1
|
Zhdanov DD, Gladilina YA, Shisparenok AN. Apoptotic endonuclease EndoG induces alternative splicing of Caspase-2. BIOMEDITSINSKAIA KHIMIIA 2024; 70:218-230. [PMID: 39239896 DOI: 10.18097/pbmc20247004218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Caspase-2 (Casp-2) is an enzyme that regulates the development of apoptosis upon alternative splicing of its mRNA. The long form of Casp-2 (Casp-2L) promotes apoptosis while the short form (Casp-2S) has decreased enzymatic activity and inhibits the development of apoptotic processes. However, very little is known about the mechanism of Casp-2 alternative splicing. Several endonucleases are known to participate in this process. The aim of this study was to determine the role of EndoG in regulation of Casp-2 alternative splicing. Strong correlation between expression levels of EndoG and Casp-2 splice-variants was found in CD4⁺ and CD8⁺ human T lymphocytes. Such correlation increased after incubation of these cells with etoposide. Increased expression of Casp-2S was determined during EndoG over-expression in CD4⁺ T-cells, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. Casp-2 alternative splicing was induced by a 60-mer RNA oligonucleotide in naked nuclei and in cells after transfection. The identified long non-coding RNA of 1016 nucleotides is the precursor of the 60-mer RNA oligonucleotide. Based on the results the following mechanism has been proposed. Casp-2 pre-mRNA is transcribed from the coding DNA strand while long non-coding RNA is transcribed from the template strand of the Casp-2 gene. EndoG digests long non-coding RNA and produces the 60-mer RNA oligonucleotide complementary to the Casp-2 pre-mRNA exon 9 and intron 9 junction place. Interaction of the 60-mer RNA oligonucleotide and Casp-2 pre-mRNA causes alternative splicing.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|
2
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Peyda P, Wohlschlegel J, Black DL. The splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. Mol Cell 2024; 84:1496-1511.e7. [PMID: 38537639 PMCID: PMC11057915 DOI: 10.1016/j.molcel.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
Understanding the mechanisms of pre-mRNA splicing is limited by the technical challenges to examining spliceosomes in vivo. Here, we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of mammalian cell nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA bound with protected RNA fragments that precisely map to intronic branch sites across the transcriptome. These U2 complexes also contained the splicing regulators RBM5 and RBM10. We found RBM5 and RBM10 bound to nearly all branch site complexes and not simply those at regulated exons. The deletion of a conserved RBM5/RBM10 peptide sequence, including a zinc finger motif, disrupted U2 interaction and rendered the proteins inactive for the repression of many alternative exons. We propose a model where RBM5 and RBM10 regulate splicing as components of the U2 snRNP complex following branch site base pairing.
Collapse
Affiliation(s)
- Andrey Damianov
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Huang
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lin Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Parham Peyda
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zhou X, Cao Y, Li R, Di X, Wang Y, Wang K. PEI, a new transfection method, augments the inhibitory effect of RBM5 on prostate cancer. Biochem Biophys Res Commun 2024; 704:149703. [PMID: 38402723 DOI: 10.1016/j.bbrc.2024.149703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
PEI is a cationic polymer, serving as a non-viral transfection carrier grounded in nanotechnology that enhances transfection efficiency via the proton sponge effect. RBM5 is an RNA-binding protein that can inhibit tumor development. This study involved the transfection of RBM5 in prostate cancer cells with PEI, Lipo2000, and their combination. Transwell and wound healing assays were used to observe invasion and migration of prostate cancer cells and flow cytometry was used to observe the apoptosis. Detect the expression of invasion and migration-related protein MMP9 through western blotting experiment. An activity detection kit was used to detect the activity of apoptotic protein caspase-3. We found that there was no significant difference in transfection efficiency when PEI and Lipo2000 were used alone but it significantly improved when they are combined. RBM5 reduced invasion, migration, and proliferation of prostate cancer and enhanced apoptosis. MMP9 expression was reduced, and the activity of caspase-3 was increased. PEI transfection could improve the inhibition of RBM5 on tumors more than Lipo2000. The inhibitory effect is more obvious when the two are used together. RBM5 transfected with PEI can amplify its inhibitory effect on prostate cancer, and this effect is more evident when combined with Lipo2000.
Collapse
Affiliation(s)
- Xijia Zhou
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yingshu Cao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanqiao Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Young AM, Van Buren S, Rashid NU. Differential transcript usage analysis incorporating quantification uncertainty via compositional measurement error regression modeling. Biostatistics 2024; 25:559-576. [PMID: 37040757 PMCID: PMC11017126 DOI: 10.1093/biostatistics/kxad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 04/13/2023] Open
Abstract
Differential transcript usage (DTU) occurs when the relative expression of multiple transcripts arising from the same gene changes between different conditions. Existing approaches to detect DTU often rely on computational procedures that can have speed and scalability issues as the number of samples increases. Here we propose a new method, CompDTU, that uses compositional regression to model the relative abundance proportions of each transcript that are of interest in DTU analyses. This procedure leverages fast matrix-based computations that make it ideally suited for DTU analysis with larger sample sizes. This method also allows for the testing of and adjustment for multiple categorical or continuous covariates. Additionally, many existing approaches for DTU ignore quantification uncertainty in the expression estimates for each transcript in RNA-seq data. We extend our CompDTU method to incorporate quantification uncertainty leveraging common output from RNA-seq expression quantification tool in a novel method CompDTUme. Through several power analyses, we show that CompDTU has excellent sensitivity and reduces false positive results relative to existing methods. Additionally, CompDTUme results in further improvements in performance over CompDTU with sufficient sample size for genes with high levels of quantification uncertainty, while also maintaining favorable speed and scalability. We motivate our methods using data from the Cancer Genome Atlas Breast Invasive Carcinoma data set, specifically using RNA-seq data from primary tumors for 740 patients with breast cancer. We show greatly reduced computation time from our new methods as well as the ability to detect several novel genes with significant DTU across different breast cancer subtypes.
Collapse
Affiliation(s)
- Amber M Young
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Scott Van Buren
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Naim U Rashid
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
5
|
Sarhadi M, Pahlavani E, Hosseini Razavi N, Ghadyani F, Abdollahi Z, Sarhadi S, Sabeti Akbar Abad M, Shahriari H, Majidpour M. IL-18 and CD14 variants in chronic HBV predisposition: a case-control study with in silico analyses focused on transcription and splicing. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-21. [PMID: 38459706 DOI: 10.1080/15257770.2024.2326132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Hepatitis B virus (HBV), a vaccine-avoidable infection, is a health concern worldwide, leading to liver disorders such as acute self-constraint and chronic hepatitis, liver failure, hepatic cirrhosis, and even hepatocellular carcinoma if untreated. 'Immunogeneticprofiling', genetic variations of the pro- and anti-inflammatory cytokines responsible for regulating the immune responses, cause person-to-person differences and impact the clinical manifestation of the disease. The current experimental-bioinformatics research was conducted to examine whether promoteric IL-18-rs187238 C > G and -rs1946518 T > G and intronic CD14-rs2569190 A > G variations are associated with chronic HBV. A total of 400 individuals (200 in each case and control group) participated in the study and were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The data was also assessed bioinformatics-wise for conservation, genomic transcription and splicing, and protein interactions. Findings proposed that unlike the IL-18-rs1946518 T > G and CD14-rs2569190 A > G, the IL-18-rs187238 C > G is a protector against chronic HBV (odds ratio [OR] = 0.62, 95% confidence intervals [CI]: 0.46-0.83, and p = 0.002). The TG/CC/AA, TG/CC/AG, TT/CC/AG, and GG/CC/AA combined genotypes significantly increased chronic HBV risk (p < 0.05), while the IL-18 G/T and G/G haplotypes lessened it (p < 0.05). Moreover, IL-18-rs1946518 T > G is in the protected genomic regions across mammalian species. In contrast to the IL-18-rs1946518 T > G, IL-18-rs187238 C > G is likely to create novel binding sites for transcription factors, and the CD14-rs2569190 A > G presumably changed the ribonucleic acid splicing pattern. More research on larger populations and other ethnicities is required to authenticate these results.
Collapse
Affiliation(s)
- Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elham Pahlavani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Niloufar Hosseini Razavi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Ghadyani
- Department of Cellular and Molecular, Faculty of Biology Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Somayeh Sarhadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahboobeh Sabeti Akbar Abad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
6
|
Shi X, Zhang R, Liu Z, Zhao G, Guo J, Mao X, Fan B. Alternative Splicing Reveals Acute Stress Response of Litopenaeus vannamei at High Alkalinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:103-115. [PMID: 38206418 DOI: 10.1007/s10126-023-10281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Alkalinity is regarded as one of the primary stressors for aquatic animals in saline-alkaline water. Alternative splicing (AS) can significantly increase the diversity of transcripts and play key roles in stress response; however, the studies on AS under alkalinity stress of crustaceans are still limited. In the present study, we devoted ourselves to the study of AS under acute alkalinity stress at control (50 mg/L) and treatment groups (350 mg/L) by RNA-seq in pacific white shrimp (Litopenaeus vannamei). We identified a total of 10,556 AS events from 4865 genes and 619 differential AS (DAS) events from 519 DAS genes in pacific white shrimp. Functional annotation showed that the DAS genes primarily involved in spliceosome. Five splicing factors (SFs), U2AF1, PUF60, CHERP, SR140 and SRSF2 were significantly up-regulated and promoted AS. Furthermore, alkalinity activated the Leukocyte transendothelial migration, mTOR signaling pathway and AMPK signaling pathway, which regulated MAPK1, EIF3B and IGFP-RP1 associated with these pathways. We also studied three SFs (HSFP1, SRSF2 and NHE-RF1), which underwent AS to form different transcript isoforms. The above results demonstrated that AS was a regulatory mechanism in pacific white shrimp in response to acute alkalinity stress. SFs played vital roles in AS of pacific white shrimp, such as HSFP1, SRSF2 and NHE-RF1. DAS genes were significantly modified in immunity of pacific white shrimp to cope with alkalinity stress. This is the first study on the response of AS to acute alkalinity stress, which provided scientific basis for AS mechanism of crustaceans response to alkalinity stress.
