1
|
Han B, Dong X, Li M, Wang Z, Shi C, Zhou Q, Liu Z, Yan L. Morphological diversity variation of seed traits among 587 germplasm resources of Medicago Genus and 32 germplasm resources of Trigonella Genus. Sci Rep 2025; 15:3059. [PMID: 39856189 PMCID: PMC11759673 DOI: 10.1038/s41598-025-87185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Germplasm resources within the Medicago genus are highly regarded for their value as forage crops and their critical roles in nitrogen cycling, ecosystem restoration, and soil structure improvement. Therefore, understanding the diversity of seed morphology in this genus is essential for advancing its development and utilization. This study analyzed seed samples from 587 germplasm accessions representing 77 species within Medicago genus, as well as 32 accessions from 21 species within the closely related genus Trigonella. A statistical analysis was conducted on twelve traits, including seven quantitative traits-straight length (SL), straight width (SW), width-to-length ratio (WL), perimeter (PE), radicle length (RL), hilum length (HL), and 100-seed weight (SY)-and five qualitative traits, including seed coat condition, radicle characteristics, seed size, shape, and color. The results revealed that: (1) there was significant diversity (P < 0.05) in SL, SW, WL, PE, RL, HL, and SY across Medicago species; (2) principal component analysis of the 587 Medicago accessions identified SL, SW, PE, HL, RL, and SY as the primary contributors to morphological diversity; and (3) high-resolution images of seeds from various accessions were captured for future research. This study provides a solid foundation for the establishment of seed banks and the enhancement of germplasm resources through the systematic analysis of these morphological traits.
Collapse
Affiliation(s)
- Bingcheng Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhaoming Wang
- National Center of Pratacultural Technology Innovation (under preparation), Hohhot, 010070, China
| | - Congcong Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Feng XY, Wu WQ, Li MH, Li SX, Zeng Z, Shao ZQ, Zhang YM. Deciphering the landscape and evolutionary trajectory of NLR immune receptors in Dioscorea alata. PLANT MOLECULAR BIOLOGY 2024; 115:13. [PMID: 39720984 DOI: 10.1007/s11103-024-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/01/2024] [Indexed: 12/26/2024]
Abstract
Dioscorea alata, a key tuber crop for global food security, is threatened by anthracnose disease caused by Colletotrichum gloeosporioides. However, identification of functional resistance genes against C. gloeosporioides in D. alata is challenging due to low flowering and hybridization efficiency of this plant. Nucleotide-binding leucine-rich repeat (NLR) genes constitute the largest group of plant disease resistance genes, from which functional genes against diverse pathogens across various crops have been cloned. In this study, a comprehensive genome-wide analysis identified 346 NLR genes from D. alata, including one RNL and 345 CNLs. These NLRs were unequally distributed on 20 chromosomes, with chromosome 3 harboring the highest number (78 NLR genes). The majority of NLR genes (91%) were located in multigene clusters, implying that tandem or proximal duplication was the primary driving force for NLR gene expansion in D. alata. Comparative analysis of Dioscoreaceae species revealed high variability and differential expansion patterns of NLR genes. In addition, transcriptome profiling of D. alata post-infection with C. gloeosporioides identified 12 differentially expressed NLR genes. In summary, this study sheds new light on the genetic architecture and evolutionary dynamics of D. alata NLR genes, offering valuable insights for cloning functional genes against C. gloeosporioides.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Xing-Yu Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wen-Qiang Wu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Ming-Han Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Sai-Xi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| |
Collapse
|
3
|
Gao Y, Cui Y, Li M, Kang J, Yang Q, Ma Q, Long R. Comparative proteomic discovery of salt stress response in alfalfa roots and overexpression of MsANN2 confers salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109033. [PMID: 39137681 DOI: 10.1016/j.plaphy.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Soil salinity constrains growth, development and yield of alfalfa (Medicago sativa L.). To illustrate the molecular mechanisms responsible for salt tolerance, a comparative proteome analysis was explored to characterize protein profiles of alfalfa seedling roots exposed to 100 and 200 mM NaCl for three weeks. There were 52 differentially expressed proteins identified, among which the mRNA expressions of 12 were verified by Real-Time-PCR analysis. The results showed increase in abundance of ascorbate peroxidase, POD, CBS protein and PR-10 in salt-stressed alfalfa, suggesting an effectively antioxidant and defense systems. Alfalfa enhanced protein quality control system to refold or degrade abnormal proteins induced by salt stress through upregulation of unfolded protein response (UPR) marker PDIs and molecular chaperones (eg. HSP70, TCP-1, and GroES) as well as the ubiquitin-proteasome system (UPS) including ubiquitin ligase enzyme (E3) and proteasome subunits. Upregulation of proteins responsible for calcium signal transduction including calmodulin and annexin helped alfalfa adapt to salt stress. Specifically, annexin (MsANN2), a key Ca2+-binding protein, was selected for further characterization. The heterologous of the MsANN2 in Arabidopsis conferred salt tolerance. These results provide detailed information for salt-responsive root proteins and highlight the importance of MsANN2 in adapting to salt stress in alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yanjun Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang, 311300, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qiaoli Ma
- College of Forestry and Prataculture, Ningxia University, No. 489 West Helanshan Road, Yinchuan, Ningxia, 750021, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
4
|
Negi VS, Srinivasan R, Dutta B. Diversity, abundance, and domain architecture of plant NLR proteins in Fabaceae. Heliyon 2024; 10:e34475. [PMID: 39816363 PMCID: PMC11734081 DOI: 10.1016/j.heliyon.2024.e34475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 01/18/2025] Open
Abstract
The resistance (R) gene family in plants is a vital component of the plant defense system, enabling host resistance against pathogens through interactions with pathogen effector proteins. These R genes often encode nucleotide-binding (NB-ARC or N) and leucine-rich-repeat (LRR or L) domains, collectively forming the NLR protein family. The NLR proteins have been widely explored in crops from Poaceae and Brassicaceae, but limited studies are available for crops in other families, including Fabaceae. To address this gap, we conducted a comprehensive genome-wide analysis of putative NLR proteins in nine Fabaceae crops, including Glycine max, Lupinus angustifolius, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense, Vigna angularis, Vigna radiata, and Vigna unguiculata. Our study revealed a substantial variation in the number of NLR proteins, independent of genome size. Notably, the NB-ARC domain exhibited a preferential co-occurrence with a specific LRR domain (IPR001611) in Fabaceae. Furthermore, through protein signature analysis, we identified both species-specific and shared domains across the nine crops. By classifying the identified proteins into seven distinct classes (N, L, CN, TN, NL, CNL, and TNL), we observed species-specific clustering within the CN, TN, and CNL classes, reflecting the diversification of species within Fabaceae. This genome-wide study enhances our understanding of the NLR protein repertoire and comprehensive protein signatures in nine Fabaceae species and provides valuable insights into plant defense mechanisms.
Collapse
Affiliation(s)
- Vishal Singh Negi
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, 32608, USA
| | | | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| |
Collapse
|
5
|
Anthony TL, Szutu DJ, Verfaillie JG, Baldocchi DD, Silver WL. Carbon-sink potential of continuous alfalfa agriculture lowered by short-term nitrous oxide emission events. Nat Commun 2023; 14:1926. [PMID: 37024458 PMCID: PMC10079834 DOI: 10.1038/s41467-023-37391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Alfalfa is the most widely grown forage crop worldwide and is thought to be a significant carbon sink due to high productivity, extensive root systems, and nitrogen-fixation. However, these conditions may increase nitrous oxide (N2O) emissions thus lowering the climate change mitigation potential. We used a suite of long-term automated instrumentation and satellite imagery to quantify patterns and drivers of greenhouse gas fluxes in a continuous alfalfa agroecosystem in California. We show that this continuous alfalfa system was a large N2O source (624 ± 28 mg N2O m2 y-1), offsetting the ecosystem carbon (carbon dioxide (CO2) and methane (CH4)) sink by up to 14% annually. Short-term N2O emissions events (i.e., hot moments) accounted for ≤1% of measurements but up to 57% of annual emissions. Seasonal and daily trends in rainfall and irrigation were the primary drivers of hot moments of N2O emissions. Significant coherence between satellite-derived photosynthetic activity and N2O fluxes suggested plant activity was an important driver of background emissions. Combined data show annual N2O emissions can significantly lower the carbon-sink potential of continuous alfalfa agriculture.
