1
|
Ousingsawat J, Centeio R, Reyne N, McCarron A, Cmielewski P, Schreiber R, diStefano G, Römermann D, Seidler U, Donnelley M, Kunzelmann K. Inhibition of mucus secretion by niclosamide and benzbromarone in airways and intestine. Sci Rep 2024; 14:1464. [PMID: 38233410 PMCID: PMC10794189 DOI: 10.1038/s41598-024-51397-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The Ca2+ activated Cl- channel TMEM16A (anoctamin 1; ANO1) is expressed in secretory epithelial cells of airways and intestine. Previous studies provided evidence for a role of ANO1 in mucus secretion. In the present study we investigated the effects of the two ANO1-inhibitors niclosamide (Niclo) and benzbromarone (Benz) in vitro and in vivo in mouse models for cystic fibrosis (CF) and asthma. In human CF airway epithelial cells (CFBE), Ca2+ increase and activation of ANO1 by adenosine triphosphate (ATP) or ionomycin was strongly inhibited by 200 nM Niclo and 1 µM Benz. In asthmatic mice airway mucus secretion was inhibited by intratracheal instillation of Niclo or Benz. In homozygous F508del-cftr mice, intestinal mucus secretion and infiltration by CD45-positive cells was inhibited by intraperitoneal injection of Niclo (13 mg/kg/day for 7 days). In homozygous F508del-cftr rats intestinal mucus secretion was inhibited by oral application of Benz (5 mg/kg/day for 60 days). Taken together, well tolerated therapeutic concentrations of niclosamide and benzbromarone corresponding to plasma levels of treated patients, inhibit ANO1 and intracellular Ca2+ signals and may therefore be useful in inhibiting mucus hypersecretion and mucus obstruction in airways and intestine of patients suffering from asthma and CF, respectively.
Collapse
Affiliation(s)
- Jiraporn Ousingsawat
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Raquel Centeio
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Nicole Reyne
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Alexandra McCarron
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Patricia Cmielewski
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Rainer Schreiber
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| | - Gabriella diStefano
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Martin Donnelley
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Karl Kunzelmann
- Physiological Institute, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Hall KJ, Van Ooteghem K, McIlroy WE. Emotional state as a modulator of autonomic and somatic nervous system activity in postural control: a review. Front Neurol 2023; 14:1188799. [PMID: 37719760 PMCID: PMC10500443 DOI: 10.3389/fneur.2023.1188799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Advances in our understanding of postural control have highlighted the need to examine the influence of higher brain centers in the modulation of this complex function. There is strong evidence of a link between emotional state, autonomic nervous system (ANS) activity and somatic nervous system (somatic NS) activity in postural control. For example, relationships have been demonstrated between postural threat, anxiety, fear of falling, balance confidence, and physiological arousal. Behaviorally, increased arousal has been associated with changes in velocity and amplitude of postural sway during quiet standing. The potential links between ANS and somatic NS, observed in control of posture, are associated with shared neuroanatomical connections within the central nervous system (CNS). The influence of emotional state on postural control likely reflects the important influence the limbic system has on these ANS/somatic NS control networks. This narrative review will highlight several examples of behaviors which routinely require coordination between the ANS and somatic NS, highlighting the importance of the neurofunctional link between these systems. Furthermore, we will extend beyond the more historical focus on threat models and examine how disordered/altered emotional state and ANS processing may influence postural control and assessment. Finally, this paper will discuss studies that have been important in uncovering the modulatory effect of emotional state on postural control including links that may inform our understanding of disordered control, such as that observed in individuals living with Parkinson's disease and discuss methodological tools that have the potential to advance understanding of this complex relationship.
Collapse
Affiliation(s)
- Karlee J. Hall
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
3
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:213798. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Correspondence to Yong-Xiao Wang:
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA,Yun-Min Zheng:
| |
Collapse
|
4
|
Loh EW, Shih HF, Lin CK, Huang TW. Effect of progressive muscle relaxation on postoperative pain, fatigue, and vital signs in patients with head and neck cancers: A randomized controlled trial. PATIENT EDUCATION AND COUNSELING 2022; 105:2151-2157. [PMID: 34785078 DOI: 10.1016/j.pec.2021.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Surgery for head and neck cancers are associated with significant preoperative stress. We investigated the effects of progressive muscle relaxation (PMR) on postoperative pain, fatigue, and vital signs in patients with head and neck cancers. METHODS All patients were hospitalized and randomly assigned to intervention or usual care groups. A generalized estimating equation was used to evaluate the PMR effects on pain and symptoms across the preoperative day to postoperative day 10. RESULTS The PMR group displayed significantly lower overall pain and muscle tightness than control group along with the timeline of multiple measurements (p < 0.01). PMR significantly reduces sleep disturbances and levels of fatigue, anxiety, and depression compared with the control group with time trend (p < 0.01). PMR also lowered the respiratory rates and diastolic blood pressure (p < 0.01). CONCLUSIONS PMR can reduce sleep disturbances and levels of pain, fatigue, muscle tightness, anxiety, and depression in patients with head and neck cancer undergoing major surgeries. Future study should focus on improving the effectiveness of the exercise and standardization of the application. PRACTICAL IMPLICATIONS progressive muscle relaxation help relieve discomforts in patients with head and neck cancers with minimal costs and efforts.