Collapse
Affiliation(s)
- Xiang Shi
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Ruiqi Zhang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China.
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Jintao Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Xue Mao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| | - Baoyi Fan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
7
|
Zhang Y, Li F, Han Z, Teng Z, Jin C, Yuan H, Zhang S, Sun K, Wang Y. Downregulated RBM5 Enhances CARM1 Expression and Activates the PRKACA/GSK3β Signaling Pathway through Alternative Splicing-Coupled Nonsense-Mediated Decay. Cancers (Basel) 2023; 16:139. [PMID: 38201567 PMCID: PMC10778212 DOI: 10.3390/cancers16010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Downregulated RNA-binding motif protein 5 (RBM5) promotes the development and progression of various tumors, including bladder cancer (BC). Alternative splicing (AS) plays a crucial role in the progression of cancer by producing protein isomers with different functions or by promoting nonsense-mediated mRNA decay (NMD). However, whether RBM5 modulates the progression of BC through AS-NMD remains unexplored. In this study, we revealed that the downregulation of RBM5 expression promoted the expression of coactivator-associated arginine methyltransferase 1 (CARM1) in BC cells and tissues. Increased expression of CARM1 facilitated the activation of the Wnt/β-catenin axis and cell proliferation, which then contributed to the poor prognosis of patients with BC. Interestingly, RBM5 bound directly to CARM1 mRNA and participated in AS-NMD, downregulating the expression of CARM1. In addition, we revealed that protein kinase catalytic subunit alpha (PRKACA) functioned as a phosphorylated kinase of GSK3β, was regulated by CARM1 at the transcription level, and promoted the growth and progression of BC cells. Furthermore, in this study, we demonstrated a regulatory mechanism of Wnt/β-catenin activation through the RBM5/CARM1/PRKACA axis and identified a novel potential target for treating BC.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Fang Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Chenggen Jin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Hao Yuan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Sihao Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Kexin Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| |
Collapse
|
8
|
Snyder K, Gorse K, Kochanek PM, Jackson TC. Neuronal RBM5 modulates cell signaling responses to traumatic and hypoxic-ischemic injury in a sex-dependent manner. Cell Death Discov 2023; 9:379. [PMID: 37848418 PMCID: PMC10582027 DOI: 10.1038/s41420-023-01677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
It is not clear if inhibiting the pro-death gene RNA binding motif 5 (RBM5) is neuroprotective in isolated primary neurons or if it regulates cell survival in a sex-dependent manner. Here we established sex-dichotomized primary cortical neuron cultures from transgenic mice harboring a floxed RBM5 gene-trap. Lentivirus-mediated expression of CRE was used to silence RBM5 expression. Male and female neurons were maintained in next-generation Neurobasal-Plus media and subjected to a mechanical stretch-injury (to model traumatic brain injury) or oxygen-glucose deprivation/OGD (to model ischemia). RBM5 KO did not affect 24 h post-injury survival as determined by lactate dehydrogenase (LDH) release, in either paradigm. In contrast, female KO neurons had increased spectrin breakdown products post-insult (in both models). Furthermore, in OGD, RBM5 KO in male neurons exacerbated injury-induced downregulation of pro-survival AKT activation (pAKT473) but conversely led to pAKT473 sparing in female neurons. Moreover, global proteomics identified 19 differentially expressed (DE) proteins in OGD-injured male neurons, and 102 DE proteins in injured female neurons. Two novel RBM5-regulated proteins (PIGQ and EST1C) were identified in injured male KO neurons, and 8 novel proteins identified in injured female KO neurons (S35A5, DHTK1, STX3, IF3M, RN167, K1C14, DYHS, and MED13). In summary, RBM5 inhibition does not modify neuronal survival in primary mouse neurons in 2 clinically relevant models of excitotoxic insult, but RBM5 does regulate intracellular responses to injury in a sex-dependent manner.
Collapse
Affiliation(s)
- Kara Snyder
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Kiersten Gorse
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center - 6th floor, Pittsburgh, PA, 15224, USA
| | - Travis C Jackson
- University of South Florida, Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Dr, Tampa, FL, 33602, USA.
- University of South Florida, Morsani College of Medicine, Department of Molecular Pharmacology & Physiology, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Damianov A, Lin CH, Huang J, Zhou L, Jami-Alahmadi Y, Wohlschlegel J, Black DL. The apoptotic splicing regulators RBM5 and RBM10 are subunits of the U2 snRNP engaged with intron branch sites on chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558883. [PMID: 37790489 PMCID: PMC10542197 DOI: 10.1101/2023.09.21.558883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding the mechanisms of pre-mRNA splicing and spliceosome assembly is limited by technical challenges to examining spliceosomes in vivo. Here we report the isolation of RNP complexes derived from precatalytic A or B-like spliceosomes solubilized from the chromatin pellet of lysed nuclei. We found that these complexes contain U2 snRNP proteins and a portion of the U2 snRNA, bound with intronic branch sites prior to the first catalytic step of splicing. Sequencing these pre-mRNA fragments allowed the transcriptome-wide mapping of branch sites with high sensitivity. In addition to known U2 snRNP proteins, these complexes contained the proteins RBM5 and RBM10. RBM5 and RBM10 are alternative splicing regulators that control exons affecting apoptosis and cell proliferation in cancer, but were not previously shown to associate with the U2 snRNP or to play roles in branch site selection. We delineate a common segment of RBM5 and RBM10, separate from their known functional domains, that is required for their interaction with the U2 snRNP. We identify a large set of splicing events regulated by RBM5 and RBM10 and find that they predominantly act as splicing silencers. Disruption of their U2 interaction renders the proteins inactive for repression of many alternative exons. We further find that these proteins assemble on branch sites of nearly all exons across the transcriptome, including those whose splicing is not altered by them. We propose a model where RBM5 and RBM10 act as components of the U2 snRNP complex. From within this complex, they sense structural features of branchpoint recognition to either allow progression to functional spliceosome or rejection of the complex to inhibit splicing.
Collapse
|
10
|
Wang Y, Ding Y, Liu S, Wang C, Zhang E, Chen C, Zhu M, Zhang J, Zhu C, Ji M, Dai J, Jin G, Hu Z, Shen H, Ma H. Integrative splicing-quantitative-trait-locus analysis reveals risk loci for non-small-cell lung cancer. Am J Hum Genet 2023; 110:1574-1589. [PMID: 37562399 PMCID: PMC10502736 DOI: 10.1016/j.ajhg.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Splicing quantitative trait loci (sQTLs) have been demonstrated to contribute to disease etiology by affecting alternative splicing. However, the role of sQTLs in the development of non-small-cell lung cancer (NSCLC) remains unknown. Thus, we performed a genome-wide sQTL study to identify genetic variants that affect alternative splicing in lung tissues from 116 individuals of Chinese ancestry, which resulted in the identification of 1,385 sQTL-harboring genes (sGenes) containing 378,210 significant variant-intron pairs. A comprehensive characterization of these sQTLs showed that they were enriched in actively transcribed regions, genetic regulatory elements, and splicing-factor-binding sites. Moreover, sQTLs were largely distinct from expression quantitative trait loci (eQTLs) and showed significant enrichment in potential risk loci of NSCLC. We also integrated sQTLs into NSCLC GWAS datasets (13,327 affected individuals and 13,328 control individuals) by using splice-transcriptome-wide association study (spTWAS) and identified alternative splicing events in 19 genes that were significantly associated with NSCLC risk. By using functional annotation and experiments, we confirmed an sQTL variant, rs35861926, that reduced the risk of lung adenocarcinoma (rs35861926-T, OR = 0.88, 95% confidence interval [CI]: 0.82-0.93, p = 1.87 × 10-5) by promoting FARP1 exon 20 skipping to downregulate the expression level of the long transcript FARP1-011. Transcript FARP1-011 promoted the migration and proliferation of lung adenocarcinoma cells. Overall, our study provided informative lung sQTL resources and insights into the molecular mechanisms linking sQTL variants to NSCLC risk.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Su Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chen Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Cancer Prevention, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
| | - Mengmeng Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
11
|
Mullari M, Fossat N, Skotte NH, Asenjo-Martinez A, Humphreys DT, Bukh J, Kirkeby A, Scheel TKH, Nielsen ML. Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington's disease. Nat Commun 2023; 14:4348. [PMID: 37468457 DOI: 10.1038/s41467-023-39936-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington's disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.
Collapse
Affiliation(s)
- Meeli Mullari
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Niels H Skotte
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Agnete Kirkeby
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Soni K, Jagtap PKA, Martínez-Lumbreras S, Bonnal S, Geerlof A, Stehle R, Simon B, Valcárcel J, Sattler M. Structural basis for specific RNA recognition by the alternative splicing factor RBM5. Nat Commun 2023; 14:4233. [PMID: 37454201 PMCID: PMC10349855 DOI: 10.1038/s41467-023-39961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.