Collapse
Affiliation(s)
- Tyler L Anthony
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA.
| | - Daphne J Szutu
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA
| | - Joseph G Verfaillie
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA
| | - Dennis D Baldocchi
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA
| | - Whendee L Silver
- Ecosystem Science Division, Department of Environmental Science, Policy and Management, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Rosier A, Pomerleau M, Beauregard PB, Samac DA, Bais HP. Surfactin and Spo0A-Dependent Antagonism by Bacillus subtilis Strain UD1022 against Medicago sativa Phytopathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1007. [PMID: 36903868 PMCID: PMC10005099 DOI: 10.3390/plants12051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this study indicate that the PGPR UD1022 would be a good candidate for further investigations into its antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE 19713, USA
| | - Maude Pomerleau
- Département de Biologie, Bureau D8-1014, Université de Sherbrooke, 2500 boul. Université Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Pascale B. Beauregard
- Département de Biologie, Bureau D8-1014, Université de Sherbrooke, 2500 boul. Université Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Deborah A. Samac
- USDA-ARS Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Harsh P. Bais
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
7
|
Subedi U, Burton Hughes K, Chen G, Hannoufa A, Singer SD. Eliciting Targeted Mutations in Medicago sativa Using CRISPR/Cas9-Mediated Genome Editing: A Potential Tool for the Improvement of Disease Resistance. Methods Mol Biol 2023; 2659:219-239. [PMID: 37249896 DOI: 10.1007/978-1-0716-3159-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) has become a breeding tool of choice for eliciting targeted genetic alterations in crop species as a means of improving a wide range of agronomic traits, including disease resistance, in recent years. With the recent development of CRISPR/Cas9 technology in Medicago sativa (alfalfa), which is an important perennial forage legume grown worldwide, its use for the enhancement of pathogen resistance is almost certainly on the horizon. In this chapter, we present detailed procedures for the generation of a single nonhomologous end-joining-derived indel at a precise genomic locus of alfalfa via CRISPR/Cas9. This method encompasses crucial steps in this process, including guide RNA design, binary CRISPR vector construction, Agrobacterium-mediated transformation of alfalfa explants, and molecular assessments of transformed genotypes for transgene and edit identification.
Collapse
Affiliation(s)
- Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
8
|
Frey LA, Vleugels T, Ruttink T, Schubiger FX, Pégard M, Skøt L, Grieder C, Studer B, Roldán-Ruiz I, Kölliker R. Phenotypic variation and quantitative trait loci for resistance to southern anthracnose and clover rot in red clover. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4337-4349. [PMID: 36153770 PMCID: PMC9734235 DOI: 10.1007/s00122-022-04223-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2022] [Indexed: 06/02/2023]
Abstract
High variability for and candidate loci associated with resistance to southern anthracnose and clover rot in a worldwide collection of red clover provide a first basis for genomics-assisted breeding. Red clover (Trifolium pratense L.) is an important forage legume of temperate regions, particularly valued for its high yield potential and its high forage quality. Despite substantial breeding progress during the last decades, continuous improvement of cultivars is crucial to ensure yield stability in view of newly emerging diseases or changing climatic conditions. The high amount of genetic diversity present in red clover ecotypes, landraces, and cultivars provides an invaluable, but often unexploited resource for the improvement of key traits such as yield, quality, and resistance to biotic and abiotic stresses. A collection of 397 red clover accessions was genotyped using a pooled genotyping-by-sequencing approach with 200 plants per accession. Resistance to the two most pertinent diseases in red clover production, southern anthracnose caused by Colletotrichum trifolii, and clover rot caused by Sclerotinia trifoliorum, was assessed using spray inoculation. The mean survival rate for southern anthracnose was 22.9% and the mean resistance index for clover rot was 34.0%. Genome-wide association analysis revealed several loci significantly associated with resistance to southern anthracnose and clover rot. Most of these loci are in coding regions. One quantitative trait locus (QTL) on chromosome 1 explained 16.8% of the variation in resistance to southern anthracnose. For clover rot resistance we found eight QTL, explaining together 80.2% of the total phenotypic variation. The SNPs associated with these QTL provide a promising resource for marker-assisted selection in existing breeding programs, facilitating the development of novel cultivars with increased resistance against two devastating fungal diseases of red clover.
Collapse
Affiliation(s)
- Lea A Frey
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Tim Vleugels
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
| | - Franz X Schubiger
- Agroscope, Plant Breeding, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Marie Pégard
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), 86600, Lusignan, France
| | - Leif Skøt
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Christoph Grieder
- Agroscope, Plant Breeding, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
9
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
10
|
Gui X, Zhang P, Wang D, Ding Z, Wu X, Shi J, Shen QH, Xu YZ, Ma W, Qiao Y. Phytophthora effector PSR1 hijacks the host pre-mRNA splicing machinery to modulate small RNA biogenesis and plant immunity. THE PLANT CELL 2022; 34:3443-3459. [PMID: 35699507 PMCID: PMC9421478 DOI: 10.1093/plcell/koac176] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/06/2022] [Indexed: 05/29/2023]
Abstract
Phytophthora effector PSR1 suppresses small RNA (sRNA)-mediated immunity in plants, but the underlying mechanism remains unknown. Here, we show that Phytophthora suppressor of RNA silencing 1 (PSR1) contributes to the pathogenicity of Phytophthora sojae and specifically binds to three conserved C-terminal domains of the eukaryotic PSR1-Interacting Protein 1 (PINP1). PINP1 encodes PRP16, a core pre-mRNA splicing factor that unwinds RNA duplexes and binds to primary microRNA transcripts and general RNAs. Intriguingly, PSR1 decreased both RNA helicase and RNA-binding activity of PINP1, thereby dampening sRNA biogenesis and RNA metabolism. The PSR1-PINP1 interaction caused global changes in alternative splicing (AS). A total of 5,135 genes simultaneously exhibited mis-splicing in both PSR1-overexpressing and PINP1-silenced plants. AS upregulated many mRNA transcripts that had their introns retained. The high occurrence of intron retention in AS-induced transcripts significantly promoted Phytophthora pathogen infection in Nicotiana benthamiana, and this might be caused by the production of truncated proteins. Taken together, our findings reveal a key role for PINP1 in regulating sRNA biogenesis and plant immunity.
Collapse
Affiliation(s)
- Xinmeng Gui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Dan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhan Ding
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei 430072, China
| | - Xian Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei 430072, China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
11
|
Yang B, Zhao Y, Guo Z. Research Progress and Prospect of Alfalfa Resistance to Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2022; 11:2008. [PMID: 35956485 PMCID: PMC9370300 DOI: 10.3390/plants11152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
Abstract
Alfalfa is one of the most important legume forages in the world and contributes greatly to the improvement of ecosystems, nutrition, and food security. Diseases caused by pathogens and pests severely restrict the production of alfalfa. Breeding resistant varieties is the most economical and effective strategy for the control of alfalfa diseases and pests, and the key to breeding resistant varieties is to identify important resistance genes. Plant innate immunity is the theoretical basis for identifying resistant genes and breeding resistant varieties. In recent years, the framework of plant immunity theory has been gradually formed and improved, and considerable progress has been made in the identification of alfalfa resistance genes and the revelation of the related mechanisms. In this review, we summarize the basic theory of plant immunity and identify alfalfa resistance genes to different pathogens and insects and resistance mechanisms. The current situation, problems, and future prospects of alfalfa resistance research are also discussed. Breeding resistant cultivars with effective resistance genes, together with other novel plant protection technologies, will greatly improve alfalfa production.
Collapse
Affiliation(s)
- Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yao Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
12
|
Yu H, Yang Q, Fu F, Li W. Three strategies of transgenic manipulation for crop improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:948518. [PMID: 35937379 PMCID: PMC9354092 DOI: 10.3389/fpls.2022.948518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of exogenous genes, overexpression of endogenous genes, and suppressed expression of undesirable genes are the three strategies of transgenic manipulation for crop improvement. Up to 2020, most (227) of the singular transgenic events (265) of crops approved for commercial release worldwide have been developed by the first strategy. Thirty-eight of them have been transformed by synthetic sequences transcribing antisense or double-stranded RNAs and three by mutated copies for suppressed expression of undesirable genes (the third strategy). By the first and the third strategies, hundreds of transgenic events and thousands of varieties with significant improvement of resistance to herbicides and pesticides, as well as nutritional quality, have been developed and approved for commercial release. Their application has significantly decreased the use of synthetic pesticides and the cost of crop production and increased the yield of crops and the benefits to farmers. However, almost all the events overexpressing endogenous genes remain at the testing stage, except one for fertility restoration and another for pyramiding herbicide tolerance. The novel functions conferred by the heterologously expressing exogenous genes under the control of constitutive promoters are usually absent in the recipient crops themselves or perform in different pathways. However, the endogenous proteins encoded by the overexpressing endogenous genes are regulated in complex networks with functionally redundant and replaceable pathways and are difficult to confer the desirable phenotypes significantly. It is concluded that heterologous expression of exogenous genes and suppressed expression by RNA interference and clustered regularly interspaced short palindromic repeats-cas (CRISPR/Cas) of undesirable genes are superior to the overexpression of endogenous genes for transgenic improvement of crops.