Collapse
Affiliation(s)
- El-Wui Loh
- Center for Evidence-Based Health Care, Shared Decision Making Resource Center, Department of Medical Research, Taipei Medical University Shuang Ho Hospital, Zhonghe District, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
| | - Huei-Fen Shih
- Department of Nursing, China Medical University Hospital, Taichung, Taiwan; Cell therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Kwei Lin
- School of Dental Technology, Taipei Medical University, Taipei, Taiwan
| | - Tsai-Wei Huang
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan; School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan; Center for Nursing and Healthcare Research in Clinical Practice Application, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Jackson WF. Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Front Physiol 2021; 12:770450. [PMID: 34819877 PMCID: PMC8607693 DOI: 10.3389/fphys.2021.770450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Arterioles in the peripheral microcirculation regulate blood flow to and within tissues and organs, control capillary blood pressure and microvascular fluid exchange, govern peripheral vascular resistance, and contribute to the regulation of blood pressure. These important microvessels display pressure-dependent myogenic tone, the steady state level of contractile activity of vascular smooth muscle cells (VSMCs) that sets resting arteriolar internal diameter such that arterioles can both dilate and constrict to meet the blood flow and pressure needs of the tissues and organs that they perfuse. This perspective will focus on the Ca2+-dependent ion channels in the plasma and endoplasmic reticulum membranes of arteriolar VSMCs and endothelial cells (ECs) that regulate arteriolar tone. In VSMCs, Ca2+-dependent negative feedback regulation of myogenic tone is mediated by Ca2+-activated K+ (BKCa) channels and also Ca2+-dependent inactivation of voltage-gated Ca2+ channels (VGCC). Transient receptor potential subfamily M, member 4 channels (TRPM4); Ca2+-activated Cl− channels (CaCCs; TMEM16A/ANO1), Ca2+-dependent inhibition of voltage-gated K+ (KV) and ATP-sensitive K+ (KATP) channels; and Ca2+-induced-Ca2+ release through inositol 1,4,5-trisphosphate receptors (IP3Rs) participate in Ca2+-dependent positive-feedback regulation of myogenic tone. Calcium release from VSMC ryanodine receptors (RyRs) provide negative-feedback through Ca2+-spark-mediated control of BKCa channel activity, or positive-feedback regulation in cooperation with IP3Rs or CaCCs. In some arterioles, VSMC RyRs are silent. In ECs, transient receptor potential vanilloid subfamily, member 4 (TRPV4) channels produce Ca2+ sparklets that activate IP3Rs and intermediate and small conductance Ca2+ activated K+ (IKCa and sKCa) channels causing membrane hyperpolarization that is conducted to overlying VSMCs producing endothelium-dependent hyperpolarization and vasodilation. Endothelial IP3Rs produce Ca2+ pulsars, Ca2+ wavelets, Ca2+ waves and increased global Ca2+ levels activating EC sKCa and IKCa channels and causing Ca2+-dependent production of endothelial vasodilator autacoids such as NO, prostaglandin I2 and epoxides of arachidonic acid that mediate negative-feedback regulation of myogenic tone. Thus, Ca2+-dependent ion channels importantly contribute to many aspects of the regulation of myogenic tone in arterioles in the microcirculation.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Time-dependent expression of ryanodine receptors in sea urchin eggs, zygotes and early embryos. ZYGOTE 2021; 30:213-216. [PMID: 34315559 DOI: 10.1017/s0967199421000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work, the presence of calcium-dependent calcium channels and their receptors (RyR) has been investigated in Paracentrotus lividus eggs and early embryos, from unfertilized egg to four-blastomere stages. Electrophysiological recordings of RyR single-channel current fluctuations showed that RyRs are functional during the first developmental events with a maximum at zygote stage, c. 40 min after fertilization, corresponding to the first cleavage. The nature of vertebrate-like RyRs active at this stage was established by specific activation/blockade experiments.
Collapse
|
7
|
Wang L, Ginnan RG, Wang YX, Zheng YM. Interactive Roles of CaMKII/Ryanodine Receptor Signaling and Inflammation in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:305-317. [PMID: 33788199 DOI: 10.1007/978-3-030-63046-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase and has been recently recognized to play a vital role in pathological events in the pulmonary system. CaMKII has diverse downstream targets that promote vascular disease, asthma, and cancer, so improved understanding of CaMKII signaling has the potential to lead to new therapies for lung diseases. Multiple studies have demonstrated that CaMKII is involved in redox modulation of ryanodine receptors (RyRs). CaMKII can be directly activated by reactive oxygen species (ROS) which then regulates RyR activity, which is essential for Ca2+-dependent processes in lung diseases. Furthermore, both CaMKII and RyRs participate in the inflammation process. However, their role in the pulmonary physiology in response to ROS is still an ambiguous one. Because CaMKII and RyRs are important in pulmonary biology, cell survival, cell cycle control, and inflammation, it is possible that the relationship between ROS and CaMKII/RyRs signal complex will be necessary for understanding and treating lung diseases. Here, we review roles of CaMKII/RyRs in lung diseases to understand with how CaMKII/RyRs may act as a transduction signal to connect prooxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of pulmonary disease.
Collapse
Affiliation(s)
- Lan Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.,Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Roman G Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
8
|
Coptisine, a protoberberine alkaloid, relaxes mouse airway smooth muscle via blockade of VDLCCs and NSCCs. Biosci Rep 2021; 40:222118. [PMID: 32095824 PMCID: PMC7042126 DOI: 10.1042/bsr20190534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background/Aims: Recently, effective and purified ingredients of traditional Chinese medicine (TCM) were extracted to play crucial roles in the treatment of pulmonary diseases. Our previous research focused on TCM drug screening aimed at abnormal airway muscle contraction during respiratory diseases. Coptisine, an effective ingredient extracted from bitter herbs has shown a series of antioxidant, antibacterial, cardioprotective and neuroprotective pharmacological properties. In the current study, we questioned whether coptisine could also participate in asthma treatment through relaxing abnormal contracted mouse airway smooth muscle (ASM). The present study aimed to characterize the relaxant effects of coptisine on mouse ASM and uncover the underlying molecular mechanisms. Methods: To investigate the role of coptisine on pre-contracted mouse ASM, a series of biological techniques, including force measurement and patch-clamp experiments were employed. Results: Coptisine was found to inhibit high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a dose-dependent manner. Further research demonstrated that the coptisine-induced mouse ASM relaxation was mediated by alteration of calcium mobilization via voltage-dependent L-type Ca2+ channels (VDLCCs) and non-selective cation channels (NSCCs). Conclusion: Our data showed that mouse ASM could be relaxed by coptisine via altering the intracellular Ca2+ concentration through blocking VDLCCs and NSCCs, which suggested that this pharmacological active constituent might be classified as a potential new drug for the treatment of abnormal airway muscle contraction.
Collapse
|
9
|
Li XQ, Zheng YM, Reyes-García J, Wang YX. Diversity of ryanodine receptor 1-mediated Ca 2+ signaling in systemic and pulmonary artery smooth muscle cells. Life Sci 2021; 270:119016. [PMID: 33515564 DOI: 10.1016/j.lfs.2021.119016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
AIMS Ryanodine receptor-1 (RyR1) is essential for skeletal muscle cell functions. However, its roles in vascular smooth muscle cells (SMCs) are well recognized. This study aims to determine the potential physiological importance and difference in systemic and pulmonary artery SMCs (SASMCs and PASMCs). METHODS Local and global Ca2+ release were measured using a laser scanning confocal microscope and wide-field fluorescence microscope; membrane currents were recorded using a patch clamp recording; muscle contraction was determined using an organ bath system; RyR protein expression was assessed using immunofluorescence staining. Homozygous and heterozygous RyR1 gene knockout (RyR1-/- and RyR1+/-) mice were used to determine its specific functions. KEY FINDINGS Ca2+ sparks were more prominently decreased in RyR1-/- ASMCs than in PASMCs. Caffeine induced a smaller increase in [Ca2+]i in both RyR1+/+ and RyR1-/- ASMCs than in PASMCs. High K+ produced a reduced [Ca2+]i increase in RyR1-/- PASMCs and ASMCs as well as a reduced contraction in RyR1+/- pulmonary artery and aortic tissues. ATP elicited a smaller increase in [Ca2+]i in RyR1-/- ASMCs and PASMCs with a greater inhibition in ASMCs. Norepinephrine-elicited muscle contraction was reduced in RyR1+/- aortic and pulmonary arteries. IP3 dialysis-induced Ca2+ release was much smaller in RyR1+/- ASMCs and PASMCs. Hypoxia-induced large Ca2+ and contractile responses were inhibited in RyR1+/- PASMCs. However, hypoxic exposure did not evoke a notable increase in [Ca2+]i in ASMCs. SIGNIFICANCE Our findings for the first time provide clear genetic evidence for the functional importance and difference of RyR1 in systemic and pulmonary artery SMCs.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Yun-Min Zheng
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Yong-Xiao Wang
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America.
