging-associated internal anal sphincter dysfunction. Am J Physiol Gastrointest Liver Physiol 2021; 321:G87-G97. [PMID: 34075793 PMCID: PMC8321795 DOI: 10.1152/ajpgi.00090.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging can lead to rectoanal incontinence due to internal anal sphincter (IAS) dysfunction, which is characterized by a decrease in IAS tone and contractility and an increase in nonadrenergic noncholinergic (NANC) relaxation. We aimed to determine whether brain-derived neurotropic factor (BDNF) rescues this aging-associated IAS dysfunction (AAID). To do so, we studied the effects of BDNF on the basal and G protein-coupled receptors (GPCR)-stimulated IAS smooth muscle tone and on NANC relaxation in Fischer 344 rats representing different age groups [26-mo-old (aging) vs. 6-mo-old (young)], before and after tyrosine kinase receptor B (TrkB) antagonist K252a. We also used isolated smooth muscle cells (SMCs) to determine the effects of BDNF before and after different agonists. For some studies, we monitored NO release using smooth muscle perfusates. BDNF reversed AAID by rescuing the basal IAS tone and agonists [thromboxane A2 analog (U46619) and angiotensin II (ANG II)]-induced contractility, and NANC relaxation. These rescue effects of BDNF were selective as K252a attenuated the changes in the IAS without modifying the effects of K+depolarization. Because of the direct association between the basal and GPCR-stimulated IAS tone and RhoA/ROCK activation, we speculate that this pathway in the rescue effects of BDNF. Conversely, our data suggest that aging-associated increased NANC relaxation is reversed by decreased release of NO and decrease in the sensitivity of the released inhibitory neurotransmitter. In summary, BDNF rescue of AAID involves RhoA/ROCK and inhibitory neurotransmission. These data have direct implications for the role of BDNF in the pathophysiology and therapeutic targeting of aging-associated rectoanal motility disorders.NEW & NOTEWORTHY These studies demonstrate that brain-derived neurotropic factor (BDNF) rescues the aging-associated internal anal sphincter (IAS) dysfunction, characterized by a decrease in IAS tone, and increase in non-adrenergic noncholinergic relaxation. We determined the effects of BDNF on the basal and GPCR (TXA2 and ANG II)-stimulated IAS tone, and on NANC relaxation, before and after TrkB inhibitor K252a. BDNF may have an important role in the pathophysiology and therapeutic targeting of certain rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Ötzkan S, Muller WE, Gibson Wood W, Eckert GP. Effects of 7,8-Dihydroxyflavone on Lipid Isoprenoid and Rho Protein Levels in Brains of Aged C57BL/6 Mice. Neuromolecular Med 2020; 23:130-139. [PMID: 33377988 PMCID: PMC7929957 DOI: 10.1007/s12017-020-08640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Synaptic impairment may be the main cause of cognitive dysfunction in brain aging that is probably due to a reduction in synaptic contact between the axonal buttons and dendritic spines. Rho proteins including the small GTPase Rac1 have become key regulators of neuronal morphogenesis that supports synaptic plasticity. Small Rho- and Ras-GTPases are post-translationally modified by the isoprenoids geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), respectively. For all GTPases, anchoring in the plasma membrane is essential for their activation by guanine nucleotide exchange factors (GEFs). Rac1-specific GEFs include the protein T lymphoma invasion and metastasis 1 (Tiam1). Tiam1 interacts with the TrkB receptor to mediate the brain-derived neurotrophic factor (BDNF)-induced activation of Rac1, resulting in cytoskeletal rearrangement and changes in cellular morphology. The flavonoid 7,8-dihydroxyflavone (7,8-DHF) acts as a highly affine-selective TrkB receptor agonist and causes the dimerization and autophosphorylation of the TrkB receptor and thus the activation of downstream signaling pathways. In the current study, we investigated the effects of 7,8-DHF on cerebral lipid isoprenoid and Rho protein levels in male C57BL/6 mice aged 3 and 23 months. Aged mice were daily treated with 100 mg/kg b.w. 7,8-DHF by oral gavage for 21 days. FPP, GGPP, and cholesterol levels were determined in brain tissue. In the same tissue, the protein content of Tiam1 and TrkB in was measured. The cellular localization of the small Rho-GTPase Rac1 and small Rab-GTPase Rab3A was studied in total brain homogenates and membrane preparations. We report the novel finding that 7,8-DHF restored levels of the Rho proteins Rac1 and Rab3A in membrane preparations isolated from brains of treated aged mice. The selective TrkB agonist 7,8-DHF did not affect BDNF and TrkB levels, but restored Tiam1 levels that were found to be reduced in brains of aged mice. FPP, GGPP, and cholesterol levels were significantly elevated in brains of aged mice but not changed by 7,8-DHF treatment. Hence, 7,8-DHF may be useful as pharmacological tool to treat age-related cognitive dysfunction although the underlying mechanisms need to be elucidated in detail.