Collapse
Affiliation(s)
- Komal Soni
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Pravin Kumar Ankush Jagtap
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sophie Bonnal
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
| | - Arie Geerlof
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Ralf Stehle
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Juan Valcárcel
- Centre de Regulació Genòmica, Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
13
|
Liu Z, Sun J, Quan J, Li L, Zhao G, Lu J. Effect of selenium nanoparticles on alternative splicing in heat-stressed rainbow trout primary hepatocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101042. [PMID: 36455514 DOI: 10.1016/j.cbd.2022.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) is a ubiquitous post-transcriptional regulatory mechanism in eukaryotes that generates multiple mRNA isoforms from a single gene, increasing diversity of mRNAs and proteins that are essential for eukaryotic developmental processes and responses to environmental stress. Results showed that a total of 37,463 AS events were identified in rainbow trout hepatocytes. In addition, a total of 364 differential alternative splicing (DAS) events were identified in hepatocytes under selenium nanoparticles (SeNPs) and 3632 DAS events were identified under a combination of SeNPs and heat stress (24 °C). Gene Ontology (GO) enrichment showed that some subcategories "immune effector processes", "response to stimuli" and "antioxidant activity" were associated with immunity, abiotic stimuli and antioxidants. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that differentially expressed genes (DEGs) were significantly enriched in spliceosomes by adding SeNPs in heat-stressed hepatocytes. Splicing factor family (SRSF3, SRSF7, SRSF9, U2AF1 and U2AF2) and pre-RNA splicing factors (ACIN1 and PPRF18) were significantly upregulated and promoted AS. Furthermore, addition of SeNPs activated the phosphatidylinositol signaling system and upregulated the related genes PI4KA, DGKH, ITPK1 and Ocrl, and thus attenuated the inflammatory response to heat stress and enhanced resistance to heat stress by activating the adherent plaque kinase-PI3K-Akt signaling pathway and calcium channels. Those findings suggested that AS could be an essential regulatory mechanism in adaptation of rainbow trout to heat-stressed environments.
Collapse
Affiliation(s)
- Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China.
| | - Jun Sun
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Lanlan Li
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Guiyan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| | - Junhao Lu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Anning District, Lanzhou City, Gansu Province 730070, PR China
| |
Collapse
|
14
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
15
|
Marakulina D, Vorontsov IE, Kulakovskiy IV, Lennartsson A, Drabløs F, Medvedeva Y. EpiFactors 2022: expansion and enhancement of a curated database of human epigenetic factors and complexes. Nucleic Acids Res 2022; 51:D564-D570. [PMID: 36350659 PMCID: PMC9825597 DOI: 10.1093/nar/gkac989] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
We present an update of EpiFactors, a manually curated database providing information about epigenetic regulators, their complexes, targets, and products which is openly accessible at http://epifactors.autosome.org. An updated version of the EpiFactors contains information on 902 proteins, including 101 histones and protamines, and, as a main update, a newly curated collection of 124 lncRNAs involved in epigenetic regulation. The amount of publications concerning the role of lncRNA in epigenetics is rapidly growing. Yet, the resource that compiles, integrates, organizes, and presents curated information on lncRNAs in epigenetics is missing. EpiFactors fills this gap and provides data on epigenetic regulators in an accessible and user-friendly form. For 820 of the genes in EpiFactors, we include expression estimates across multiple cell types assessed by CAGE-Seq in the FANTOM5 project. In addition, the updated EpiFactors contains information on 73 protein complexes involved in epigenetic regulation. Our resource is practical for a wide range of users, including biologists, bioinformaticians and molecular/systems biologists.
Collapse
Affiliation(s)
- Daria Marakulina
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia
| | - Ilya E Vorontsov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia,Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157, Huddinge, Sweden
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, PO Box 8905, NO-7491 Trondheim, Norway
| | | |
Collapse
|
16
|
Pang SJ, Sun Z, Lu WF, Si-Ma H, Lin ZP, Shi Y, Yang YC, Zhao XJ, Yang GS, Jin GZ, Yang N. Integrated Bioinformatics Analysis and Validation of the Prognostic Value of RBM10 Expression in Hepatocellular Carcinoma. Cancer Manag Res 2022; 14:969-980. [PMID: 35283645 PMCID: PMC8906710 DOI: 10.2147/cmar.s349884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background RBM10ʹs function in hepatocellular carcinoma (HCC) has rarely been addressed. We intend to explore the prognostic significance and therapeutic meaning of RBM10 in HCC in this study. Methods Multiple common databases were integrated to analyze the expression status and prognostic meaning of RBM10 in HCC. The relationship between RBM10 mRNA level and clinical features was also assessed. Multiple enrichment analyses of the differentially expressed genes between RBM10 high- and low- transcription groups were constructed by using R software (version 4.0.2). A Search Tool for Retrieval of Interacting Genes database was used to construct the protein–protein interaction network between RBM10 and other proteins. A tumor immune estimation resource database was employed to identify the relationship between RBM10 expression and immune cell infiltrates. The prognostic value of RBM10 expression was validated in our HCC cohort by immunohistochemistry test. Results The transcription of RBM10 mRNA was positively correlated with tumor histologic grade (p < 0.001), T classification (p < 0.001), and tumor stage (p < 0.001). High transcription of RBM10 in HCC predicted a dismal overall survival (p = 0.0037) and recurrence-free survival (p < 0.001). Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Gene Set Enrichment Analysis all revealed that RBM10 was involved in the regulation of cell cycle, DNA replication, and immune-related pathways. Tumor immune estimation analysis revealed that RBM10 transcription was positively related to multiple immune cell infiltrates and the expressions of PD-1 and PD-L1. Conclusion RBM10 was demonstrated to be a dismal prognostic factor and a potential biomarker for immune therapy in HCC in that it may be involved in the immune-related signaling pathways.
Collapse
Affiliation(s)
- Shu-Jie Pang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Zhe Sun
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Wen-Feng Lu
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Hui Si-Ma
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Zhi-Peng Lin
- Department of Hepatobiliary Surgery, The 940th Hospital of CPLA Joint Logistics Support Force, Lanzhou, 730050, People’s Republic of China
| | - Yang Shi
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Ying-Cheng Yang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Xi-Jun Zhao
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Guang-Shun Yang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
| | - Guang-Zhi Jin
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China
- Guang-Zhi Jin, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, People’s Republic of China, Email
| | - Ning Yang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China
- Correspondence: Ning Yang, Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People’s Republic of China, Tel +86 21 81877591, Fax +86 21 6556 6851, Email
| |
Collapse
|
17
|
Farooq J, Snyder K, Janesko-Feldman K, Gorse K, Vagni V, Kochanek PM, Jackson TC. RNA Binding Motif 5 Gene Deletion Modulates Cell Signaling in a Sex-Dependent Manner but not Hippocampal Cell Death. J Neurotrauma 2022; 39:577-589. [PMID: 35152732 PMCID: PMC8978574 DOI: 10.1089/neu.2021.0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA-binding motif 5 (RBM5) is a pro-death tumor suppressor gene in cancer cells. It remains to be determined if it is neurotoxic in the brain or rather if it plays a fundamentally different role in the central nervous system (CNS). Brain-specific RBM5 knockout (KO) mice were given a controlled cortical impact (CCI) traumatic brain injury (TBI). Markers of acute cellular damage and repair were measured in hippocampal homogenates 48 h post-CCI. Hippocampal CA1/CA3 cell counts were assessed 7 days post-CCI to determine if early changes in injury markers were associated with histological outcome. No genotype-dependent differences were found in the levels of apoptotic markers (caspase 3, caspase 6, and caspase 9). However, KO females had a paradoxical increase in markers of pro-death calpain activation (145/150-spectrin and breakdown products [SBDP]) and in DNA repair/survival markers. (pH2A.x and pCREB). CCI-injured male KOs had a significant increase in phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMKII). Despite sex/genotype-dependent differences in KOs in the levels of acute cell signaling targets involved in cell death pathways, 7 day hippocampal neuronal survival did not differ from that of wild types (WTs). Similarly, no differences in astrogliosis were observed. Finally, gene analysis revealed increased estrogen receptor α (ERα) levels in the KO hippocampus in females and may suggest a novel mechanism to explain sex-dimorphic effects on cell signaling. In summary, RBM5 inhibition did not affect hippocampal survival after a TBI in vivo but did modify targets involved in neural signal transduction/Ca2+ signaling pathways. Findings here support the view that RBM5 may serve a purpose in the CNS that is dissimilar from its traditional pro-death role in cancer.