Collapse
Affiliation(s)
| | | | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
A successful defense of the narrow-leafed lupin against anthracnose involves quick and orchestrated reprogramming of oxidation-reduction, photosynthesis and pathogenesis-related genes. Sci Rep 2022; 12:8164. [PMID: 35581248 PMCID: PMC9114385 DOI: 10.1038/s41598-022-12257-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Narrow-leafed lupin (NLL, Lupinus angustifolius L.) is a legume plant cultivated for grain production and soil improvement. Worldwide expansion of NLL as a crop attracted various pathogenic fungi, including Colletotrichum lupini causing a devastating disease, anthracnose. Two alleles conferring improved resistance, Lanr1 and AnMan, were exploited in NLL breeding, however, underlying molecular mechanisms remained unknown. In this study, European NLL germplasm was screened with Lanr1 and AnMan markers. Inoculation tests in controlled environment confirmed effectiveness of both resistance donors. Representative resistant and susceptible lines were subjected to differential gene expression profiling. Resistance to anthracnose was associated with overrepresentation of "GO:0006952 defense response", "GO:0055114 oxidation-reduction process" and "GO:0015979 photosynthesis" gene ontology terms. Moreover, the Lanr1 (83A:476) line revealed massive transcriptomic reprogramming quickly after inoculation, whereas other lines showed such a response delayed by about 42 h. Defense response was associated with upregulation of TIR-NBS, CC-NBS-LRR and NBS-LRR genes, pathogenesis-related 10 proteins, lipid transfer proteins, glucan endo-1,3-beta-glucosidases, glycine-rich cell wall proteins and genes from reactive oxygen species pathway. Early response of 83A:476, including orchestrated downregulation of photosynthesis-related genes, coincided with the successful defense during fungus biotrophic growth phase, indicating effector-triggered immunity. Mandelup response was delayed and resembled general horizontal resistance.
Collapse
|
14
|
Hu J, Zheng M, Dang S, Shi M, Zhang J, Li Y. Biocontrol Potential of Bacillus amyloliquefaciens LYZ69 Against Anthracnose of Alfalfa ( Medicago sativa). PHYTOPATHOLOGY 2021; 111:1338-1348. [PMID: 33325723 DOI: 10.1094/phyto-09-20-0385-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracnose is a destructive disease of alfalfa (Medicago sativa) that causes severe yield losses. Biological control can be an effective and eco-friendly approach to control this alfalfa disease. In the present study, Bacillus amyloliquefaciens LYZ69, previously isolated from healthy alfalfa roots, showed a strong in vitro antifungal activity against Colletotrichum truncatum, an important causal agent of anthracnose of alfalfa. The strain LYZ69 protected alfalfa plants (biocontrol efficacy of 82.59%) from anthracnose under greenhouse conditions. The cell-free culture (CFC) of LYZ69 (20%, vol/vol) caused 60 and 100% inhibition of mycelial growth and conidial germination, respectively. High-performance liquid chromatography tandem mass spectrometry separated and identified cyclic lipopeptides (LPs) such as bacillomycin D and fengycin in the CFC of LYZ69. Light microscopy and scanning electron microscopy revealed that the mixture of cyclic LPs produced by LYZ69 caused drastic changes in mycelial morphology. Fluorescence microscopy showed that the LPs induced reactive oxygen species accumulation and caused apoptosis-like cell death in C. truncatum hyphae. In summary, our findings provide evidence to support B. amyloliquefaciens LYZ69 as a promising candidate for the biological control of anthracnose in alfalfa.
Collapse
Affiliation(s)
- Jinling Hu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mingzhu Zheng
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shuzhong Dang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Shi
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
15
|
Batnini M, Haddoudi I, Taamali W, Djebali N, Badri M, Mrabet M, Mhadhbi H. Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices. THE PLANT PATHOLOGY JOURNAL 2021; 37:315-328. [PMID: 34365743 PMCID: PMC8357562 DOI: 10.5423/ppj.oa.01.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 06/01/2023]
Abstract
Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes' activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.
Collapse
Affiliation(s)
- Marwa Batnini
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Imen Haddoudi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, České Budějovice, PB 37005, Czechia
| | - Wael Taamali
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Naceur Djebali
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Mounawer Badri
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, PB 2050, Tunisia
| |
Collapse
|
16
|
Fang X, Zhang C, Wang Z, Duan T, Yu B, Jia X, Pang J, Ma L, Wang Y, Nan Z. Co-infection by Soil-Borne Fungal Pathogens Alters Disease Responses Among Diverse Alfalfa Varieties. Front Microbiol 2021; 12:664385. [PMID: 34335495 PMCID: PMC8317461 DOI: 10.3389/fmicb.2021.664385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Fusarium oxysporum f. sp. medicaginis (Fom) and Rhizoctonia solani (Rs) are the major soil-borne fungal pathogens that pose severe threats to commercial alfalfa production in China. However, the effects of Fom and Rs co-infection on alfalfa and whether co-infection alters disease resistance responses among diverse varieties remain unknown. A collection of 80 alfalfa varieties (Medicago sativa) originated from seven countries were used to study the effects of Fom and Rs co-infection on alfalfa and host resistance responses. The co-infection resulted in more severe disease and reductions in growth and biomass allocation across varieties in comparison with either single infection by Fom or Rs; in addition, root morphology was much more strongly altered by the co-infection. Principal component analysis based on all plant traits showed that varieties under the co-infection were related to the single infection by Rs, being separated from Fom, and hierarchical clustering found differential response patterns among varieties upon co-infection compared with either single infection, with most varieties being highly susceptible to the co-infection. Furthermore, varieties that were most resistant to either single infection were not effective to co-infection, and there was no individual variety with resistance to both pathogens singly and co-infected. This study reveals for the first time that the co-infection by Fom and Rs alters disease resistance responses among diverse alfalfa varieties and provides useful information for developing alfalfa varieties with resistance to the co-occurrence of different soil-borne pathogens.
Collapse
Affiliation(s)
- Xiangling Fang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Caixia Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zi Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Binhua Yu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xitao Jia
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiayin Pang
- School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Lisong Ma
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Blanco-Pastor JL, Liberal IM, Sakiroglu M, Wei Y, Brummer EC, Andrew RL, Pfeil BE. Annual and perennial Medicago show signatures of parallel adaptation to climate and soil in highly conserved genes. Mol Ecol 2021; 30:4448-4465. [PMID: 34217151 DOI: 10.1111/mec.16061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Human induced environmental change may require rapid adaptation of plant populations and crops, but the genomic basis of environmental adaptation remain poorly understood. We analysed polymorphic loci from the perennial crop Medicago sativa (alfalfa or lucerne) and the annual legume model species M. truncatula to search for a common set of candidate genes that might contribute to adaptation to abiotic stress in both annual and perennial Medicago species. We identified a set of candidate genes of adaptation associated with environmental gradients along the distribution of the two Medicago species. Candidate genes for each species were detected in homologous genomic linkage blocks using genome-environment (GEA) and genome-phenotype association analyses. Hundreds of GEA candidate genes were species-specific, of these, 13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phenotypic traits. A set of 168 GEA candidates were shared by both species, which was 25.4% more than expected by chance. When combined, they explained a high proportion of variance for certain phenotypic traits associated with adaptation. Genes with highly conserved functions dominated among the shared candidates and were enriched in gene ontology terms that have shown to play a central role in drought avoidance and tolerance mechanisms by means of cellular shape modifications and other functions associated with cell homeostasis. Our results point to the existence of a molecular basis of adaptation to abiotic stress in Medicago determined by highly conserved genes and gene functions. We discuss these results in light of the recently proposed omnigenic model of complex traits.
Collapse
Affiliation(s)
- José Luis Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | - Isabel M Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Muhammet Sakiroglu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Yanling Wei
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - E Charles Brummer
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
18
|
Genetic and Physical Localization of the Gene Controlling Leaf Pigmentation Pattern in Medicago truncatula. G3-GENES GENOMES GENETICS 2020; 10:4159-4165. [PMID: 32912932 PMCID: PMC7642937 DOI: 10.1534/g3.120.401689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In Medicago truncatula, some ecotypes form a black or purple stain in the middle of adaxial leaf surface due to accumulation of anthocyanins. However, this morphological marker is missing in some other ecotypes, although anthocyanin biosynthesis pathway is not disrupted. Genetic analysis indicated that the lack of the leaf spot of anthocyanins accumulation is a dominant trait, which is controlled by a single gene, LPP1. Genetic mapping indicated that the LPP1 gene was delimited to a 280 kb-region on Chromosome 7. A total of 8 protein-coding genes were identified in the LPP1 locus through gene annotation and sequence analysis. Of those, two genes, putatively encoding MYB-transcriptional suppressors, were selected as candidates for functional validation.