Collapse
Affiliation(s)
- Sarah Ötzkan
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany
| | - Walter E Muller
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany
| | - W Gibson Wood
- Department of Pharmacology, Geriatric Research, Education and Clinical Center, University of Minnesota School of Medicine, VAMC, Minneapolis, MN, 55417, USA
| | - Gunter P Eckert
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Goethe-University, Max-von-Laue-St. 9, 60438, Frankfurt, Germany.
- Institute of Nutritional Sciences, Laboratory for Nutrition in Prevention and Therapy, Justus-Liebig-University of Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Rho GTPases in the Amygdala-A Switch for Fears? Cells 2020; 9:cells9091972. [PMID: 32858950 PMCID: PMC7563696 DOI: 10.3390/cells9091972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Fear is a fundamental evolutionary process for survival. However, excess or irrational fear hampers normal activity and leads to phobia. The amygdala is the primary brain region associated with fear learning and conditioning. There, Rho GTPases are molecular switches that act as signaling molecules for further downstream processes that modulate, among others, dendritic spine morphogenesis and thereby play a role in fear conditioning. The three main Rho GTPases—RhoA, Rac1, and Cdc42, together with their modulators, are known to be involved in many psychiatric disorders that affect the amygdala′s fear conditioning mechanism. Rich2, a RhoGAP mainly for Rac1 and Cdc42, has been studied extensively in such regard. Here, we will discuss these effectors, along with Rich2, as a molecular switch for fears, especially in the amygdala. Understanding the role of Rho GTPases in fear controlling could be beneficial for the development of therapeutic strategies targeting conditions with abnormal fear/anxiety-like behaviors.
Collapse
|
9
|
Sudarshan K, Boda AK, Dogra S, Bose I, Yadav PN, Aidhen IS. Discovery of an isocoumarin analogue that modulates neuronal functions via neurotrophin receptor TrkB. Bioorg Med Chem Lett 2019; 29:585-590. [PMID: 30600206 DOI: 10.1016/j.bmcl.2018.12.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023]
|
10
|
Brain-Derived Neurotrophic Factor Is Required for the Neuroprotective Effect of Mifepristone on Immature Purkinje Cells in Cerebellar Slice Culture. Int J Mol Sci 2019; 20:ijms20020285. [PMID: 30642045 PMCID: PMC6359295 DOI: 10.3390/ijms20020285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/02/2022] Open
Abstract
Endogenous γ-aminobutyric acid (GABA)-dependent activity induces death of developing Purkinje neurons in mouse organotypic cerebellar cultures and the synthetic steroid mifepristone blocks this effect. Here, using brain-derived neurotrophic factor (BDNF) heterozygous mice, we show that BDNF plays no role in immature Purkinje cell death. However, interestingly, BDNF haploinsufficiency impairs neuronal survival induced by mifepristone and GABAA-receptors antagonist (bicuculline) treatments, indicating that the underlying neuroprotective mechanism requires the neurotrophin full expression.
Collapse
|
11
|
Jennings BC, Lawton AJ, Rizk Z, Fierke CA. SmgGDS-607 Regulation of RhoA GTPase Prenylation Is Nucleotide-Dependent. Biochemistry 2018; 57:4289-4298. [PMID: 29940100 DOI: 10.1021/acs.biochem.8b00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein prenylation involves the attachment of a hydrophobic isoprenoid moiety to the C-terminus of proteins. Several small GTPases, including members of the Ras and Rho subfamilies, require prenylation for their normal and pathological functions. Recent work has suggested that SmgGDS proteins regulate the prenylation of small GTPases in vivo. Using RhoA as a representative small GTPase, we directly test this hypothesis using biochemical assays and present a mechanism describing the mode of prenylation regulation. SmgGDS-607 completely inhibits RhoA prenylation catalyzed by protein geranylgeranyltransferase I (GGTase-I) in an in vitro radiolabel incorporation assay. SmgGDS-607 inhibits prenylation by binding to and blocking access to the C-terminal tail of the small GTPase (substrate sequestration mechanism) rather than via inhibition of the prenyltransferase activity. The reactivity of GGTase-I with RhoA is unaffected by addition of nucleotides. In contrast, the affinity of SmgGDS-607 for RhoA varies with the nucleotide bound to RhoA; SmgGDS-607 has a higher affinity for RhoA-GDP compared to RhoA-GTP. Consequently, the prenylation blocking function of SmgGDS-607 is regulated by the bound nucleotide. This work provides mechanistic insight into a novel pathway for the regulation of small GTPase protein prenylation by SmgGDS-607 and demonstrates that peptides are a good mimic for full-length proteins when measuring GGTase-I activity.