Collapse
Affiliation(s)
- Jeffrey Farooq
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Kara Snyder
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Keri Janesko-Feldman
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Kiersten Gorse
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Vincent Vagni
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Patrick M. Kochanek
- University of Pittsburgh School of Medicine, Critical Care Medicine, John G. Rangos Research Center, Safar Center for Resuscitation Research, 4401 Penn Avenue, Pittsburgh, Pennsylvania, United States, 15224
- United States
| | - Travis C. Jackson
- University of South Florida, 7831, Molecular Pharmacology and Physiology, 4202 E Fowler Ave, Tampa, Florida, United States, 33620-9951
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, 560 Channelside Dr, Tampa, Florida, United States, 33602
| |
Collapse
|
18
|
Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022; 19:162-175. [PMID: 35067179 PMCID: PMC8786336 DOI: 10.1080/15476286.2021.2024033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Infertility is rarely life threatening, however, it poses a serious global health issue posing far-reaching socio-economic impacts affecting 12–15% of couples worldwide where male factor accounts for 70%. Functional spermatogenesis which is the result of several concerted coordinated events to produce sperms is at the core of male fertility, Alternative splicing and microRNA (miRNA) mediated RNA silencing (RNAi) constitute two conserved post-transcriptional gene (re)programming machinery across species. The former by diversifying transcriptome signature and the latter by repressing target mRNA activity orchestrate a spectrum of testicular events, and their dysfunctions has several implications in male infertility. This review recapitulates the knowledge of these mechanistic events in regulation of spermatogenesis and testicular homoeostasis. In addition, miRNA payload in sperm, vulnerable to paternal inputs, including unhealthy diet, infection and trauma, creates epigenetic memory to initiate intergenerational phenotype. Naive zygote injection of sperm miRNAs from stressed father recapitulates phenotypes of offspring of stressed father. The epigenetic inheritance of paternal pathologies through miRNA could be a tantalizing avenue to better appreciate ‘Paternal Origins of Health and Disease’ and the power of tiny sperm.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Laboratory of Molecular Biology and Genomics, Department of Zoology, Faculty of Science, University of Central Punjab, Lahore, Pakistan
| | - Lijun Huo
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
19
|
Inoue A. RBM10: Structure, functions, and associated diseases. Gene 2021; 783:145463. [PMID: 33515724 PMCID: PMC10445532 DOI: 10.1016/j.gene.2021.145463] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
RBM10 is a nuclear RNA-binding protein (RBP) that regulates the alternative splicing of primary transcripts. Recently, research on RBM10 has become increasingly active owing to its clinical importance, as indicated by studies on RBM0 mutations that cause TARP syndrome, an X-linked congenital pleiotropic developmental anomaly, and various cancers such as lung adenocarcinoma in adults. Herein, the molecular biology of RBM10 and its significance in medicine are reviewed, focusing on the gene and protein structures of RBM10, its cell biology, molecular functions and regulation, relationship with the paralogous protein RBM5, and the mutations of RBM10 and their associated diseases. Finally, the challenges in future studies of RBM10 are discussed in the concluding remarks.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Otolaryngology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| |
Collapse
|
20
|
SRSF9 Regulates Cassette Exon Splicing of Caspase-2 by Interacting with Its Downstream Exon. Cells 2021; 10:cells10030679. [PMID: 33808656 PMCID: PMC8003524 DOI: 10.3390/cells10030679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing (AS) is an important posttranscriptional regulatory process. Damaged or unnecessary cells need to be removed though apoptosis to maintain physiological processes. Caspase-2 pre-mRNA produces pro-apoptotic long mRNA and anti-apoptotic short mRNA isoforms through AS. How AS of Caspase-2 is regulated remains unclear. In the present study, we identified a novel regulatory protein SRSF9 for AS of Caspase-2 cassette exon 9. Knock-down (KD) of SRSF9 increased inclusion of cassette exon and on the other hand, overexpression of SRSF9 decreased inclusion of this exon. Deletion mutagenesis demonstrated that exon 9, parts of intron 9, exon 8 and exon 10 were not required for the role of SRSF9 in Caspase-2 AS. However, deletion and substitution mutation analysis revealed that AGGAG sequence located at exon 10 provided functional target for SRSF9. In addition, RNA-pulldown mediated immunoblotting analysis showed that SRSF9 interacted with this sequence. Gene ontology analysis of RNA-seq from SRSF9 KD cells demonstrates that SRSF9 could regulate AS of a subset of apoptosis related genes. Collectively, our results reveal a basis for regulation of Caspase-2 AS.
Collapse
|
21
|
Cao Y, Di X, Zhang Q, Li R, Wang K. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol 2021; 11:603932. [PMID: 33718153 PMCID: PMC7943715 DOI: 10.3389/fonc.2021.603932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding motif protein 10 (RBM10) is involved in alternative splicing and modifies mRNA post-transcriptionally. RBM10 is abnormally expressed in the lung, breast, and colorectal cancer, female genital tumors, osteosarcoma, and other malignant tumors. It can inhibit proliferation, promote apoptosis, and inhibit invasion and metastasis. RBM10 has long been considered a tumor suppressor because it promotes apoptosis through the regulation of the MDM2-p53 negative feedback loop, Bcl-2, Bax, and other apoptotic proteins and inhibits proliferation through the Notch signaling and rap1a/Akt/CREB pathways. However, it has been recently demonstrated that RBM10 can also promote cancer. Given these different views, it is necessary to summarize the research progress of RBM10 in various fields to reasonably analyze the underlying molecular mechanisms, and provide new ideas and directions for the clinical research of RBM10 in various cancer types. In this review, we provide a new perspective on the reasons for these opposing effects on cancer biology, molecular mechanisms, research progress, and clinical value of RBM10.
Collapse
Affiliation(s)
- Yingshu Cao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol Chem 2021; 402:561-579. [PMID: 33857358 DOI: 10.1515/hsz-2020-0338] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
23
|
Du JX, Zhu GQ, Cai JL, Wang B, Luo YH, Chen C, Cai CZ, Zhang SJ, Zhou J, Fan J, Zhu W, Dai Z. Splicing factors: Insights into their regulatory network in alternative splicing in cancer. Cancer Lett 2020; 501:83-104. [PMID: 33309781 DOI: 10.1016/j.canlet.2020.11.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022]
Abstract
More than 95% of all human genes are alternatively spliced after transcription, which enriches the diversity of proteins and regulates transcript and/or protein levels. The splicing isoforms produced from the same gene can manifest distinctly, even exerting opposite effects. Mounting evidence indicates that the alternative splicing (AS) mechanism is ubiquitous in various cancers and drives the generation and maintenance of various hallmarks of cancer, such as enhanced proliferation, inhibited apoptosis, invasion and metastasis, and angiogenesis. Splicing factors (SFs) play pivotal roles in the recognition of splice sites and the assembly of spliceosomes during AS. In this review, we mainly discuss the similarities and differences of SF domains, the details of SF function in AS, the effect of SF-driven pathological AS on different hallmarks of cancer, and the main drivers of SF expression level and subcellular localization. In addition, we briefly introduce the application prospects of targeted therapeutic strategies, including small-molecule inhibitors, siRNAs and splice-switching oligonucleotides (SSOs), from three perspectives (drivers, SFs and pathological AS). Finally, we share our insights into the potential direction of research on SF-centric AS-related regulatory networks.
Collapse
Affiliation(s)
- Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia-Liang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cong Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Cheng-Zhe Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Si-Jia Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
24
|
Ramos J, Yoo C, Felty Q, Gong Z, Liuzzi JP, Poppiti R, Thakur IS, Goel R, Vaid AK, Komotar RJ, Ehtesham NZ, Hasnain SE, Roy D. Sensitivity to differential NRF1 gene signatures contributes to breast cancer disparities. J Cancer Res Clin Oncol 2020; 146:2777-2815. [PMID: 32705365 DOI: 10.1007/s00432-020-03320-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE Nuclear respiratory factor 1 (NRF1) drives estrogen-dependent breast tumorigenesis. Herein we examined the impact of NRF1 activity on the aggressiveness and disparate molecular signature of breast cancer in Black, White, Asian, and Hispanic women. METHODS NRF1 activity by transcription factor target enrichment analysis and causal NRF1-target gene signatures by Bayesian Network Inference with Java Objects (BANJO) and Markov Chain Monte Carlo (MCMC)-based gene order were examined in The Cancer Genome Atlas (TCGA) breast cancer cohorts. RESULTS We are the first to report increased NRF1 activity based on its differential effects on genome-wide transcription associated with luminal A and B, HER2+ and triple-negative (TN) molecular subtypes of breast cancer in women of different race/ethnicity. We observed disparate NRF1 motif-containing causal gene signatures unique to Black, White, Asian, and Hispanic women for luminal A breast cancer. Further gene order searches showed molecular heterogeneity of each subtype of breast cancer. Six different gene order sequences involving CDK1, HMMR, CCNB2, CCNB1, E2F1, CREB3L4, GTSE1, and LMNB1 with almost equal weight predicted the probability of luminal A breast cancer in whites. Three different gene order sequences consisting of CCNB1 and GTSE1, and CCNB1, LMNB1, CDK1 or CASP3 predicted almost 100% probability of luminal B breast cancer in whites; CCNB1 and LMNB1 or GTSE predicted 100% HER2+ breast cancer in whites. GTSE1 and TUBA1C combined together predicted 100% probability of developing TNBC in whites; NRF1, TUBA1B and BAX with EFNA4, and NRF1 and BTRC predicated 100% TNBC in blacks. High expressor NRF1 TN breast tumors showed unfavorable prognosis with a high risk of breast cancer death in white women. CONCLUSION Our findings showed how sensitivity to high NRF1 transcriptional activity coupled with its target gene signatures contribute to racial differences in luminal A and TN breast cancer subtypes. This knowledge may be useful in personalized intervention to prevent and treat this clinically challenging problem.