| |
Collapse
|
10
|
Song G, Huang Y, Xiong M, Yang Z, Liu Q, Shen J, Zhao P, Yang X. Aloperine Relieves Type 2 Diabetes Mellitus via Enhancing GLUT4 Expression and Translocation. Front Pharmacol 2021; 11:561956. [PMID: 33568989 PMCID: PMC7868325 DOI: 10.3389/fphar.2020.561956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Aloperine (ALO), a quinolizidine alkaloid isolated from Sophora alopecuroides L. used in the traditional Uygur medicine, induced a significant increase in cellular glucose uptake of L6 cells, suggesting it has the potential to relieve hyperglycemia. Therefore, we investigated the effects of ALO on type 2 diabetes mellitus (T2DM) through in vitro and in vivo studies. The translocation of glucose transporter 4 (GLUT4) and changes in intracellular Ca2+ levels were real-time monitored in L6 cells using a laser scanning confocal microscope and related protein kinase inhibitors were used to explore the mechanism of action of ALO. Furthermore, high fat diet combined with low-dose streptozotocin (STZ) was used to induce T2DM in rats, and ALO was given to the stomach of T2DM rats for 4 weeks. In vitro results showed that ALO-induced enhancement of GLUT4 expression and translocation were mediated by G protein-PLC-PKC and PI3K/Akt pathways and ALO-enhanced intracellular Ca2+ was involved in activating PKC via G protein-PLC-IP3R-Ca2+ pathway, resulting in promoted GLUT4 plasma membrane fusion and subsequent glucose uptake. ALO treatment effectively ameliorated hyperglycemia, glucose intolerance, insulin resistance and dyslipidemia, alleviated hepatic steatosis, protected pancreatic islet function and activated GLUT4 expression in insulin target tissues of T2DM rats. These findings demonstrated that ALO deserves attention as a potential hypoglycemic agent.
Collapse
Affiliation(s)
- Guanjun Song
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yun Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Mingrui Xiong
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ziwei Yang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Norton CE, Jernigan NL, Walker BR, Resta TC. Membrane depolarization is required for pressure-dependent pulmonary arterial tone but not enhanced vasoconstriction to endothelin-1 following chronic hypoxia. Pulm Circ 2020; 10:2045894020973559. [PMID: 33343882 PMCID: PMC7731711 DOI: 10.1177/2045894020973559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 11/28/2022] Open
Abstract
Enhanced vasoconstriction is increasingly identified as an important contributor to the development of pulmonary hypertension. Chronic hypoxia results in enhanced Rho kinase mediated Ca2+ sensitization contributing to pressure-dependent pulmonary arterial tone as well as augmented vasoconstriction to endothelin-1 and depolarizing stimuli. We sought to investigate the interaction between these vasoconstrictor stimuli in isolated, pressurized, pulmonary arteries. We used the K+ ionophore, valinomycin, to clamp membrane potential (Vm) to investigate the role of membrane depolarization in endothelin-1 and pressure-dependent constriction, and endothelin-1 receptor inhibitors to determine whether membrane depolarization or stretch signal through endothelin-1 receptors. Clamping Vm prevented pressure-dependent tone, but not enhanced vasoconstriction to endothelin-1 following chronic hypoxia. Furthermore, endothelin-1 receptor inhibition had no effect on either pressure-dependent tone or vasoconstriction to KCl. As Src kinases contribute to both pressure-dependent tone and enhanced endothelin-1 vasoconstriction following chronic hypoxia, we further investigated their role in depolarization-induced vasoconstriction. Inhibition of Src kinases attenuated enhanced vasoconstriction to KCl. We conclude that membrane depolarization contributes to pressure-dependent tone but not enhanced vasoconstriction to ET-1, and that Src kinases serve as upstream mediators facilitating enhanced Rho kinase-dependent vasoconstriction following chronic hypoxia.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
12
|
Raad G, Tanios J, Azoury J, Daher A, Fakih C, Bakos HW. Neurophysiology of cognitive behavioural therapy, deep breathing and progressive muscle relaxation used in conjunction with ART treatments: a narrative review. Hum Reprod Update 2020; 27:324-338. [PMID: 33238001 DOI: 10.1093/humupd/dmaa048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is defined as the failure to achieve clinical pregnancy after 12 months of regular unprotected intercourse. It could be due to male or female factors, each requiring different treatment options. ART treatment exposes couples to numerous psychological stressors. Therefore, it has been recommended by the ESHRE Psychology and Counselling Guideline Development Group recently that psychosocial support should be offered as a complementary therapy during infertility treatments. In this context, the efficiency of different psychological interventions, such as cognitive behaviour therapy (CBT), deep breathing (DB), and progressive muscle relaxation (PMR), was evaluated in several clinical trials in terms of couples' mental health and pregnancy outcomes. OBJECTIVE AND RATIONALE The neurophysiology of CBT, DB and PMR, which are used in interventional studies, in both men and women undergoing ART, has not yet been fully elucidated. This review represents a comprehensive report, aiming to collate novel insights into the neurobiological processes and physiological mechanisms that occur during the practice of CBT, DB and PMR. SEARCH METHODS PubMed, Google Scholar and Cochrane Library were interrogated to conduct this comprehensive literature review. The search was carried out using combinations of MeSH terms and keywords: infertility, assisted reproductive techniques, IVF, ICSI, emotions, psychological stress, cognitive behavioural therapy, mind-body therapies and relaxation. Relevant information related to the mechanism of action of stress management techniques were obtained from original articles and reviews published in English without taking into consideration the time of publication. Moreover, as it was not the major focus of the review, only recent systematic reviews (2015-2019) pinpointing the effects of psychological interventions on infertility treatment outcomes were also retrieved from the above-mentioned databases. OUTCOMES CBT, DB and PMR may modify the activity of stress-related brain regions such as the prefrontal cortex, amygdala, hypothalamus and hippocampus, as demonstrated by functional MRI and electroencephalogram studies. Furthermore, applying these techniques was associated with mood improvements and a decline in stress biomarkers, and, hypothetically, reducing stress biomarkers attenuates the stress-induced effects on ART outcomes. WIDER IMPLICATIONS Increasing the knowledge of fertility staff, researchers and physicians regarding the mechanisms of action of these stress management techniques has several advantages. For instance, understanding the underlying neurophysiological pathways would assist practitioners to engage ART couples in the practice of these techniques. Also, it may enhance the quality of the support programmes and psychological research. Accordingly, this will ensure that these interventions reach their full potential and therefore improve clinical outcomes.