Collapse
Affiliation(s)
- Benjamin C Jennings
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Alexis J Lawton
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zeinab Rizk
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Carol A Fierke
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
12
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
13
|
Hottman D, Cheng S, Gram A, LeBlanc K, Yuan LL, Li L. Systemic or Forebrain Neuron-Specific Deficiency of Geranylgeranyltransferase-1 Impairs Synaptic Plasticity and Reduces Dendritic Spine Density. Neuroscience 2018; 373:207-217. [PMID: 29406266 DOI: 10.1016/j.neuroscience.2018.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/23/2023]
Abstract
Isoprenoids and prenylated proteins regulate a variety of cellular functions, including neurite growth and synaptic plasticity. Importantly, they are implicated in the pathogenesis of several diseases, including Alzheimer's disease (AD). Recently, we have shown that two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), have differential effects in a mouse model of AD. Haplodeficiency of either FT or GGT attenuates amyloid-β deposition and neuroinflammation but only reduction in FT rescues cognitive function. The current study aimed to elucidate the potential mechanisms that may account for the lack of cognitive benefit in GGT-haplodeficient mice, despite attenuated neuropathology. The results showed that the magnitude of long-term potentiation (LTP) was markedly suppressed in hippocampal slices from GGT-haplodeficient mice. Consistent with the synaptic dysfunction, there was a significant decrease in cortical spine density and cognitive function in GGT-haplodeficient mice. To further study the neuron-specific effects of GGT deficiency, we generated conditional forebrain neuron-specific GGT-knockout (GGTf/fCre+) mice using a Cre/LoxP system under the CAMKIIα promoter. We found that both the magnitude of hippocampal LTP and the dendritic spine density of cortical neurons were decreased in GGTf/fCre+ mice compared with GGTf/fCre- mice. Immunoblot analyses of cerebral lysate showed a significant reduction in cell membrane-associated (geranylgeranylated) Rac1 and RhoA but not (farnesylated) H-Ras, in GGTf/fCre+ mice, suggesting that insufficient geranylgeranylation of the Rho family of small GTPases may underlie the detrimental effects of GGT deficiency. These findings reinforce the critical role of GGT in maintaining spine structure and synaptic/cognitive function in development and in the mature brain.
Collapse
Affiliation(s)
- David Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410208, China
| | - Andrea Gram
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kyle LeBlanc
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Li-Lian Yuan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States; Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, United States
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, United States; Department of Pharmacology and Graduate Programs in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
14
|
Moutinho M, Nunes MJ, Correia JC, Gama MJ, Castro-Caldas M, Cedazo-Minguez A, Rodrigues CMP, Björkhem I, Ruas JL, Rodrigues E. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk. Sci Rep 2016; 6:30928. [PMID: 27491694 PMCID: PMC4974659 DOI: 10.1038/srep30928] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/01/2016] [Indexed: 01/19/2023] Open
Abstract
Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge C Correia
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer's Disease Research Center, Novum, Stockholm, Sweden
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
15
|
Gao S, Mo J, Chen L, Wang Y, Mao X, Shi Y, Zhang X, Yu R, Zhou X. Astrocyte GGTI-mediated Rac1 prenylation upregulates NF-κB expression and promotes neuronal apoptosis following hypoxia/ischemia. Neuropharmacology 2016; 103:44-56. [DOI: 10.1016/j.neuropharm.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
|
16
|
Gao S, Yu R, Zhou X. The Role of Geranylgeranyltransferase I-Mediated Protein Prenylation in the Brain. Mol Neurobiol 2015; 53:6925-6937. [DOI: 10.1007/s12035-015-9594-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
17
|
Yuan M, Gao S, Sun C, Chen L, Shi Q, Hu J, Yu R, Zhou X. Inhibiting geranylgeranyltransferase I activity decreases spine density in central nervous system. Hippocampus 2014; 25:373-84. [PMID: 25330763 DOI: 10.1002/hipo.22379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
Geranylgeranyltransferase I (GGT), a protein prenyltransferase, is responsible for the posttranslational lipidation of Rho GTPases, such as Rac, Rho and Cdc42, all of which play an important role in neuronal synaptogenesis. We previously demonstrated that GGT promotes dendritic morphogenesis in cultured hippocampal neurons and cerebellar slices. We report here that inhibiting GGT activity decreases basal- and activity-dependent changes in spine density as well as in learning and memory ability of mice in vivo. We found that KCl- or bicuculline-induced dendritic spine density increases was abolished by specific GGT inhibitor GGTi-2147 treatment in cultured hippocampal neurons. GGTi-2147 lateral ventricular injection reduced GGT activity and membrane association of Rac and decreased the density of dendritic spines in the mouse hippocampus, frontal cortex and cerebellum. GGTi-2147 administration also impaired learning and memory ability of mice. More importantly, mice exposed to environmental enrichment (EE) showed increased spine density and learning and memory ability, which were significantly reversed by GGTi-2147 administration. These data demonstrate that inhibiting GGT activity prevents both basal- and activity-dependent changes in spine density in central nervous system both in vitro and in vivo. Manipulating GGT activity may be a promising strategy for the therapies of neurodevelopmental disorders, such as autism, depression, and schizophrenia.