Collapse
Affiliation(s)
- Jairo Ramos
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL, 33199, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Zhenghua Gong
- Department of Biostatistics, Florida International University, Miami, FL, 33199, USA
| | - Juan P Liuzzi
- Department of Dietetics and Nutrition, Florida International University, Miami, FL, 33199, USA
| | - Robert Poppiti
- Department of Pathology, Florida International University, Miami, FL, USA
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ruchika Goel
- Medanta Cancer Institute, Medanta-The Medicity, Gurugram, Haryana, 122001, India
| | - Ashok Kumar Vaid
- Medanta Cancer Institute, Medanta-The Medicity, Gurugram, Haryana, 122001, India
| | - Ricardo Jorge Komotar
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, USA.
| |
Collapse
|
25
|
Jackson TC, Kochanek PM. RNA Binding Motif 5 (RBM5) in the CNS-Moving Beyond Cancer to Harness RNA Splicing to Mitigate the Consequences of Brain Injury. Front Mol Neurosci 2020; 13:126. [PMID: 32765218 PMCID: PMC7381114 DOI: 10.3389/fnmol.2020.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Gene splicing modulates the potency of cell death effectors, alters neuropathological disease processes, influences neuronal recovery, but may also direct distinct mechanisms of secondary brain injury. Therapeutic targeting of RNA splicing is a promising avenue for next-generation CNS treatments. RNA-binding proteins (RBPs) regulate a variety of RNA species and are prime candidates in the hunt for druggable targets to manipulate and tailor gene-splicing responses in the brain. RBPs preferentially recognize unique consensus sequences in targeted mRNAs. Also, RBPs often contain multiple RNA-binding domains (RBDs)—each having a unique consensus sequence—suggesting the possibility that drugs could be developed to block individual functional domains, increasing the precision of RBP-targeting therapies. Empirical characterization of most RBPs is lacking and represents a major barrier to advance this emerging therapeutic area. There is a paucity of data on the role of RBPs in the brain including, identification of their unique mRNA targets, defining how CNS insults affect their levels and elucidating which RBPs (and individual domains within) to target to improve neurological outcomes. This review focuses on the state-of-the-art of the RBP tumor suppressor RNA binding motif 5 (RBM5) in the CNS. We discuss its potent pro-death roles in cancer, which motivated our interest to study it in the brain. We review recent studies showing that RBM5 levels are increased after CNS trauma and that it promotes neuronal death in vitro. Finally, we conclude with recent reports on the first set of RBM5 regulated genes identified in the intact brain, and discuss how those findings provide new clues germane to its potential function(s) in the CNS, and pose new questions on its therapeutic utility to mitigate CNS injury.
Collapse
Affiliation(s)
- Travis C Jackson
- Morsani College of Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, United States.,Morsani College of Medicine, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Conformational Dynamics from Ambiguous Zinc Coordination in the RanBP2-Type Zinc Finger of RBM5. J Mol Biol 2020; 432:4127-4138. [PMID: 32450081 DOI: 10.1016/j.jmb.2020.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.
Collapse
|
27
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
28
|
Identification of Novel Targets of RBM5 in the Healthy and Injured Brain. Neuroscience 2020; 440:299-315. [PMID: 32335213 DOI: 10.1016/j.neuroscience.2020.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022]
Abstract
The tumor suppressor RNA-binding motif 5 (RBM5) regulates the expression levels and cassette exon-definition (i.e. splicing) of a select set of mRNAs in a tissue-specific manner. Most RBM5-regulated targets were identified in oncological investigations and frequently involve genes which mediate apoptotic cell death. Little is known about the role of RBM5 in the brain. Also, it is unclear if a brain injury may be required to detect RBM5 mediated effects on pro-apoptotic genes due to their low expression levels in the healthy adult CNS at baseline. Conditional/floxed (brain-specific) gene deleter mice were generated to elucidate CNS-specific RBM5 mRNA targets. Male/female mice were subjected to a severe controlled cortical impact (CCI) traumatic brain injury (TBI) in order to increase the background expression of pro-death mRNAs and facilitate testing of the hypothesis that RBM5 inhibition decreases post-injury upregulation of caspases/FAS in the CNS. As expected, a CCI increased caspases/FAS mRNA in the injured cortex. RBM5 KO did not affect their levels or splicing. Surprisingly, KO increased the mRNA levels of novel targets including casein kinase 2 alpha prime interacting protein (Csnka2ip/CKT2) - a gene not thought to be expressed in the brain, contrary to findings here. Twenty-two unique splicing events were also detected in KOs including increased block-inclusion of cassette exons 20-22 in regulating synaptic membrane exocytosis 2 (Rims2). In conclusion, here we used genome-wide transcriptomic analysis on healthy and injured RBM5 KO mouse brain tissue to elucidate the first known gene targets of this enigmatic RBP in this CNS.
Collapse
|
29
|
Abstract
Alternative splicing of precursor mRNA is a key mediator of gene expression regulation leading to greater diversity of the proteome in complex organisms. Systematic sequencing of the human genome and transcriptome has led to our understanding of how alternative splicing of critical genes leads to multiple pathological conditions such as cancer. For many years, proteases were known only for their roles as proteolytic enzymes, acting to regulate/process proteins associated with diverse cellular functions. However, the differential expression and altered function of various protease isoforms, such as (i) anti-apoptotic activities, (ii) mediating intercellular adhesion, and (iii) modifying the extracellular matrix, are evidence of their specific contribution towards shaping the tumor microenvironment. Revealing the alternative splicing of protease genes and characterization of their protein products/isoforms with distinct and opposing functions creates a platform to understand how protease isoforms contribute to specific cancer hallmarks. Here, in this review, we address cancer-specific isoforms produced by the alternative splicing of proteases and their distinctive roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
30
|
Qian T, Shi S, Xie L, Zhu Y. miR-938 promotes cell proliferation by regulating RBM5 in lung adenocarcinoma cells. Cell Biol Int 2020; 44:295-305. [PMID: 31498514 DOI: 10.1002/cbin.11233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/31/2019] [Indexed: 01/24/2023]
Abstract
A growing body of research suggests that microRNAs (miRNAs) may play a key part in the progression of various cancers, including lung adenocarcinoma (LUAD). However, the expression and mechanism of miR-938 (microRNA-938) in LUAD have not been defined. Compared with adjacent tissues, the level of miR-938 was up-regulated in LUAD tissues. miR-938 expression was significantly associated with tumor size. In vitro assays indicated that miR-938 expression was also increased in the LUAD cell lines. Overexpression of miR-938 promoted LUAD cell proliferation, whereas down-regulation of miR-938 had the opposite effect. We identified RNA-binding protein 5 (RBM5) as a potential target gene of miR-938 in LUAD. Expression of RBM5 was down-regulated in LUAD tumor tissues and negatively correlated with expression of miR-938. Up-regulation of RBM5 reversed cell proliferation by inhibition of miR-938 expression in LUAD cells. These results showed that miR-938 may act as an oncogenic miRNA by targeting RBM5 in LUAD, indicating that miR-938 could be used as a potential therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Taotao Qian
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China.,Department of Thoracic Surgery, Wujiang People's Hospital Affiliated to Nantong University, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China
| | - Shunbin Shi
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China.,Department of Thoracic Surgery, Wujiang People's Hospital Affiliated to Nantong University, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China
| | - Lincen Xie
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China.,Department of Thoracic Surgery, Wujiang People's Hospital Affiliated to Nantong University, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China
| | - Yong Zhu
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China.,Department of Thoracic Surgery, Wujiang People's Hospital Affiliated to Nantong University, 2666 Ludang Road, Taihu New City, Wujiang District, Suzhou, Jiangsu Province, 215000, China
| |
Collapse
|
31
|
Zhang YP, Liu KL, Wang YX, Yang Z, Han ZW, Lu BS, Qi JC, Yin YW, Teng ZH, Chang XL, Li JD, Xin H, Li W. Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/β-catenin feedback loop. FASEB J 2019; 33:10973-10985. [PMID: 31318608 DOI: 10.1096/fj.201900537r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA-binding motif protein 5 (RBM5) acts as a tumor suppressor in various human cancers and presents with several important characteristics, such as the potentiation of apoptosis, inhibition of the cell cycle, and alternative splicing of Fas and caspase-2 precursor mRNA. However, its role in bladder urothelial carcinoma (BUC) remains unknown. In this study, we found that RBM5 expression was significantly down-regulated in BUC tissues when compared with the adjacent nontumor tissues. The down-regulation of RBM5 activates β-catenin, which binds to the T-cell factor/lymphocyte enhancer factor element of the miR-432-5p promoter and elevates the expression of miR-432-5p in bladder cancer cells. The up-regulated miR-432-5p directly targets 3'-UTR and depresses RBM5 expression. Thus, RBM5-miR-432-5p-β-catenin forms a feedback loop in regulating bladder cancer cell apoptosis. Our findings provide evidence that the regulatory feedback loop among RBM5, miR-432-5p, and Wnt-β-catenin is responsible for the progress of bladder cancer cells.-Zhang, Y.-P., Liu, K.-L., Wang, Y.-X., Yang, Z., Han, Z.-W., Lu, B.-S., Qi, J.-C., Yin, Y.-W., Teng, Z.-H., Chang, X.-L., Li, J.-D., Xin, H., Li, W. Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/β-catenin feedback loop.