Collapse
|
19
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
20
|
Yu LX, Zhang F, Culma CM, Lin S, Niu Y, Zhang T, Yang Q, Smith M, Hu J. Construction of High-Density Linkage Maps and Identification of Quantitative Trait Loci Associated with Verticillium Wilt Resistance in Autotetraploid Alfalfa ( Medicago sativa L.). PLANT DISEASE 2020; 104:1439-1444. [PMID: 32150504 DOI: 10.1094/pdis-08-19-1718-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Verticillium wilt (VW) of alfalfa is a devastating disease that causes forage yield reductions of up to 50% in the northern United States and Canada. The most effective method for controlling the disease is through the development and use of resistant varieties. To identify quantitative trait loci (QTL) for VW resistance in alfalfa, we used a full-sib population segregating for VW resistance. High-density linkage maps for both resistant and susceptible parents were constructed using single-dose alleles of single-nucleotide polymorphism markers generated by genotyping-by-sequencing. Five QTL associated with VW resistance were identified and they were in four linkage groups (4D, 6B, 6D, and 8C). Of those, three QTL (qVW-6D-1, qVW-6D-2, and qVW-8C) had higher logarithm of odds. Two putative candidates of nucleotide-binding site leucine-rich repeat disease resistance genes were identified in the QTL intervals of qVW-6D-2 and qVW-8C, respectively. The result agreed with our previous studies, in which similar resistance loci were identified in an association panel using genome-wide association. The results provide insight into the quantitative resistance to VW in alfalfa. The resistance loci and closely linked markers identified in the present study can be used in developing new alfalfa varieties with enhanced resistance to VW.
Collapse
Affiliation(s)
- Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, U.S.A
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cesar Medina Culma
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, U.S.A
| | - Sen Lin
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, U.S.A
| | - Yi Niu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, U.S.A
| | - Tiejun Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark Smith
- S&W Seed Company, 4819 E. Lewis Lane, Nampa, ID, U.S.A
| | - Jinguo Hu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, WA, U.S.A
| |
Collapse
|
21
|
Ning J, He XZ, Hou F, Lou S, Chen X, Chang S, Zhang C, Zhu W. Optimizing alfalfa productivity and persistence versus greenhouse gases fluxes in a continental arid region. PeerJ 2020; 8:e8738. [PMID: 32195058 PMCID: PMC7069402 DOI: 10.7717/peerj.8738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/12/2020] [Indexed: 11/28/2022] Open
Abstract
Alfalfa in China is mostly planted in the semi-arid or arid Northwest inland regions due to its ability to take up water from deep in the soil and to fix atmospheric N2 which reduces N fertilizer application. However, perennial alfalfa may deplete soil water due to uptake and thus aggravate soil desiccation. The objectives of this study were (1) to determine the alfalfa forage yield, soil property (soil temperature (ST), soil water content (SWC), soil organic carbon (SOC) and soil total nitrogen (STN)) and greenhouse gas (GHG: methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)) emissions affected by alfalfa stand age and growing season, (2) to investigate the effects of soil property on GHG emissions, and (3) to optimize the alfalfa stand age by integrating the two standard criteria, the forage yield and water use efficiency, and the total GHG efflux (CO2-eq). This study was performed in alfalfa fields of different ages (2, 3, 5 and 7 year old) during the growing season (from April to October) in a typical salinized meadow with temperate continental arid climate in the Northwest inland regions, China. Despite its higher total GHG efflux (CO2-eq), the greater forage yield and water use efficiency with lower GEIhay and high CH4 uptake in the 5-year alfalfa stand suggested an optimal alfalfa stand age of 5 years. Results show that ST, SOC and RBM alone had positive effects (except RBM had no significant effect on CH4 effluxes), but SWC and STN alone had negative effects on GHG fluxes. Furthermore, results demonstrate that in arid regions SWC superseded ST, SOC, STN and RBM as a key factor regulating GHG fluxes, and soil water stress may have led to a net uptake of CH4 by soils and a reduction of N2O and CO2 effluxes from alfalfa fields. Our study has provided insights into the determination of alfalfa stand age and the understanding of mechanisms regulating GHG fluxes in alfalfa fields in the continental arid regions. This knowledge is essential to decide the alfalfa retention time by considering the hay yield, water use efficiency as well as GHG emission.
Collapse
Affiliation(s)
- Jiao Ning
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiong Z He
- School of Agriculture and Environment, College of Science, Massey University, Palmerston North, New Zealand
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shanning Lou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xianjiang Chen
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Cheng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Wanhe Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
22
|
Song H, Guo Z, Hu X, Qian L, Miao F, Zhang X, Chen J. Evolutionary balance between LRR domain loss and young NBS-LRR genes production governs disease resistance in Arachis hypogaea cv. Tifrunner. BMC Genomics 2019; 20:844. [PMID: 31722670 PMCID: PMC6852974 DOI: 10.1186/s12864-019-6212-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cultivated peanut (Arachis hypogaea L.) is an important oil and protein crop, but it has low disease resistance; therefore, it is important to reveal the number, sequence features, function, and evolution of genes that confer resistance. Nucleotide-binding site-leucine-rich repeats (NBS-LRRs) are resistance genes that are involved in response to various pathogens. RESULTS We identified 713 full-length NBS-LRRs in A. hypogaea cv. Tifrunner. Genetic exchange events occurred on NBS-LRRs in A. hypogaea cv. Tifrunner, which were detected in the same subgenomes and also found in different subgenomes. Relaxed selection acted on NBS-LRR proteins and LRR domains in A. hypogaea cv. Tifrunner. Using quantitative trait loci (QTL), we found that NBS-LRRs were involved in response to late leaf spot, tomato spotted wilt virus, and bacterial wilt in A. duranensis (2 NBS-LRRs), A. ipaensis (39 NBS-LRRs), and A. hypogaea cv. Tifrunner (113 NBS-LRRs). In A. hypogaea cv. Tifrunner, 113 NBS-LRRs were classified as 75 young and 38 old NBS-LRRs, indicating that young NBS-LRRs were involved in response to disease after tetraploidization. However, compared to A. duranensis and A. ipaensis, fewer LRR domains were found in A. hypogaea cv. Tifrunner NBS-LRR proteins, partly explaining the lower disease resistance of the cultivated peanut. CONCLUSIONS Although relaxed selection acted on NBS-LRR proteins and LRR domains, LRR domains were preferentially lost in A. hypogaea cv. Tifrunner compared to A. duranensis and A. ipaensis. The QTL results suggested that young NBS-LRRs were important for resistance against diseases in A. hypogaea cv. Tifrunner. Our results provid insight into the greater susceptibility of A. hypogaea cv. Tifrunner to disease compared to A. duranensis and A. ipaensis.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaohui Hu
- Shandong Peanut Research Institute, Qingdao, China
| | - Lang Qian
- Dalian Academy of Agricultural Sciences, Dalian, China
| | - Fuhong Miao
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, China.
| |
Collapse
|
23
|
Rychel S, Książkiewicz M. Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). J Appl Genet 2019; 60:269-281. [PMID: 31410824 PMCID: PMC6803572 DOI: 10.1007/s13353-019-00508-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
White lupin (Lupinus albus L.) is a legume grain crop cultivated since ancient Greece and Egypt. Modern white lupin cultivars are appreciated as a source of protein with positive nutraceutical impact. However, white lupins produce anti-nutritional compounds, quinolizidine alkaloids, which provide bitter taste and have a negative influence on human health. During domestication of this species, several recessive alleles at unlinked loci controlling low alkaloid content were selected. One of these loci, pauper, was exploited worldwide providing numerous low-alkaloid cultivars. However, molecular tracking of pauper has been hampered due to the lack of diagnostic markers. In the present study, the synteny-based approach was harnessed to target pauper locus. Single-nucleotide polymorphisms flanking pauper locus on white lupin linkage map as well as candidate gene sequences elucidated from the narrow-leafed lupin (L. angustifolius L.) chromosome segment syntenic to the pauper linkage group region were transformed to PCR-based molecular markers. These markers were analyzed both in the mapping population and world germplasm collection. From fourteen markers screened, eleven were localized at a distance below 1.5 cM from this locus, including five co-segregating with pauper. The linkage of these markers was confirmed by high LOD values (up to 58.4). Validation performed in the set of 127 bitter and 23 sweet accessions evidenced high applicability of one marker, LAGI01_35805_F1_R1, for pauper locus selection, highlighted by the low ratio of false-positive scores (2.5%). LAGI01_35805 represents a homolog of L. angustifolius acyltransferase-like (LaAT) gene which might hypothetically participate in the alkaloid biosynthesis process in lupins.
