1
|
Mohammadi M, Aboonajmi J, Panahi F, Sasanipour M, Sharghi H. Zirconium-catalyzed one-pot synthesis of benzoxazoles using reaction of catechols, aldehydes and ammonium acetate. Sci Rep 2024; 14:25973. [PMID: 39472665 PMCID: PMC11522672 DOI: 10.1038/s41598-024-76839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, an efficient method for the synthesis of benzoxazoles by coupling catechols, aldehydes and ammonium acetate using ZrCl4 as catalyst in ethanol is reported. A wide range of benzoxazoles (59 examples) are smoothly produced in high yields (up to 97%). Other advantages of the method include large-scale synthesis and the use of oxygen as an oxidant. The mild reaction conditions allowed late-stage functionalization, facilitating access to several derivatives with biologically relevant structures such as β-lactam and quinoline heterocycles.
Collapse
Affiliation(s)
- Masoumeh Mohammadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran.
| | - Maryam Sasanipour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| | - Hashem Sharghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars, 71454, Iran
| |
Collapse
|
2
|
Dol R, Kovljenic N, Dudding T. Polymer-supported strong Lewis acid phosphonium cation catalysis applied to sydnone synthesis. Chem Commun (Camb) 2024; 60:12253-12256. [PMID: 39370885 DOI: 10.1039/d4cc03412k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organochlorophosphonium P(V) species are strong Lewis acids deriving from a low-lying σ* orbital at P opposite to Cl. Herein, applying this strong acidity to heterogenous reactivity, we introduce polymer-supported phosphorus(V)-mediated Lewis acid catalysis. Key to this innovation is the use of a recyclable solid support Merrifield resin P(V) Lewis acid catalyst with demonstrated utility for the one-pot synthesis of sydnones. This concept of pnictogen P(V) Lewis acid catalysis is simple to apply, selective, and benefits from mild conditions with short reaction times. Further, experimental and computational findings reveal the crucial mechanistic role of phosphonium cation P(V) species in these reactions.
Collapse
Affiliation(s)
- Ryan Dol
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada.
| | - Nenad Kovljenic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada.
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St., Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
3
|
Villano R, Di Marzo V. A sustainable protocol for the synthesis of N-acyl tryptamines, a class of potential gut microbiota-derived endocannabinoid-like mediators. Front Chem 2024; 12:1436008. [PMID: 39449691 PMCID: PMC11500036 DOI: 10.3389/fchem.2024.1436008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
A simple and sustainable propylphosphonic anhydride (T3P)-assisted methodology for the synthesis of N-acyl tryptamines, an interesting class of gut microbiota-derived endocannabinoid-like lipid mediators, was proposed. This protocol is characterized by great operational simplicity, and all products were obtained at room temperature, without the use of an inert atmosphere and by using limited amounts of non-halogenated solvents. Finally, the possibility to realize the reaction under mechanochemical conditions was explored with interesting results.
Collapse
Affiliation(s)
- Rosaria Villano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Centre de Recherche de l’Institut de Cardiologie et Pneumologie de l’Université et Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Danopoulou M, Zorba LP, Karantoni AP, Tzeli D, Vougioukalakis GC. Copper-Catalyzed α-Alkylation of Aryl Acetonitriles with Benzyl Alcohols. J Org Chem 2024; 89:14242-14254. [PMID: 39292689 PMCID: PMC11459520 DOI: 10.1021/acs.joc.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
A highly efficient, in situ formed CuCl2/TMEDA catalytic system (TMEDA = N,N,N',N'-tetramethylethylene-diamine) for the cross-coupling reaction of aryl acetonitriles with benzyl alcohols is reported. This user-friendly protocol, employing a low catalyst loading and a catalytic amount of base, leads to the synthesis of α-alkylated nitriles in up to 99% yield. Experimental mechanistic investigations reveal that the key step of this transformation is the C(sp3)-H functionalization of the alcohol, taking place via a hydrogen atom abstraction, with the simultaneous formation of copper-hydride species. Detailed density functional theory studies shed light on all reaction steps, confirming the catalytic pathway proposed on the basis of the experimental findings.
Collapse
Affiliation(s)
- Marianna Danopoulou
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Leandros P. Zorba
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Athanasia P. Karantoni
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou, 48, 11635 Athens, Greece
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
5
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
6
|
Leśniewska A, Przybylski P. Seven-membered N-heterocycles as approved drugs and promising leads in medicinal chemistry as well as the metal-free domino access to their scaffolds. Eur J Med Chem 2024; 275:116556. [PMID: 38879971 DOI: 10.1016/j.ejmech.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Azepanes or azepines are structural motifs of many drugs, drug candidates and evaluated lead compounds. Even though compounds having N-heterocyclic 7-membered rings are often found in nature (e.g. alkaloids), the natural compounds of this group are rather rare as approved therapeutics. Thus, recently studied and approved azepane or azepine-congeners predominantly consist of semi-synthetically or synthetically-obtained scaffolds. In this review a comparison of approved drugs and recently investigated leads was proposed taking into regard their structural aspects (stereochemistry), biological activities, pharmacokinetic properties and confirmed molecular targets. The 7-membered N-heterocycles reveal a wide range of biological activities, not only against CNS diseases, but also as e.g. antibacterial, anticancer, antiviral, antiparasitic and against allergy agents. As most of the approved or investigated potential drugs or lead structures, belonging to 7-membered N-heterocycles, are synthetic scaffolds, this report also reveals different and efficient metal-free cascade approaches useful to synthesize both simple azepane or azepine-containing congeners and those of oligocyclic structures. Stereochemistry of azepane/azepine fused systems, in view of biological data and binding with the targets, is discussed. Apart from the approved drugs, we compare advances in SAR studies of 7-membered N-heterocycles (mainly from 2018 to 2023), whereas the related synthetic part concerning various domino strategies is focused on the last ten years.
Collapse
Affiliation(s)
- Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
7
|
Chappell TC, Maiello KG, Tierney AJ, Yanagi K, Lee JA, Lee K, Mace CR, Bennett CS, Nair NU. Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential. Biotechnol Bioeng 2024; 121:2648-2661. [PMID: 38686918 PMCID: PMC11324409 DOI: 10.1002/bit.28725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Microbial-derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have the potential as new therapeutics to target drug-resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low-yield biosynthetic gene clusters in the genus Streptomyces. However, low natural product yields-improvements to which have been hindered by the lack of high throughput methods-have slowed the discovery and development of many potential therapeutics. Here, we describe our efforts to improve yields of landomycins-angucycline family polyketides under investigation as cancer therapeutics-by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products are absorbed in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by the exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces, as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
Collapse
Affiliation(s)
- Todd C Chappell
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | | | - Allison J Tierney
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Karin Yanagi
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Jessica A Lee
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Kyongbum Lee
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
8
|
Ren J, Opoku H, Tang S, Edman L, Wang J. Carbon Dots: A Review with Focus on Sustainability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405472. [PMID: 39023174 PMCID: PMC11425242 DOI: 10.1002/advs.202405472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Carbon dots (CDs) are an emerging class of nanomaterials with attractive optical properties, which promise to enable a variety of applications. An important and timely question is whether CDs can become a functional and sustainable alternative to incumbent optical nanomaterials, notably inorganic quantum dots. Herein, the current CD literature is comprehensively reviewed as regards to their synthesis and function, with a focus on sustainability aspects. The study quantifies why it is attractive that CDs can be synthesized with biomass as the sole starting material and be free from toxic and precious metals and critical raw materials. It further describes and analyzes employed pretreatment, chemical-conversion, purification, and processing procedures, and highlights current issues with the usage of solvents, the energy and material efficiency, and the safety and waste management. It is specially shown that many reported synthesis and processing methods are concerningly wasteful with the utilization of non-sustainable solvents and energy. It is finally recommended that future studies should explicitly consider and discuss the environmental influence of the selected starting material, solvents, and generated byproducts, and that quantitative information on the required amounts of solvents, consumables, and energy should be provided to enable an evaluation of the presented methods in an upscaled sustainability context.