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Xuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhen-Wei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Hai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Liang Chang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing-Dong Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
32
|
Coltri PP, Dos Santos MGP, da Silva GHG. Splicing and cancer: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1527. [PMID: 30773852 DOI: 10.1002/wrna.1527] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Cancer arises from alterations in several metabolic processes affecting proliferation, growth, replication and death of cells. A fundamental challenge in the study of cancer biology is to uncover molecular mechanisms that lead to malignant cellular transformation. Recent genomic analyses revealed that many molecular alterations observed in cancers come from modifications in the splicing process, including mutations in pre-mRNA regulatory sequences, mutations in spliceosome components, and altered ratio of specific splicing regulators. While alterations in splice site preferences might generate alternative isoforms enabling different biological functions, these might also be responsible for nonfunctional isoforms that can eventually cause dysregulation in cellular processes. Molecular characteristics of regulatory sequences and proteins might also be important prognostic tools revealing a cancer-specific splicing pattern and linking splicing control to cancer development. The connection between cancer biology and splicing regulation is of primary importance to understand the mechanisms leading to disease and also to improve development of therapeutic approaches. Splicing modulation is being explored in new anti-cancer therapies and further investigation of targeted splicing factors is critical for the success of these strategies. This article is categorized under: RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patricia P Coltri
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria G P Dos Santos
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme H G da Silva
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Xu Y, Su Z, Li J, Wang Q, Meng G, Zhang Y, Yang W, Zhang J, Gao P. Role of RNA-binding protein 5 in the diagnosis and chemotherapeutic response of lung cancer. Oncol Lett 2018; 17:2013-2019. [PMID: 30675268 DOI: 10.3892/ol.2018.9818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Lung cancer remains one of the leading causes of cancer-associated mortality in the world. Lung carcinogenesis is frequently associated with deletions or the loss of heterozygosity at the critical chromosomal region 3p21.3, where RNA-binding protein 5 (RBM5) is localized. RBM5 regulates cell growth, cell cycle progression and apoptosis in cell homeostasis. In the lungs, altered RBM5 protein expression leads to alterations in cell growth and apoptosis, with subsequent lung pathogenesis and varied responses to treatment in patients with lung cancer. Detection of RBM5 expression may be a tumor marker for diagnosis, prediction and treatment response in lung cancer, and may be developed as a potential therapeutic target for drug resistant lung cancer. This review discusses the most recent progress on the role of RBM5 in lung cancer.
Collapse
Affiliation(s)
- Yanling Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China.,Department of Geriatrics and General Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenzhong Su
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guangping Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yu Zhang
- Department of Geriatrics and General Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wen Yang
- Department of Geriatrics and General Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
34
|
Jiménez-Ávila CE, Villegas-Ruíz V, Zapata-Tarres M, Rubio-Portillo AE, Pérez López EI, Zenteno JC, Juárez-Méndez S. Centromere-associated protein E expresses a novel mRNA isoform in acute lymphoblastic leukemia. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2018; 9:43-54. [PMID: 30515258 PMCID: PMC6261922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/12/2018] [Indexed: 06/09/2023]
Abstract
The alternative splicing plays an important role to generate protein diversity. Recent studies have shown alterations in alternative splicing, resulting in loss, gain or changes of functions in the resulting protein. Specific products of alternative splicing are known to contribute in cancer-related mechanisms, such as angiogenesis, migration, adhesion and cell proliferation, among others. We using high-density microarrays reported a CENP-E as a one of significant transcript expressed and potentially is alternatively spliced in cancer. We focus in validate alternative splicing of CENP-E transcript using RT-PCR and sequencing in different cancer cell lines. We performed RT-PCR using specific primers designed to delimit the non-reported alternative splicing in CENP-E transcript. Our results showed the co-expression of the variant one and two of CENP-E in all cell lines evaluated. We detected more expression of variant one than two. Moreover, we identify an alternative 5'splice site of CENP-E in the exon 38 and was observed in RoVa cell line. Additionally, we characterized alternative skipping from exon 20 (NAT-CENP-E), these alternative splicing was observed in all cell lines evaluated except RoVa. Finally, we corroborate alternative mRNA splicing in leukemia patients using quantitative RT-PCR, in 71.8% of the patients NAT-CENP-E is downregulated and 28.2% is overexpressed.
Collapse
Affiliation(s)
- Cindy E Jiménez-Ávila
- Experimental Oncology Laboratory, Research Department, National Institute of PediatricsMexico City, Mexico
| | - Vanessa Villegas-Ruíz
- Experimental Oncology Laboratory, Research Department, National Institute of PediatricsMexico City, Mexico
- Genetics Department-Research Unit, Institute of Ophthalmology, “Conde de Valenciana”Mexico City, Mexico
| | | | - Alejandra E Rubio-Portillo
- Experimental Oncology Laboratory, Research Department, National Institute of PediatricsMexico City, Mexico
| | - Eleazar I Pérez López
- Experimental Oncology Laboratory, Research Department, National Institute of PediatricsMexico City, Mexico
| | - Juan C Zenteno
- Genetics Department-Research Unit, Institute of Ophthalmology, “Conde de Valenciana”Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, UNAMMexico City, Mexico
| | - Sergio Juárez-Méndez
- Experimental Oncology Laboratory, Research Department, National Institute of PediatricsMexico City, Mexico
| |
Collapse
|
35
|
Zhou C, Gao X, Hu S, Gan W, Xu J, Ma YC, Ma L. RBM-5 modulates U2AF large subunit-dependent alternative splicing in C. elegans. RNA Biol 2018; 15:1295-1308. [PMID: 30295127 PMCID: PMC6284560 DOI: 10.1080/15476286.2018.1526540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023] Open
Abstract
A key step in pre-mRNA splicing is the recognition of 3' splicing sites by the U2AF large and small subunits, a process regulated by numerous trans-acting splicing factors. How these trans-acting factors interact with U2AF in vivo is unclear. From a screen for suppressors of the temperature-sensitive (ts) lethality of the C. elegans U2AF large subunit gene uaf-1(n4588) mutants, we identified mutations in the RNA binding motif gene rbm-5, a homolog of the tumor suppressor gene RBM5. rbm-5 mutations can suppress uaf-1(n4588) ts-lethality by loss of function and neuronal expression of rbm-5 was sufficient to rescue the suppression. Transcriptome analyses indicate that uaf-1(n4588) affected the expression of numerous genes and rbm-5 mutations can partially reverse the abnormal gene expression to levels similar to that of wild type. Though rbm-5 mutations did not obviously affect alternative splicing per se, they can suppress or enhance, in a gene-specific manner, the altered splicing of genes in uaf-1(n4588) mutants. Specifically, the recognition of a weak 3' splice site was more susceptible to the effect of rbm-5. Our findings provide novel in vivo evidence that RBM-5 can modulate UAF-1-dependent RNA splicing and suggest that RBM5 might interact with U2AF large subunit to affect tumor formation.
Collapse
Affiliation(s)
- Chuanman Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoyang Gao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Surong Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wenjing Gan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Xu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yongchao C. Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Anne & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
El Marabti E, Younis I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front Mol Biosci 2018; 5:80. [PMID: 30246013 PMCID: PMC6137424 DOI: 10.3389/fmolb.2018.00080] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing allows for the expression of multiple RNA and protein isoforms from one gene, making it a major contributor to transcriptome and proteome diversification in eukaryotes. Advances in next generation sequencing technologies and genome-wide analyses have recently underscored the fact that the vast majority of multi-exon genes under normal physiology engage in alternative splicing in tissue-specific and developmental-specific manner. On the other hand, cancer cells exhibit remarkable transcriptome alterations partly by adopting cancer-specific splicing isoforms. These isoforms and their encoded proteins are not insignificant byproducts of the abnormal physiology of cancer cells, but either drivers of cancer progression or small but significant contributors to specific cancer hallmarks. Thus, it is paramount that the pathways that regulate alternative splicing in cancer, including the splicing factors that bind to pre-mRNAs and modulate spliceosome recruitment. In this review, we present a few distinct cases of alternative splicing in cancer, with an emphasis on their regulation as well as their contribution to cancer cell phenotype. Several categories of splicing aberrations are highlighted, including alterations in cancer-related genes that directly affect their pre-mRNA splicing, mutations in genes encoding splicing factors or core spliceosomal subunits, and the seemingly mutation-free disruptions in the balance of the expression of RNA-binding proteins, including components of both the major (U2-dependent) and minor (U12-dependent) spliceosomes. Given that the latter two classes cause global alterations in splicing that affect a wide range of genes, it remains a challenge to identify the ones that contribute to cancer progression. These challenges necessitate a systematic approach to decipher these aberrations and their impact on cancer. Ultimately, a sufficient understanding of splicing deregulation in cancer is predicted to pave the way for novel and innovative RNA-based therapies.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Biological Sciences Program, Carnegie Mellon University in Qatar, Doha, Qatar
| | - Ihab Younis
- Biological Sciences Program, Carnegie Mellon University in Qatar, Doha, Qatar
| |
Collapse
|
37
|
Abstract
Breast cancer is known to be a heterogeneous disease driven by a large repertoire of molecular abnormalities, which contribute to its diverse clinical behaviour. Despite the success of targeted therapy approaches for breast cancer patient management, there is still a lack of the molecular understanding of aggressive forms of the disease and clinical management of these patients remains difficult. The advent of high-throughput sequencing technologies has paved the way for a more complete understanding of the molecular make-up of the breast cancer genome. As such, it is becoming apparent that disruption of canonical splicing within breast cancer governs its clinical progression. In this review, we discuss the role of dysregulation of spliceosomal component genes and associated factors in the progression of breast cancer, their role in therapy resistance and the use of quantitative isoform expression as potential prognostic and predictive biomarkers with a particular focus on oestrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Abigail Read
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer Research, London, UK
- Division of Molecular PathologyThe Institute of Cancer Research, London, UK
| |
Collapse
|
38
|
Urbanski L, Leclair N, Anczuków O. Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1476. [PMID: 29693319 PMCID: PMC6002934 DOI: 10.1002/wrna.1476] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Defects in alternative splicing are frequently found in human tumors and result either from mutations in splicing-regulatory elements of specific cancer genes or from changes in the regulatory splicing machinery. RNA splicing regulators have emerged as a new class of oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA isoforms involved in the hallmark cancer pathways. Thus, dysregulation of alternative RNA splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic targets. Here, we review the alterations in splicing regulatory factors detected in human tumors, as well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, the regulators are themselves tightly regulated. Differential transcriptional and posttranscriptional regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the composition of the tumor microenvironment can also influence which isoforms are expressed in a given cell type and impact drug responses. Finally, we summarize current efforts in targeting alternative splicing, including global splicing inhibition using small molecules blocking the spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based therapeutics to modulate cancer-specific splicing isoforms. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
|
39
|
RNA processing in the male germline: Mechanisms and implications for fertility. Semin Cell Dev Biol 2018; 79:80-91. [DOI: 10.1016/j.semcdb.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
40
|
Anvar SY, Allard G, Tseng E, Sheynkman GM, de Klerk E, Vermaat M, Yin RH, Johansson HE, Ariyurek Y, den Dunnen JT, Turner SW, 't Hoen PAC. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biol 2018; 19:46. [PMID: 29598823 PMCID: PMC5877393 DOI: 10.1186/s13059-018-1418-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/08/2018] [Indexed: 01/30/2023] Open
Abstract
Background The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. Results In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Conclusions Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing. Electronic supplementary material The online version of this article (10.1186/s13059-018-1418-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands. .,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands. .,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.