Collapse
Affiliation(s)
- Maochun Yuan
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Afshordel S, Wood WG, Igbavboa U, Muller WE, Eckert GP. Impaired geranylgeranyltransferase-I regulation reduces membrane-associated Rho protein levels in aged mouse brain. J Neurochem 2014; 129:732-42. [PMID: 24428713 PMCID: PMC3999261 DOI: 10.1111/jnc.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
Synaptic impairment rather than neuronal loss may be the leading cause of cognitive dysfunction in brain aging. Certain small Rho-GTPases are involved in synaptic plasticity, and their dysfunction is associated with brain aging and neurodegeneration. Rho-GTPases undergo prenylation by attachment of geranylgeranylpyrophosphate (GGPP) catalyzed by GGTase-I. We examined age-related changes in the abundance of Rho and Rab proteins in membrane and cytosolic fractions as well as of GGTase-I in brain tissue of 3- and 23-month-old C57BL/6 mice. We report a shift in the cellular localization of Rho-GTPases toward reduced levels of membrane-associated and enhanced cytosolic levels of those proteins in aged mouse brain as compared with younger mice. The age-related reduction in membrane-associated Rho proteins was associated with a reduction in GGTase-Iβ levels that regulates binding of GGPP to Rho-GTPases. Proteins prenylated by GGTase-II were not reduced in aged brain indicating a specific targeting of GGTase-I in the aged brain. Inhibition of GGTase-I in vitro modeled the effects of aging we observed in vivo. We demonstrate for the first time a decrease in membrane-associated Rho proteins in aged brain in association with down-regulation of GGTase-Iβ. This down-regulation could be one of the mechanisms causing age-related weakening of synaptic plasticity.
Collapse
Affiliation(s)
- Sarah Afshordel
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - W. Gibson Wood
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417 USA
| | - Urule Igbavboa
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research, Education and Clinical Center, VAMC, Minneapolis, MN 55417 USA
| | - Walter E. Muller
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| | - Gunter P. Eckert
- Department of Pharmacology, Biocenter Niederursel, University of Frankfurt, Max-von-Laue-St. 9, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Hottman DA, Li L. Protein prenylation and synaptic plasticity: implications for Alzheimer's disease. Mol Neurobiol 2014; 50:177-85. [PMID: 24390573 DOI: 10.1007/s12035-013-8627-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022]
Abstract
Protein prenylation is an important lipid posttranslational modification of proteins. It includes protein farnesylation and geranylgeranylation, in which the 15-carbon farnesyl pyrophosphate or 20-carbon geranylgeranyl pyrophosphate is attached to the C-terminus of target proteins, catalyzed by farnesyl transferase or geranylgeranyl transferases, respectively. Protein prenylation facilitates the anchoring of proteins into the cell membrane and mediates protein-protein interactions. Among numerous proteins that undergo prenylation, small GTPases represent the largest group of prenylated proteins. Small GTPases are involved in regulating a plethora of cellular functions including synaptic plasticity. The prenylation status of small GTPases determines the subcellular locations and functions of the proteins. Dysregulation or dysfunction of small GTPases leads to the development of different types of disorders. Emerging evidence indicates that prenylated proteins, in particular small GTPases, may play important roles in the pathogenesis of Alzheimer's disease. This review focuses on the prenylation of Ras and Rho subfamilies of small GTPases and its relation to synaptic plasticity and Alzheimer's disease.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 2001 6th St SE, MTRF 4-208, Minneapolis, MN, 55455, USA
| | | |
Collapse
|
20
|
Zhang H, Nie W, Zhang X, Zhang G, Li Z, Wu H, Shi Q, Chen Y, Ding Z, Zhou X, Yu R. NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro. PLoS One 2013; 8:e82789. [PMID: 24340059 PMCID: PMC3858320 DOI: 10.1371/journal.pone.0082789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/28/2013] [Indexed: 01/04/2023] Open
Abstract
Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF) using cultured glioma cells. NEDD4-1 overexpression promoted cell migration and invasion, while its downregulation specifically inhibited them. However, NEDD4-1 did not affect the proliferation and apoptosis of glioma cells. NEDD4-1 physically interacted with CNrasGEF and promoted its poly-ubiquitination and degradation. Contrary to the effect of NEDD4-1, CNrasGEF downregulation promoted cell migration and invasion, while its overexpression inhibited them. Importantly, downregulation of CNrasGEF facilitated the effect of NEDD4-1-induced cell migration and invasion. Interestingly, aberrant up-regulated NEDD4-1 showed reverse correlation with CNrasGEF protein level but not with its mRNA level in glioma tissues. Combined with the in vitro results, the result of glioma tissues indicated post-translationally modification effect of NEDD4-1 on CNrasGEF. Our study suggests that NEDD4-1 regulates cell migration and invasion through ubiquitination of CNrasGEF in vitro.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenchen Nie
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xu Zhang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Gentang Zhang
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiqiang Li