Collapse
Affiliation(s)
- Georges Raad
- IVF Department, Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Judy Tanios
- Embryology Department, IVF Lebanon, Hazmieh, Lebanon
| | - Joseph Azoury
- Azoury IVF clinic, Mount-Lebanon Hospital, Hazmieh, Lebanon
| | - Alain Daher
- Ob-Gyn department, St Joseph University, Beirut, Lebanon
| | - Chadi Fakih
- IVF Department, Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Hassan W Bakos
- Monash IVF Group, Sydney, NSW, Australia.,School of Environmental and Life Sciences Faculty of Science, University of Newcastle, NSW, Australia
| |
Collapse
|
13
|
Tang Q, Zheng YM, Song T, Reyes-García J, Wang C, Wang YX. Inhibition of big-conductance Ca 2+-activated K + channels in cerebral artery (vascular) smooth muscle cells is a major novel mechanism for tacrolimus-induced hypertension. Pflugers Arch 2020; 473:53-66. [PMID: 33033891 DOI: 10.1007/s00424-020-02470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
Tacrolimus (TAC, also called FK506), a common immunosuppressive drug used to prevent allograft rejection in transplant patients, is well known to alter the functions of blood vessels. In this study, we sought to determine whether chronic treatment of TAC could inhibit the activity of big-conductance Ca2+-activated K+ (BK) channels in vascular smooth muscle cells (SMCs), leading to hypertension. Our data reveal that the activity of BK channels was inhibited in cerebral artery SMCs (CASMCs) from mice after intraperitoneal injection of TAC once a day for 4 weeks. The voltage sensitivity, Ca2+ sensitivity, and open time of single BK channels were all decreased. In support, BK channel β1-, but not α-subunit protein expression was significantly decreased in cerebral arteries. In TAC-treated mice, application of norepinephrine induced stronger vasoconstriction in both cerebral and mesenteric arteries as well as a larger [Ca2+]i in CASMCs. Chronic treatment of TAC, similar to BK channel β1-subunit knockout (KO), resulted in hypertension in mice, but did not cause a further increase in blood pressure in BK channel β1-subunit KO mice. Moreover, BK channel activity in CASMCs was negatively correlated with blood pressure. Our findings provide novel evidence that TAC inhibits BK channels by reducing the channel β1-subunit expression and functions in vascular SMCs, leading to enhanced vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.,Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Chen Wang
- Department of Pharmacology, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
14
|
Neuron-derived factors negatively modulate ryanodine receptor-mediated calcium release in cultured mouse astrocytes. Cell Calcium 2020; 92:102304. [PMID: 33065384 DOI: 10.1016/j.ceca.2020.102304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.
Collapse
|
15
|
Mei L, Zheng YM, Song T, Yadav VR, Joseph LC, Truong L, Kandhi S, Barroso MM, Takeshima H, Judson MA, Wang YX. Rieske iron-sulfur protein induces FKBP12.6/RyR2 complex remodeling and subsequent pulmonary hypertension through NF-κB/cyclin D1 pathway. Nat Commun 2020; 11:3527. [PMID: 32669538 PMCID: PMC7363799 DOI: 10.1038/s41467-020-17314-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ signaling in pulmonary arterial smooth muscle cells (PASMCs) plays an important role in pulmonary hypertension (PH). However, the underlying specific ion channel mechanisms remain largely unknown. Here, we report ryanodine receptor (RyR) channel activity and Ca2+ release both are increased, and association of RyR2 by FK506 binding protein 12.6 (FKBP12.6) is decreased in PASMCs from mice with chronic hypoxia (CH)-induced PH. Smooth muscle cell (SMC)-specific RyR2 knockout (KO) or Rieske iron-sulfur protein (RISP) knockdown inhibits the altered Ca2+ signaling, increased nuclear factor (NF)-κB/cyclin D1 activation and cell proliferation, and CH-induced PH in mice. FKBP12.6 KO or FK506 treatment enhances CH-induced PH, while S107 (a specific stabilizer of RyR2/FKBP12.6 complex) produces an opposite effect. In conclusion, CH causes RISP-dependent ROS generation and FKBP12.6/RyR2 dissociation, leading to PH. RISP inhibition, RyR2/FKBP12.6 complex stabilization and Ca2+ release blockade may be potentially beneficial for the treatment of PH.
Collapse
Affiliation(s)
- Lin Mei
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Vishal R Yadav
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Leroy C Joseph
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Margarida M Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, 12208, NY, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, 12208, NY, USA.