| | - Guy Allard
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Elizabeth Tseng
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA, 94025, USA
| | - Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Department of Microbiology and Immunology, UCSF Diabetes Center, University of California San Francisco (UCSF), San Francisco, CA, 94143-0534, USA
| | - Martijn Vermaat
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Raymund H Yin
- LGC Biosearch Technologies, Petaluma, CA, 94954-6904, USA
| | | | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Johan T den Dunnen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Stephen W Turner
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA, 94025, USA
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Zhdanov DD, Gladilina YA, Grishin DV, Pokrovsky VS, Pokrovskaya MV, Aleksandrova SS, Sokolov NN. Apoptotic Endonuclease EndoG Induces Alternative Splicing of Telomerase TERT Catalytic Subunit, Caspase-2, DNase I, and BCL-x in Human, Murine, and Rat CD4+ T Lymphocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Jamsai D, Watkins DN, O'Connor AE, Merriner DJ, Gursoy S, Bird AD, Kumar B, Miller A, Cole TJ, Jenkins BJ, O'Bryan MK. In vivo evidence that RBM5 is a tumour suppressor in the lung. Sci Rep 2017; 7:16323. [PMID: 29176597 PMCID: PMC5701194 DOI: 10.1038/s41598-017-15874-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/03/2017] [Indexed: 01/04/2023] Open
Abstract
Cigarette smoking is undoubtedly a risk factor for lung cancer. Moreover, smokers with genetic mutations on chromosome 3p21.3, a region frequently deleted in cancer and notably in lung cancer, have a dramatically higher risk of aggressive lung cancer. The RNA binding motif 5 (RBM5) is one of the component genes in the 3p21.3 tumour suppressor region. Studies using human cancer specimens and cell lines suggest a role for RBM5 as a tumour suppressor. Here we demonstrate, for the first time, an in vivo role for RBM5 as a tumour suppressor in the mouse lung. We generated Rbm5 loss-of-function mice and exposed them to a tobacco carcinogen NNK. Upon exposure to NNK, Rbm5 loss-of-function mice developed lung cancer at similar rates to wild type mice. As tumourigenesis progressed, however, reduced Rbm5 expression lead to significantly more aggressive lung cancer i.e. increased adenocarcinoma nodule numbers and tumour size. Our data provide in vivo evidence that reduced RBM5 function, as occurs in a large number of patients, coupled with exposure to tobacco carcinogens is a risk factor for an aggressive lung cancer phenotype. These data suggest that RBM5 loss-of-function likely underpins at least part of the pro-tumourigenic consequences of 3p21.3 deletion in humans.
Collapse
Affiliation(s)
- Duangporn Jamsai
- The School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.,The Development and Stem Cells Program of Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - D Neil Watkins
- Cancer Developmental Biology Group, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Anne E O'Connor
- The School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.,The Development and Stem Cells Program of Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - D Jo Merriner
- The School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.,The Development and Stem Cells Program of Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - Selen Gursoy
- The School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.,The Development and Stem Cells Program of Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Victoria, 3800, Australia
| | - Anthony D Bird
- The Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Beena Kumar
- Department of Anatomical Pathology, Monash Medical Centre, Monash Health, 246 Clayton Rd, Clayton, Victoria 3168, Australia
| | - Alistair Miller
- General and Respiratory Medicine, Monash Medical Centre, Monash Health, 246 Clayton Rd, Clayton, Victoria 3168, Australia
| | - Timothy J Cole
- The Development and Stem Cells Program of Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.,The Department of Biochemistry and Molecular Biology, Monash University, 19 Innovation Walk, Clayton, Victoria 3800, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, Victoria 3168, Australia
| | - Moira K O'Bryan
- The School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia. .,The Development and Stem Cells Program of Monash Biomedicine Discovery Institute, 19 Innovation Walk, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
43
|
Jackson TC, Kotermanski SE, Kochanek PM. Whole-transcriptome microarray analysis reveals regulation of Rab4 by RBM5 in neurons. Neuroscience 2017; 361:93-107. [PMID: 28818525 PMCID: PMC5605467 DOI: 10.1016/j.neuroscience.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/27/2022]
Abstract
RNA binding motif 5 (RBM5) is a nuclear protein that modulates gene transcription and mRNA splicing in cancer cells. The brain is among the highest RBM5-expressing organ in the body but its mRNA target(s) or functions in the CNS have not been elucidated. Here we knocked down (KO) RBM5 in primary rat cortical neurons and analyzed total RNA extracts by gene microarray vs. neurons transduced with lentivirus to deliver control (non-targeting) shRNA. The mRNA levels of Sec23A (involved in ER-Golgi transport) and the small GTPase Rab4a (involved in endocytosis/protein trafficking) were increased in RBM5 KO neurons relative to controls. At the protein level, only Rab4a was significantly increased in RBM5 KO extracts. Also, elevated Rab4a levels in KO neurons were associated with decreased membrane levels of oligomeric serotonin transporters (SERT). Finally, RBM5 KO was associated with increased uptake of membrane-derived monomeric SERT. SIGNIFICANCE Rab4a is involved in the regulation of endocytosis and protein trafficking in cells. In the CNS it regulates diverse neurobiological functions including (but not limited to) trafficking of transmembrane proteins involved in neurotransmission (e.g. SERT), maintaining dendritic spine size, promoting axonal growth, and modulating cognition. Our findings suggest that RBM5 regulates Rab4a in rat neurons.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States.
| | - Shawn E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Patrick M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States
| |
Collapse
|
44
|
Kobayashi T, Ishida J, Shimizu Y, Kawakami H, Suda G, Muranaka T, Komatsu Y, Asaka M, Sakamoto N. Decreased RNA-binding motif 5 expression is associated with tumor progression in gastric cancer. Tumour Biol 2017; 39:1010428317694547. [PMID: 28347247 DOI: 10.1177/1010428317694547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA-binding motif 5 is a putative tumor suppressor gene that modulates cell cycle arrest and apoptosis. We recently demonstrated that RNA-binding motif 5 inhibits cell growth through the p53 pathway. This study evaluated the clinical significance of RNA-binding motif 5 expression in gastric cancer and the effects of altered RNA-binding motif 5 expression on cancer biology in gastric cancer cells. RNA-binding motif 5 protein expression was evaluated by immunohistochemistry using the surgical specimens of 106 patients with gastric cancer. We analyzed the relationships of RNA-binding motif 5 expression with clinicopathological parameters and patient prognosis. We further explored the effects of RNA-binding motif 5 downregulation with short hairpin RNA on cell growth and p53 signaling in MKN45 gastric cancer cells. Immunohistochemistry revealed that RNA-binding motif 5 expression was decreased in 29 of 106 (27.4%) gastric cancer specimens. Decreased RNA-binding motif 5 expression was correlated with histological differentiation, depth of tumor infiltration, nodal metastasis, tumor-node-metastasis stage, and prognosis. RNA-binding motif 5 silencing enhanced gastric cancer cell proliferation and decreased p53 transcriptional activity in reporter gene assays. Conversely, restoration of RNA-binding motif 5 expression suppressed cell growth and recovered p53 transactivation in RNA-binding motif 5-silenced cells. Furthermore, RNA-binding motif 5 silencing reduced the messenger RNA and protein expression of the p53 target gene p21. Our results suggest that RNA-binding motif 5 downregulation is involved in gastric cancer progression and that RNA-binding motif 5 behaves as a tumor suppressor gene in gastric cancer.
Collapse
Affiliation(s)
- Takahiko Kobayashi
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junich Ishida
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichi Shimizu
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kawakami
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tetsuhito Muranaka
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshito Komatsu
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Asaka
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
45
|
Stricker TP, Brown CD, Bandlamudi C, McNerney M, Kittler R, Montoya V, Peterson A, Grossman R, White KP. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression. PLoS Genet 2017; 13:e1006589. [PMID: 28263985 PMCID: PMC5367891 DOI: 10.1371/journal.pgen.1006589] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/27/2017] [Accepted: 01/18/2017] [Indexed: 11/19/2022] Open
Abstract
Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+) subtype and fourteen triple negative (TN) subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3’UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors. Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease. Different subtypes of breast cancer display very different expression programs, and these expression programs are associated with different patient outcomes and with different treatment protocols. However, little is known about what drives these subtype differences. By sequencing RNA in a discovery cohort of breast cancer patients, we demonstrate that different subtypes of breast cancer can be distinguished by simply using differential transcript isoform expression. We confirmed our findings using two additional patient cohorts. We also demonstrate that differential expression of RNA processing factors between subtypes can affect differences in isoform usage. Using RNAi we knock down differentially expressed RNA processing factors including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2, and show that this knock-down results in differential isoform expression of the genes identified in our disease subtype panel. Taken together, our results indicate that global dysregulation of splicing occurs in a subtype-specific and reproducible manner in breast cancer, and is driven by specific differentially expressed RNA processing factors.