Collapse
Affiliation(s)
- Sandra Rychel
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
24
|
Noman A, Aqeel M, Lou Y. PRRs and NB-LRRs: From Signal Perception to Activation of Plant Innate Immunity. Int J Mol Sci 2019; 20:ijms20081882. [PMID: 30995767 PMCID: PMC6514886 DOI: 10.3390/ijms20081882] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
To ward off pathogens and pests, plants use a sophisticated immune system. They use pattern-recognition receptors (PRRs), as well as nucleotide-binding and leucine-rich repeat (NB-LRR) domains, for detecting nonindigenous molecular signatures from pathogens. Plant PRRs induce local and systemic immunity. Plasma-membrane-localized PRRs are the main components of multiprotein complexes having additional transmembrane and cytosolic kinases. Topical research involving proteins and their interactive partners, along with transcriptional and posttranscriptional regulation, has extended our understanding of R-gene-mediated plant immunity. The unique LRR domain conformation helps in the best utilization of a surface area and essentially mediates protein–protein interactions. Genome-wide analyses of inter- and intraspecies PRRs and NB-LRRs offer innovative information about their working and evolution. We reviewed plant immune responses with relevance to PRRs and NB-LRRs. This article focuses on the significant functional diversity, pathogen-recognition mechanisms, and subcellular compartmentalization of plant PRRs and NB-LRRs. We highlight the potential biotechnological application of PRRs and NB-LRRs to enhance broad-spectrum disease resistance in crops.
Collapse
Affiliation(s)
- Ali Noman
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China.
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China.
| | - Yonggen Lou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
25
|
Shi Q, Pitino M, Zhang S, Krystel J, Cano LM, Shatters RG, Hall DG, Stover E. Temporal and spatial detection of Candidatus Liberibacter asiaticus putative effector transcripts during interaction with Huanglongbing-susceptible, -tolerant, and -resistant citrus hosts. BMC PLANT BIOLOGY 2019; 19:122. [PMID: 30940073 PMCID: PMC6444692 DOI: 10.1186/s12870-019-1703-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/06/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Citrus Huanglongbing (HLB) is a bacterial disease with high economic significance. The associated agent Candidatus Liberibacter asiaticus is a fastidious, phloem-limited, intracellular bacterium that is transmitted by an insect vector the Asian citrus psyllid (ACP). The genome of Ca. L. asiaticus contains protein secretion machinery that suggests host cell modulation capacity of this bacterium. RESULTS A total of 28 candidate effectors, an important class of secreted proteins, were predicted from the Ca. L. asiaticus genome. Sequence specific primers were designed for reverse transcription (RT) and quantitative PCR (qPCR), and expression was validated for 20 of the effector candidates in infected citrus with multiple genetic background. Using detached leaf inoculation, the mRNA of effectors was detected from 6 h to 7 days post ACP exposure. It was observed that higher bacterial titers were associated with a larger number of effectors showing amplification across all samples. The effectors' expression were compared in citrus hosts with various levels of HLB tolerance, including susceptible Duncan grapefruit and Washington navel orange, tolerant citron and Cleopatra mandarin, and resistant Pomeroy trifoliate and Carrizo citrange. Across all genotypes relatively high expression was observed for CLIBASIA_03695, CLIBASIA_00460, CLIBASIA_00420, CLIBASIA_04580, CLIBASIA_05320, CLIBASIA_04425, CLIBASIA_00525 and CLIBASIA_05315 in either a host-specific or -nonspecific manners. The two genotypes in each HLB-response group also show effector-expression profiles that seem to be different. In a companion study, the expression of effectors was compared between leaves and roots of own-rooted citrus that had been Ca. L. asiaticus-infected for more than a year. Results indicated relatively high expression of CLIBASIA_03875, CLIBASIA_04800 and CLIBASIA_05640 in all leaf and some root tissues of citron, Duncan and Cleopatra. CONCLUSION This temporal and spatial expression analysis of Ca. L. asiaticus effectors identified candidates possibly critical for early bacterial colonization, host tolerance suppression and long-term survival which are all worthy of further investigation.
Collapse
Affiliation(s)
- Qingchun Shi
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL USA
| | - Marco Pitino
- Institute of Food and Agricultural Sciences, Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, FL USA
| | - Shujian Zhang
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL USA
| | - Joseph Krystel
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL USA
| | - Liliana M. Cano
- Institute of Food and Agricultural Sciences, Department of Plant Pathology, Indian River Research and Education Center, University of Florida, Fort Pierce, FL USA
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL USA
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL USA
| | - Ed Stover
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL USA
| |
Collapse
|
26
|
Tang Q, Yu P, Tillmann M, Cohen JD, Slovin JP. Indole-3-acetylaspartate and indole-3-acetylglutamate, the IAA-amide conjugates in the diploid strawberry achene, are hydrolyzed in growing seedlings. PLANTA 2019; 249:1073-1085. [PMID: 30535588 DOI: 10.1007/s00425-018-3061-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/24/2018] [Indexed: 05/26/2023]
Abstract
Indole-3-acetylaspartate and indole-3-acetylglutamate are the stored auxin amino acid conjugates of the achene of the diploid strawberry and serve as sources of auxin during seedling growth. The edible part of the strawberry, a pseudocarp, has long been known to enlarge in response to auxin produced by the developing achenes, the botanical true fruit. Auxin homeostasis involves a complex interaction between biosynthesis, conjugate formation and hydrolysis, catabolism and transport. Strawberry tissues are capable of synthesizing auxin conjugates, and transcriptome data support the expression of genes involved in IAA conjugate formation and hydrolysis throughout embryo development and subsequent seedling growth. Using a highly sensitive and selective mass spectrometric method, we identified all the low molecular weight indole-auxin amino acid conjugates in achenes of F. vesca as consisting of indole-3-acetylaspartate (IAasp) and indole-3-acetylglutamate (IAglu). In contrast to what has been proposed to occur in Arabidopsis, we determined that IAasp and IAglu are hydrolyzed by seedlings to provide a source of free IAA for growth.
Collapse
Affiliation(s)
- Qian Tang
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Peng Yu
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genome Institute, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA.
| | - Janet P Slovin
- USDA/ARS Genetic Improvement of Fruit and Vegetables Laboratory, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| |
Collapse
|
27
|
Gao Y, Long R, Kang J, Wang Z, Zhang T, Sun H, Li X, Yang Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa ( Medicago sativa L.) Leaves. J Proteome Res 2018; 18:191-203. [PMID: 30359026 DOI: 10.1021/acs.jproteome.8b00521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Soil salinity poses a serious threat to alfalfa ( Medicago sativa L.) productivity. To characterize the molecular mechanisms of salinity tolerance in Medicago, the comparative proteome of leaves from Medicago sativa cv. Zhongmu No.1 (ZM1, salt-tolerant) and Medicago truncatula cv. Jemalong A17 (A17, salt-sensitive) was performed using the iTRAQ approach. A total of 438 differentially expressed proteins (DEPs) were identified, among which 282 and 120 DEPs were specific to A17 and ZM1, respectively. In salt-tolerant ZM1, key DEPs were primarily enriched in antioxidant system, starch and sucrose metabolism, and secondary metabolism. ZM1 possessed a greater ability to remove reactive oxygen species and methylglyoxal under salt stress, as demonstrated by enhancement of the antioxidant system and secondary metabolism. Moreover, ZM1 orchestrated starch and sucrose metabolism to accumulate various soluble sugars (sucrose, maltose, glucose, and trehalose), which in turn facilitate osmotic homeostasis. Salt stress dramatically inhibited photosynthesis of A17 due to the downregulation of the light-harvesting complex and photosystem II related protein. Quantitative analyses of photochemical efficiency, antioxidant enzyme activities, hydrogen peroxide, malondialdehyde, and soluble sugar contents were consistent with the alterations predicted on the basis of DEP functions. These results shed light on our understanding of the mechanisms underlying the salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Yanli Gao
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Zhen Wang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Hao Sun
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Xiao Li
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
28
|
Singer SD, Hannoufa A, Acharya S. Molecular improvement of alfalfa for enhanced productivity and adaptability in a changing environment. PLANT, CELL & ENVIRONMENT 2018; 41:1955-1971. [PMID: 29044610 DOI: 10.1111/pce.13090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
Due to an expanding world population and increased buying power, the demand for ruminant products such as meat and milk is expected to grow substantially in coming years, and high levels of forage crop production will therefore be a necessity. Unfortunately, urbanization of agricultural land, intensive agricultural practices, and climate change are all predicted to limit crop production in the future, which means that the development of forage cultivars with improved productivity and adaptability will be essential. Because alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage crops, it has been the target of much research in this field. In this review, we discuss progress that has been made towards the improvement of productivity, abiotic stress tolerance, and nutrient-use efficiency, as well as disease and pest resistance, in alfalfa using biotechnological techniques. Furthermore, we consider possible future priorities and avenues for attaining further enhancements in this crop as a means of contributing to the realization of food security in a changing environment.