Collapse
Affiliation(s)
- Junkai Ren
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Henry Opoku
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Shi Tang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
| | - Ludvig Edman
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
- LunaLEC ABUmeå UniversityUmeåSE‐90187Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| | - Jia Wang
- The Organic Photonics and Electronics Group, Department of PhysicsUmeå UniversityUmeåSE‐90187Sweden
| |
Collapse
|
9
|
Kosmalski T, Kołodziejska R, Przybysz M, Szeleszczuk Ł, Pawluk H, Mądra-Gackowska K, Studzińska R. The Application of Green Solvents in the Synthesis of S-Heterocyclic Compounds-A Review. Int J Mol Sci 2024; 25:9474. [PMID: 39273421 PMCID: PMC11395059 DOI: 10.3390/ijms25179474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cyclic organic compounds containing sulfur atoms constitute a large group, and they play an important role in the chemistry of heterocyclic compounds. They are valuable intermediates for the synthesis of other compounds or biologically active compounds themselves. The synthesis of heterocyclic compounds poses a major challenge for organic chemists, especially in the context of applying the principles of "green chemistry". This work is a review of the methods of synthesis of various S-heterocyclic compounds using green solvents such as water, ionic liquids, deep eutectic solvents, glycerol, ethylene glycol, polyethylene glycol, and sabinene. The syntheses of five-, six-, and seven-membered heterocyclic compounds containing a sulfur atom or atoms, as well as those with other heteroatoms and fused-ring systems, are described. It is shown that using green solvents determines the attractiveness of conditions for many reactions; for others, such use constitutes a real compromise between efficiency and mild reaction conditions.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Monika Przybysz
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| |
Collapse
|
10
|
Hota PK, Panda S, Phan H, Kim B, Siegler MA, Karlin KD. Dioxygenase Chemistry in Nucleophilic Aldehyde Deformylations Utilizing Dicopper O 2-Derived Peroxide Complexes. J Am Chem Soc 2024; 146:23854-23871. [PMID: 39141923 PMCID: PMC11472664 DOI: 10.1021/jacs.4c06243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The chemistry of copper-dioxygen complexes is relevant to copper enzymes in biology as well as in (ligand)Cu-O2 (or Cu2-O2) species utilized in oxidative transformations. For overall energy considerations, as applicable in chemical synthesis, it is beneficial to have an appropriate atom economy; both O-atoms of O2(g) are transferred to the product(s). However, examples of such dioxygenase-type chemistry are extremely rare or not well documented. Herein, we report on nucleophilic oxidative aldehyde deformylation reactivity by the peroxo-dicopper(II) species [Cu2II(BPMPO-)(O22-)]1+ {BPMPO-H = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} and [Cu2II(XYLO-)(O22-)]1+ (XYLO- = a BPMPO- analogue possessing bis(2-{2-pyridyl}ethyl)amine chelating arms). Their dicopper(I) precursors are dioxygenase catalysts. The O2(g)-derived peroxo-dicopper(II) intermediates react rapidly with aldehydes like 2-phenylpropionaldehyde (2-PPA) and cyclohexanecarboxaldehyde (CCA) in 2-methyltetrahydrofuran at -90 °C. Warming to room temperature (RT) followed by workup results in good yields of formate (HC(O)O-) along with ketones (acetophenone or cyclohexanone). Mechanistic investigation shows that [Cu2II(BPMPO-)(O22-)]1+ species initially reacts reversibly with the aldehydes to form detectable dicopper(II) peroxyhemiacetal intermediates, for which optical titrations provide the Keq (at -90 °C) of 73.6 × 102 M-1 (2-PPA) and 10.4 × 102 M-1 (CCA). In the reaction of [Cu2II(XYLO-)(O22-)]1+ with 2-PPA, product complexes characterized by single-crystal X-ray crystallography are the anticipated dicopper(I) complex, [Cu2I(XYLO-)]1+ plus a mixed-valent Cu(I)Cu(II)-formate species. Formate was further identified and confirmed by 1H NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) analysis. Using 18O2(g)-isotope labeling the reaction produced a high yield of 18-O incorporated acetophenone as well as formate. The overall results signify that true dioxygenase reactions have occurred, supported by a thorough mechanistic investigation.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Bohee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Xu L, Zhu J, Shen X, Chai J, Shi L, Wu B, Li W, Ma D. 6-Hydroxy Picolinohydrazides Promoted Cu(I)-Catalyzed Hydroxylation Reaction in Water: Machine-Learning Accelerated Ligands Design and Reaction Optimization. Angew Chem Int Ed Engl 2024:e202412552. [PMID: 39189301 DOI: 10.1002/anie.202412552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 08/28/2024]
Abstract
Hydroxylated (hetero)arenes are privileged motifs in natural products, materials, small-molecule pharmaceuticals and serve as versatile intermediates in synthetic organic chemistry. Herein, we report an efficient Cu(I)/6-hydroxy picolinohydrazide-catalyzed hydroxylation reaction of (hetero)aryl halides (Br, Cl) in water. By establishing machine learning (ML) models, the design of ligands and optimization of reaction conditions were effectively accelerated. The N-(1,3-dimethyl-9H- carbazol-9-yl)-6-hydroxypicolinamide (L32, 6-HPA-DMCA) demonstrated high efficiency for (hetero)aryl bromides, promoting hydroxylation reactions with a minimal catalyst loading of 0.01 mol % (100 ppm) at 80 °C to reach 10000 TON; for substrates containing sensitive functional groups, the catalyst loading needs to be increased to 3.0 mol % under near-room temperature conditions. N-(2,7-Di-tert-butyl-9H-carbazol-9-yl)-6-hydroxypicolinamide (L42, 6-HPA-DTBCA) displayed superior reaction activity for chloride substrates, enabling hydroxylation reactions at 100 °C with 2-3 mol % catalyst loading. These represent the state of art for both lowest catalyst loading and temperature in the copper-catalyzed hydroxylation reactions. Furthermore, this method features a sustainable and environmentally friendly solvent system, accommodates a wide range of substrates, and shows potential for developing robust and scalable synthesis processes for key pharmaceutical intermediates.
