1
|
Lamson DR, Tarpley M, Addo K, Ji X, Abu Rabe D, Ehe B, Hughes M, Smith GR, Daye LR, Musso DL, Zheng W, Williams KP. Identification of small molecule antagonists of sonic hedgehog/heparin binding with activity in hedgehog functional assays. Biochim Biophys Acta Gen Subj 2024; 1868:130692. [PMID: 39151833 PMCID: PMC11486593 DOI: 10.1016/j.bbagen.2024.130692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Sonic hedgehog (Shh) is a morphogen with important roles in embryonic development and in the development of a number of cancers. Its activity is modulated by interactions with binding partners and co-receptors including heparin and heparin sulfate proteoglycans (HSPG). To identify antagonists of Shh/heparin binding, a diverse collection of 34,560 chemicals was screened in single point 384-well format. We identified and confirmed twenty six novel small molecule antagonists with diverse structures including four scaffolds that gave rise to multiple hits. Nineteen of the confirmed hits blocked binding of the N-terminal fragment of Shh (ShhN) to heparin with IC50 values < 50 μM. In the Shh-responsive C3H10T1/2 cell model, four of the compounds demonstrated the ability to block ShhN-induced alkaline phosphatase activity. To demonstrate a direct and selective effect on ShhN ligand mediated activity, two of the compounds were able to block induction of Gli1 mRNA, a primary downstream marker for Shh signaling activity, in Shh-mediated but not Smoothened agonist (SAG)-mediated C3H10T1/2 cells. Direct binding of the two compounds to ShhN was confirmed by thermal shift assay and molecular docking simulations, with both compounds docking with the N-terminal heparin binding domain of Shh. Overall, our findings indicate that small molecule compounds that block ShhN binding to heparin and act to inhibit Shh mediated activity in vitro can be identified. We propose that the interaction between Shh and HSPGs provides a novel target for identifying small molecules that bind Shh, potentially leading to novel tool compounds to probe Shh ligand function.
Collapse
Affiliation(s)
- David R Lamson
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Kezia Addo
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Xiaojia Ji
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Dina Abu Rabe
- Biomanufacturing Research Institute and Technology Enterprise, USA; INBS PhD Program, USA
| | - Ben Ehe
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Mark Hughes
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Ginger R Smith
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Laura R Daye
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - David L Musso
- Biomanufacturing Research Institute and Technology Enterprise, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, USA; Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
2
|
Zhou J, Liu X, Dong Q, Li J, Niu W, Liu T. Extracellular vesicle-bound VEGF in oral squamous cell carcinoma and its role in resistance to Bevacizumab Therapy. Cancer Cell Int 2024; 24:296. [PMID: 39180066 PMCID: PMC11344308 DOI: 10.1186/s12935-024-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is an important proangiogenic factor and has been considered as a key target of antiangiogenetic therapy in oral squamous cell carcinoma (OSCC). However, clinical application of bevacizumab, a specific VEGF antibody, didn't improve the survival rate of OSCC patients. One possible explanation is that VEGF gene expresses diverse isoforms, which associate with extracellular vesicles (EVs), and EVs potentially contribute to VEGF resistance to bevacizumab. However, clear solution is lacking in addressing this issue. METHODS Expression of VEGF isoforms in OSCC cells was confirmed by reverse transcription and polymerase chain reaction (RT-PCR) and western blot. EVs isolated from OSCC cell's conditioned medium (CM) were characterized by western blot, transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Flow cytometry, immunogold labeling and western blot were applied to study the VEGF on EVs. Tube formation assay and Matrigel plug angiogenesis assay were used for analyzing the angiogenesis capacity of EV-VEGF. RESULTS The most popular isoforms expressed by VEGF gene are VEGF121, VEGF165 and VEGF189. In this study, we demonstrated that all three isoforms of mRNA could be detected at varying levels in OSCC cells, while only VEGF165 and VEGF189 proteins were found. CM derived from OSCC cells, both soluble and non-soluble forms of VEGF could be detected. We further confirmed the presence of VGEF189 bound to EVs as a non-soluble form. EV-bound VEGF189 presented angiogenic activity, which could not be neutralized by bevacizumab. It was found that VEGF189 bound to EVs by heparan sulfate proteoglycans (HSPG). In addition, the angiogenic effect of EV-VEGF could be reversed by surfen, a kind of HSPG antagonist both in vitro and in vivo. CONCLUSION Antagonists targeting HSPG might potentially overcome the resistance of EV-VEGF to bevacizumab and serve as an alternative for anti-VEGF therapy in OSCC.
Collapse
Affiliation(s)
- Jiasheng Zhou
- School of Stomatology, Dalian Medical University, West Section No.9, South Road of Lvshun, Dalian, 116044, China
| | - Xue Liu
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Qi Dong
- School of Stomatology, Dalian Medical University, West Section No.9, South Road of Lvshun, Dalian, 116044, China
| | - Jiao Li
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, West Section No.9, South Road of Lvshun, Dalian, 116044, China.
| | - Tingjiao Liu
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
3
|
Zhao M, Taniguchi Y, Shimono C, Jonouchi T, Cheng Y, Shimizu Y, Nalbandian M, Yamamoto T, Nakagawa M, Sekiguchi K, Sakurai H. Heparan Sulfate Chain-Conjugated Laminin-E8 Fragments Advance Paraxial Mesodermal Differentiation Followed by High Myogenic Induction from hiPSCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308306. [PMID: 38685581 PMCID: PMC11234437 DOI: 10.1002/advs.202308306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have great therapeutic potential. The cell source differentiated from hiPSCs requires xeno-free and robust methods for lineage-specific differentiation. Here, a system is described for differentiating hiPSCs on new generation laminin fragments (NGLFs), a recombinant form of a laminin E8 fragment conjugated to the heparan sulfate chains (HS) attachment domain of perlecan. Using NGLFs, hiPSCs are highly promoted to direct differentiation into a paraxial mesoderm state with high-efficiency muscle lineage generation. HS conjugation to the C-terminus of Laminin E8 fragments brings fibroblast growth factors (FGFs) bound to the HS close to the cell surface of hiPSCs, thereby facilitating stronger FGF signaling pathways stimulation and initiating HOX gene expression, which triggers the paraxial mesoderm differentiation of hiPSCs. This highly efficient differentiation system can provide a roadmap for paraxial mesoderm development and an infinite source of myocytes and muscle stem cells for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
- Center for Medical EpigeneticsSchool of Basic Medical SciencesChongqing Medical University1 Yixueyuan Road, Yuzhong DistrictChongqing400016China
| | - Yukimasa Taniguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Chisei Shimono
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Tatsuya Jonouchi
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yushen Cheng
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yasuhiro Shimizu
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Minas Nalbandian
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Takuya Yamamoto
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Masato Nakagawa
- Department of Life Science FrontiersCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and ApplicationInstitute for Protein ResearchOsaka University3‐2 Yamadaoka, SuitaOsaka565‐0871Japan
| | - Hidetoshi Sakurai
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto University53 Shogoin‐Kawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| |
Collapse
|
4
|
Loffredo LF, Surpur A, Ringham OR, Li F, de Los Santos-Alexis K, Arpaia N. Heparan sulfate regulates amphiregulin signaling towards reparative lung mesenchymal cells during influenza A infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591175. [PMID: 38712053 PMCID: PMC11071614 DOI: 10.1101/2024.04.25.591175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiregulin (Areg), a growth factor produced by regulatory T (Treg) cells to facilitate tissue repair/regeneration, contains a heparan sulfate (HS) binding domain. How HS, a highly sulfated glycan subtype that alters growth factor signaling, influences Areg repair/regeneration functions is unclear. Here we report that inhibition of HS in various cell lines and primary lung mesenchymal cells (LMC) qualitatively alters downstream signaling and highlights the existence of HS-dependent vs. -independent Areg transcriptional signatures. Utilizing a panel of cell lines with targeted deletions in HS synthesis-related genes, we found that the presence of the glypican family of heparan sulfate proteoglycans is critical for Areg signaling and confirmed this dependency in primary LMC by siRNA-mediated knockdown. Furthermore, in the context of influenza A (IAV) infection in vivo , we found that an Areg-responsive subset of reparative LMC upregulate glypican-4 and HS. Conditional deletion of HS primarily within this LMC subset resulted in reduced blood oxygen saturation following infection with IAV, with no changes in viral load. Finally, we found that co-culture of HS-knockout LMC with IAV-induced Treg cells results in reduced LMC responses. Collectively, this study reveals the essentiality of HS on a specific lung mesenchymal population as a mediator of Treg cell-derived Areg reparative signaling during IAV infection.