Collapse
Affiliation(s)
- Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3, Canada
| | - Surya Acharya
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| |
Collapse
|
29
|
Arshad M, Gruber MY, Hannoufa A. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep 2018; 8:9363. [PMID: 29921939 PMCID: PMC6008443 DOI: 10.1038/s41598-018-27088-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/24/2018] [Indexed: 11/09/2022] Open
Abstract
Drought is one of the major abiotic stresses that negatively impact alfalfa growth and productivity. The role of microRNA156 (miR156) in drought has been demonstrated in plants. To date, there are no published studies investigating the role of miR156 in regulating global gene expression in alfalfa under drought. In our study, alfalfa genotypes overexpressing miR156 (miR156OE) exhibited reduced water loss, and enhanced root growth under drought. Our RNA-seq data showed that in response to drought, a total of 415 genes were upregulated and 169 genes were downregulated specifically in miR156OE genotypes. Genotypic comparison revealed that 285 genes were upregulated and 253 genes were downregulated in miR156OE genotypes relative to corresponding WT under drought. Gene Ontology enrichment analysis revealed that the number of differentially expressed genes belonging to biological process, molecular function and cell component functional groups was decreased in miR156OE genotypes under drought. Furthermore, RNA-Seq data showed downregulation of a gene encoding WD40 repeat in a miR156-specific manner. 5' RACE experiments verified cleavage of WD40-2 transcript under drought. Moreover, alfalfa plants overexpressing WD40-2 showed drought sensitive, whereas those with silenced WD40-2 exhibited drought tolerant phenotypes. These findings suggest that miR156 improves drought tolerance in alfalfa by targeting WD40-2.
Collapse
Affiliation(s)
- Muhammad Arshad
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Margaret Y Gruber
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
30
|
Huang J, Gu L, Zhang Y, Yan T, Kong G, Kong L, Guo B, Qiu M, Wang Y, Jing M, Xing W, Ye W, Wu Z, Zhang Z, Zheng X, Gijzen M, Wang Y, Dong S. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat Commun 2017; 8:2051. [PMID: 29233978 PMCID: PMC5727057 DOI: 10.1038/s41467-017-02233-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
The process of RNA splicing influences many physiological processes, including plant immunity. However, how plant parasites manipulate host RNA splicing process remains unknown. Here we demonstrate that PsAvr3c, an avirulence effector from oomycete plant pathogen Phytophthora sojae, physically binds to and stabilizes soybean serine/lysine/arginine-rich proteins GmSKRPs. The SKRPs are novel proteins that associate with a complex that contains plant spliceosome components, and are negative regulators of plant immunity. Analysis by RNA-seq data indicates that alternative splicing of pre-mRNAs from 401 soybean genes, including defense-related genes, is altered in GmSKRP1 and PsAvr3c overexpressing lines compared to control plants. Representative splicing events mediated by GmSKRP1 and PsAvr3c are tested by infection assays or by transient expression in soybean plants. Our results show that plant pathogen effectors can reprogram host pre-mRNA splicing to promote disease, and we propose that pathogens evolved such strategies to defeat host immune systems.
Collapse
Affiliation(s)
- Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingxiu Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiman Xing
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Zhe Wu
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Zhengguang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Mark Gijzen
- Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China.
| |
Collapse
|
31
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
32
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
33
|
Baggs E, Dagdas G, Krasileva KV. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:59-67. [PMID: 28494248 DOI: 10.1016/j.pbi.2017.04.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/21/2023]
Abstract
Plant innate immunity relies on genetically predetermined repertoires of immune receptors to detect pathogens and trigger an effective immune response. A large proportion of these receptors are from the Nucletoide Binding Leucine Rich Repeat (NLR) gene family. As plants live longer than most pathogens, maintaining diversity of NLRs and deploying efficient 'pathogen traps' is necessary to withstand the evolutionary battle. In this review, we summarize the sources of diversity in NLR plant immune receptors giving an overview of genomic, regulatory as well as functional studies, including the latest concepts of NLR helpers and NLRs with integrated domains.
Collapse
Affiliation(s)
- E Baggs
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, United Kingdom
| | - G Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - K V Krasileva
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, United Kingdom; The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
34
|
Song H, Wang P, Li C, Han S, Zhao C, Xia H, Bi Y, Guo B, Zhang X, Wang X. Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS One 2017; 12:e0171181. [PMID: 28158222 PMCID: PMC5291535 DOI: 10.1371/journal.pone.0171181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Studies have demonstrated that nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes respond to pathogen attack in plants. Characterization of NBS-LRR genes in peanut is not well documented. The newly released whole genome sequences of Arachis duranensis and Arachis ipaënsis have allowed a global analysis of this important gene family in peanut to be conducted. In this study, we identified 393 (AdNBS) and 437 (AiNBS) NBS-LRR genes from A. duranensis and A. ipaënsis, respectively, using bioinformatics approaches. Full-length sequences of 278 AdNBS and 303 AiNBS were identified. Fifty-one orthologous, four AdNBS paralogous, and six AiNBS paralogous gene pairs were predicted. All paralogous gene pairs were located in the same chromosomes, indicating that tandem duplication was the most likely mechanism forming these paralogs. The paralogs mainly underwent purifying selection, but most LRR 8 domains underwent positive selection. More gene clusters were found in A. ipaënsis than in A. duranensis, possibly owing to tandem duplication events occurring more frequently in A. ipaënsis. The expression profile of NBS-LRR genes was different between A. duranensis and A. hypogaea after Aspergillus flavus infection. The up-regulated expression of NBS-LRR in A. duranensis was continuous, while these genes responded to the pathogen temporally in A. hypogaea.
Collapse
Affiliation(s)
- Hui Song
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Suoyi Han
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, Georgia, United States of America
| | - Xinyou Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
35
|
Yu L, Zheng P, Zhang T, Rodringuez J, Main D. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). MOLECULAR PLANT PATHOLOGY 2017; 18:187-194. [PMID: 26933934 PMCID: PMC6638244 DOI: 10.1111/mpp.12389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa.
Collapse
Affiliation(s)
- Long‐Xi Yu
- United States Department of Agriculture‐Agricultural Research ServicePlant Germplasm Introduction and Testing Research24106 N Bunn RoadProsserWA99350 USA
| | - Ping Zheng
- Department of HorticultureWashington State UniversityPullmanWA99164 USA
| | - Tiejun Zhang
- United States Department of Agriculture‐Agricultural Research ServicePlant Germplasm Introduction and Testing Research24106 N Bunn RoadProsserWA99350 USA
- Present address:
Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193 China
| | - Jonas Rodringuez
- Forage Genetics International, Inc.7661 Becker RoadDavisCA95618 USA
| | - Dorrie Main
- Department of HorticultureWashington State UniversityPullmanWA99164 USA
| |
Collapse
|
36
|
Yu LX, Zheng P, Bhamidimarri S, Liu XP, Main D. The Impact of Genotyping-by-Sequencing Pipelines on SNP Discovery and Identification of Markers Associated with Verticillium Wilt Resistance in Autotetraploid Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:89. [PMID: 28223988 PMCID: PMC5293825 DOI: 10.3389/fpls.2017.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/16/2017] [Indexed: 05/08/2023]
Abstract
Verticillium wilt (VW) of alfalfa is a soilborne disease causing severe yield loss in alfalfa. To identify molecular markers associated with VW resistance, we used an integrated framework of genome-wide association study (GWAS) with high-throughput genotyping by sequencing (GBS) to identify loci associated with VW resistance in an F1 full-sib alfalfa population. Phenotyping was performed using manual inoculation of the pathogen to cloned plants of each individual and disease severity was scored using a standard scale. Genotyping was done by GBS, followed by genotype calling using three bioinformatics pipelines including the TASSEL-GBS pipeline (TASSEL), the Universal Network Enabled Analysis Kit (UNEAK), and the haplotype-based FreeBayes pipeline (FreeBayes). The resulting numbers of SNPs, marker density, minor allele frequency (MAF) and heterozygosity were compared among the pipelines. The TASSEL pipeline generated more markers with the highest density and MAF, whereas the highest heterozygosity was obtained by the UNEAK pipeline. The FreeBayes pipeline generated tetraploid genotypes, with the least number of markers. SNP markers generated from each pipeline were used independently for marker-trait association. Markers significantly associated with VW resistance identified by each pipeline were compared. Similar marker loci were found on chromosomes 5, 6, and 7, whereas different loci on chromosome 1, 2, 3, and 4 were identified by different pipelines. Most significant markers were located on chromosome 6 and they were identified by all three pipelines. Of those identified, several loci were linked to known genes whose functions are involved in the plants' resistance to pathogens. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms of VW resistance in alfalfa. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to the disease.