Collapse
Affiliation(s)
- Lanting Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Jiazhou Zhu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Xiaodong Shen
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Jiashuang Chai
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuang Lu, Shanghai, 200062, China
| | - Lei Shi
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Bin Wu
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Wei Li
- Suzhou Novartis Technical Development Co., Ltd., #18-1, Tonglian Road, Bixi Subdistrict, Changshu, Jiangsu, 215537, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
12
|
Jahanshahi R, Moghadam HH, Sobhani S, Sansano JM. ZnCo 2O 4@g-C 3N 4@Cu as a new and highly efficient heterogeneous photocatalyst for visible light-induced cyanation and Mizoroki-Heck cross-coupling reactions. RSC Adv 2024; 14:26424-26436. [PMID: 39175692 PMCID: PMC11339774 DOI: 10.1039/d4ra04827j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Conducting C-C cross-coupling reactions under convenient and mild conditions remains extremely challenging in traditional organic synthesis. In this study, ZnCo2O4@g-C3N4@Cu exhibited extraordinary photocatalytic performance as a new visible light harvesting heterogeneous copper-based photocatalyst in cyanation and Mizoroki-Heck visible-light-driven cross-coupling reactions at room temperature and in air. Surprisingly, by this method, the cyanation and Mizoroki-Heck cross-coupling reactions of various iodo-, bromo- and also the challenging chloroarenes with respectively K4[Fe(CN)6]·3H2O and olefins produced promising results in a sustainable and mild media. The significant photocatalytic performance of ZnCo2O4@g-C3N4@Cu arises from the synergistic optical properties of ZnCo2O4, g-C3N4, and Cu. These components can enhance the charge carrier generation and considerably reduce the recombination rate of photogenerated electron-hole pairs. No need to use heat or additives, applying an economical and benign light source, utilizing an environmentally compatible solvent, facile and low-cost photocatalytic approach, aerial conditions, high stability and convenient recyclability of the photocatalyst are the remarkable highlights of this methodology. Moreover, this platform exhibited the ability to be performed on a large scale, which is considered an important issue in industrial and pharmaceutical use. It is worth noting that this is the first time that a heterogeneous copper-based photocatalyst has been employed in visible light-promoted cyanation reactions of aryl halides.
Collapse
Affiliation(s)
- Roya Jahanshahi
- Department of Chemistry, College of Sciences, University of Birjand Birjand Iran
| | | | - Sara Sobhani
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
- Department of Chemistry, College of Sciences, University of Birjand Birjand Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), Universidad de Alicante Apdo. 99 03080-Alicante Spain
| |
Collapse
|
13
|
Balasubramani A, Sudarshana KA, Kushwaha R, Chakravarty S, Pabbaraja S, Mehta G. One flask cascade approach to a complex pyrano[2,3- c]pyrazole-pyrazolone hybrid heterocyclic system and its initiatory neurobiological profiling. Chem Commun (Camb) 2024; 60:8443-8446. [PMID: 39037025 DOI: 10.1039/d4cc02813a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A one-pot multicomponent approach towards a hybrid heterocyclic pyrano[2,3-c]pyrazole-pyrazolone framework involving tandem Knoevenagel condensation, sequential intermolecular 1,6-Michael addition, and 6-endo dig cyclization between diynones and pyrazolones, mediated by DBU, has been discovered. This process embodies several green and sustainable chemistry features. Preliminary bioactivity profiling of the new chemical entities indicates neuroprotective and AChE inhibitory activities.
Collapse
Affiliation(s)
- Alagesan Balasubramani
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | - K A Sudarshana
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Roli Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
14
|
Zhang L, You M, Ban X, Zhao X, Yin Y, Cao S, Jiang Z. Visible light-driven dearomative ring expansion of (aza)arenes to access dihydrofuran-based polycyclic compounds. Chem Sci 2024; 15:8828-8834. [PMID: 38873084 PMCID: PMC11168080 DOI: 10.1039/d4sc00748d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/04/2024] [Indexed: 06/15/2024] Open
Abstract
The dearomative expansion of aromatic rings has long been pursued by chemists due to its potential to provide tractable approaches for synthesizing valuable non-aromatic molecules. To circumvent the conventional use of hazardous and unstable diazo compounds, photochemical synthesis has recently emerged as a promising platform. However, protocols that can effectively handle both arenes and azaarenes remain scarce. Herein, we introduce a generic strategy that efficiently converts β-(aza)aryl-β-substituted enones into biologically significant cycloheptatriene derivatives, including their aza-variants. This method allows for the easy modulation of diverse functional groups on the product and demonstrates a wide substrate scope, evidenced by its excellent tolerance to various drug motifs and good compatibility with five-membered azaarenes undergoing ring expansion. Moreover, DFT calculations of plausible mechanisms have motivated the implementation of an important cascade diradical recombination strategy for 1,3-dienones, thus facilitating the synthesis of valuable 2-oxabicyclo[3.1.0]hex-3-ene derivatives.
Collapse
Affiliation(s)
- Linghong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Kaifeng Henan P. R. China 475004
| | - Mengdi You
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University Xinxiang Henan P. R. China 453007
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University Xinxiang Henan P. R. China 453007
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Kaifeng Henan P. R. China 475004
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University Xinxiang Henan P. R. China 453007
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University Xinxiang Henan P. R. China 453007
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University Kaifeng Henan P. R. China 475004
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University Xinxiang Henan P. R. China 453007
| |
Collapse
|
15
|
Zhu S, Huang W, Liu S, Yu R, Ma Y, Wang H, Zhang R, Liu B, Lan Y, Shen R. Synthesis of benzooxepane-fused cyclobutene derivatives via Pd-catalyzed cascade reactions of haloarenes and diynylic ethers. Chem Commun (Camb) 2024; 60:5707-5710. [PMID: 38738645 DOI: 10.1039/d4cc00999a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A tandem palladium-catalyzed Sonogashira coupling, propargyl-allenyl isomerization, and [2+2] cycloaddition sequence between electron-deficient haloarenes and 1,8-diynylic ethers is developed. The reaction shows good functional tolerance and proceeds under mild conditions to provide a new profile of benzooxepane-fused cyclobutene derivatives in moderate to high yields with high selectivity. The reaction mechanism is validated both by experimental studies and DFT calculations.
Collapse
Affiliation(s)
- Shugao Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Wenliang Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
| | - Rongjing Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Yufeng Ma
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Hong Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China.
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
16
|
Nieto-Domínguez M, Sako A, Enemark-Rasmussen K, Gotfredsen CH, Rago D, Nikel PI. Enzymatic synthesis of mono- and trifluorinated alanine enantiomers expands the scope of fluorine biocatalysis. Commun Chem 2024; 7:104. [PMID: 38724655 PMCID: PMC11082193 DOI: 10.1038/s42004-024-01188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Fluorinated amino acids serve as an entry point for establishing new-to-Nature chemistries in biological systems, and novel methods are needed for the selective synthesis of these building blocks. In this study, we focused on the enzymatic synthesis of fluorinated alanine enantiomers to expand fluorine biocatalysis. The alanine dehydrogenase from Vibrio proteolyticus and the diaminopimelate dehydrogenase from Symbiobacterium thermophilum were selected for in vitro production of (R)-3-fluoroalanine and (S)-3-fluoroalanine, respectively, using 3-fluoropyruvate as the substrate. Additionally, we discovered that an alanine racemase from Streptomyces lavendulae, originally selected for setting an alternative enzymatic cascade leading to the production of these non-canonical amino acids, had an unprecedented catalytic efficiency in β-elimination of fluorine from the monosubstituted fluoroalanine. The in vitro enzymatic cascade based on the dehydrogenases of V. proteolyticus and S. thermophilum included a cofactor recycling system, whereby a formate dehydrogenase from Pseudomonas sp. 101 (either native or engineered) coupled formate oxidation to NAD(P)H formation. Under these conditions, the reaction yields for (R)-3-fluoroalanine and (S)-3-fluoroalanine reached >85% on the fluorinated substrate and proceeded with complete enantiomeric excess. The selected dehydrogenases also catalyzed the conversion of trifluoropyruvate into trifluorinated alanine as a first-case example of fluorine biocatalysis with amino acids carrying a trifluoromethyl group.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aboubakar Sako
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Shi J, Zhu Z, Yang Z, Lin Y, Yu T, Zhong M, Lo TWB, Chen X, Luan T. In Situ Activation of Azaarenes and Terminal Alkynes to Construct Bridged Polycyclic Compounds Containing Isoquinolinones. Org Lett 2024; 26:2002-2006. [PMID: 38394378 DOI: 10.1021/acs.orglett.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
A copper-catalyzed [4+2] cyclization reaction of isoquinolines and alkynes is developed for the one-step construction of isoquinolinone derivatives with multisubstituted bridging rings. The unique feature of this three-component tandem cyclization reaction is the functionalization of the C1, N2, C3, and C4 positions of 3-haloisoquinolines via the construction of new C-N, C═O, and C-C bonds. This dearomatization strategy for the synthesis of structurally complex isoquinolinone-bridged cyclic compounds offers good chemoselectivity, broad functional group compatibility, greenness, and high step economy.