Collapse
|
5
|
Zong Y, Lei Z, Yu SB, Zhang LY, Wu Y, Feng K, Qi QY, Liu Y, Zhu Y, Guo P, Zhou W, Zhang DW, Li ZT. Caltrop-like Small-Molecule Antidotes That Neutralize Unfractionated Heparin and Low-Molecular-Weight Heparin In Vivo. J Med Chem 2024; 67:3860-3873. [PMID: 38407934 DOI: 10.1021/acs.jmedchem.3c02224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Unfractionated heparin (UFH) and low-molecular-weight heparins (LMWHs) are widely applied for surgical procedures and extracorporeal therapies, which, however, suffer bleeding risk. Protamine, the only clinically approved antidote, can completely neutralize UFH, but only partially neutralizes LMWHs, and also has a number of safety drawbacks. Here, we show that caltrop-like multicationic small molecules can completely neutralize both UFH and LMWHs. In vitro and ex vivo assays with plasma and whole blood and in vivo assays with mice and rats support that the lead compound is not only superior to protamine by displaying higher neutralization activity and broader therapeutic windows but also biocompatible. The effective neutralization dose and the maximum tolerated dose of the lead compound are determined to be 0.4 and 25 mg/kg in mice, respectively, suggesting good promise for further preclinical studies.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhuo Lei
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ling-Yu Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ke Feng
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yajie Zhu
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peng Guo
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
6
|
Urschel K, Hug KP, Zuo H, Büttner M, Furtmair R, Kuehn C, Stumpfe FM, Botos B, Achenbach S, Yuan Y, Dietel B, Tauchi M. The Shear Stress-Regulated Expression of Glypican-4 in Endothelial Dysfunction In Vitro and Its Clinical Significance in Atherosclerosis. Int J Mol Sci 2023; 24:11595. [PMID: 37511353 PMCID: PMC10380765 DOI: 10.3390/ijms241411595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Retention of circulating lipoproteins by their interaction with extracellular matrix molecules has been suggested as an underlying mechanism for atherosclerosis. We investigated the role of glypican-4 (GPC4), a heparan sulfate (HS) proteoglycan, in the development of endothelial dysfunction and plaque progression; Expression of GPC4 and HS was investigated in human umbilical vein/artery endothelial cells (HUVECs/HUAECs) using flow cytometry, qPCR, and immunofluorescent staining. Leukocyte adhesion was determined in HUVECs in bifurcation chamber slides under dynamic flow. The association between the degree of inflammation and GPC4, HS, and syndecan-4 expressions was analyzed in human carotid plaques; GPC4 was expressed in HUVECs/HUAECs. In HUVECs, GPC4 protein expression was higher in laminar than in non-uniform shear stress regions after a 1-day or 10-day flow (p < 0.01 each). The HS expression was higher under laminar flow after a 1 day (p < 0.001). Monocytic THP-1 cell adhesion to HUVECs was facilitated by GPC4 knock-down (p < 0.001) without affecting adhesion molecule expression. GPC4 and HS expression was lower in more-inflamed than in less-inflamed plaque shoulders (p < 0.05, each), especially in vulnerable plaque sections; Reduced expression of GPC4 was associated with atherogenic conditions, suggesting the involvement of GPC4 in both early and advanced stages of atherosclerosis.
Collapse
Affiliation(s)
- Katharina Urschel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Karsten P. Hug
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Hanxiao Zuo
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Michael Büttner
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Roman Furtmair
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Constanze Kuehn
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Florian M. Stumpfe
- Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054 Erlangen, Germany;
| | - Balaz Botos
- Department of Vascular and Endovascular Surgery, General Hospital Nuremberg, Paracelsus Medical University, Breslauer Str. 201, 90471 Nuremberg, Germany;
| | - Stephan Achenbach
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Yan Yuan
- School of Public Health, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada; (H.Z.); (Y.Y.)
| | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| | - Miyuki Tauchi
- Department of Medicine 2—Cardiology and Angiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 12, 91054 Erlangen, Germany; (K.U.); (K.P.H.); (R.F.); (S.A.); (B.D.)
| |
Collapse
|
7
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
8
|
Liu Q, Shaukat A, Meng Z, Nummelin S, Tammelin T, Kontturi E, de Vries R, Kostiainen MA. Engineered Protein Copolymers for Heparin Neutralization and Detection. Biomacromolecules 2023; 24:1014-1021. [PMID: 36598935 PMCID: PMC9930113 DOI: 10.1021/acs.biomac.2c01464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heparin is a widely applied anticoagulant agent. However, in clinical practice, it is of vital importance to reverse its anticoagulant effect to restore the blood-clotting cascade and circumvent side effects. Inspired by protein cages that can encapsulate and protect their cargo from surroundings, we utilize three designed protein copolymers to sequester heparin into inert nanoparticles. In our design, a silk-like sequence provides cooperativity between proteins, generating a multivalency effect that enhances the heparin-binding ability. Protein copolymers complex heparin into well-defined nanoparticles with diameters below 200 nm. We also develop a competitive fluorescent switch-on assay for heparin detection, with a detection limit of 0.01 IU mL-1 in plasma that is significantly below the therapeutic range (0.2-8 IU mL-1). Moreover, moderate cytocompatibility is demonstrated by in vitro cell studies. Therefore, such engineered protein copolymers present a promising alternative for neutralizing and sensing heparin, but further optimization is required for in vivo applications.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences (WIUCAS), Wenzhou325001, China.,Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Sami Nummelin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd, VTT, P.O. Box 1000, EspooFI-02044, Finland
| | - Eero Kontturi
- Materials Chemistry of Cellulose, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen6708 WE, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto00076, Finland
| |
Collapse
|
9
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
10
|
Li A, Sasaki J, Inubushi T, Abe G, Nör J, Yamashiro T, Imazato S. Role of Heparan Sulfate in Vasculogenesis of Dental Pulp Stem Cells. J Dent Res 2023; 102:207-216. [PMID: 36281071 PMCID: PMC10767696 DOI: 10.1177/00220345221130682] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dental pulp stem cells (DPSCs) can differentiate into vascular endothelial cells and display sprouting ability. During this process, DPSC responses to the extracellular microenvironment and cell-extracellular matrix interactions are critical in regulating their ultimate cell fate. Heparan sulfate (HS) glycosaminoglycan, a major component of extracellular matrix, plays important roles in various biological cell activities by interacting with growth factors and relative receptors. However, the regulatory function of HS on vasculogenesis of mesenchymal stem cells remains unclear. The objective of this study was to investigate the role of HS in endothelial differentiation and vasculogenesis of DPSCs. Our results show that an HS antagonist suppressed the proliferation and sprouting ability of DPSCs undergoing endothelial differentiation. Furthermore, expression of proangiogenic markers significantly declined with increasing dosages of the HS antagonist; in contrast, expression of stemness marker increased. Silencing of exostosin 1 (EXT1), a crucial glycosyltransferase for HS biosynthesis, in DPSCs using a short hairpin RNA significantly altered their gene expression profile. In addition, EXT1-silenced DPSCs expressed lower levels of endothelial differentiation markers and displayed a reduced vascular formation capacity compared with control DPSCs transduced with scrambled sequences. The sprouting ability of EXT1-silenced DPSCs was rescued by the addition of exogenous HS in vitro. Next, we subcutaneously transplanted biodegradable scaffolds seeded with EXT1-silenced or control DPSCs into immunodeficient mice. Lumen-like structures positive for human CD31 and von Willebrand factor were formed by green fluorescent protein-transduced DPSCs. Numbers of blood-containing vessels were significantly lower in scaffolds loaded with EXT1-silenced DPSCs than specimens implanted with control DPSCs. Collectively, our findings unveil the crucial role of HS on endothelial differentiation and vasculogenesis of DPSCs, opening new perspectives for the application of HS to tissue engineering and dental pulp regeneration.