| |
Collapse
|
16
|
Jackson WF. Introduction to ion channels and calcium signaling in the microcirculation. CURRENT TOPICS IN MEMBRANES 2020; 85:1-18. [PMID: 32402636 DOI: 10.1016/bs.ctm.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The microcirculation is the network of feed arteries, arterioles, capillaries and venules that supply and drain blood from every tissue and organ in the body. It is here that exchange of heat, oxygen, carbon dioxide, nutrients, hormones, water, cytokines, and immune cells takes place; essential functions necessary to maintenance of homeostasis throughout the life span. This chapter will outline the structure and function of each microvascular segment highlighting the critical roles played by ion channels in the microcirculation. Feed arteries upstream from the true microcirculation and arterioles within the microcirculation contribute to systemic vascular resistance and blood pressure control. They also control total blood flow to the downstream microcirculation with arterioles being responsible for distribution of blood flow within a tissue or organ dependent on the metabolic needs of the tissue. Terminal arterioles control blood flow and blood pressure to capillary units, the primary site of diffusional exchange between blood and tissues due to their large surface area. Venules collect blood from capillaries and are important sites for fluid exchange and immune cell trafficking. Ion channels in microvascular smooth muscle cells, endothelial cells and pericytes importantly contribute to all of these functions through generation of intracellular Ca2+ and membrane potential signals in these cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
17
|
Yang Z, Song T, Truong L, Reyes-García J, Wang L, Zheng YM, Wang YX. Important Role of Sarcoplasmic Reticulum Ca 2+ Release via Ryanodine Receptor-2 Channel in Hypoxia-Induced Rieske Iron-Sulfur Protein-Mediated Mitochondrial Reactive Oxygen Species Generation in Pulmonary Artery Smooth Muscle Cells. Antioxid Redox Signal 2020; 32:447-462. [PMID: 31456413 PMCID: PMC6987675 DOI: 10.1089/ars.2018.7652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: It is known that mitochondrial reactive oxygen species generation ([ROS]m) causes the release of Ca2+via ryanodine receptor-2 (RyR2) on the sarcoplasmic reticulum (SR) in pulmonary artery smooth muscle cells (PASMCs), playing an essential role in hypoxic pulmonary vasoconstriction (HPV). In this study, we sought to determine whether hypoxia-induced RyR2-mediated Ca2+ release may in turn promote [ROS]m in PASMCs and the underlying signaling mechanism. Results: Our data reveal that application of caffeine or norepinephrine to induce Ca2+ release increased [ROS]m in PASMCs. Likewise, exogenous Ca2+ augmented ROS generation in isolated mitochondria and at complex III from PASMCs. Inhibition of mitochondrial Ca2+ uniporter (MCU) with Ru360 attenuated agonist-induced [ROS]m. Ru360 produced a similar inhibitory effect on hypoxia-induced [ROS]m. Rieske iron-sulfur protein (RISP) gene knockdown inhibited Ca2+- and caffeine-induced [ROS]m. Inhibition of RyR2 by tetracaine or RyR2 gene knockout suppressed hypoxia-induced [ROS]m as well. Innovation: In this article, we present convincing evidence that Ca2+ release following hypoxia or RyR simulation causes a significant increase in MCU, and the increased MCU subsequently RISP-dependent [ROS]m, which provides a positive feedback mechanism to enhance hypoxia-initiated [ROS]m in PASMCs. Conclusion: Our findings demonstrate that hypoxia-induced mitochondrial ROS-dependent SR RyR2-mediated Ca2+ release increases MCU and then RISP-dependent [ROS]m in PASMCs, which may make significant contributions to HPV and associated pulmonary hypertension.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.,Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Lan Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
18
|
Noda S, Suzuki Y, Yamamura H, Giles WR, Imaizumi Y. Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca 2+-activated K + channels in bronchial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L366-L375. [PMID: 31800260 DOI: 10.1152/ajplung.00331.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In visceral smooth muscle cells (SMCs), the large-conductance Ca2+-activated K+ (BK) channel is one of the key elements underlying a negative feedback mechanism that is essential for the regulation of intracellular Ca2+ concentration. Although leucine-rich repeat-containing (LRRC) proteins have been identified as novel auxiliary γ-subunits of the BK channel (BKγ) in several cell types, its physiological roles in SMCs are unclear. The BKγ expression patterns in selected SM tissues were examined using real-time PCR analyses and Western blotting. The functional contribution of BKγ1 to BK channel activity was examined by whole cell patch-clamp in SMCs and heterologous expression systems. BKγ1 expression in mouse bronchial SMCs (mBSMCs) was higher than in other several SMC types. Coimmunoprecipitation and total internal reflection fluorescence imaging analyses revealed molecular interaction between BKα and BKγ1 in mBSMCs. Under voltage-clamp, steady-state activation of BK channel currents at pCa 8.0 in mBSMCs occurred in a voltage range comparable to that of reconstituted BKα/BKγ1 complex. However, this range was much more negative than in mouse aortic SMCs (mASMCs) or in HEK293 cells expressing BKα alone and β-subunit (BKβ1). Mallotoxin, a selective activator of BK channel that lacks BKγ1, dose-dependently activated BK currents in mASMCs but not in mBSMCs. The abundant expression of BKγ1 in mBSMCs extensively facilitates BK channel activity to keep the resting membrane potential at negative values and prevents contraction under physiological conditions.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
19
|
Norton CE, Weise-Cross L, Ahmadian R, Yan S, Jernigan NL, Paffett ML, Naik JS, Walker BR, Resta TC. Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. Am J Respir Cell Mol Biol 2020; 62:709-718. [PMID: 31945301 DOI: 10.1165/rcmb.2018-0318oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 μm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
20
|
Canonical Transient Potential Receptor-3 Channels in Normal and Diseased Airway Smooth Muscle Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:471-487. [PMID: 31646521 DOI: 10.1007/978-3-030-12457-1_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All seven canonical transient potential receptor (TRPC1-7) channel members are expressed in mammalian airway smooth muscle cells (ASMCs). Among this family, TRPC3 channel plays an important role in the control of the resting [Ca2+]i and agonist-induced increase in [Ca2+]i. This channel is significantly upregulated in molecular expression and functional activity in airway diseases. The upregulated channel significantly augments the resting [Ca2+]i and agonist-induced increase in [Ca2+]i, thereby exerting a direct and essential effect in airway hyperresponsiveness. The increased TRPC3 channel-mediated Ca2+ signaling also results in the transcription factor nuclear factor-κB (NF-κB) activation via protein kinase C-α (PKCα)-dependent inhibitor of NFκB-α (IκBα) and calcineurin-dependent IκBβ signaling pathways, which upregulates cyclin-D1 expression and causes cell proliferation, leading to airway remodeling. TRPC3 channel may further interact with intracellular release Ca2+ channels, Orai channels and Ca2+-sensing stromal interaction molecules, mediating important cellular responses in ASMCs and the development of airway diseases.
Collapse
|
21
|
NS8593 inhibits Ca 2+ permeant channels reversing mouse airway smooth muscle contraction. Life Sci 2019; 238:116953. [PMID: 31626793 DOI: 10.1016/j.lfs.2019.116953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023]
Abstract
AIMS This study focused on investigating whether NS8593 reverses airway smooth muscle (ASM) contraction and the underlying mechanism. MAIN METHODS ASM contraction in mouse tracheal rings and lung slices was measured. Currents mediated by voltage dependent Ca2+ channels (VDCCs) and ACH-activated channels were measured using the whole-cell patch-clamp technique in single tracheal smooth muscle cells (TSMCs). Intracellular Ca2+ level and cell length were measured using an LSM 700 laser confocal microscope and a Zen 2010 software. Mouse respiratory system resistance (Rrs) was assessed using a FlexiVent FX system. KEY FINDINGS High K+ (80 mM K+) and ACH induced ASM contraction in mouse tracheal rings and lung slices, which was partially relaxed by nifedipine (blocker of L-type VDCCs, LVDCCs), YM-58483 (blocker of store-operated Ca2+ entry (SOCE), transient receptor potential C3 (TRPC3) and TRPC5 channels), respectively. However, the contraction was completely reversed by NS8593, whereas, slightly relaxed by formoterol. ACH activated inward currents, which displayed linear and reversed around 0 mV, indicating the currents were mediated by non-selective cation channels (NSCCs). Moreover, these currents were blocked by YM-58483. In addition, such currents were abolished by NS8593, implicating that NS8593 inhibits the same channels. Besides, NS8593 inhibited increases of intracellular Ca2+ and the associated cell shortening. Finally, NS8593 inhibited ACH-induced increases of mouse respirator system resistance (Rrs). SIGNIFICANCE Our results indicate that NS8593 inhibits LVDCCs and NSCCs, resulting in decreases of intracellular Ca2+ and then leading to ASM relaxation. These data suggest that NS8593 might be a new bronchodilator.