Collapse
Affiliation(s)
- Thomas P. Stricker
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Christopher D. Brown
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chaitanya Bandlamudi
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
| | - Megan McNerney
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Department of Pathology, University of Chicago, Chicago, IL, United States of America
| | - Ralf Kittler
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- McDermott Center for Human Growth and Development, University of Texas Southwestern, Dallas, TX, United States of America
| | - Vanessa Montoya
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children’s Hospital of Chicago Research Center, Chicago, IL, United States of America
| | - April Peterson
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States of America
| | - Robert Grossman
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, United States of America
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- Department of Human Genetics, University of Chicago, Chicago, IL, United States of America
- Tempus Labs, Inc. Chicago, IL 60654, United States of America
- * E-mail:
| |
Collapse
|
46
|
Liang R, Lin Y, Ye JZ, Yan XX, Liu ZH, Li YQ, Luo XL, Ye HH. High expression of RBM8A predicts poor patient prognosis and promotes tumor progression in hepatocellular carcinoma. Oncol Rep 2017; 37:2167-2176. [PMID: 28259942 DOI: 10.3892/or.2017.5457] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a huge threat for human health worldwide. As a complicated tumor, the molecular basis for HCC development especially metastasis requires exploration. Although RNA binding motif (RBM) proteins are closely related to various cancers, the clinical importance and underlying mechanisms of RBM8A in HCC remain elusive. In this study, we found that RBM8A was highly expressed in HCC tumor tissues compared to normal liver tissues. Overexpression of RBM8A was associated with HbsAg and Edmondson pathological grading. Moreover, Kaplan-Meier survival analysis showed that high expression of RBM8A was related to the poor overall survival and progression-free survival of patients with HCC. Gain- and loss-of-function experiments further demonstrated that RBM8A promoted tumor cell migration and invasion in HCC via activation of epithelial-mesenchymal transition signaling pathway. It is also noteworthy that RBM8A is required for tumor cell proliferation and anti-apoptosis in HCC. Altogether, our results revealed a close relationship between RBM8A and HCC prognosis as well as a critical tumor-promoting function of RBM8A in HCC progression, suggesting that RBM8A might be a potential bio-marker and drug target in HCC therapy.
Collapse
Affiliation(s)
- Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Jia-Zhou Ye
- Department of Hepatobilliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Xue-Xin Yan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Hai-Hong Ye
- Department of Hepatobilliary Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
47
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
48
|
Mourão A, Bonnal S, Soni K, Warner L, Bordonné R, Valcárcel J, Sattler M. Structural basis for the recognition of spliceosomal SmN/B/B' proteins by the RBM5 OCRE domain in splicing regulation. eLife 2016; 5:14707. [PMID: 27894420 PMCID: PMC5127646 DOI: 10.7554/elife.14707] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
The multi-domain splicing factor RBM5 regulates the balance between antagonistic isoforms of the apoptosis-control genes FAS/CD95, Caspase-2 and AID. An OCRE (OCtamer REpeat of aromatic residues) domain found in RBM5 is important for alternative splicing regulation and mediates interactions with components of the U4/U6.U5 tri-snRNP. We show that the RBM5 OCRE domain adopts a unique β–sheet fold. NMR and biochemical experiments demonstrate that the OCRE domain directly binds to the proline-rich C-terminal tail of the essential snRNP core proteins SmN/B/B’. The NMR structure of an OCRE-SmN peptide complex reveals a specific recognition of poly-proline helical motifs in SmN/B/B’. Mutation of conserved aromatic residues impairs binding to the Sm proteins in vitro and compromises RBM5-mediated alternative splicing regulation of FAS/CD95. Thus, RBM5 OCRE represents a poly-proline recognition domain that mediates critical interactions with the C-terminal tail of the spliceosomal SmN/B/B’ proteins in FAS/CD95 alternative splicing regulation. The information required to produce proteins is encoded within genes. In the first step of creating a protein, its gene is “transcribed” to form a pre-messenger RNA molecule (called pre-mRNA for short). Both the gene and the pre-mRNA contain regions called exons that code for protein, and regions called introns that do not. The pre-mRNA therefore undergoes a process called splicing to remove the introns and join the exons together into a final mRNA molecule that is “translated” to make the protein. Many pre-mRNAs can be spliced in several different ways to include different combinations of exons in the final mRNA molecule. This process of “alternative splicing” allows different versions of a protein to be produced from the same gene. Changes that alter the pattern of alternative splicing in a cell affect various cellular and developmental processes and have been linked to diseases such as cancer. The pre-mRNA transcribed from a gene called FAS can be alternatively spliced so that it either does or does not contain an exon that enables the protein to embed itself in the cell membrane. The protein produced from mRNA that includes this exon generates a cell response that leads to cell death. By contrast, protein produced from mRNA that lacks this exon is released from cells and promotes their survival. A splicing factor called RBM5 promotes the removal of this exon from FAS pre-mRNA. RBM5 binds to some of the proteins that make up the molecular machine that splices pre-mRNA molecules. Mourão, Bonnal, Soni, Warner et al. have now used a technique called nuclear magnetic resonance spectroscopy to solve the three-dimensional structure formed when RBM5 binds to one of these proteins, called SmN. Further experiments introduced specific mutations to the proteins to investigate their effects in human cells. This revealed that mutations that impaired the association between RBM5 and SmN compromised the activity of RBM5 to regulate the alternative splicing of FAS pre-mRNA molecules. Future research could examine how RBM5 associates with pre-mRNAs and other components of the splicing machinery, and investigate whether proteins that are closely related to RBM5 act in similar ways.
Collapse
Affiliation(s)
- André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, Garching, Germany
| | - Sophie Bonnal
- Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Centre de Regulació Genòmica, Barcelona, Spain
| | - Komal Soni
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, Garching, Germany
| | - Lisa Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, Garching, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR5535, Université de Montpellier, Montpellier, France
| | - Juan Valcárcel
- Barcelona Institute of Science and Technology and Universitat Pompeu Fabra, Centre de Regulació Genòmica, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
49
|
Chu JH, Hart JE, Chhabra D, Garshick E, Raby BA, Laden F. Gene expression network analyses in response to air pollution exposures in the trucking industry. Environ Health 2016; 15:101. [PMID: 27809917 PMCID: PMC5093980 DOI: 10.1186/s12940-016-0187-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/24/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND Exposure to air pollution, including traffic-related pollutants, has been associated with a variety of adverse health outcomes, including increased cardiopulmonary morbidity and mortality, and increased lung cancer risk. METHODS To better understand the cellular responses induced by air pollution exposures, we performed genome-wide gene expression microarray analysis using whole blood RNA sampled at three time-points across the work weeks of 63 non-smoking employees at 10 trucking terminals in the northeastern US. We defined genes and gene networks that were differentially activated in response to PM2.5 (particulate matter ≤ 2.5 microns in diameter) and elemental carbon (EC) and organic carbon (OC). RESULTS Multiple transcripts were strongly associated (padj < 0.001) with pollutant levels (48, 260, and 49 transcripts for EC, OC, and PM2.5, respectively), including 63 that were statistically significantly correlated with at least two out of the three exposures. These genes included many that have been implicated in ischemic heart disease, chronic obstructive pulmonary disease (COPD), lung cancer, and other pollution-related illnesses. Through the combination of Gene Set Enrichment Analysis and network analysis (using GeneMANIA), we identified a core set of 25 interrelated genes that were common to all three exposure measures and were differentially expressed in two previous studies assessing gene expression attributable to air pollution. Many of these are members of fundamental cancer-related pathways, including those related to DNA and metal binding, and regulation of apoptosis and also but include genes implicated in chronic heart and lung diseases. CONCLUSIONS These data provide a molecular link between the associations of air pollution exposures with health effects.
Collapse
Affiliation(s)
- Jen-hwa Chu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Jaime E. Hart
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Divya Chhabra
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Eric Garshick
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA USA
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
50
|
Loiselle JJ, Roy JG, Sutherland LC. RBM5 reduces small cell lung cancer growth, increases cisplatin sensitivity and regulates key transformation-associated pathways. Heliyon 2016; 2:e00204. [PMID: 27957556 PMCID: PMC5133678 DOI: 10.1016/j.heliyon.2016.e00204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive type of lung cancer, with almost 95% of patients succumbing to the disease. Although RBM5, a tumor suppressor gene, is downregulated in the majority of lung cancers, its role in SCLC is unknown. Using the GLC20 SCLC cell line, which has a homozygous deletion encompassing the RBM5 gene locus, we established stable RBM5 expressing sublines and investigated the effects of RBM5 re-expression. Transcriptome and target identification studies determined that RBM5 directly regulates the cell cycle and apoptosis in SCLC cells, as well as significantly downregulates other important transformation-associated pathways such as angiogenesis and cell adhesion. RNA sequencing of paired non-tumor and tumor SCLC patient specimens showed decreased RBM5 expression in the tumors, and expression alterations in the majority of the same pathways that were altered in the GLC20 cells and sublines. Functional studies confirmed RBM5 expression slows SCLC cell line growth, and increases sensitivity to the chemotherapy drug cisplatin. Overall, our work demonstrates the importance of RBM5 expression to the non-transformed state of lung cells and the consequences of its deletion to SCLC development and progression.
Collapse
Affiliation(s)
- Julie J. Loiselle
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Justin G. Roy
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Leslie C. Sutherland
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Health Sciences North Research Institute (HSNRI), 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| |
Collapse
|