Collapse
Affiliation(s)
- A. Li
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J.I. Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - T. Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - G.L. Abe
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - J.E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - T. Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S. Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
11
|
Vilen Z, Reeves AE, Huang ML. (Glycan Binding) Activity‐Based Protein Profiling in Cells Enabled by Mass Spectrometry‐Based Proteomics. Isr J Chem 2023; 63. [PMID: 37131487 PMCID: PMC10150848 DOI: 10.1002/ijch.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presence of glycan modifications at the cell surface and other locales positions them as key regulators of cell recognition and function. However, due to the complexity of glycosylation, the annotation of which proteins bear glycan modifications, which glycan patterns are present, and which proteins are capable of binding glycans is incomplete. Inspired by activity-based protein profiling to enrich for proteins in cells based on select characteristics, these endeavors have been greatly advanced by the development of appropriate glycan-binding and glycan-based probes. Here, we provide context for these three problems and describe how the capability of molecules to interact with glycans has enabled the assignment of proteins with specific glycan modifications or of proteins that bind glycans. Furthermore, we discuss how the integration of these probes with high resolution mass spectrometry-based technologies has greatly advanced glycoscience.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| | - Abigail E. Reeves
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| | - Mia L. Huang
- Skaggs Graduate School of Chemical and Biological Sciences Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- Department of Molecular Medicine Scripps Research 10550 N. Torrey Pines Rd. La Jolla CA 92037, USA
| |
Collapse
|
12
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
13
|
Platelet factor 4 (CXCL4/PF4) upregulates matrix metalloproteinase-2 (MMP-2) in gingival fibroblasts. Sci Rep 2022; 12:18636. [PMID: 36329090 PMCID: PMC9633774 DOI: 10.1038/s41598-022-19850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by the release of matrix metalloproteinases (MMPs) from resident connective tissue cells in tooth-supporting tissues (periodontium). Platelet activation, and the attendant release of pro-inflammatory chemokines such as platelet factor 4 (CXCL4/PF4), are associated with periodontitis although the associated biochemical pathways remain undefined. Here we report that recombinant PF4 is internalized by cultured human gingival fibroblasts (hGFs), resulting in significant (p < 0.05) upregulation in both the production and release of MMP-2 (gelatinase A). This finding was corroborated by elevated circulating levels of MMP-2 (p < 0.05) in PF4-overexpressing transgenic mice, relative to controls. We also determined that PF4 induces the phosphorylation of NF-κB; notably, the suppression of NF-κB signaling by the inhibitor BAY 11-7082 abrogated PF4-induced MMP-2 upregulation. Moreover, the inhibition of surface glycosaminoglycans (GAGs) blocked both PF4 binding and NF-κB phosphorylation. Partial blockade of PF4 binding to the cells was achieved by treatment with either chondroitinase ABC or heparinase III, suggesting that both chondroitin sulfate and heparan sulfate mediate PF4 signaling. These results identify a novel pathway in which PF4 upregulates MMP-2 release from fibroblasts in an NF-κB- and GAG-dependent manner, and further our comprehension of the role of platelet signaling in periodontal tissue homeostasis.
Collapse
|
14
|
Broad-spectrum antiviral diazadispiroalkane core molecules block attachment and cell-to-cell spread of herpesviruses. Antiviral Res 2022; 206:105402. [PMID: 36007600 DOI: 10.1016/j.antiviral.2022.105402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/19/2022]
Abstract
Regarding the problems with the current available drugs many research studies deal with the class of the dispirotripiperazine (DSTP)-based compounds. These are small molecules consisting of polycyclic saturated ring systems with positively charged nitrogen atoms. These compounds can interact with negatively charged HSPGs and thus block viral attachment. In a previous paper by Adfeldt et al. (2021), we have shown that the diazadispiroalkane derivatives 11826091 and 11826236 exhibit dose-dependent antiviral activity against human cytomegalovirus (HCMV) and pseudorabies virus (PrV). In the present study, these two small molecules are evaluated against two other herpesvirus species, murine cytomegalovirus (MCMV) and herpes simplex virus type 1 (HSV-1), as well as a HCMV clinical isolate. They exhibit potent antiherpetic activity against these herpesviruses with a high selectivity index. The low cytotoxicity was underlined by the LD50 determination in mice. We have shown that inhibition occurs at an early stage of infection. Interestingly, 11826091 and 11826236 reduced immediate early gene expression in HCMV and HSV-1 infected cells in a dose-dependent manner. Both small molecules probably interact electrostatically with sulfated glycosaminoglycans (GAGs) of proteoglycans on target cells resulting in blockage of adsorption sites for herpesvirus glycoprotein. Moreover, both compounds showed significant effects against the cell-associated viral spread of HSV-1 and HCMV. Overall, this study shows that 11826091 and 11826236 represent two promising candidates for a new approach of a broad antiviral therapy.
Collapse
|
15
|
Zeng J, Meng Y, Chen SY, Zhao G, Wang L, Zhang EX, Qiu H. Structural characteristics of Heparan sulfate required for the binding with the virus processing Enzyme Furin. Glycoconj J 2022; 39:315-325. [PMID: 34699015 PMCID: PMC8546381 DOI: 10.1007/s10719-021-10018-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/08/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Furin is one of the nine-member proprotein convertase family. Furin cleaves proteins with polybasic residues, which includes many viral glycoproteins such as SARS-Cov-2 spike protein. The cleavage is required for the activation of the proteins. Currently, the mechanisms that regulate Furin activity remain largely unknown. Here we demonstrated that Furin is a novel heparin/heparan sulfate binding protein by the use of biochemical and genetic assays. The KD is 9.78 nM based on the biolayer interferometry assay. Moreover, we found that sulfation degree, site-specific sulfation (N-sulfation and 3-O-sulfation), and iduronic acid are the major structural determinants for the binding. Furthermore, we found that heparin inhibits the enzymatic activity of Furin when pre-mixes heparin with either Furin or Furin substrate. We also found that the Furin binds with cells of different origin and the binding with the cells of lung origin is the strongest one. These data could advance our understanding of the working mechanism of Furin and will benefit the Furin based drug discovery such as inhibitors targeting the interaction between heparan sulfate and Furin for inhibition of viral infection.
Collapse
Affiliation(s)
- Jiaxin Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Guangdong Province, 510405, Guangzhou, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yuan Meng
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Shi-Yi Chen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Gaofeng Zhao
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, USA
| | - En-Xin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Guangdong Province, 510405, Guangzhou, China.
| | - Hong Qiu
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
16
|
Vasileva E, Warren M, Triche TJ, Amatruda JF. Dysregulated heparan sulfate proteoglycan metabolism promotes Ewing sarcoma tumor growth. eLife 2022; 11:69734. [PMID: 35285802 PMCID: PMC8942468 DOI: 10.7554/elife.69734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
The Ewing sarcoma family of tumors is a group of malignant small round blue cell tumors (SRBCTs) that affects children, adolescents, and young adults. The tumors are characterized by reciprocal chromosomal translocations that generate chimeric fusion oncogenes, the most common of which is EWSR1-FLI1. Survival is extremely poor for patients with metastatic or relapsed disease, and no molecularly-targeted therapy for this disease currently exists. The absence of a reliable genetic animal model of Ewing sarcoma has impaired investigation of tumor cell/microenvironmental interactions in vivo. We have developed a new genetic model of Ewing sarcoma based on Cre-inducible expression of human EWSR1-FLI1 in wild type zebrafish, which causes rapid onset of SRBCTs at high penetrance. The tumors express canonical EWSR1-FLI1 target genes and stain for known Ewing sarcoma markers including CD99. Growth of tumors is associated with activation of the MAPK/ERK pathway, which we link to dysregulated extracellular matrix metabolism in general and heparan sulfate catabolism in particular. Targeting heparan sulfate proteoglycans with the specific heparan sulfate antagonist Surfen reduces ERK1/2 signaling and decreases tumorigenicity of Ewing sarcoma cells in vitro and in vivo. These results highlight the important role of the extracellular matrix in Ewing sarcoma tumor growth and the potential of agents targeting proteoglycan metabolism as novel therapies for this disease.
Collapse
Affiliation(s)
- Elena Vasileva
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Los Angeles, United States
| | - Mikako Warren
- Division of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, United States
| | - Timothy J Triche
- Division of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, United States
| | - James F Amatruda
- Department of Pediatrics, Children's Hospital of Los Angeles, Los Angeles, United States
| |
Collapse
|
17
|
Carbajo D, Pérez Y, Guerra-Rebollo M, Prats E, Bujons J, Alfonso I. Dynamic Combinatorial Optimization of In Vitro and In Vivo Heparin Antidotes. J Med Chem 2022; 65:4865-4877. [PMID: 35235323 PMCID: PMC8958503 DOI: 10.1021/acs.jmedchem.1c02054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heparin-like macromolecules
are widely used in clinics as anticoagulant,
antiviral, and anticancer drugs. However, the search of heparin antidotes
based on small synthetic molecules to control blood coagulation still
remains a challenging task due to the physicochemical properties of
this anionic polysaccharide. Here, we use a dynamic combinatorial
chemistry approach to optimize heparin binders with submicromolar
affinity. The recognition of heparin by the most amplified members
of the dynamic library has been studied with different experimental
(SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed
interaction model. The enzymatic assays with selected library members
confirm the correlation between the dynamic covalent screening and
the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays
with mice show that the optimized molecules are potent antidotes with
potential use as heparin reversal drugs. Overall, these results underscore
the power of dynamic combinatorial chemistry targeting complex and
elusive biopolymers.