Collapse
|
22
|
Paracetamol inhibits Ca 2+ permeant ion channels and Ca 2+ sensitization resulting in relaxation of precontracted airway smooth muscle. J Pharmacol Sci 2019; 142:60-68. [PMID: 31843508 DOI: 10.1016/j.jphs.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to screen a bronchodilator from old drugs and elucidate the underlying mechanism. Paracetamol (acetaminophen) is a widely used analgesic and antipyretic drug. It has been reported that it inhibits the generation of prostaglandin and histamine, which play roles in asthma. These findings led us to explore whether paracetamol could be a potential bronchodilator. Paracetamol inhibited high K+- and acetylcholine (ACH)-induced precontraction of mouse tracheal and bronchial smooth muscles. Moreover, the ACH-induced contraction was partially inhibited by nifedipine (selective blocker of LVDCCs), YM-58483 (selective inhibitor of store-operated Ca2+ entry (SOCE), canonical transient receptor potential 3 (TRPC3) and TRPC5 channels) and Y-27632 (selective blocker of ROCK, a linker of the Ca2+ sensitization pathway). In single airway smooth muscle cells, paracetamol blocked the currents sensitive to nifedipine and YM-58483, and inhibited intracellular Ca2+ increases. In addition, paracetamol inhibited ACH-induced phosphorylation of myosin phosphatase target subunit 1 (MYPT1, another linker of the Ca2+ sensitization pathway). Finally, in vivo paracetamol inhibited ACH-induced increases of mouse respirator system resistance. Collectively, we conclude that paracetamol inhibits ASM contraction through blocking LVDCCs, SOCE and/or TRPC3 and/or TRPC5 channels, and Ca2+ sensitization. These results suggest that paracetamol might be a new bronchodilator.
Collapse
|
23
|
Tarasov MV, Kotova PD, Bystrova MF, Kabanova NV, Sysoeva VY, Kolesnikov SS. Arachidonic acid hyperpolarizes mesenchymal stromal cells from the human adipose tissue by stimulating TREK1 K + channels. Channels (Austin) 2019; 13:36-47. [PMID: 30661462 PMCID: PMC6380217 DOI: 10.1080/19336950.2019.1565251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The current knowledge of electrogenesis in mesenchymal stromal cells (MSCs) remains scarce. Earlier, we demonstrated that in MSCs from the human adipose tissue, transduction of certain agonists involved the phosphoinositide cascade. Its pivotal effector PLC generates DAG that can regulate ion channels directly or via its derivatives, including arachidonic acid (AA). Here we showed that AA strongly hyperpolarized MSCs by stimulating instantly activating, outwardly rectifying TEA-insensitive K+ channels. Among AA-regulated K+ channels, K2P channels from the TREK subfamily appeared to be an appropriate target. The expression of K2P channels in MSCs was verified by RT-PCR, which revealed TWIK-1, TREK-1, and TASK-5 transcripts. The TREK-1 inhibitor spadin antagonized the electrogenic action of AA, which was simulated by the channel activator BL 1249. This functional evidence suggested that TREK-1 channels mediated AA-dependent hyperpolarization of MSCs. Being mostly silent at rest, TREK-1 negligibly contributed to the “background” K+ current. The dramatic stimulation of TREK-1 channels by AA indicates their involvement in AA-dependent signaling in MSCs.
Collapse
Affiliation(s)
- Michail V Tarasov
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Polina D Kotova
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Marina F Bystrova
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Natalia V Kabanova
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Veronika Yu Sysoeva
- b Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine , Lomonosov Moscow State University , Moscow , Russia
| | - Stanislav S Kolesnikov
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| |
Collapse
|
24
|
She YS, Ma LQ, Liu BB, Zhang WJ, Qiu JY, Chen YY, Li MY, Xue L, Luo X, Wang Q, Xu H, Zang DA, Zhao XX, Cao L, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Nie X, Shen C, Chen S, Chen S, Qin G, Dai J, Chen J, Liu QH. Semen cassiae Extract Inhibits Contraction of Airway Smooth Muscle. Front Pharmacol 2018; 9:1389. [PMID: 30564120 PMCID: PMC6288305 DOI: 10.3389/fphar.2018.01389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
β2-adrenoceptor agonists are commonly used as bronchodilators to treat obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), however, they induce severe side effects. Therefore, developing new bronchodilators is essential. Herbal plants were extracted and the extracts’ effect on airway smooth muscle (ASM) precontraction was assessed. The ethyl alcohol extract of semen cassiae (EESC) was extracted from Semen cassia. The effects of EESC on the ACh- and 80 mM K+-induced sustained precontraction in mouse and human ASM were evaluated. Ca2+ permeant ion channel currents and intracellular Ca2+ concentration were measured. HPLC analysis was employed to determine which compound was responsible for the EESC-induced relaxation. The EESC reversibly inhibited the ACh- and 80 mM K+-induced precontraction. The sustained precontraction depends on Ca2+ influx, and it was mediated by voltage-dependent L-type Ca2+ channels (LVDCCs), store-operated channels (SOCs), TRPC3/STIM/Orai channels. These channels were inhibited by aurantio-obtusin, one component of EESC. When aurantio-obtusin removed, EESC’s action disappeared. In addition, aurantio-obtusin inhibited the precontraction of mouse and human ASM and intracellular Ca2+ increases. These results indicate that Semen cassia-contained aurantio-obtusin inhibits sustained precontraction of ASM via inhibiting Ca2+-permeant ion channels, thereby, which could be used to develop new bronchodilators.