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Huaibing Wu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiong Shi
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yong Chen
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhijun Ding
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (RY); (XZ)
| | - Rutong Yu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (RY); (XZ)
| |
Collapse
|
21
|
Vadodaria KC, Jessberger S. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases. Front Synaptic Neurosci 2013; 5:4. [PMID: 23986696 PMCID: PMC3752586 DOI: 10.3389/fnsyn.2013.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023] Open
Abstract
Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps, from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus (DG) circuitry.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | | |
Collapse
|
22
|
Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, Kalyanaraman B, Dwinell MB, Auchampach JA, Williams CL. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal 2013; 6:ra39. [PMID: 23716716 DOI: 10.1126/scisignal.2003374] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During metastasis, cancer cells acquire the ability to dissociate from each other and migrate, which is recapitulated in vitro as cell scattering. The small guanosine triphosphatase (GTPase) Rap1 opposes cell scattering by promoting cell-cell adhesion, a function that requires its prenylation, or posttranslational modification with a carboxyl-terminal isoprenoid moiety, to enable its localization at cell membranes. Thus, signaling cascades that regulate the prenylation of Rap1 offer a mechanism to control the membrane localization of Rap1. We identified a signaling cascade initiated by adenosine A2B receptors that suppressed the prenylation of Rap1B through phosphorylation of Rap1B, which decreased its interaction with the chaperone protein SmgGDS (small GTPase guanosine diphosphate dissociation stimulator). These events promoted the cytosolic and nuclear accumulation of nonprenylated Rap1B and diminished cell-cell adhesion, resulting in cell scattering. We found that nonprenylated Rap1 was more abundant in mammary tumors than in normal mammary tissue in rats and that activation of adenosine receptors delayed Rap1B prenylation in breast, lung, and pancreatic cancer cell lines. Our findings support a model in which high concentrations of extracellular adenosine, such as those that arise in the tumor microenvironment, can chronically activate A2B receptors to suppress Rap1B prenylation and signaling at the cell membrane, resulting in reduced cell-cell contact and promoting cell scattering. Inhibiting A2B receptors may be an effective method to prevent metastasis.
Collapse
Affiliation(s)
- Elizabeth Ntantie
- 1Department of Pharmacology and Toxicology, Cancer Center, and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li Z, Sun C, Zhang T, Mo J, Shi Q, Zhang X, Yuan M, Chen L, Mao X, Yu R, Zhou X. Geranylgeranyltransferase I mediates BDNF-induced synaptogenesis. J Neurochem 2013; 125:698-712. [PMID: 23534605 DOI: 10.1111/jnc.12249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Zhengwei Li
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Chengdong Sun
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Tao Zhang
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Jianbing Mo
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Qiong Shi
- Lab of Neurosurgery; Xuzhou Medical College; Xuzhou Jiangsu China
- Department of Neurosurgery; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of Brain Disease Biology; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xianfeng Zhang
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Maochun Yuan
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Long Chen
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xueqiang Mao
- The Graduate School; Xuzhou Medical College; Xuzhou Jiangsu China
| | - Rutong Yu
- Lab of Neurosurgery; Xuzhou Medical College; Xuzhou Jiangsu China
- Department of Neurosurgery; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of Brain Disease Biology; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
| | - Xiuping Zhou
- Lab of Neurosurgery; Xuzhou Medical College; Xuzhou Jiangsu China
- Department of Neurosurgery; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
- Key Laboratory of Brain Disease Biology; Affiliated Hospital of Xuzhou Medical College; Xuzhou Jiangsu China
| |
Collapse
|
24
|
Zhou X, Liu Z, Shi Q, Jiao J, Bian W, Song X, Mo J, sang B, Xu Y, Qian J, Chao Y, Yu R. Geranylgeranyltransferase I regulates HIF-1α promoting glioblastoma cell migration and invasion. J Neurooncol 2013; 112:365-74. [DOI: 10.1007/s11060-013-1081-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/12/2013] [Indexed: 01/21/2023]
|
25
|
Posada-Duque RA, Velasquez-Carvajal D, Eckert GP, Cardona-Gomez GP. Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochem Int 2013; 62:433-45. [PMID: 23411415 DOI: 10.1016/j.neuint.2013.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/24/2022]
Abstract