Collapse
Affiliation(s)
| | | | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
18
|
Wu Q, Huang Q, Jiang Y, Sun F, Liang B, Wang J, Hu X, Sun M, Ma Z, Shi Y, Liang Y, Tan Y, Zeng D, Yao F, Xu X, Yao Z, Li S, Rong X, Huang N, Sun L, Liao W, Shi M. Remodeling Chondroitin-6-Sulfate-Mediated Immune Exclusion Enhances Anti-PD-1 Response in Colorectal Cancer with Microsatellite Stability. Cancer Immunol Res 2022; 10:182-199. [PMID: 34933913 PMCID: PMC9414301 DOI: 10.1158/2326-6066.cir-21-0124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023]
Abstract
Metastatic microsatellite-stable (MSS) colorectal cancer rarely responds to immune checkpoint inhibitors (ICI). Metabolism heterogeneity in the tumor microenvironment (TME) presents obstacles to antitumor immune response. Combining transcriptome (The Cancer Genome Atlas MSS colorectal cancer, n = 383) and digital pathology (n = 96) analysis, we demonstrated a stroma metabolism-immune excluded subtype with poor prognosis in MSS colorectal cancer, which could be attributed to interaction between chondroitin-6-sulfate (C-6-S) metabolites and M2 macrophages, forming the "exclusion barrier" in the invasive margin. Furthermore, C-6-S derived from cancer-associated fibroblasts promoted co-nuclear translocation of pSTAT3 and GLI1, activating the JAK/STAT3 and Hedgehog pathways. In vivo experiments with C-6-S-targeted strategies decreased M2 macrophages and reprogrammed the immunosuppressive TME, leading to enhanced response to anti-PD-1 in MSS colorectal cancer. Therefore, C-6-S-induced immune exclusion represents an "immunometabolic checkpoint" that can be exploited for the application of combination strategies in MSS colorectal cancer ICI treatment.
Collapse
Affiliation(s)
- Qijing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yu Jiang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Fei Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xingbin Hu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mengting Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhenfeng Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yanxiao Liang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Fangzhen Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xin Xu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhiqi Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shaowei Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.,Corresponding Author: Min Shi, Department of Oncology, Nanfang Hospital, Guangzhou, Guangdong 510515, P.R. China. E-mail:
| |
Collapse
|
19
|
Zhao H, Yuen KY. Broad-spectrum Respiratory Virus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:137-153. [DOI: 10.1007/978-981-16-8702-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Anti-Herpes Simplex Virus Efficacy of Silk Cocoon, Silkworm Pupa and Non-Sericin Extracts. Antibiotics (Basel) 2021; 10:antibiotics10121553. [PMID: 34943765 PMCID: PMC8698825 DOI: 10.3390/antibiotics10121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Herpes simplex virus (HSV) infections are prevalent worldwide and are the cause of life- threatening diseases. Standard treatment with antiviral drugs, such as acyclovir, could prevent serious complications; however, resistance has been reported specifically among immunocompromised patients. Therefore, the development of an alternative approach is needed. The silk cocoon derived from silkworm, Bombyx mori, has been recognized for its broad-spectrum biological activity, including antiviral activity; however, its effects against HSV infection are unknown. In this study, we investigated the inhibitory effects of silk extracts derived from the cocoon shell, silk cocoon, silkworm pupa and non-sericin extract, on blocking HSV-1 and HSV-2 binding to host cells, resulting in the inhibition of the virus infection in Vero cells. Non-sericin extract demonstrated the greatest effectiveness on inhibiting HSV-1 and HSV-2 binding activity. Moreover, the virucidal effect to inactivate HSV-1 and HSV-2 was determined and revealed that non-sericin extract also exerted the highest potential activity. Using the treatment of non-sericin extract in HSV-2-infected HeLa cells could significantly lower the HSV-induced cell death and prevent inflammation via lowering the inflammatory cytokine gene expression. The non-sericin extract was analyzed for its bioactive compounds in which gallic acid, flavonoid and xanthophyll were identified, and might have partially contributed to its antiviral activity. The finding in our study suggested the potential of silk extract as an alternative therapeutic treatment for HSV infection.
Collapse
|
21
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Huang Y, Song Y, Li J, Lv C, Chen ZS, Liu Z. Receptors and ligands for herpes simplex viruses: Novel insights for drug targeting. Drug Discov Today 2021; 27:185-195. [PMID: 34678489 DOI: 10.1016/j.drudis.2021.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/07/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
Human herpes simplex viruses (HSVs) belong to the Herpesviridae family. At present, no vaccine or curative treatment is available for the prevention of HSV infections. Here, we review the cell surface receptors that are recognized by HSV's glycoprotein B, glycoprotein C, glycoprotein D, and the glycoprotein H - glycoprotein L complex to facilitate entry into host cells. These receptors include heparan sulfate (HS), herpesvirus entry mediator (HVEM), and nectin-1/-2, 3-O-sulfated heparan sulfate (3-OS HS).
Collapse
Affiliation(s)
- Yiwei Huang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Yuyun Song
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jichen Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Changning Lv
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
23
|
Pérez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer À, Bujons J, Alfonso I. Semaphorin 3A-Glycosaminoglycans Interaction as Therapeutic Target for Axonal Regeneration. Pharmaceuticals (Basel) 2021; 14:ph14090906. [PMID: 34577606 PMCID: PMC8465649 DOI: 10.3390/ph14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a cell-secreted protein that participates in the axonal guidance pathways. Sema3A acts as a canonical repulsive axon guidance molecule, inhibiting CNS regenerative axonal growth and propagation. Therefore, interfering with Sema3A signaling is proposed as a therapeutic target for achieving functional recovery after CNS injuries. It has been shown that Sema3A adheres to the proteoglycan component of the extracellular matrix (ECM) and selectively binds to heparin and chondroitin sulfate-E (CS-E) glycosaminoglycans (GAGs). We hypothesize that the biologically relevant interaction between Sema3A and GAGs takes place at Sema3A C-terminal polybasic region (SCT). The aims of this study were to characterize the interaction of the whole Sema3A C-terminal polybasic region (Sema3A 725–771) with GAGs and to investigate the disruption of this interaction by small molecules. Recombinant Sema3A basic domain was produced and we used a combination of biophysical techniques (NMR, SPR, and heparin affinity chromatography) to gain insight into the interaction of the Sema3A C-terminal domain with GAGs. The results demonstrate that SCT is an intrinsically disordered region, which confirms that SCT binds to GAGs and helps to identify the specific residues involved in the interaction. NMR studies, supported by molecular dynamics simulations, show that a new peptoid molecule (CSIC02) may disrupt the interaction between SCT and heparin. Our structural study paves the way toward the design of new molecules targeting these protein–GAG interactions with potential therapeutic applications.
Collapse
Affiliation(s)
- Yolanda Pérez
- NMR Facility, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Correspondence: (Y.P.); (I.A.)
| | - Roman Bonet
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Miriam Corredor
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Cecilia Domingo
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Alejandra Moure
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Àngel Messeguer
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Jordi Bujons
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; (R.B.); (M.C.); (C.D.); (A.M.); (À.M.); (J.B.)
- Correspondence: (Y.P.); (I.A.)
| |
Collapse
|
24
|
Maszota-Zieleniak M, Zsila F, Samsonov SA. Computational insights into heparin-small molecule interactions: Evaluation of the balance between stacking and non-stacking binding modes. Carbohydr Res 2021; 507:108390. [PMID: 34271478 DOI: 10.1016/j.carres.2021.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Glycosaminoglycans (GAGs), anionic periodic linear polysaccharides, are involved in a manifold of key biochemical processes ongoing in the extracellular matrix via establishing direct intermolecular interactions with diverse classes of biopolymers as well as with bioactive small molecules. Due to their acidic nature, they are capable of binding positively charged ligands, which, in turn could affect their binding with protein and peptide targets, modulating a number of physiologically important signaling pathways. Therefore, it is of great significance to improve our understanding on the molecular basis underlying GAG-small molecule interactions. In this study, we applied in silico approaches (molecular dynamics and free energy calculations) complemented with circular dichroism and absorption spectroscopy to characterize the complex formation between heparin, one of the principal members of GAG family, and twenty different cationic ligands including therapeutic drugs, alkaloids and organic dyes. In particular, the oligomerization propensity of ligands prior to heparin binding, binding free energy parameters, effects of the ionic strength are rigorously described. Based on the performed analysis, the ligands are classified into three main groups depending on their heparin binding and oligomerization properties. The computational data agree and provide rationale for the corresponding experimental findings, contributing to the general knowledge of the physico-chemical nature of ligand-GAG intermolecular interactions.