Collapse
Affiliation(s)
- Jianyi Shi
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhendong Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Yuqun Lin
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tong Yu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiuwen Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tiangang Luan
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China
| |
Collapse
|
18
|
Schenck L, Risteen B, Johnson LM, Koynov A, Bonaga L, Orr R, Hancock B. A Commentary on Co-Processed API as a Promising Approach to Improve Sustainability for the Pharmaceutical Industry. J Pharm Sci 2024; 113:306-313. [PMID: 38065243 DOI: 10.1016/j.xphs.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Pharmaceutical products represent a meaningful target for sustainability improvement and emissions reduction. It is proposed here that rethinking the standard, and often linear, approach to the synthesis of Active Pharmaceutical Ingredients (API) and subsequent formulation and drug product processing will deliver transformational sustainability opportunities. The greatest potential arguably involves API that have challenging physico-chemical properties. These can require the addition of excipients that can significantly exceed the weight of the API in the final dosage unit, require multiple manufacturing steps to achieve materials amenable to delivering final dosage units, and need highly protective packaging for final product stability. Co-processed API are defined as materials generated via addition of non-covalently bonded, non-active components during drug substance manufacturing steps, differing from salts, solvates and co-crystals. They are an impactful example of provocative re-thinking of historical regulatory and quality precedents, blurring drug substance and drug product operations, with sustainability opportunities. Successful examples utilizing co-processed API can modify properties with use of less excipient, while simultaneously reducing processing requirements by delivering material amenable to continuous manufacturing. There are also opportunities for co-processed API to reduce the need for highly protective packaging. This commentary will detail the array of sustainability impacts that can be delivered, inclusive of business, regulatory, and quality considerations, with discussion on potential routes to more comprehensively commercialize co-processed API technologies.
Collapse
Affiliation(s)
- Luke Schenck
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
| | - Bailey Risteen
- Pharma Solutions, BASF Corporation, Florham Park, New Jersey 07932, United States
| | | | - Athanas Koynov
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Llorente Bonaga
- CMC Pharmaceutical Development and New Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Robert Orr
- CMC Pharmaceutical Development and New Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bruno Hancock
- Drug Product Development, Pfizer Inc., Groton CT 06340, United States
| |
Collapse
|
19
|
Beg MZ, Singh PK, Singh PP, Srivastava M, Srivastava V. Metal-free visible light mediated direct C-H amination of benzoxazole with secondary amines. Mol Divers 2024; 28:61-71. [PMID: 36609739 DOI: 10.1007/s11030-022-10595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
An efficient visible light mediated, eosin Y catalyzed direct C-H oxidative amination of benzoxazoles with secondary amines has been developed, which providing a straightforward, green, and environmentally benign access to a wide variety of substituted benzoxazole-2-amines under mild reaction conditions. The biological studies such as drug-likeness and molecular docking are also carried out on the molecule.
Collapse
Affiliation(s)
- Mohd Zaheeruddin Beg
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, 211002, India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, 211002, India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Naini, Prayagraj, 211010, India
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
20
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
21
|
Zhang Z, Li J, Xi C. Nickel-Catalyzed Reductive Allylation of Aldehydes with Allylic Alcohols in the Presence of CO 2. Org Lett 2023; 25:8178-8182. [PMID: 37933552 DOI: 10.1021/acs.orglett.3c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
CO2-assisted and Ni-catalyzed direct reductive allylation of aldehydes utilizing allylic alcohols as allylic precursor has been reported. Various homoallyl alcohols could be synthesized in excellent yield with enhanced regioselectivity and stereoselectivity for alkyl- and aryl-substituted aldehydes under mild conditions. For different substrates, proper collocation of the catalytic precursor and ligand is crucial. Preliminary mechanistic studies supported the reaction pathway through a sequential allyl hydrocarbonate formation/allylnickelation/coordination insertion process by the Ni(I)/Ni(III) catalytic cycle, which has been proven by cyclic voltammetry analysis.
Collapse
Affiliation(s)
- Zeyu Zhang
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayuan Li
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chanjuan Xi
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- State Key Laboratory of Elemento Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
22
|
Chappell TC, Maiello KG, Tierney AJ, Yanagi K, Lee JA, Lee K, Mace CR, Bennett CS, Nair NU. Rapid spectrophotometric detection for optimized production of landomycins and characterization of their therapeutic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566088. [PMID: 37986805 PMCID: PMC10659386 DOI: 10.1101/2023.11.07.566088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Microbial derived natural products remain a major source of structurally diverse bioactive compounds and chemical scaffolds that have potential as new therapeutics to target drug resistant pathogens and cancers. In particular, genome mining has revealed the vast number of cryptic or low yield biosynthetic gene clusters in the genus Streptomyces . Here, we describe our efforts to improve yields of landomycins - angucycline family polyketides under investigation as cancer therapeutics - by a genetically modified Streptomyces cyanogenus 136. After simplifying the extraction process from S. cyanogenus cultures, we identified a wavelength at which the major landomycin products absorb in culture extracts, which we used to systematically explore culture medium compositions to improve total landomycin titers. Through correlational analysis, we simplified the culture optimization process by identifying an alternative wavelength at which culture supernatants absorb yet is representative of total landomycin titers. Using the subsequently improved sample throughput, we explored landomycin production during the culturing process to further increase landomycin yield and reduce culture time. Testing the antimicrobial activity of the isolated landomycins, we report broad inhibition of Gram-positive bacteria, inhibition of fungi by landomycinone, and broad landomycin resistance by Gram-negative bacteria that is likely mediated by exclusion of landomycins by the bacterial membrane. Finally, the anticancer activity of the isolated landomycins against A549 lung carcinoma cells agrees with previous reports on other cell lines that glycan chain length correlates with activity. Given the prevalence of natural products produced by Streptomyces , as well as the light-absorbing moieties common to bioactive natural products and their metabolic precursors, our method is relevant to improving the yields of other natural products of interest.
Collapse
|
23
|
Bhanja R, Bera SK, Mal P. Photocatalyst- and Transition Metal-Free Light-Induced Borylation Reactions. Chem Asian J 2023; 18:e202300691. [PMID: 37747303 DOI: 10.1002/asia.202300691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
The increasing global warming concerns have propelled a surge in the demand for sustainable energy sources within the domain of synthetic organic chemistry. A particularly prominent area of research has been the development of mild synthetic strategies for generating heterocyclic compounds. Heterocyclic compounds containing boron have notably risen to prominence as pivotal reagents in a myriad of organic transformations, showcasing their wide-ranging applicability. This comprehensive review is aimed at collecting the literature pertaining to borylation reactions induced by light, specifically focusing on photocatalyst-free and transition metal-free methodologies. The central emphasis is on delving into selective mechanistic investigations. The amalgamation and analysis of these research insights elucidate the substantial potential inherent in eco-friendly approaches for synthesizing heterocyclic compounds, thus propelling the landscape of sustainable organic chemistry.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India) (PM
| |
Collapse
|
24
|
Abstract
Here we show that a primary amine can engage in the nucleophilic addition to an aldehyde to synthesize an alcohol following preactivation of the amine. The enabling reagent for this radical-polar crossover process is CrCl2. This reaction is selective for aldehydes and compatible with numerous functional groups, which are not tolerated under classical Grignard-type conditions. Complementary to the well-established imine synthesis, this deaminative alcohol synthesis can broadly expand the chemical space constructed by aldehydes and amines.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengqiang Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Lv X, Gao P, Zhao X, Jiang Z. Metal-Free Construction of Multisubstituted Indolizines via Intramolecular Amination of Allylic Alcohols. J Org Chem 2023. [PMID: 37229619 DOI: 10.1021/acs.joc.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An intramolecular amination of allylic alcohols is developed as an efficient and general access to biologically important multisubstituted indolizines and their variants. Two metal-free synthetic platforms including using aqueous hydrochloric acid solution as the solvent and p-toluenesulfonic acid as the catalyst have been established, enabling the divergent synthesis of these valuable compounds in high yields.