Statins are widely used cholesterol-lowering drugs that may reduce the incidence of stroke and the progression of Alzheimer's disease (AD). However, how statins exert these beneficial effects remains poorly understood. Thus, this study evaluated the roles of Rac1 geranylgeranylation and the relationship between Rac1 and αN-catenin in the protective activity of atorvastatin (ATV) in a cortical neuronal culture model of glutamate (GLU) excitotoxicity. We found that ATV-induced neuroprotection and plasticity were blocked by isoprenoids, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), inhibition of farnesylation (FTI-277) and geranylgeranylation (GGTI-286), down-regulation of GGTase-Iβ and Rac activity and promotion of active RhoA. Additionally, ATV rescued the distribution of dendritic αN-catenin and increased the number and length of dendritic branches; these effects were reversed by GGTI-286, GGTase-Iβ shRNA, Rac1 shRNA and a dominant-negative version of Rac1 (T17N). In summary, our findings suggest that ATV requires GGTase-Iβ, prenylation and active Rac1 to induce protection and plasticity. In this regard, αN-catenin is a marker for stable interactions between adhesion proteins and the actin cytoskeleton and is necessary for the neuroprotective action of ATV.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, Faculty of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | | | | | | |
Collapse
|
26
|
Cieslik KA, Trial J, Carlson S, Taffet GE, Entman ML. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J 2013; 27:1761-71. [PMID: 23303205 DOI: 10.1096/fj.12-220145] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With age, the collagen content of the heart increases, leading to interstitial fibrosis. We have shown that CD44(pos) fibroblasts derived from aged murine hearts display reduced responsiveness to TGF-β but, paradoxically, have increased collagen expression in vivo and in vitro. We postulated that this phenomenon was due to the defect in mesenchymal stem cell (MSC) differentiation in a setting of elevated circulating insulin levels and production that we observed in aging mice. We discovered that cultured fibroblasts derived from aged but not young cardiac MSCs of nonhematopoietic lineage displayed increased basal and insulin-induced (1 nM) collagen expression (2-fold), accompanied by increased farnesyltransferase (FTase) and Erk activities. In a quest for a possible mechanism, we found that a chronic pathophysiologic insulin concentration (1 nM) caused abnormal fibroblast differentiation of MSCs isolated from young hearts. Fibroblasts derived from these MSCs responded to insulin by elevating collagen expression as seen in untreated aged fibroblast cultures, suggesting a causal link between increased insulin levels and defective MSC responses. Here we report an insulin-dependent pathway that specifically targets collagen type I transcriptional activation leading to a unique mechanism of fibrosis that is TGF-β and inflammation-independent in the aged heart.
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Baylor College of Medicine, Department of Medicine, Division of Cardiovascular Sciences, One Baylor Plaza, Mail Station BCM620, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
27
|
Zhou X, Qian J, Hua L, Shi Q, Liu Z, Xu Y, Sang B, Mo J, Yu R. Geranylgeranyltransferase I promotes human glioma cell growth through Rac1 membrane association and activation. J Mol Neurosci 2012; 49:130-9. [PMID: 23073905 DOI: 10.1007/s12031-012-9905-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022]
Abstract
Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.
Collapse
Affiliation(s)
- Xiuping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lindsley TA, Shah SN, Ruggiero EA. Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcohol Clin Exp Res 2012; 35:1321-30. [PMID: 21676004 DOI: 10.1111/j.1530-0277.2011.01468.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The effects of ethanol on development of postmitotic neurons include altered neurite outgrowth and differentiation, which may contribute to neuropathology associated with fetal alcohol spectrum disorders. We previously reported that ethanol exposure alters axon growth dynamics in dissociated cultures of rat hippocampal pyramidal neurons. Given the important regulatory role of small Rho guanosine triphosphatases (GTPases) in cytoskeletal reorganization associated with axon growth, and reports that ethanol alters whole cell Rho GTPase activity in other cell types, this study explored the hypothesis that ethanol alters Rho GTPase activity specifically in axonal growth cones. METHODS Fetal rat hippocampal pyramidal neurons were maintained in dissociated cultures for 1 day in control medium or medium containing 11 to 43 mM ethanol. Some cultures were also treated with brain-derived neurotrophic factor (BDNF), an activator of Rac1 and Cdc42 GTPases that promotes axon extension. Levels of active Rho GTPases in growth cones were measured using in situ binding assays for GTP-bound Rac1, Cdc42, and RhoA. Axon length, growth cone area, and growth cone surface expression of tyrosine kinase B (TrkB), the receptor for BDNF, were assessed by digital morphometry and immunocytochemistry. RESULTS Although ethanol increased the surface area of growth cones, the levels of active Rho GTPases in axonal growth cones were not affected in the absence of exogenous BDNF. In contrast, ethanol exposure inhibited BDNF-induced Rac1/Cdc42 activation in a dose-dependent manner and increased RhoA activation at the highest concentration tested. Similar TrkB expression was observed on the surface of axonal growth cones of control and ethanol-treated neurons. CONCLUSIONS These results reveal an inhibitory effect of ethanol on growth cone signaling via small Rho GTPases during early stages of hippocampal development in vitro, and suggest a mechanism whereby ethanol may disrupt neurotrophic factor regulation of axon growth and guidance.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology & Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208, USA.