Collapse
Affiliation(s)
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
25
|
Tseng WB, Chou YS, Lu CZ, Madhu M, Lu CY, Tseng WL. Fluorescence sensing of heparin and heparin-like glycosaminoglycans by stabilizing intramolecular charge transfer state of dansyl acid-labeled AG73 peptides with glutathione-capped gold nanoclusters. Biosens Bioelectron 2021; 193:113522. [PMID: 34315066 DOI: 10.1016/j.bios.2021.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022]
Abstract
Sensors that can specifically and accurately detect glycosaminoglycans are rare. Here, a dual-mode platform for fluorescence intensity and lifetime sensing of plasma heparin and fluorescence imaging of heparan sulfate proteoglycan-expressed cancer cells was developed by stabilizing the intramolecular charge transfer (ICT) state of dansyl acid-labeling AG73 (DA-AG73) peptide with glutathione-capped gold nanoclusters (GSH-AuNCs). DA-AG73 peptides, including an electron-donor dimethylamino group and an electron-withdrawing sulfonamide moiety in the labeled DA molecules, emitted weak fluorescence due to the formation of the twisted ICT excited state. The complexation of heparin with DA-AG73 peptides followed by interacting with the GSH-AuNCs could restrict the rotation of the dimethylamino groups of the labeled DA molecules, triggering the transition from their twisted ICT state to ICT excited state. As a result, the fluorescence intensity and lifetime of the labeled DA molecules in DA-AG73 peptides were gradually enhanced with increasing the heparin concentration. The proposed platform provided excellent selectivity toward heparin and heparan sulfate and exhibited two linear calibration curves for quantifying 20-800 nM and 20-1000 nM heparin in the fluorescence intensity and lifetime modes, respectively. The proposed platform was practically applied for the fluorescence intensity and lifetime determination of plasma heparin and for the selective imaging of heparan sulfate proteoglycan-expressed cells.
Collapse
Affiliation(s)
- Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Yi-Shiuan Chou
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Cheng-Zong Lu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
26
|
Yue J, Jin W, Yang H, Faulkner J, Song X, Qiu H, Teng M, Azadi P, Zhang F, Linhardt RJ, Wang L. Heparan Sulfate Facilitates Spike Protein-Mediated SARS-CoV-2 Host Cell Invasion and Contributes to Increased Infection of SARS-CoV-2 G614 Mutant and in Lung Cancer. Front Mol Biosci 2021; 8:649575. [PMID: 34179075 PMCID: PMC8231436 DOI: 10.3389/fmolb.2021.649575] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.
Collapse
Affiliation(s)
- Jingwen Yue
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Weihua Jin
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Hua Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - John Faulkner
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| | - Hong Qiu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Michael Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Health, Tampa, FL, United States
| |
Collapse
|
27
|
Partridge LJ, Urwin L, Nicklin MJH, James DC, Green LR, Monk PN. ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin. Cells 2021; 10:cells10061419. [PMID: 34200372 DOI: 10.1101/2020.05.21.107870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 05/23/2023] Open
Abstract
Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells.
Collapse
Affiliation(s)
- Lynda J Partridge
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
| | - Martin J H Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
| | - David C James
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 4NL, UK
| | - Luke R Green
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
28
|
Partridge LJ, Urwin L, Nicklin MJH, James DC, Green LR, Monk PN. ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin. Cells 2021; 10:1419. [PMID: 34200372 PMCID: PMC8229176 DOI: 10.3390/cells10061419] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells.
Collapse
Affiliation(s)
- Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK;
| | - Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK; (L.U.); (M.J.H.N.); (L.R.G.)
| | - Martin J. H. Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK; (L.U.); (M.J.H.N.); (L.R.G.)
| | - David C. James
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 4NL, UK;
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK; (L.U.); (M.J.H.N.); (L.R.G.)
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield S10 2RX, UK; (L.U.); (M.J.H.N.); (L.R.G.)
| |
Collapse
|
29
|
Bartosch AMW, Mathews R, Mahmoud MM, Cancel LM, Haq ZS, Tarbell JM. Heparan sulfate proteoglycan glypican-1 and PECAM-1 cooperate in shear-induced endothelial nitric oxide production. Sci Rep 2021; 11:11386. [PMID: 34059731 PMCID: PMC8166914 DOI: 10.1038/s41598-021-90941-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress to nitric oxide production was elucidated in which glypican-1 senses flow and phosphorylates PECAM-1 leading to endothelial nitric oxide synthase phosphorylation and nitric oxide production.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Rick Mathews
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.,The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Marwa M Mahmoud
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Zahin S Haq
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
30
|
White CW, Kilpatrick LE, Pfleger KDG, Hill SJ. A nanoluciferase biosensor to investigate endogenous chemokine secretion and receptor binding. iScience 2021; 24:102011. [PMID: 33490919 PMCID: PMC7809502 DOI: 10.1016/j.isci.2020.102011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
Secreted chemokines are critical mediators of cellular communication that elicit intracellular signaling by binding membrane-bound receptors. Here we demonstrate the development and use of a sensitive real-time approach to quantify secretion and receptor binding of native chemokines in live cells to better understand their molecular interactions and function. CRISPR/Cas9 genome editing was used to tag the chemokine CXCL12 with the nanoluciferase fragment HiBiT. CXCL12 secretion was subsequently monitored and quantified by luminescence output. Binding of tagged CXCL12 to either chemokine receptors or membrane glycosaminoglycans could be monitored due to the steric constraints of nanoluciferase complementation. Furthermore, binding of native CXCL12-HiBiT to AlexaFluor488-tagged CXCR4 chemokine receptors could also be distinguished from glycosaminoglycan binding and pharmacologically analyzed using BRET. These live cell approaches combine the sensitivity of nanoluciferase with CRISPR/Cas9 genome editing to detect, quantify, and monitor binding of low levels of native secreted proteins in real time.
Collapse
Affiliation(s)
- Carl W White
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.,Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Laura E Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK.,School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,Dimerix Limited, Nedlands, WA 6009, Australia
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
31
|
Välimäki S, Liu Q, Schoonen L, Vervoort DFM, Nonappa, Linko V, Nolte RJM, van Hest JCM, Kostiainen MA. Engineered protein cages for selective heparin encapsulation. J Mater Chem B 2021; 9:1272-1276. [PMID: 33427277 DOI: 10.1039/d0tb02541k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heparin-specific binding peptide was conjugated to a cowpea chlorotic mottle virus (CCMV) capsid protein, which was subsequently allowed to encapsulate heparin and form capsid-like protein cages. The encapsulation is specific and the capsid-heparin assemblies display negligible hemolytic activity, indicating proper blood compatibility and promising possibilities for heparin antidote applications.
Collapse
Affiliation(s)
- Salla Välimäki
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland.
| | - Qing Liu
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland.
| | - Lise Schoonen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Daan F M Vervoort
- Department of Bio-Organic Chemistry, Eindhoven University of Technology, Institute of Complex Molecular Systems (ICMS), Het Kranenveld 14, Eindhoven 5600 MB, The Netherlands
| | - Nonappa
- HYBER Centre, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland. and HYBER Centre, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| | - Roeland J M Nolte
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Jan C M van Hest
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands and Department of Bio-Organic Chemistry, Eindhoven University of Technology, Institute of Complex Molecular Systems (ICMS), Het Kranenveld 14, Eindhoven 5600 MB, The Netherlands
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto FI-00076, Espoo, Finland. and HYBER Centre, Department of Applied Physics, Aalto University, Aalto FI-00076, Finland
| |
Collapse
|
32
|
Chazeirat T, Denamur S, Bojarski KK, Andrault PM, Sizaret D, Zhang F, Saidi A, Tardieu M, Linhardt RJ, Labarthe F, Brömme D, Samsonov SA, Lalmanach G, Lecaille F. The abnormal accumulation of heparan sulfate in patients with mucopolysaccharidosis prevents the elastolytic activity of cathepsin V. Carbohydr Polym 2020; 253:117261. [PMID: 33278943 DOI: 10.1016/j.carbpol.2020.117261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis (MPS) are rare inherited diseases characterized by accumulation of lysosomal glycosaminoglycans, including heparan sulfate (HS). Patients exhibit progressive multi-visceral dysfunction and shortened lifespan mainly due to a severe cardiac/respiratory decline. Cathepsin V (CatV) is a potent elastolytic protease implicated in extracellular matrix (ECM) remodeling. Whether CatV is inactivated by HS in lungs from MPS patients remained unknown. Herein, CatV colocalized with HS in MPS bronchial epithelial cells. HS level correlated positively with the severity of respiratory symptoms and negatively to the overall endopeptidase activity of cysteine cathepsins. HS bound tightly to CatV and impaired its activity. Withdrawal of HS by glycosidases preserved exogenous CatV activity, while addition of Surfen, a HS antagonist, restored elastolytic CatV-like activity in MPS samples. Our data suggest that the pathophysiological accumulation of HS may be deleterious for CatV-mediated ECM remodeling and for lung tissue homeostasis, thus contributing to respiratory disorders associated to MPS diseases.