Collapse
Affiliation(s)
- Long-Xi Yu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, ProsserWA, USA
- *Correspondence: Long-Xi Yu,
| | - Ping Zheng
- Department of Horticulture, Washington State University, PullmanWA, USA
| | | | - Xiang-Ping Liu
- Plant Germplasm Introduction and Testing Research, United States Department of Agriculture-Agricultural Research Service, ProsserWA, USA
| | - Dorie Main
- Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
37
|
Toueni M, Ben C, Le Ru A, Gentzbittel L, Rickauer M. Quantitative Resistance to Verticillium Wilt in Medicago truncatula Involves Eradication of the Fungus from Roots and Is Associated with Transcriptional Responses Related to Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1431. [PMID: 27746789 PMCID: PMC5041324 DOI: 10.3389/fpls.2016.01431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/08/2016] [Indexed: 05/07/2023]
Abstract
Resistance mechanisms to Verticillium wilt are well-studied in tomato, cotton, and Arabidopsis, but much less in legume plants. Because legume plants establish nitrogen-fixing symbioses in their roots, resistance to root-attacking pathogens merits particular attention. The interaction between the soil-borne pathogen Verticillium alfalfae and the model legume Medicago truncatula was investigated using a resistant (A17) and a susceptible (F83005.5) line. As shown by histological analyses, colonization by the pathogen was initiated similarly in both lines. Later on, the resistant line A17 eliminated the fungus, whereas the susceptible F83005.5 became heavily colonized. Resistance in line A17 does not involve homologs of the well-characterized tomato Ve1 and V. dahliae Ave1 genes. A transcriptomic study of early root responses during initial colonization (i.e., until 24 h post-inoculation) similarly was performed. Compared to the susceptible line, line A17 displayed already a significantly higher basal expression of defense-related genes prior to inoculation, and responded to infection with up-regulation of only a small number of genes. Although fungal colonization was still low at this stage, the susceptible line F83005.5 exhibited a disorganized response involving a large number of genes from different functional classes. The involvement of distinct phytohormone signaling pathways in resistance as suggested by gene expression patterns was supported by experiments with plant hormone pretreatment before fungal inoculation. Gene co-expression network analysis highlighted five main modules in the resistant line, whereas no structured gene expression was found in the susceptible line. One module was particularly associated to the inoculation response in A17. It contains the majority of differentially expressed genes, genes associated with PAMP perception and hormone signaling, and transcription factors. An in silico analysis showed that a high number of these genes also respond to other soil-borne pathogens in M. truncatula, suggesting a core of transcriptional response to root pathogens. Taken together, the results suggest that resistance in M. truncatula line A17 might be due to innate immunity combining preformed defense and PAMP-triggered defense mechanisms, and putative involvement of abscisic acid.
Collapse
Affiliation(s)
- Maoulida Toueni
- EcoLab, Université de Toulouse, CNRS, INPT, UPSToulouse, France
| | - Cécile Ben
- EcoLab, Université de Toulouse, CNRS, INPT, UPSToulouse, France
| | - Aurélie Le Ru
- Research Federation “Agrobiosciences, Interactions et Biodiversité”Castanet-Tolosan, France
| | | | | |
Collapse
|
38
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Genetically modified (GM) crops: milestones and new advances in crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1639-55. [PMID: 27381849 DOI: 10.1007/s00122-016-2747-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/25/2016] [Indexed: 05/22/2023]
Abstract
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
39
|
Pitino M, Armstrong CM, Cano LM, Duan Y. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2016; 7:982. [PMID: 27458468 PMCID: PMC4933711 DOI: 10.3389/fpls.2016.00982] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 05/19/2023]
Abstract
Candidatus Liberibacter asiaticus "Las" is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta.
Collapse
Affiliation(s)
- Marco Pitino
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| | - Cheryl M. Armstrong
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| | - Liliana M. Cano
- Institute of Food and Agricultural Sciences, Department of Plant Pathology, Indian River Research and Education Center, University of FloridaFort Pierce, FL, USA
| | - Yongping Duan
- U.S. Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| |
Collapse
|
40
|
Tang F, Yang S, Zhu H. Functional analysis of alternative transcripts of the soybean Rj2 gene that restricts nodulation with specific rhizobial strains. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:537-41. [PMID: 26848549 DOI: 10.1111/plb.12442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
The Rj2 gene is a TIR-NBS-LRR-type resistance gene in soybean (Glycine max) that restricts root nodule symbiosis with a group of Bradyrhizobium japonicum strains including USDA122. Rj2 generates two distinct transcript variants in its expression profile through alternative splicing. Alternative splicing of Rj2 is caused by the retention of the 86-bp intron 4. Inclusion of intron 4 in mature mRNA introduces an in-frame stop codon; as such, the alternative transcript is predicted to encode a truncated protein consisting of the entire portion of the TIR, NBS and LRR domains but missing the C-terminal domain of the full-length Rj2 protein encoded by the regular transcript. Since alternative splicing has been shown to be essential for full activity of several plant R genes, we attempted to test whether the alternative splicing is required for Rj2-mediated nodulation restriction. Here we demonstrated that the Rj2-mediated nodulation restriction does not require the combined presence of the regular and alternative transcripts, and the expression of the regular transcript alone is sufficient to confer nodulation restriction.
Collapse
Affiliation(s)
- F Tang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - S Yang
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - H Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
41
|
Youssef C, Aubry C, Montrichard F, Beucher D, Juchaux M, Ben C, Prosperi JM, Teulat B. Cell length instead of cell number becomes the predominant factor contributing to hypocotyl length genotypic differences under abiotic stress in Medicago truncatula. PHYSIOLOGIA PLANTARUM 2016; 156:108-124. [PMID: 26303328 DOI: 10.1111/ppl.12379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/19/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
Hypocotyl elongation in the dark is a crucial process to ensure seedling emergence. It relies both on the cell number and cell length. The contribution of these two factors to the maximal hypocotyl length and the impact of environmental conditions on this contribution are not known. This is surprising considering the agronomic and economical importance of seedling emergence in crop establishment. Using 14 genotypes from a nested core collection representing Medicago truncatula (barrel medic) natural variation, we investigated how epidermal cell number and cell length contribute to hypocotyl length under optimal, low temperature (8°C) and water deficit (-0.50 MPa) conditions. Both cell number and length vary according to genotypes and contribute to maximal hypocotyl length differences between genotypes. This contribution, however, depends on growth conditions. Cell number is the major contributor under optimal conditions (60%) whereas cell length becomes the major determinant under stress. Maximal hypocotyl length is correlated with hypocotyl elongation rate under both stresses but not under optimal condition, revealing contrasted genotypes for cell elongation capacity under stress. To identify the genetic regulators determining cell number and cell length, quantitative trait loci (QTLs) were detected using a recombinant inbred lines population exhibiting segregation in maximal hypocotyl length. Two QTLs controlling cell number and three QTLs controlling cell length at low temperature were detected. One QTL for cell number and two for cell length were found to be associated with hypocotyl length under low temperature. This study provides new information to improve seedling emergence under abiotic stress.
Collapse
Affiliation(s)
- Chvan Youssef
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Agrocampus Ouest, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | - Catherine Aubry
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Université d'Angers, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | - Françoise Montrichard
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Université d'Angers, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | - Daniel Beucher
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Agrocampus Ouest, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| | | | - Cécile Ben
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR 5245, EcoLab), Université de Toulouse, INP, UPS, ENSAT, Castanet Tolosan, France
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR 5245, EcoLab), CNRS, Castanet Tolosan, France
| | - Jean-Marie Prosperi
- Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales (UMR 1334 AGAP), INRA, Montpellier, France
| | - Béatrice Teulat
- Institut de Recherche en Horticulture et Semences (UMR 1345 IRHS), Agrocampus Ouest, SFR 4207 QuaSaV, Beaucouzé Cedex, France
| |
Collapse
|
42
|
Hong K, Gong D, Zhang L, Hu H, Jia Z, Gu H, Song K. Transcriptome characterization and expression profiles of the related defense genes in postharvest mango fruit against Colletotrichum gloeosporioides. Gene 2016; 576:275-83. [DOI: 10.1016/j.gene.2015.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023]
|
43
|
Zhang QY, Zhang LQ, Song LL, Duan K, Li N, Wang YX, Gao QH. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid. HORTICULTURE RESEARCH 2016; 3:16007. [PMID: 27004126 PMCID: PMC4793257 DOI: 10.1038/hortres.2016.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 05/14/2023]
Abstract
The disease symptoms recognized as 'Anthracnose' are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry-Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Li-Qing Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Li-Li Song
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- College of Agricultural Sciences, Gansu Agricultural University, Lanzhou 730000, China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
| | - Na Li
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Yan-Xiu Wang
- College of Agricultural Sciences, Gansu Agricultural University, Lanzhou 730000, China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201403, China
- ()
| |
Collapse
|
44
|
Gentzbittel L, Andersen SU, Ben C, Rickauer M, Stougaard J, Young ND. Naturally occurring diversity helps to reveal genes of adaptive importance in legumes. FRONTIERS IN PLANT SCIENCE 2015; 6:269. [PMID: 25954294 PMCID: PMC4404971 DOI: 10.3389/fpls.2015.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/03/2015] [Indexed: 05/05/2023]
Abstract
Environmental changes challenge plants and drive adaptation to new conditions, suggesting that natural biodiversity may be a source of adaptive alleles acting through phenotypic plasticity and/or micro-evolution. Crosses between accessions differing for a given trait have been the most common way to disentangle genetic and environmental components. Interestingly, such man-made crosses may combine alleles that never meet in nature. Another way to discover adaptive alleles, inspired by evolution, is to survey large ecotype collections and to use association genetics to identify loci of interest. Both of these two genetic approaches are based on the use of biodiversity and may eventually help us in identifying the genes that plants use to respond to challenges such as short-term stresses or those due to global climate change. In legumes, two wild species, Medicago truncatula and Lotus japonicus, plus the cultivated soybean (Glycine max) have been adopted as models for genomic studies. In this review, we will discuss the resources, limitations and future plans for a systematic use of biodiversity resources in model legumes to pinpoint genes of adaptive importance in legumes, and their application in breeding.