Collapse
Affiliation(s)
- Xinxin Lv
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, People's Republic of China
| | - Penghui Gao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, People's Republic of China
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Zhiyong Jiang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, People's Republic of China
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
26
|
Sitter JD, Lemus-Rivera EE, Vannucci AK. Insights into reactivity trends for electrochemical C-N bond formations. Org Biomol Chem 2023; 21:4290-4296. [PMID: 37158009 DOI: 10.1039/d3ob00236e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electrochemical synthesis techniques are currently of great interest due to the possibility of synthesizing products while limiting reactant and energy input and providing potentially unique selectivity. Our group has previously reported the development of the "anion pool" synthesis method. As this is a new method for organic synthesis and the coupling of C-N bonds, it is important to understand the reactivity trends and limitations this method provides. In this report we explore the reactivity trends of a series of nitrogen-containing heterocycles under reductive electrochemical conditions. The results show that anionic nitrogen heterocycles are stable at room temperature in acetonitrile/electrolyte solutions up to a parent N-H pKa value up to 23. Addition of carbon electrophiles to solutions containing the electrochemically generated anionic nitrogen heterocycles led to the C-N cross-coupling reactivity. Product yields tracked linearly with the pKa value of the N-H bond of the heterocycles over 4 orders of acidity magnitude. Both benzylic halides and perfluorinated aromatics were found suitable for undergoing C-N cross-coupling with the anionic nitrogen heterocycles with product yields as high as 90%. It is also shown that the stability and reactivity of the anions are affected by the choice of electrolyte and temperature. Additionally, this procedure compares well to green chemistry processes in atom economy and PMI values.
Collapse
Affiliation(s)
- James D Sitter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Edgar E Lemus-Rivera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
27
|
Saquib M, Ahamad S, Khan MF, Khan MI, Hussain MK. An ultrasound assisted, ionic liquid-molecular iodine synergy driven efficient green synthesis of pyrrolobenzodiazepine-triazole hybrids as potential anticancer agents. Front Pharmacol 2023; 14:1168566. [PMID: 37214464 PMCID: PMC10196072 DOI: 10.3389/fphar.2023.1168566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Herein, we report an efficient and eco-friendly, ultrasound assisted synthetic strategy for the construction of diversified pyrrolobenzodiazepine-triazole hybrids, which are potentially pharmaceutically important scaffolds, via a domino reaction involving intermolecular electrophilic substitution followed by intramolecular Huisgen 1,3-dipolar azide-alkyne cycloaddition. The USP of the reported protocol is the use of benign and inexpensive, recyclable molecular iodine-ionic liquid synergistic catalytic system cum reaction media for achieving the synthesis. The other salient features of this method are the use of mild reaction conditions, high yield and atom economy, operational simplicity, broad substrate scope and easy workup and purification. All the synthesized compounds were evaluated for in vitro anti-proliferative activity against various cancer cell lines. From among the synthesized title compounds, 9,9-dimethyl-8-phenyl-9H-benzo [b]pyrrolo [1,2-d][1,2,3]triazolo[5,1-g][1,4]diazepine (7) was found most to be the most active compound exhibiting IC50 value of 6.60, 5.45, 7.85, 11.21, 12.24, 10.12, and 11.32 µM against MCF-7, MDA-MB-231, HeLa, SKOV-3, A549, HCT-116 and DLD-1 cell lines, respectively. Further the compounds were found to be non-toxic against normal human embryonic kidney (HEK-293) cell line.
Collapse
Affiliation(s)
- Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era’s Lucknow Medical College, Era University, Lucknow, Uttar Pradesh, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur, Uttar Pradesh, India
- M.J.P Rohilkahand University, Bareilly, Uttar Pradesh, India
| |
Collapse
|
28
|
Valentini C, Montes-García V, Livio PA, Chudziak T, Raya J, Ciesielski A, Samorì P. Tuning the electrical properties of graphene oxide through low-temperature thermal annealing. NANOSCALE 2023; 15:5743-5755. [PMID: 36880730 DOI: 10.1039/d2nr06091d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During the last fifteen years, the reduction of electrically insulating graphene oxide (GO) through the elimination of oxygen containing functional groups and the restoration of sp2 conjugation yielding its conducting form, known as reduced graphene oxide (rGO), has been widely investigated as a scalable and low-cost method to produce materials featuring graphene-like characteristics. Among various protocols, thermal annealing represents an attractive green approach compatible with industrial processes. However, the high temperatures typically required to accomplish this process are energetically demanding and are incompatible with the use of plastic substrates often desired for flexible electronics applications. Here, we report a systematic study on the low-temperature annealing of GO by optimizing different annealing conditions, i.e., temperature, time, and reduction atmosphere. We show that the reduction is accompanied by structural changes of GO, which affect its electrochemical performance when used as an electrode material in supercapacitors. We demonstrate that thermally-reduced GO (TrGO) obtained under air or inert atmosphere at relatively low temperatures (<300 °C) exhibits low film resistivities (10-2-10-4 Ω m) combined with unaltered resistance after 2000 bending cycles when supported on plastic substrates. Moreover, it exhibits enhanced electrochemical characteristics with a specific capacitance of 208 F g-1 and a capacitance retention of >99% after 2000 cycles. The reported strategy is an important step forward toward the development of environmentally friendly TrGO for future electrical or electrochemical applications.
Collapse
Affiliation(s)
- Cataldo Valentini
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Verónica Montes-García
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Pietro Antonio Livio
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Tomasz Chudziak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jésus Raya
- Université de Strasbourg, CNRS, Membrane Biophysics and NMR, Institute of Chemistry, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Artur Ciesielski
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Paolo Samorì
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
29
|
Pereira Sousa JC, Kogawa AC. Overview of Analytical Methods for Evaluating Tinidazole. J AOAC Int 2023; 106:309-315. [PMID: 36355444 DOI: 10.1093/jaoacint/qsac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tinidazole (TIN) has amoebicidal, giardicidal, antifungal, and antimicrobial activities. It is marketed in the form of tablets. Analytical methods to assess the quality of TIN-based products are essential for correct pharmacotherapy. OBJECTIVE The objective of this review is to show an overview of the existing analytical methods for evaluating TIN, according to the quality control (QC) analysis routine and green analytical chemistry (GAC). RESULTS Official compendia show a method for evaluating TIN in tablets by nonaqueous titration, which has limitations (materials on the mg scale using solvents considered not recommended and harmful). The literature shows some analytical methods for evaluating TIN, both physicochemical and microbiological. The most used physicochemical method is UV (41%), and second is HPLC (28%). Among the microbiological methods, agar diffusion and turbidimetric methods are equally divided. The most studied matrix is TIN tablets (73%), and the most used solvent is methanol. CONCLUSIONS The literature shows space for the development of analytical methods according to GAC for evaluating TIN, optimizing time, resources, and materials, reducing waste generation, and opting for less aggressive reagents, solvents, and diluents. HIGHLIGHTS This review shows the status of analytical methods, both physicochemical and microbiological, for the analysis of TIN in pharmaceutical matrix, in the context of routine analysis of the chemical-pharmaceutical industries and of GAC.