Collapse
Affiliation(s)
- Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| | - Sophie Denamur
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France; Pediatric Department, Reference Center for Inborn Errors of Metabolism ToTeM, CHRU Tours, France.
| | | | - Pierre-Marie Andrault
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Damien Sizaret
- Anatomical Pathology and Cytology Department, Bretonneau Hospital, CHRU Tours, France.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| | - Marine Tardieu
- Pediatric Department, Reference Center for Inborn Errors of Metabolism ToTeM, CHRU Tours, France.
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | - François Labarthe
- Pediatric Department, Reference Center for Inborn Errors of Metabolism ToTeM, CHRU Tours, France; INSERM, UMR 1069, Nutrition, Croissance et Cancer (N2C), Tours, France.
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.
| |
Collapse
|
33
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
34
|
El-Fakharany EM, Saad MH, Salem MS, Sidkey NM. Biochemical characterization and application of a novel lectin from the cyanobacterium Lyngabya confervoides MK012409 as an antiviral and anticancer agent. Int J Biol Macromol 2020; 161:417-430. [PMID: 32526302 DOI: 10.1016/j.ijbiomac.2020.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
|
35
|
Huang Q, Zhao H, Shui M, Guo DS, Wang R. Heparin reversal by an oligoethylene glycol functionalized guanidinocalixarene. Chem Sci 2020; 11:9623-9629. [PMID: 34094229 PMCID: PMC8162181 DOI: 10.1039/d0sc03922e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 02/02/2023] Open
Abstract
Unfractionated heparin (UFH), a naturally occurring anionic polysaccharide, is widely used as an anticoagulant agent in clinical practice. When overdosed or used in sensitive patients, UFH may cause various risks and a UFH neutralizer needs to be administered immediately to reverse heparinization. However, the most common UFH neutralizer, protamine sulfate, often causes various adverse effects, some of which are life-threatening. Herein, we designed a highly biocompatible, oligoethylene glycol functionalized guanidinocalixarene (GC4AOEG) as an antidote against UFH. GC4AOEG and UFH exhibited a strong binding affinity, ensuring specific recognition and neutralization of UFH by GC4AOEG in vitro and in vivo. As a consequence, UFH-induced excessive bleeding was significantly alleviated by GC4AOEG in different mouse bleeding models. Additionally, no adverse effects were observed during these treatments in vivo. Taken together, GC4AOEG, as a strategically designed, biocompatible artificial receptor with strong recognition affinity towards UFH, may have significant clinical potential as an alternative UFH reversal agent.
Collapse
Affiliation(s)
- Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| | - Hong Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin China
| | - Mingju Shui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| |
Collapse
|
36
|
Severmann AC, Jochmann K, Feller K, Bachvarova V, Piombo V, Stange R, Holzer T, Brachvogel B, Esko J, Pap T, Hoffmann D, Vortkamp A. An altered heparan sulfate structure in the articular cartilage protects against osteoarthritis. Osteoarthritis Cartilage 2020; 28:977-987. [PMID: 32315715 PMCID: PMC8422443 DOI: 10.1016/j.joca.2020.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive degenerative disease of the articular cartilage caused by an unbalanced activity of proteases, cytokines and other secreted proteins. Since heparan sulfate (HS) determines the activity of many extracellular factors, we investigated its role in OA progression. METHODS To analyze the role of the HS level, OA was induced by anterior cruciate ligament transection (ACLT) in transgenic mice carrying a loss-of-function allele of Ext1 in clones of chondrocytes (Col2-rtTA-Cre;Ext1e2fl/e2fl). To study the impact of the HS sulfation pattern, OA was surgically induced in mice with a heterozygous (Ndst1+/-) or chondrocyte-specific (Col2-Cre;Ndst1fl/fl) loss-of-function allele of the sulfotransferase Ndst1. OA progression was evaluated using the OARSI scoring system. To investigate expression and activity of cartilage degrading proteases, femoral head explants of Ndst1+/- mutants were analyzed by qRT-PCR, Western Blot and gelatin zymography. RESULTS All investigated mouse strains showed reduced OA scores (Col2-rtTA-Cre;Ext1e2fl/e2fl: 0.83; 95% HDI 0.72-0.96; Ndst1+/-: 0.83, 95% HDI 0.74-0.9; Col2-Cre;Ndst1fl/fl: 0.87, 95% HDI 0.76-1). Using cartilage explant cultures of Ndst1 animals, we detected higher amounts of aggrecan degradation products in wildtype samples (NITEGE 4.24-fold, 95% HDI 1.05-18.55; VDIPEN 1.54-fold, 95% HDI 1.54-2.34). Accordingly, gelatin zymography revealed lower Mmp2 activity in mutant samples upon RA-treatment (0.77-fold, 95% HDI: 0.60-0.96). As expression of major proteases and their inhibitors was not altered, HS seems to regulate cartilage degeneration by affecting protease activity. CONCLUSION A decreased HS content or a reduced sulfation level protect against OA progression by regulating protease activity rather than expression.
Collapse
Affiliation(s)
- A-C Severmann
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - K Jochmann
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - K Feller
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - V Bachvarova
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - V Piombo
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - R Stange
- Zentrum für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster, Germany.
| | - T Holzer
- Center for Biochemistry, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Germany.
| | - B Brachvogel
- Center for Biochemistry, Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Germany.
| | - J Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research & Training Center, University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| | - T Pap
- Zentrum für Muskuloskelettale Medizin, Westfälische Wilhelms-Universität Münster, Germany.
| | - D Hoffmann
- Department Bioinformatics and Computational Biophysics, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| | - A Vortkamp
- Department of Developmental Biology, Center for Medical Biotechnology, Faculty Biology, University Duisburg-Essen, Germany.
| |
Collapse
|
37
|
Zhang T, Wei Q, Zhou H, Zhou W, Fan D, Lin X, Jing Z, Cai H, Cheng Y, Liu X, Li W, Song C, Tian Y, Xu N, Zheng Y, Liu Z. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomater Sci 2020; 8:3106-3115. [PMID: 32350485 DOI: 10.1039/c9bm01968e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Elimination of infection and enhancement of osteogenesis by orthopaedic implants are two critical factors in the treatment of complex bone infections. A prolonged and expensive procedure requiring two surgical steps and a 6-8-week period of joint immobilisation is utilised as a primary treatment for revision arthroplasty of an infected prosthesis, greatly affecting long-term patient care for the ageing population. Here, we evaluated the effects of vancomycin-loaded in micro-arc oxidised (MAO) three-dimensional (3D) printed porous Ti6Al4V scaffolds on osteogenesis. This system showed a high loading capacity and sustained vancomycin release kinetics, as demonstrated using high-performance liquid chromatography. In vivo, 0.1 mL of 108 colony forming units (CFU) methicillin-resistant Staphylococcus aureus was injected into the tibias of rabbits to induce severe osteomyelitis. Physical, haematological, radiographic, microbiological, and histopathological analyses were performed to evaluate the effects of treatment. Rabbits with vancomycin-loaded in MAO scaffolds showed the inhibition of bone infection and enhancement of osteogenesis, resulting in better outcomes than in the other groups. Overall, these findings demonstrated the potential of this 3D printed porous Ti6Al4V, with good osteogenesis and sustained vancomycin release properties, for application in the treatment of complex bone infections.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lan Y, Li X, Liu Y, He Y, Hao C, Wang H, Jin L, Zhang G, Zhang S, Zhou A, Zhang L. Pingyangmycin inhibits glycosaminoglycan sulphation in both cancer cells and tumour tissues. J Cell Mol Med 2020; 24:3419-3430. [PMID: 32068946 PMCID: PMC7131950 DOI: 10.1111/jcmm.15017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Pingyangmycin is a clinically used anticancer drug and induces lung fibrosis in certain cancer patients. We previously reported that the negatively charged cell surface glycosaminoglycans are involved in the cellular uptake of the positively charged pingyangmycin. However, it is unknown if pingyangmycin affects glycosaminoglycan structures. Seven cell lines and a Lewis lung carcinoma‐injected C57BL/6 mouse model were used to understand the cytotoxicity of pingyangmycin and its effect on glycosaminoglycan biosynthesis. Stable isotope labelling coupled with LC/MS method was used to quantify glycosaminoglycan disaccharide compositions from pingyangmycin‐treated and untreated cell and tumour samples. Pingyangmycin reduced both chondroitin sulphate and heparan sulphate sulphation in cancer cells and in tumours. The effect was persistent at different pingyangmycin concentrations and at different exposure times. Moreover, the cytotoxicity of pingyangmycin was decreased in the presence of soluble glycosaminoglycans, in the glycosaminoglycan‐deficient cell line CHO745, and in the presence of chlorate. A flow cytometry‐based cell surface FGF/FGFR/glycosaminoglycan binding assay also showed that pingyangmycin changed cell surface glycosaminoglycan structures. Changes in the structures of glycosaminoglycans may be related to fibrosis induced by pingyangmycin in certain cancer patients.