Collapse
Affiliation(s)
- Laurent Gentzbittel
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Université Fédérale de ToulouseCastanet Tolosan, France
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Centre National de la Recherche ScientifiqueCastanet Tolosan, France
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus UniversityAarhus, Denmark
| | - Cécile Ben
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Université Fédérale de ToulouseCastanet Tolosan, France
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Centre National de la Recherche ScientifiqueCastanet Tolosan, France
| | - Martina Rickauer
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Université Fédérale de ToulouseCastanet Tolosan, France
- EcoLab Laboratoire Écologie Fonctionnelle et Environnement, Centre National de la Recherche ScientifiqueCastanet Tolosan, France
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus UniversityAarhus, Denmark
| | - Nevin D. Young
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, USA
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
| |
Collapse
|
45
|
Kim SK, Nair RM, Lee J, Lee SH. Genomic resources in mungbean for future breeding programs. FRONTIERS IN PLANT SCIENCE 2015; 6:626. [PMID: 26322067 PMCID: PMC4530597 DOI: 10.3389/fpls.2015.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/28/2015] [Indexed: 05/03/2023]
Abstract
Among the legume family, mungbean (Vigna radiata) has become one of the important crops in Asia, showing a steady increase in global production. It provides a good source of protein and contains most notably folate and iron. Beyond the nutritional value of mungbean, certain features make it a well-suited model organism among legume plants because of its small genome size, short life-cycle, self-pollinating, and close genetic relationship to other legumes. In the past, there have been several efforts to develop molecular markers and linkage maps associated with agronomic traits for the genetic improvement of mungbean and, ultimately, breeding for cultivar development to increase the average yields of mungbean. The recent release of a reference genome of the cultivated mungbean (V. radiata var. radiata VC1973A) and an additional de novo sequencing of a wild relative mungbean (V. radiata var. sublobata) has provided a framework for mungbean genetic and genome research, that can further be used for genome-wide association and functional studies to identify genes related to specific agronomic traits. Moreover, the diverse gene pool of wild mungbean comprises valuable genetic resources of beneficial genes that may be helpful in widening the genetic diversity of cultivated mungbean. This review paper covers the research progress on molecular and genomics approaches and the current status of breeding programs that have developed to move toward the ultimate goal of mungbean improvement.
Collapse
Affiliation(s)
- Sue K. Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | | | - Jayern Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- *Correspondence: Suk-Ha Lee, Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea,
| |
Collapse
|
46
|
Zhang T, Yu LX, McCord P, Miller D, Bhamidimarri S, Johnson D, Monteros MJ, Ho J, Reisen P, Samac DA. Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting. PLoS One 2014; 9:e115953. [PMID: 25536106 PMCID: PMC4275272 DOI: 10.1371/journal.pone.0115953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/28/2014] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.
Collapse
Affiliation(s)
- Tiejun Zhang
- United States Department of Agriculture, Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, Washington, United States of America
| | - Long-Xi Yu
- United States Department of Agriculture, Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, Washington, United States of America
- * E-mail:
| | - Per McCord
- United States Department of Agriculture, Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, Washington, United States of America
| | - David Miller
- DuPont Pioneer, W8131 State HWY 60, Arlington, Wisconsin, United States of America
| | - Suresh Bhamidimarri
- DuPont Pioneer, W8131 State HWY 60, Arlington, Wisconsin, United States of America
| | - David Johnson
- Alforex Seeds, N4505 CTH M, West Salem, Wisconsin, United States of America
| | - Maria J. Monteros
- Forage Improvement Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma, United States of America
| | - Julie Ho
- Forage Genetics International, Inc. 7661 Becker Road, Davis, California, United States of America
| | - Peter Reisen
- Forage Genetics International, Inc. 7661 Becker Road, Davis, California, United States of America
| | - Deborah A. Samac
- United States Department of Agriculture, Agricultural Research Service, 495 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota, United States of America
| |
Collapse
|
47
|
Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, Wu P, Wu XY, Wu XZ, Wang Q, Wang B, Chen JQ. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. PLANT PHYSIOLOGY 2014; 166:217-34. [PMID: 25052854 PMCID: PMC4149708 DOI: 10.1104/pp.114.243626] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/11/2014] [Indexed: 05/18/2023]
Abstract
Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution.
Collapse
Affiliation(s)
- Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Yan-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Yue-Yu Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Jia-Yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Guang-Can Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Xiao-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Xun-Zong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| |
Collapse
|
48
|
Alternative splicing in plant immunity. Int J Mol Sci 2014; 15:10424-45. [PMID: 24918296 PMCID: PMC4100160 DOI: 10.3390/ijms150610424] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/01/2022] Open
Abstract
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
Collapse
|
49
|
Rispail N, Rubiales D. Identification of Sources of Quantitative Resistance to Fusarium oxysporum f. sp. medicaginis in Medicago truncatula. PLANT DISEASE 2014; 98:667-673. [PMID: 30708554 DOI: 10.1094/pdis-03-13-0217-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The resistance of 267 Medicago truncatula accessions was determined against the soilborne pathogen Fusarium oxysporum, one of the major constraints of forage and grain legumes worldwide. The initial screening of the collection revealed a wide range of disease response from completely resistant to highly susceptible to one strain of F. oxysporum f. sp. medicaginis. As a result, 26 accessions were identified as resistant, 9 as susceptible, and all other accessions as partially resistant. The phenotype of 12 resistant accessions was confirmed in two independent experiments on a subset of 23 accessions. Quantification of F. oxysporum f. sp. medicaginis within plant tissue indicated that the resistance level of the accessions is correlated with the amount of F. oxysporum f. sp. medicaginis within its shoot. Inoculation with a different F. oxysporum f. sp. medicaginis isolate indicated that the resistance phenotype was stable because accession response to both F. oxysporum f. sp. medicaginis strains followed similar trends. However, grouping accessions according to their geographic origin did not reveal foci of resistance, which supports the idea that resistance arose from independent events. The identification of 12 resistant accessions will be useful for further cellular and molecular studies to unravel the basis of resistance to F. oxysporum in this model species and to transfer resistance to legume crop.
Collapse
Affiliation(s)
- N Rispail
- CSIC, Institute for Sustainable Agriculture, Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - D Rubiales
- CSIC, Institute for Sustainable Agriculture, Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| |
Collapse
|
50
|
In silico identification of transcription factors in Medicago sativa using available transcriptomic resources. Mol Genet Genomics 2014; 289:457-68. [PMID: 24556904 DOI: 10.1007/s00438-014-0823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are proteins that govern organismal development and response to the environment by regulating gene expression. Information on the amount and diversity of TFs within individual plant species is critical for understanding of their biological roles and evolutionary history across the plant kingdom. Currently, only scattered information on separate TFs is available for alfalfa, the most extensively cultivated forage legume in the world. In the meantime, several large transcriptomic resources that can be used to identify and characterize alfalfa TF genes are freely accessible online. In this study, we have performed an in silico analysis of transcriptome data generated in our laboratory and publicly acquirable from other sources to reveal and systematize alfalfa transcription factors. Transcriptome-wide mining enabled prediction of 983 TFs along with their sequence features and putative phylogenies of the largest families. All data were assembled into a simple open-access database named AlfalfaTFDB ( http://plantpathology.ba.ars.usda.gov/alfalfatfdb.html ). Transcriptomic analysis used in this work represents an effective approach for the identification of TF genes in plants with incomplete genomes, such as alfalfa. Integrated TF repertoires of Medicago sativa will provide an important tool for studying regulation of gene expression in other complex non-model species of agricultural significance.
Collapse
|