Collapse
Affiliation(s)
- Jean Carlos Pereira Sousa
- Quality Control Laboratory, School of Pharmacy, Federal University of Goias, 74605-170, Goiânia - GO, Brazil
| | - Ana Carolina Kogawa
- Quality Control Laboratory, School of Pharmacy, Federal University of Goias, 74605-170, Goiânia - GO, Brazil
| |
Collapse
|
30
|
Liu L, Mendoza-Espinosa D, Quiroz-Guzmán M, Rheingold AL, Hanna TA, Saha G, Tang L, Chen Y, Gilbert M, Dutta A, Asandei AD. Radical and Ring-Opening Polymerizations with Aryl-Substituted Methylene-Bridged Titanium Bisphenolates. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Lihua Liu
- Department of Chemistry, Texas Christian University, Box 298860, Fort Worth, Texas 76129, United States
| | - Daniel Mendoza-Espinosa
- Department of Chemistry, Texas Christian University, Box 298860, Fort Worth, Texas 76129, United States
| | - Mauricio Quiroz-Guzmán
- Department of Chemistry, Texas Christian University, Box 298860, Fort Worth, Texas 76129, United States
| | - Arnold L. Rheingold
- Department of Chemistry, UC San Diego, 9500 Gilman Drive, La Jolla, California 92093-0021, United States
| | - Tracy A. Hanna
- Department of Chemistry, Texas Christian University, Box 298860, Fort Worth, Texas 76129, United States
| | - Gobinda Saha
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06062-3136, United States
| | - Liming Tang
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06062-3136, United States
| | - Yanhui Chen
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06062-3136, United States
| | - Megan Gilbert
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06062-3136, United States
| | - Abhirup Dutta
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06062-3136, United States
| | - Alexandru D. Asandei
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06062-3136, United States
| |
Collapse
|
31
|
Halogen-free oxidation of aryl ketones and benzyl nitrile derivatives to corresponding carboxylic acids by using NaOH/ TBHP in aqueous medium. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Ghosh S, Pyne P, Ghosh A, Choudhury S, Hajra A. Visible-light-induced cascade reaction: a sustainable approach towards molecular complexity. Org Biomol Chem 2023; 21:1591-1628. [PMID: 36723242 DOI: 10.1039/d2ob02062a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential. The development of photocascade catalysis for a target molecule with a particular molecular skeleton and stereochemical framework presents certain challenges but provides a robust and environmentally benign synthetic alternative. This comprehensive review assembles all the accomplishments and highlights of visible-light-induced cascade reactions with literature coverage up to October 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Swagata Choudhury
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| |
Collapse
|
33
|
Lalji RSK, Prince, Gupta M, Kumar S, Kumar A, Singh BK. Rhodium-catalyzed selenylation and sulfenylation of quinoxalinones 'on water'. RSC Adv 2023; 13:6191-6198. [PMID: 36814880 PMCID: PMC9940630 DOI: 10.1039/d2ra07400a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
A rhodium-catalysed, regioselective synthetic methodology for selenylation and sulfenylation of 3-phenyl quinoxolinones has been developed through N-directed C-H activation in the presence of silver triflimide, and silver carbonate using dichalcogenides 'on water'. The methodology has been proven to be efficient, regioselective and green. Using this method, a range of selenylations and sulfenylations of the substrates has been carried out in good to excellent yields. Further, late-stage functionalisation produced potential anti-tumour, anti-fungal and anti-bacterial agents making these compounds potential drug candidates.
Collapse
Affiliation(s)
- Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi 110007 India
| | - Prince
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, L. N. M. S. College Supaul Birpur Bihar 8543340 India
| | - Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Amit Kumar
- Department of Chemistry, IIT Patna Bihar 801106 India
| | - Brajendra Kumar Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
34
|
Oves M, Rauf MA, Qari HA. Therapeutic Applications of Biogenic Silver Nanomaterial Synthesized from the Paper Flower of Bougainvillea glabra (Miami, Pink). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030615. [PMID: 36770576 PMCID: PMC9920917 DOI: 10.3390/nano13030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/29/2023]
Abstract
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 ions. Data patterns obtained from physical techniques for characterizing BAgNPs, employing UV-visible, scattering electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), suggested that the nanoparticles have a spherical to oval form with size ranging from 10 to 50 nm. Spectroscopy and microscopic analysis were used to learn more about the antibacterial properties of the biologically produced BAgNPs from Bougainvillea glabra. Further, the potential mechanism of action of nanoparticles was investigated by studying their interactions in vitro with several bacterial strains and mammalian cancer cell systems. Finally, we can conclude that BAgNPs can be functionalized to dramatically inhibit bacterial growth and the growth of cancer cells in culture conditions, suggesting that biologically produced nanomaterials will provide new opportunities for a wide range of biomedical applications in the near future.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohd Ahmar Rauf
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Huda A. Qari
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
35
|
Xu J, Xu X, Li D, Xie BB, Jian J. Photoinduced boron atom insertion of benzocyclobutene forming an unprecedented fused boron heterocyclic radical. Chem Commun (Camb) 2023; 59:1529-1532. [PMID: 36661048 DOI: 10.1039/d2cc06566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two novel boron heterocyclic radicals, an addition bicyclo[4.2.1]octa-1,3,5-trien-1-yl-borane radical (A) and an insertion 7-1H-borolo[1,2-a]borinine radical (B), were synthesized, and characterized in the reaction of atomic boron with benzocyclobutene. Species B involving a fused boron heterocyclic was spectroscopically characterized for the first time. This work is a new approach for boron-mediated molecular editing and the synthesis of fused boron heterocyclic compounds.
Collapse
Affiliation(s)
- Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Danyang Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| |
Collapse
|
36
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
37
|
Zheng YN, Cai XE, Wu HL, Zhou Y, Tian WC, Ruan Y, Liu H, Wei WT. Metal- and Base-Free Radical Cascade Cyclization/Hydrolysis of CN-Containing 1,6-Enynes with Ethers to Access Polyheterocycles. Chem Asian J 2023; 18:e202201149. [PMID: 36550634 DOI: 10.1002/asia.202201149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
A convenient and straightforward approach for the radical cascade cyclization/hydrolysis of CN-containing 1,6-enynes with simple ethers under metal- and base-free conditions is described. This strategy provides a variety of valuable ethers-substituted polyheterocycles via the construction of three C-C bonds, one C=O bond, and two new six-membered rings within a single procedure. The resulting products can smoothly undergo follow-up conversions to various useful scaffolds. The methodology shows excellent functional group tolerance, high step- and atom- economy, and mild reaction conditions, which can be further scaled up to gram quantity in a satisfactory yield.