Collapse
Affiliation(s)
- Ying Lan
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Liu
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanli He
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Wang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Jin
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Liu Q, Välimäki S, Shaukat A, Shen B, Linko V, Kostiainen MA. Serum Albumin-Peptide Conjugates for Simultaneous Heparin Binding and Detection. ACS OMEGA 2019; 4:21891-21899. [PMID: 31891067 PMCID: PMC6933801 DOI: 10.1021/acsomega.9b02883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 05/14/2023]
Abstract
Heparin is a polysaccharide-based anticoagulant agent, which is widely used in surgery and blood transfusion. However, overdosage of heparin may cause severe side effects such as bleeding and low blood platelet count. Currently, there is only one clinically licensed antidote for heparin: protamine sulfate, which is known to provoke adverse effects. In this work, we present a stable and biocompatible alternative for protamine sulfate that is based on serum albumin, which is conjugated with a variable number of heparin-binding peptides. The heparin-binding efficiency of the conjugates was evaluated with methylene blue displacement assay, dynamic light scattering, and anti-Xa assay. We found that multivalency of the peptides played a key role in the observed heparin-binding affinity and complex formation. The conjugates had low cytotoxicity and low hemolytic activity, indicating excellent biocompatibility. Furthermore, a sensitive DNA competition assay for heparin detection was developed. The detection limit of heparin was 0.1 IU/mL, which is well below its therapeutic range (0.2-0.4 IU/mL). Such biomolecule-based systems are urgently needed for next-generation biocompatible materials capable of simultaneous heparin binding and sensing.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Salla Välimäki
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Ahmed Shaukat
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
40
|
Li PY, Chen Y, Chen CH, Liu Y. Amphiphilic multi-charged cyclodextrins and vitamin K co-assembly as a synergistic coagulant. Chem Commun (Camb) 2019; 55:11790-11793. [PMID: 31524903 DOI: 10.1039/c9cc06545h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Balancing and neutralizing heparin dosing after surgeries and hemodialysis treatment is of great importance in medical and clinical fields. In this study, a series of new amphiphilic multi-charged cyclodextrins (AMCD)s as anti-heparin coagulants were designed and synthesized. The AMCD assembly was capable of selective heparin binding through multivalent bonding and showed a better neutralizing effect towards both unfractionated heparin and low molecular weight heparin than protamine in plasma. Meanwhile, an AMCD and vitamin K (VK) co-assembly was prepared to realize heparin-responsive VK release and provide a novel VK deficiency treatment for hemodialysis patients. This AMCD-VK co-assembly for heparin neutralization & vitamin K supplementation synergistic coagulation represents a promising candidate as a clinical anti-heparin coagulant.
Collapse
Affiliation(s)
- Pei-Yu Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Chang-Hui Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
41
|
Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J, Klintschar M, Rudat C, Kispert A, Niessen HW, Lübke T, Dierks T, Wollert KC. Heparan Sulfate-Editing Extracellular Sulfatases Enhance VEGF Bioavailability for Ischemic Heart Repair. Circ Res 2019; 125:787-801. [PMID: 31434553 DOI: 10.1161/circresaha.119.315023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE Mechanistic insight into the inflammatory response after acute myocardial infarction may inform new molecularly targeted treatment strategies to prevent chronic heart failure. OBJECTIVE We identified the sulfatase SULF2 in an in silico secretome analysis in bone marrow cells from patients with acute myocardial infarction and detected increased sulfatase activity in myocardial autopsy samples. SULF2 (Sulf2 in mice) and its isoform SULF1 (Sulf1) act as endosulfatases removing 6-O-sulfate groups from heparan sulfate (HS) in the extracellular space, thus eliminating docking sites for HS-binding proteins. We hypothesized that the Sulfs have a role in tissue repair after myocardial infarction. METHODS AND RESULTS Both Sulfs were dynamically upregulated after coronary artery ligation in mice, attaining peak expression and activity levels during the first week after injury. Sulf2 was expressed by monocytes and macrophages, Sulf1 by endothelial cells and fibroblasts. Infarct border zone capillarization was impaired, scar size increased, and cardiac dysfunction more pronounced in mice with a genetic deletion of either Sulf1 or Sulf2. Studies in bone marrow-chimeric Sulf-deficient mice and Sulf-deficient cardiac endothelial cells established that inflammatory cell-derived Sulf2 and endothelial cell-autonomous Sulf1 promote angiogenesis. Mechanistically, both Sulfs reduced HS sulfation in the infarcted myocardium, thereby diminishing Vegfa (vascular endothelial growth factor A) interaction with HS. Along this line, both Sulfs rendered infarcted mouse heart explants responsive to the angiogenic effects of HS-binding Vegfa164 but did not modulate the angiogenic effects of non-HS-binding Vegfa120. Treating wild-type mice systemically with the small molecule HS-antagonist surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide, 1 mg/kg/day) for 7 days after myocardial infarction released Vegfa from HS, enhanced infarct border-zone capillarization, and exerted sustained beneficial effects on cardiac function and survival. CONCLUSIONS These findings establish HS-editing Sulfs as critical inducers of postinfarction angiogenesis and identify HS sulfation as a therapeutic target for ischemic tissue repair.
Collapse
Affiliation(s)
- Mortimer Korf-Klingebiel
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Marc R Reboll
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Karsten Grote
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Hauke Schleiner
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Yong Wang
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Xuekun Wu
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Stefanie Klede
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Yuliya Mikhed
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| | | | - Carsten Rudat
- Institute of Molecular Biology (C.R., A.K.), Hannover Medical School, Germany
| | - Andreas Kispert
- Institute of Molecular Biology (C.R., A.K.), Hannover Medical School, Germany
| | - Hans W Niessen
- Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands (H.W.N.)
| | - Torben Lübke
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (T.L., T.D.)
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Germany (T.L., T.D.)
| | - Kai C Wollert
- From the Division of Molecular and Translational Cardiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., K.C.W.), Hannover Medical School, Germany.,Department of Cardiology and Angiology (M.K.-K., M.R.R., K.G., H.S., Y.W., X.W., S.K., Y.M., J.B., K.C.W.), Hannover Medical School, Germany
| |
Collapse
|
42
|
Tena-Solsona M, Marson D, Rodrigo AC, Bromfield SM, Escuder B, Miravet JF, Apostolova N, Laurini E, Pricl S, Smith DK. Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum. Biomater Sci 2019; 7:3812-3820. [PMID: 31264671 DOI: 10.1039/c9bm00745h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled cationic micelles are an attractive platform for binding biologically-relevant polyanions such as heparin. This has potential applications in coagulation control, where a synthetic heparin rescue agent could be a useful replacement for protamine, which is in current clinical use. However, micelles can have low stability in human serum and unacceptable toxicity profiles. This paper reports the optimisation of self-assembled multivalent (SAMul) arrays of amphiphilic ligands to bind heparin in competitive conditions. Specifically, modification of the hydrophobic unit kinetically stabilises the self-assembled nanostructures, preventing loss of binding ability in the presence of human serum - cholesterol hydrophobic units significantly outperform systems with a simple aliphatic chain. It is demonstrated that serum albumin disrupts the binding thermodynamics of the latter system. Molecular simulation shows aliphatic lipids can more easily be removed from the self-assembled nanostructures than the cholesterol analogues. This agrees with the experimental observation that the cholesterol-based systems undergo slower disassembly and subsequent degradation via ester hydrolysis. Furthermore, by stabilising the SAMul nanostructures, toxicity towards human cells is decreased and biocompatibility enhanced, with markedly improved survival of human hepatoblastoma cells in an MTT assay.