Collapse
Affiliation(s)
- Yu-Shan She
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Li-Qun Ma
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bei-Bei Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Jing Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jun-Ying Qiu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yuan-Yuan Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Yue Li
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lu Xue
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi Luo
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Wang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hao Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Dun-An Zang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Xue Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lei Cao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Bo Peng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ping Zhao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaowei Nie
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Engineering, South-Central University for Nationalities, Wuhan, China
| | - Jingyu Chen
- Lung Transplant Group, Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Qing-Hua Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area, Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
25
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Dandelion Chloroform Extract Promotes Glucose Uptake via the AMPK/GLUT4 Pathway in L6 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1709587. [PMID: 30524480 PMCID: PMC6247471 DOI: 10.1155/2018/1709587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) is increasing rapidly worldwide. Glucose transporter 4 (GLUT4) is one of the main proteins that transport blood glucose into the cells and is a target in the treatment of T2DM. In this study, we investigated the mechanism of action of dandelion chloroform extract (DCE) on glucose uptake in L6 cells. The glucose consumption of L6 cell culture supernatant was measured by a glucose uptake assay kit, and the dynamic changes of intracellular GLUT4 and calcium (Ca2+) levels were monitored by laser scanning confocal microscopy in L6 cell lines stably expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced via myc-GLUT4-mOrange. GLUT4 expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), protein kinase C (PKC), and phosphorylation levels were determined by performing western blotting. GLUT4 mRNA expression was detected by real-time PCR. DCE up-regulated GLUT4 expression, promoted GLUT4 translocation and fusion to the membrane eventually leading to glucose uptake, and induced AMPK phosphorylation in L6 cells. The AMPK inhibitory compound C significantly inhibited DCE-induced GLUT4 expression and translocation while no inhibitory effect was observed by the phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin and PKC inhibitor Gö6983. These data suggested that DCE promoted GLUT4 expression and transport to the membrane through the AMPK signaling pathway, thereby stimulating GLUT4 fusion with PM to enhance glucose uptake in L6 cells. DCE-induced GLUT4 translocation was also found to be Ca2+-independent. Together, these findings indicate that DCE could be a new hypoglycemic agent for the treatment of T2DM.
Collapse
|
27
|
Reyes-García J, Flores-Soto E, Carbajal-García A, Sommer B, Montaño LM. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int J Mol Med 2018; 42:2998-3008. [PMID: 30280184 PMCID: PMC6202086 DOI: 10.3892/ijmm.2018.3910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
In airway smooth muscle, the intracellular basal Ca2+ concentration [b(Ca2+)i] must be tightly regulated by several mechanisms in order to maintain a proper airway patency. The b[Ca2+]i is efficiently regulated by sarcoplasmic reticulum Ca2+-ATPase 2b, plasma membrane Ca2+-ATPase 1 or 4 and by the Na+/Ca2+ exchanger. Membranal Ca2+ channels, including the L-type voltage dependent Ca2+ channel (L-VDCC), T-type voltage dependent Ca2+ channel (T-VDCC) and transient receptor potential canonical 3 (TRPC3), appear to be constitutively active under basal conditions via the action of different signaling pathways, and are responsible for Ca2+ influx to maintain b[Ca2+]i. The two types of voltage-dependent Ca2+ channels (L- and T-type) are modulated by phosphorylation processes mediated by mitogen-activated protein kinase kinase (MEK) and extracellular-signal-regulated kinase 1 and 2 (ERK1/2). The MEK/ERK signaling pathway can be activated by G-protein-coupled receptors through the αq subunit when the endogenous ligand (i.e., acetylcholine, histamine, leukotrienes, etc.) is present under basal conditions. It may also be stimulated when receptor tyrosine kinases are occupied by the appropriate ligand (cytokines, growth factors, etc.). ERK1/2 phosphorylates L-VDCC on Ser496 of the β2 subunit and Ser1928 of the α1 subunit, decreasing or increasing the channel activity, respectively, and enabling it to switch between an open and closed state. T-VDCC is also probably phosphorylated by ERK1/2, although further research is required to identify the phosphorylation sites. TRPC3 is directly activated by diacylglycerol produced by phospholipase C (PLCβ or γ). Constitutive inositol 1,4,5-trisphosphate production induces the release of Ca2+ from the sarcoplasmic reticulum through inositol triphosphate receptor 1. This ion induces Ca2+-induced Ca2+ release through the ryanodine receptor 2 (designated as Ca2+ ‘sparks’). Therefore, several Ca2+ handling mechanisms are finely tuned to regulate basal intracellular Ca2+ concentrations. It is conceivable that alterations in any of these processes may render airway smooth muscle susceptible to develop hyperresponsiveness that is observed in ailments such as asthma.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México 14080, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
28
|
Semenov I, Brenner R. Voltage effects on muscarinic acetylcholine receptor-mediated contractions of airway smooth muscle. Physiol Rep 2018; 6:e13856. [PMID: 30187663 PMCID: PMC6125245 DOI: 10.14814/phy2.13856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/31/2023] Open
Abstract
Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised a pharmacological approach to depolarize tissue to various extents in an organ bath preparation, and isolate contraction due exclusively to ASM muscarinic receptors within range of physiological voltages. Our results indicate that unliganded muscarinic receptors do not contribute to contraction regardless of voltage. Utilizing low K+ solution to hyperpolarize membrane potentials during contractions had no effect on liganded muscarinic receptor-evoked contractions, although it eliminated the contribution of voltage-gated calcium channels. However, we found that muscarinic signaling was potentiated by at least 42% at depolarizing voltages (average -12 mV) induced by high K+ solution (20 mmol/L K+ ). In summary, we conclude that contractions evoked by direct activation of muscarinic receptors have negligible sensitivity to physiological voltages. However, contraction activated by cholinergic stimulation can be potentiated by membrane potentials occurring beyond the physiological range of ASM.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkVirginia
| | - Robert Brenner
- Department of Cell and Integrative PhysiologyUniversity of Texas Health Science Center San AntonioSan AntonioTexas
| |
Collapse
|
29
|
Simo-Cheyou ER, Tan JJ, Grygorczyk R, Srivastava AK. STIM-1 and ORAI-1 channel mediate angiotensin-II-induced expression of Egr-1 in vascular smooth muscle cells. J Cell Physiol 2017; 232:3496-3509. [PMID: 28105751 DOI: 10.1002/jcp.25810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