Collapse
Affiliation(s)
- Yan-Nan Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Yiping Ruan
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
38
|
Jyoti Roy V, Pathania V, Raha Roy S. Making and Breaking of C-N Bonds: Applications in the Synthesis of Unsymmetric Tertiary Amines and α-Amino Carbonyl Derivatives. Chem Asian J 2023; 18:e202200998. [PMID: 36373843 DOI: 10.1002/asia.202200998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Indexed: 11/16/2022]
Abstract
An operationally simple process has been developed for the synthesis of unsymmetrical amines and α-amino carbonyl derivatives in the absence of a catalyst, ligand, oxidant, or any additives. Contrary to known reductive amination methods, this protocol is amenable to substrates containing other reducible groups. This process effectively results in consecutive cleavage and formation of C-N bonds. DFT studies and Hammett analysis provide useful insight into the mechanism. The role of noncovalent interactions as a stabilizing factor have been examined in the protocol. A wide range of alkyl-bromides have been coupled efficiently with a variety of dimethyl anilines to get unsymmetric tertiary amines with yields up to 90%. This methodology was further extended to the synthesis of α-amino carbonyl derivatives with yields up to 93%.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
39
|
Gennaiou K, Kelesidis A, Kourgiantaki M, Zografos AL. Combining the best of both worlds: radical-based divergent total synthesis. Beilstein J Org Chem 2023; 19:1-26. [PMID: 36686041 PMCID: PMC9830495 DOI: 10.3762/bjoc.19.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
A mature science, combining the art of the total synthesis of complex natural structures and the practicality of delivering highly diverged lead compounds for biological screening, is the constant aim of the organic chemistry community. Delivering natural lead compounds became easier during the last two decades, with the evolution of green chemistry and the concepts of atom economy and protecting-group-free synthesis dominating the field of total synthesis. In this new era, total synthesis is moving towards natural efficacy by utilizing both the biosynthetic knowledge of divergent synthesis and the latest developments in radical chemistry. This contemporary review highlights recent total syntheses that incorporate the best of both worlds.
Collapse
Affiliation(s)
- Kyriaki Gennaiou
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Antonios Kelesidis
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Maria Kourgiantaki
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Alexandros L Zografos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| |
Collapse
|
40
|
Park D, Osuji CO, Kim JW. Multi-Compartmentalized Cellulose Macrobead Catalysts for In Situ Organic Reaction in Aqueous Media. SMALL METHODS 2023; 7:e2201195. [PMID: 36538725 DOI: 10.1002/smtd.202201195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study reports a promising approach to fabricate bacterial cellulose (BC)-based macrobead catalysts with improved catalytic activities and recyclability for organic reactions in aqueous media. To this end, the consecutive extrusion and gelation of BC precursor fluids is conducted using a combined micronozzle device to compartmentalize the resulting BC macrobeads in a programmed manner. The use of BCs laden with Au and Pd nanoparticles (NPs), and Fe3 O4 NPs led to the production of catalytically and magnetically compartmentalized BC macrobeads, respectively. Through the model reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 , it is finally demonstrated that the BC macrobead catalysts not only enhance catalytic activities while exhibiting high reaction yields (>99%) in aqueous media, but also repeatedly retrieve the products with ease in response to the applied magnetic field, enabling the establishment of a useful green catalyst platform.
Collapse
Affiliation(s)
- Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Precision Biology Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
41
|
Zhang M, Zhang J, Li Q, Shi Y. Iron-mediated ligand-to-metal charge transfer enables 1,2-diazidation of alkenes. Nat Commun 2022; 13:7880. [PMID: 36564406 PMCID: PMC9789131 DOI: 10.1038/s41467-022-35344-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Given the widespread significance of vicinal diamine units in organic synthesis, pharmaceuticals and functional materials, as well as in privileged molecular catalysts, an efficient and practical strategy that avoids the use of stoichiometric strong oxidants is highly desirable. We herein report the application of ligand-to-metal charge transfer (LMCT) excitation to 1,2-diazidation reactions from alkenes and TMSN3 via a coordination-LMCT-homolysis process with more abundant and greener iron salt as the catalyst. Such a LMCT-homolysis mode allows the generation of electrophilic azidyl radical intermediate from Fe-N3 complexes poised for subsequent radical addition into carbon-carbon double bond. The generated carbon radical intermediate is further captured by iron-mediated azidyl radical transfer, enabling dual carbon-nitrogen bond formation. This protocol provides a versatile platform to access structurally diverse diazides with high functional group compatibility from readily available alkenes without the need of chemical oxidants.
Collapse
Affiliation(s)
- Muliang Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, People's Republic of China
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Jinghui Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, People's Republic of China
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Qingyao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yumeng Shi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, People's Republic of China.
| |
Collapse
|
42
|
Bala R, Pareek B, Umar A, Arora S, Singh D, Chaudhary A, Alkhanjaf AAM, Almadiy AA, Algadi H, Kumar R, Jaswal VS, Baskoutas S. In-vitro cytotoxicity of nickel oxide nanoparticles against L-6 cell-lines: MMP, MTT and ROS studies. ENVIRONMENTAL RESEARCH 2022; 215:114257. [PMID: 36084676 DOI: 10.1016/j.envres.2022.114257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In the present work we synthesize nickel oxide nanoparticles (NiO NPs) using Rhododendron arboretum (flower) (RNi), Tinospora cordifolia (stems) (GNi), Corylus jacquemontii (seeds) (CNi), and Nardostachys jatamansi (roots) (NNi) extracts by co-precipitation method. The synthesized NiO NPs were characterized in detail in terms of their morphological, crystalline nature, structural and antiproliferative activity against rat skeletal myoblast (L-6) cell lines. Morphological studies confirmed the formation of nanoparticles, while the structural and compositional characterization revealed the well-crystallinity and high purity of the synthesized nanoparticles. For biological applications and cytotoxicity examinations of the synthesized NPs, the rat skeletal myoblast (L-6) cell lines were subjected to study. By detailed cytotoxic investigations, it was observed that among the four kinds of NiO NPs prepared through different plant extracts, the Tinospora cordifolia (stems) showed strong antiproliferative activity against rat skeletal myoblast (L-6) cell lines and the calculated IC50 was 1.671 mg/mL. The observed antiproliferative activity towards different NiO NPs were in the order of GNi > NNi > RNi > CNi. The present studies demonstrate that simply synthesized NiO can efficiently be used as antiproliferative agents.
Collapse
Affiliation(s)
- Renu Bala
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India
| | - Bhawna Pareek
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, and Promising Centre for Sensors and Electronics Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Ashun Chaudhary
- Department of Plant Science, Central University of Himachal Pradesh, Dharamshala, District Kangra, Himachal Pradesh, 176215, India
| | - Abdulrab Ahmed M Alkhanjaf
- Molecular Diagnostics, Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Abdulrhman A Almadiy
- Department of Biology, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia
| | - Hassan Algadi
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Raman Kumar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India; Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vivek Sheel Jaswal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, 133207, Ambala, India; Department of Chemistry and Chemical Science, Central University of Himachal Pradesh, Dharmshala, District Kangra, Himachal Pradesh, 176215, India.
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
43
|
Microwave-Aided Reactions of Aniline Derivatives with Formic Acid: Inquiry-Based Learning Experiments. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The synthesis of amides belongs to traditional experimental tasks not only in organic chemistry exercises at universities but also at chemically focused secondary schools or in special practices at general high schools. An example of such a synthesis may be the preparation of acetanilide via reaction of aniline with acetic acid or acetic anhydride. However, both of these reactions are associated with a rather long reaction time and certain hazards that limit their straightforward use in pedagogical practice. Conveniently, the reaction of aniline with acetic acid may be significantly optimised if it is performed under solvent-free conditions in the presence of microwaves, which reduces considerably the reaction time and provides very good yield, compared to traditional heating by a heating nest. In this study, the main pedagogical aim of the experimental design is elucidation of the influence of the structure of the amines on the course of the reaction with formic acid through inquiry-based learning. Specifically, the proposed experiments consist in investigation of the chemical yield achieved in microwave assisted reactions of aniline and its derivatives with formic acid in such a way that is adequate for constructive learning of undergraduate chemistry students. The selected series of amines involves aniline, 4-methoxyaniline, 4-chloroaniline, and 4-nitroaniline. In accordance with the chemical reactivity principles, students gradually realise that the influence of the substituent is reflected in the reaction yield, which grows in the following order: N-(4-nitrophenyl)formamide ˂ N-(4-chlorophenyl)formamide ˂ N-phenylformamide ˂ N-(4-methoxyphenyl)formamide. Therefore, the results of the experiments enable students to discover that stronger basicity of the amine increases the yield of the amide. In order to deepen the students’ chemical knowledge and skills, the concept of the experiments was transformed to support inquiry-based student learning. The proposed experiments are intended for experimental learning in universities educating future chemistry teachers, but they may be also utilised in the form of workshops for students at secondary schools of a general educational nature.