Collapse
Affiliation(s)
- Marta Tena-Solsona
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Logun MT, Wynens KE, Simchick G, Zhao W, Mao L, Zhao Q, Mukherjee S, Brat DJ, Karumbaiah L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion. FASEB J 2019; 33:11973-11992. [PMID: 31398290 DOI: 10.1096/fj.201802610rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.
Collapse
Affiliation(s)
- Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Kallie E Wynens
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Gregory Simchick
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Leidong Mao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, Georgia, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia, USA
| | - Subhas Mukherjee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.,Division of Neuroscience, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA.,Edgar L. Rhodes Center for Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
44
|
Poli M, Anower-E-Khuda F, Asperti M, Ruzzenenti P, Gryzik M, Denardo A, Gordts PLSM, Arosio P, Esko JD. Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice. J Biol Chem 2019; 294:13292-13303. [PMID: 31315930 PMCID: PMC6737225 DOI: 10.1074/jbc.ra118.007213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo. Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate–protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1f/fAlbCre+) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo. These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes.
Collapse
Affiliation(s)
- Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Ferdous Anower-E-Khuda
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Ruzzenenti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Denardo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Philip L S M Gordts
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093; Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California 92093
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093; Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
45
|
Ourri B, Francoia JP, Monard G, Gris JC, Leclaire J, Vial L. Dendrigraft of Poly-l-lysine as a Promising Candidate To Reverse Heparin-based Anticoagulants in Clinical Settings. ACS Med Chem Lett 2019; 10:917-922. [PMID: 31223448 DOI: 10.1021/acsmedchemlett.9b00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
By using a combination of experimental and computational experiments, we demonstrated that a second-generation dendrigraft of poly-l-lysine neutralizes the anticoagulant activity of unfractionated heparin, low-molecular-weight heparin, and fondaparinux more efficiently than protamine does in human plasma, making this synthetic polymer a promising surrogate of this problematic protein in clinical settings.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Jean-Patrick Francoia
- Univ. Montpellier, IBMM UMR 5247 CNRS, Place Eugène Bataillon, 34296 Montpellier Cedex 5, France
| | - Gerald Monard
- Univ. Lorraine, LPCT UMR 7019 CNRS, Boulevard des Aiguillettes B.P. 70239, 54506 Vandoeuvre-les-Nancy, France
| | - Jean-Christophe Gris
- Department of Hematology, Nı̂mes University Hospital, University of Montpellier, 30029 Nîmes Cedex 9, France
- The First I.M. Sechenov Moscow State Medical University, Moscow 119146, Russian Federation
| | - Julien Leclaire
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Laurent Vial
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
- Univ. Montpellier, IBMM UMR 5247 CNRS, Place Eugène Bataillon, 34296 Montpellier Cedex 5, France
| |
Collapse
|
46
|
Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat Microbiol 2019; 4:1760-1769. [PMID: 31160825 PMCID: PMC6754795 DOI: 10.1038/s41564-019-0464-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Clostridium difficile toxin A (TcdA) is a major exotoxin contributing to disruption of the colonic epithelium during C. difficile infection. TcdA contains a carbohydrate-binding combined repetitive oligopeptides (CROPs) domain that mediates its attachment to cell surfaces, but recent data suggest the existence of CROPs-independent receptors. Here, we carried out genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated screens using a truncated TcdA lacking the CROPs, and identified sulfated glycosaminoglycans (sGAGs) and low-density lipoprotein receptor (LDLR) as host factors contributing to binding and entry of TcdA. TcdA recognizes the sulfation group in sGAGs. Blocking sulfation and glycosaminoglycan synthesis reduces TcdA binding and entry into cells. Binding of TcdA to the colonic epithelium can be reduced by surfen, a small molecule that masks sGAGs, by GM-1111, a sulfated heparan sulfate analogue, and by sulfated cyclodextrin, a sulfated small molecule. Cells lacking LDLR also show reduced sensitivity to TcdA, although binding between LDLR and TcdA are not detected, suggesting that LDLR may facilitate endocytosis of TcdA. Finally, GM-1111 reduces TcdA-induced fluid accumulation and tissue damage in the colon in a mouse model in which TcdA is injected into the caecum. These data demonstrate in vivo and pathological relevance of TcdA-sGAGs interactions, and reveal a potential therapeutic approach of protecting colonic tissues by blocking these interactions.
Collapse
|
47
|
Asperti M, Denardo A, Gryzik M, Arosio P, Poli M. The role of heparin, heparanase and heparan sulfates in hepcidin regulation. VITAMINS AND HORMONES 2019; 110:157-188. [PMID: 30798810 DOI: 10.1016/bs.vh.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepcidin is considered the major regulator of systemic iron homeostasis in human and mice, and its expression in the liver is mainly regulated at a transcriptional level. Central to its regulation are the bone morphogenetic proteins, particularly BMP6, that are heparin binding proteins. Heparin was found to inhibit hepcidin expression and BMP6 activity in hepatic cell lines and in mice, suggesting that endogenous heparan sulfates are involved in the pathway of hepcidin expression. This was confirmed by the study of cells and mice overexpressing heparanase, the enzyme that hydrolyzes heparan sulfates, and by cellular models with altered heparan sulfates. The evidences supporting the role of heparan sulfate in hepcidin expression are summarized in this chapter and open the way for new understanding in hepcidin expression and its control in pathological condition.
Collapse
Affiliation(s)
- Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Denardo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
48
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
49
|
Chatterjee S, Stephenson TN, Michalak AL, Godula K, Huang ML. Silencing glycosaminoglycan functions in mouse embryonic stem cells with small molecule antagonists. Methods Enzymol 2019; 626:249-270. [PMID: 31606078 PMCID: PMC7265920 DOI: 10.1016/bs.mie.2019.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glycosylation is a ubiquitous post-translational modification that decorates proteins and lipids with glycans. These glycans can play critical roles in regulating biological events, and therefore, the discovery of strategies that target these molecules represent an important advancement toward understanding and controlling glycan-mediated cellular phenotypes. We describe the use of a small molecule, surfen, to temporarily silence the functions mediated by heparan sulfate glycosaminoglycans in mouse embryonic stem cells. Surfen binds heparan sulfate to antagonize growth factor interactions, thereby inhibiting signal transduction events that lead to differentiation. The strategies outlined in this chapter allow the characterization of resulting antagonistic effects caused by glycan-small molecule binding events toward maintaining embryonic stem cell pluripotency, curbing differentiation, and inhibiting signaling events.
Collapse
Affiliation(s)
- Sourav Chatterjee
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, United States
| | - Tesia N Stephenson
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, United States
| | - Austen L Michalak
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, United States
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, United States.
| | - Mia L Huang
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, United States; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, United States.
| |
Collapse
|
50
|
Kalaska B, Miklosz J, Kamiński K, Musielak B, Yusa SI, Pawlak D, Nowakowska M, Szczubiałka K, Mogielnicki A. The neutralization of heparan sulfate by heparin-binding copolymer as a potential therapeutic target. RSC Adv 2019; 9:3020-3029. [PMID: 35518950 PMCID: PMC9059929 DOI: 10.1039/c8ra09724k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Besides regulating ligand–receptor and cell–cell interactions, heparan sulfate (HS) may participate in the development of many diseases, such as cancer, bacterial or viral infections, and their complications, like bleeding or inflammation. In these cases, the neutralization of HS could be a potential therapeutic target. The heparin-binding copolymer (HBC, PEG41-PMAPTAC53) was previously reported by us as a fully synthetic compound for efficient and safe neutralization of heparins and synthetic anticoagulants. In a search for molecular antagonists of HS, we examined the activity of HBC as an HS inhibitor both in vitro and in vivo and characterized HBC/HS complexes. Using a colorimetric Azure A method, isothermal titration calorimetry and dynamic light scattering techniques we found that HBC binds HS by forming complexes below 200 nm with less than 1 : 1 stoichiometry. We confirmed the HBC inhibitory effect in rats by measuring activated partial thromboplastin time, prothrombin time, anti-factor Xa activity, anti-factor IIa activity, and platelet aggregation. HBC reversed the enhancement of all tested parameters caused by HS demonstrating that cationic synthetic block copolymers may have a therapeutic value in various disorders involving overproduction of HS. The neutralization of heparan sulfate (HS) by a heparin-binding copolymer (HBC) could be a promising treating option for bacterial or viral infections or bleeding related to overproduction of HS in cancer or other diseases.![]()
Collapse
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| | - Kamil Kamiński
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Bogdan Musielak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry
- Graduate School of Engineering
- University of Hyogo
- Himeji
- Japan
| | - Dariusz Pawlak
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| | | | | | - Andrzej Mogielnicki
- Department of Pharmacodynamics
- Medical University of Bialystok
- 15-089 Bialystok
- Poland
| |
Collapse
|