| | | | | |
Collapse
|
29
|
Ohsawa M, Mutoh J, Yamamoto S, Ono H, Hisa H. Effect of spinally administered simvastatin on the formalin-induced nociceptive response in mice. J Pharmacol Sci 2012; 119:102-6. [PMID: 22510521 DOI: 10.1254/jphs.12007sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Clinical and experimental observations indicated that 3-hydroxy-3-methylglutaryl CoA reductase inhibitor statins have pleiotropic effects. The present study determined the antinociceptive property of centrally administered simvastatin on the formalin-induced nociception in the mouse. Intrathecal administration of simvastatin at doses of 0.5 - 50 nmol dose-dependently attenuated the second, but not the first, phase of the formalin-induced nociception, which was partially reversed by mevalonate (5 µmol). Intracerebroventricular injection of simvastatin (50 nmol) did not affect the formalin-induced nociception. These results suggest that simvastatin-induced antinociception is mediated by attenuation of the sensitization of spinal nociceptive transmission.
Collapse
Affiliation(s)
- Masahiro Ohsawa
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka-shi, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
30
|
Archer T. Influence of Physical Exercise on Traumatic Brain Injury Deficits: Scaffolding Effect. Neurotox Res 2011; 21:418-34. [DOI: 10.1007/s12640-011-9297-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
|
31
|
Zhou XP, Luo ZG. Regulation of protein prenyltransferase in central neurons. Commun Integr Biol 2011; 2:138-40. [PMID: 19704911 DOI: 10.4161/cib.7819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 11/19/2022] Open
Abstract
Geranylgeranyltransferase I (GGT) is a protein prenyltransferase that mediates lipid modification of some proteins such as Rho family small GTPases. Since the activation of Rho GTPases mediates tumorgenesis and metastasis, GGT has become an attractive target for anti-tumor drug design. Although GGT is extensively expressed in the brain, the function of GGT in central nervous system (CNS) is totally unknown. We have previously shown that GGT was involved in neuromuscular synaptogenesis. In this study, we report that neuronal activity- and brain-derived neurotropic factor (BDNF)-dependent dendritic morphogenesis requires activation of GGT. Furthermore, GGT was activated by depolarization or BDNF in cultured neurons or in hippocampus of the mice under novelty exploration test, suggesting that neuronal activity activates GGT in vitro and in vivo. In this addendum, we further discuss the significance of this study and the possible implication to the field.
Collapse
Affiliation(s)
- Xiu-Ping Zhou
- Institute of Neuroscience; State Key Laboratory of Neuroscience; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China
| | | |
Collapse
|
32
|
Abstract
Both healthy aging and the pathologic incidence of disorders associated with aging involve an array of debilities. Physical exercise harnesses implicit and inherent biologic characteristics amenable to the putative interventional influences under clinical, institutional or laboratory conditions. The neurodegenerative and pathophysiologic progressions that constitute Alzheimer's disease (AD), amnestic mild cognitive impairment (aMCI), normal aging, and different animal models of AD have shown the existence of several putative mechanisms. A large variety of moderating factors have demonstrated that the ever-proliferating plethora of neurotrophic factors, neurogenesis as observed through generality of expression and neuronal arborization. The insistent efficacy of brain vascular angiogenesis may delay also the comorbid incidence of depressive disorders with dementia pathology. The pathogenesis of aging may be contained by selective treatments: these diverse conditions, linked to the basis of the aging concept, have been shown, to greater or lesser extents, to respond to a variety of scheduled applications of physical exercise. The range of reports that provide accounts of the mechanisms mediating the positive progressive response to exercise intervention is far-ranging; these studies indicate that subtle changes at molecular, neuronal, vascular and epigenetic levels may exert notable consequence at functional expression and, perhaps most essentially, offer convincing expectancy of significant benefits.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Samuel F, Hynds DL. RHO GTPase signaling for axon extension: is prenylation important? Mol Neurobiol 2010; 42:133-42. [PMID: 20878268 DOI: 10.1007/s12035-010-8144-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/12/2010] [Indexed: 12/27/2022]
Abstract
Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined. Activity and subcellular localization of the Rho GTPases are regulated by post-translational modification. The addition of a geranylgeranyl group to the carboxy (C-) terminus targets Rho GTPases to the plasma membrane and promotes their activation by facilitating interaction with guanine nucleotide exchange factors and allowing sequestering by association with guanine dissociation inhibitors. However, it is unclear how these modifications affect neurite extension or how subcellular localization alters signaling from the classical Rho GTPases (RhoA, Rac1, and Cdc42). Here, we review recent data addressing this issue and propose that Rho GTPase geranylgeranylation regulates outgrowth.