Collapse
|
44
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Elizondo-Villarreal N, Verástegui-Domínguez L, Rodríguez-Batista R, Gándara-Martínez E, Alcorta-García A, Martínez-Delgado D, Rodríguez-Castellanos EA, Vázquez-Rodríguez F, Gómez-Rodríguez C. Green Synthesis of Magnetic Nanoparticles of Iron Oxide Using Aqueous Extracts of Lemon Peel Waste and Its Application in Anti-Corrosive Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238328. [PMID: 36499817 PMCID: PMC9735538 DOI: 10.3390/ma15238328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Lately, the development of green chemistry methods with high efficiency for metal nanoparticle synthesis has become a primary focus among researchers. The main goal is to find an eco-friendly technique for the production of nanoparticles. Ferro- and ferrimagnetic materials such as magnetite (Fe3O4) exhibit superparamagnetic behavior at a nanometric scale. Magnetic nanoparticles have been gaining increasing interest in nanoscience and nanotechnology. This interest is attributed to their physicochemical properties, particle size, and low toxicity. The present work aims to synthesize magnetite nanoparticles in a single step using extracts of green lemon Citrus Aurantifolia residues. The results produced nanoparticles of smaller size using a method that is friendlier to health and the environment, is more profitable, and can be applied in anticorrosive coatings. The green synthesis was carried out by a co-precipitation method under variable temperature conditions. The X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) characterization showed that magnetite nanoparticles were successfully obtained with a very narrow particle size distribution between 3 and 10 nm. A composite was produced with the nanoparticles and graphene to be used as a surface coating on steel. In addition, the coating's anticorrosive behavior was evaluated through electrochemical techniques. The surface coating obtained showed good anticorrosive properties and resistance to abrasion.
Collapse
Affiliation(s)
- Nora Elizondo-Villarreal
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Luz Verástegui-Domínguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
- Correspondence: (N.E.-V.); (L.V.-D.)
| | - Raúl Rodríguez-Batista
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Eleazar Gándara-Martínez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Aracelia Alcorta-García
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Dora Martínez-Delgado
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | | | - Francisco Vázquez-Rodríguez
- Universidad Autónoma de Nuevo León, Campus Cd. Universitaria, Ave. Universidad S/N, San Nicolás de los Garza 66455, Mexico
| | - Cristian Gómez-Rodríguez
- Faculty of Engineering, University of Veracruz (Coatzacoalcos), Av. Universidad km 7.5 Col. Santa Isabel, Coatzacoalcos 96535, Mexico
| |
Collapse
|
46
|
Karche AD, Kamalakannan P, Powar R, Shenoy GG, Padiya KJ. “On-Water” Reaction of (Thio)isocyanate: A Sustainable Process for the Synthesis of Unsymmetrical (Thio)ureas. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amit Dattatray Karche
- Process Research and Development, Novel Drug Discovery and Development, Lupin Research Park, Lupin Limited, 46A/47A Village Nande, Pune 412 115, India
| | - Prabakaran Kamalakannan
- Process Research and Development, Novel Drug Discovery and Development, Lupin Research Park, Lupin Limited, 46A/47A Village Nande, Pune 412 115, India
| | - Rajendra Powar
- Process Research and Development, Novel Drug Discovery and Development, Lupin Research Park, Lupin Limited, 46A/47A Village Nande, Pune 412 115, India
| | - Gautham G. Shenoy
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104. India
| | - Kamlesh J. Padiya
- Process Research and Development, Novel Drug Discovery and Development, Lupin Research Park, Lupin Limited, 46A/47A Village Nande, Pune 412 115, India
| |
Collapse
|
47
|
Synthesis and Application of Innovative and Environmentally Friendly Photocatalysts: A Review. Catalysts 2022. [DOI: 10.3390/catal12101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Modern society faces two major challenges: removing pollutants from water and producing energy from renewable sources. To do this, science proposes innovative, low-cost, and environmentally friendly methods. The heterogeneous photocatalysis process fits perfectly in this scenario. In fact, with photocatalysis, it is possible both to mineralize contaminants that are not easily biodegradable and to produce hydrogen from the water splitting reaction or from the conversion of organic substances present in water. However, the main challenge in the field of heterogeneous photocatalysis is to produce low-cost and efficient photocatalysts active under visible light or sunlight. The objective of this review is to compare the new proposals for the synthesis of innovative photocatalysts that reflect the requirements of green chemistry, applied both in the removal of organic contaminants and in hydrogen production. From this comparison, we want to bring out the strengths and weaknesses of the proposals in the literature, but above all, new ideas to improve the efficiency of heterogeneous photocatalysis guaranteeing the principles of environmental and economic sustainability.
Collapse
|
48
|
Eisenreich F, Palmans ARA. Direct C-H Trifluoromethylation of (Hetero)Arenes in Water Enabled by Organic Photoredox-Active Amphiphilic Nanoparticles. Chemistry 2022; 28:e202201322. [PMID: 35730657 PMCID: PMC9544737 DOI: 10.1002/chem.202201322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/10/2022]
Abstract
Photoredox-catalyzed chemical conversions are predominantly operated in organic media to ensure good compatibility between substrates and catalysts. Yet, when conducted in aqueous media, they are an attractive, mild, and green way to introduce functional groups into organic molecules. We here show that trifluoromethyl groups can be readily installed into a broad range of organic compounds by using water as the reaction medium and light as the energy source. To bypass solubility obstacles, we developed robust water-soluble polymeric nanoparticles that accommodate reagents and photocatalysts within their hydrophobic interior under high local concentrations. By taking advantage of the high excited state reduction potential of N-phenylphenothiazine (PTH) through UV light illumination, the direct C-H trifluoromethylation of a wide array of small organic molecules is achieved selectively with high substrate conversion. Key to our approach is slowing down the production of CF3 radicals during the chemical process by reducing the catalyst loading as well as the light intensity, thereby improving effectiveness and selectivity of this aqueous photocatalytic method. Furthermore, the catalyst system shows excellent recyclability and can be fueled by sunlight. The method we propose here is versatile, widely applicable, energy efficient, and attractive for late-stage introduction of trifluoromethyl groups into biologically active molecules.
Collapse
Affiliation(s)
- Fabian Eisenreich
- Laboratory of Macromolecular and Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhoven (TheNetherlands
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic ChemistryInstitute of Complex Molecular SystemsDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 5135600 MBEindhoven (TheNetherlands
| |
Collapse
|
49
|
Mohammed Musthafa T, Snigdha K, Asiri AM, Sobahi TR, Asad M. Green synthesis of Chromonyl Chalcone and Pyrazoline as Potential Antimicrobial Agents - DFT, Molecular Docking and Antimicrobial Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
New green perspective to dihydropyridines synthesis utilizing modified heteropoly acid catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|