Collapse
Affiliation(s)
- Filsy Samuel
- Department of Biology, Texas Woman's University, PO Box 425799, Denton, TX 46204-5799, USA
| | | |
Collapse
|
34
|
Running wheel activity restores MPTP-induced functional deficits. J Neural Transm (Vienna) 2010; 118:407-20. [DOI: 10.1007/s00702-010-0474-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023]
|
35
|
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 2010; 518:2934-51. [PMID: 20533354 DOI: 10.1002/cne.22372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain-derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post-mortem anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild-type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3-6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3-6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
36
|
Berg TJ, Gastonguay AJ, Lorimer EL, Kuhnmuench JR, Li R, Fields AP, Williams CL. Splice variants of SmgGDS control small GTPase prenylation and membrane localization. J Biol Chem 2010; 285:35255-66. [PMID: 20709748 PMCID: PMC2975149 DOI: 10.1074/jbc.m110.129916] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.
Collapse
Affiliation(s)
- Tracy J Berg
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 2010; 70:271-88. [PMID: 20186709 DOI: 10.1002/dneu.20774] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development, neural networks are established in a highly organized manner, which persists throughout life. Neurotrophins play crucial roles in the developing nervous system. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) is highly conserved in gene structure and function during vertebrate evolution, and serves an important role during brain development and in synaptic plasticity. BDNF participates in the formation of appropriate synaptic connections in the brain, and disruptions in this process contribute to disorders of cognitive function. In this review, we first briefly highlight current knowledge on the expression, regulation, and secretion of BDNF. Further, we provide an overview of the possible actions of BDNF in the development of neural circuits, with an emphasis on presynaptic actions of BDNF during the structural development of central neurons.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
38
|
Wu KY, Zhou XP, Luo ZG. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells. Mol Brain 2010; 3:18. [PMID: 20540740 PMCID: PMC2902468 DOI: 10.1186/1756-6606-3-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 06/11/2010] [Indexed: 11/16/2022] Open
Abstract
Background During cerebellar development, Purkinje cells (PCs) form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT) is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML), the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA) inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF) promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.
Collapse
Affiliation(s)
- Kong-Yan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
39
|
Luo Z. Synapse formation and remodeling. SCIENCE CHINA-LIFE SCIENCES 2010; 53:315-321. [PMID: 20596925 DOI: 10.1007/s11427-010-0069-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Synapses are specialized structures that mediate information flow between neurons and target cells, and thus are the basis for neuronal system to execute various functions, including learning and memory. There are around 10(11) neurons in the human brain, with each neuron receiving thousands of synaptic inputs, either excitatory or inhibitory. A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals, synaptic cleft, and postsynaptic compartments. Synapse formation involves a number of cell adhesion molecules, extracellular factors, and intracellular signaling or structural proteins. After the establishment of synaptic connections, synapses undergo structural or functional changes, known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors. This review summarizes recent progress in the field of synapse development, with particular emphasis on the work carried out in China during the past 10 years (1999-2009).
Collapse
Affiliation(s)
- ZhenGe Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
40
|
Yin YX, Sun ZP, Huang SH, Zhao L, Geng Z, Chen ZY. RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. J Neurochem 2010; 114:110-21. [PMID: 20403074 DOI: 10.1111/j.1471-4159.2010.06745.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Tropomyosin-related kinase (Trk) B is a receptor tyrosine kinase for brain-derived neurotrophic factor (BDNF) which plays a critical role in neuronal survival, differentiation and morphogenesis. Ran-binding protein in the microtubule-organizing center (RanBPM) is a cytosolic scaffold protein that has been shown to interact with protein-tyrosine kinase receptor MET, Axl/Sky, and TrkA in addition to the pan-neurotrophin receptor pan-neurotrophin receptor 75 kDa. In this study, we report RanBPM is a novel TrkB-interacting protein that contributes to BDNF-induced MAPK and Akt activation together with neuronal morphogenesis and survival. Over-expression of RanBPM in PC1210 cells (PC12 cells stably over-expressing TrkB) can significantly enhance BDNF-induced MAPK and Akt activation. Moreover, RanBPM can promote BDNF-induced hippocampal neuronal morphogenesis and enhance BDNF-mediated trophic effects after serum deprivation, while siRNA knock down of RanBPM in cells has the opposite effects. Together, these results suggest that RanBPM may modulate TrkB-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Yu-Xia Yin
- Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
41
|
Hooff GP, Wood WG, Müller WE, Eckert GP. Isoprenoids, small GTPases and Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:896-905. [PMID: 20382260 DOI: 10.1016/j.bbalip.2010.03.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/26/2010] [Accepted: 03/27/2010] [Indexed: 11/27/2022]
Abstract
The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer's disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction.
Collapse
Affiliation(s)
- Gero P Hooff
- Department of Pharmacology, Campus Riedberg, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|