An upregulation of Egr-1 expression has been reported in models of atherosclerosis and intimal hyperplasia and, various vasoactive peptides and growth promoting stimuli have been shown to induce the expression of Egr-1 in vascular smooth muscle cells (VSMC). Angiotensin-II (Ang-II) is a key vasoactive peptide that has been implicated in the pathogenesis of vascular diseases. Ang-II elevates intracellular Ca2+ through activation of the store-operated calcium entry (SOCE) involving an inositol-3-phosphate receptor (IP3R)-coupled depletion of endoplasmic reticular Ca2+ and a subsequent activation of the stromal interaction molecule 1 (STIM-1)/Orai-1 complex. However, the involvement of IP3R/STIM-1/Orai-1-Ca2+ -dependent signaling in Egr-1 expression in VSMC remains unexplored. Therefore, in the present studies, we have examined the role of Ca2+ signaling in Ang-II-induced Egr-1 expression in VSMC and investigated the contribution of STIM-1 or Orai-1 in mediating this response. 2-aminoethoxydiphenyl borate (2-APB), a dual non-competitive antagonist of IP3R and inhibitor of SOCE, decreased Ang-II-induced Ca2+ release and attenuated Ang-II-induced enhanced expression of Egr-1 protein and mRNA levels. Egr-1 upregulation was also suppressed following blockade of calmodulin and CaMKII. Furthermore, RNA interference-mediated depletion of STIM-1 or Orai-1 attenuated Ang-II-induced Egr-1 expression as well as Ang-II-induced phosphorylation of ERK1/2 and CREB. In addition, siRNA-induced silencing of CREB resulted in a reduction in the expression of Egr-1 stimulated by Ang-II. In summary, our data demonstrate that Ang-II-induced Egr-1 expression is mediated by STIM-1/Orai-1/Ca2+ -dependent signaling pathways in A-10 VSMC.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Signaling/drug effects
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calmodulin/antagonists & inhibitors
- Calmodulin/metabolism
- Cell Line
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- ORAI1 Protein/genetics
- ORAI1 Protein/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
- Rats
- Stromal Interaction Molecule 1/genetics
- Stromal Interaction Molecule 1/metabolism
- Time Factors
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Estelle R Simo-Cheyou
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center, Quebec, Canada
- CHUM-Research Center (CRCHUM), Quebec, Canada
- Faculty of Medicine, Department of Nutrition, University of Montreal, Quebec, Canada
| | - Ju Jing Tan
- CHUM-Research Center (CRCHUM), Quebec, Canada
| | - Ryszard Grygorczyk
- CHUM-Research Center (CRCHUM), Quebec, Canada
- Faculty of Medicine, Department of Medicine, University of Montreal, Quebec, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center, Quebec, Canada
- CHUM-Research Center (CRCHUM), Quebec, Canada
- Faculty of Medicine, Department of Nutrition, University of Montreal, Quebec, Canada
- Faculty of Medicine, Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
30
|
Zhao QY, Peng YB, Luo XJ, Luo X, Xu H, Wei MY, Jiang QJ, Li WE, Ma LQ, Xu JC, Liu XC, Zang DA, She YS, Zhu H, Shen J, Zhao P, Xue L, Yu MF, Chen W, Zhang P, Fu X, Chen J, Nie X, Shen C, Chen S, Chen S, Chen J, Hu S, Zou C, Qin G, Fang Y, Ding J, Ji G, Zheng YM, Song T, Wang YX, Liu QH. Distinct Effects of Ca 2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans. Int J Biol Sci 2017; 13:1242-1253. [PMID: 29104491 PMCID: PMC5666523 DOI: 10.7150/ijbs.21475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the functional loss of Ca2+-activated Cl- (Clca) channels, Ca2+ sparks activated large-conductance Ca2+-activated K+ channels (BKs), resulting in a decreases in tone against a spontaneous depolarization-caused high tone in the resting state. In ASMCs, Ca2+ sparks induced relaxation through BKs and contraction via Clca channels. However, the integrated result was contraction because Ca2+ sparks activated BKs prior to Clca channels and Clca channels-induced depolarization was larger than BKs-caused hyperpolarization. However, the effects of Ca2+ sparks on both cell types were determined by L-type voltage-dependent Ca2+ channels (LVDCCs). In addition, compared with ASMCs, CASMCs had great and higher amplitude Ca2+ sparks, a higher density of BKs, and higher Ca2+ and voltage sensitivity of BKs. These differences enhanced the ability of Ca2+ sparks to decrease CASMC and to increase ASMC tone. The higher Ca2+ and voltage sensitivity of BKs in CASMCs than ASMCs were determined by the β1 subunits. Moreover, Ca2+ sparks showed the similar effects on human CASMC and ASMC tone. In conclusions, Ca2+ sparks decrease CASMC tone and increase ASMC tone, mediated by BKs and Clca channels, respectively, and finally determined by LVDCCs.
Collapse
Affiliation(s)
- Qing-Yang Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Jing Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xi Luo
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Hao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ming-Yu Wei
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Er Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin-Chao Xu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Dun-An Zang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yu-San She
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - He Zhu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhang
- Department of Cerebral Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingyu Chen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Xiaowei Nie
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Chenyou Shen
- Wuxi &Jiangsu Key Laboratory of Organ Transplantation, Department of Cardiothoracic Surgery, Lung Transplant Group, Wuxi People's Hospital, Nanjing Medical University, Jiangsu, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, Hubei, China
| | - Jingcao Chen
- Department of Cerebral Surgery, Zhongnan Hospital, Wuhan University Medical College, Wuhan, 430071, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine & School of Engineering, University of Alabama Birmingham, AL, 35294, USA
| | - Ying Fang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiuping Ding
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Tengyao Song
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
31
|
Yang X, Xue L, Zhao Q, Cai C, Liu QH, Shen J. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction. Altern Ther Health Med 2017; 17:159. [PMID: 28320373 PMCID: PMC5359798 DOI: 10.1186/s12906-017-1674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/10/2017] [Indexed: 01/06/2023]
Abstract
Background Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Methods Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. Results It was found that AELL inhibited the high K+ or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca2+ channels (VDCC) and non-selective cation channels (NSCC). Conclusion AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1674-7) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
33
|
Daniels RE, Haq KT, Miller LS, Chia EW, Miura M, Sorrentino V, McGuire JJ, Stuyvers BD. Cardiac expression of ryanodine receptor subtype 3; a strategic component in the intracellular Ca 2+ release system of Purkinje fibers in large mammalian heart. J Mol Cell Cardiol 2017; 104:31-42. [PMID: 28111173 DOI: 10.1016/j.yjmcc.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Three distinct Ca2+ release channels were identified in dog P-cells: the ryanodine receptor subtype 2 (RyR2) was detected throughout the cell, while the ryanodine receptor subtype 3 (RyR3) and inositol phosphate sensitive Ca2+ release channel (InsP3R) were found in the cell periphery. How each of these channels contributes to the Ca2+ cycling of P-cells is unclear. Recent modeling of Ca2+ mobilization in P-cells suggested that Ca2+ sensitivity of Ca2+induced Ca2+release (CICR) was larger at the P-cell periphery. Our study examined whether this numerically predicted region of Ca2+ release exists in live P-cells. We compared the regional Ca2+ dynamics with the arrangement of intracellular Ca2+ release (CR) channels. METHODS Gene expression of CR channels was measured by qPCR in Purkinje fibers and myocardium of adult Yucatan pig hearts. We characterized the CR channels protein expression in isolated P-cells by immuno-fluorescence, laser scanning confocal microscopy, and 3D reconstruction. The spontaneous Ca2+ activity and electrically-evoked Ca2+ mobilization were imaged by 2D spinning disk confocal microscopy. Functional regions of P-cell were differentiated by the characteristics of local Ca2+ events. We used the Ca2+ propagation velocities as indicators of channel Ca2+ sensitivity. RESULTS RyR2 gene expression was identical in Purkinje fibers and myocardium (6 hearts) while RyR3 and InsP3R gene expressions were, respectively, 100 and 16 times larger in the Purkinje fibers. Specific fluorescent immuno-staining of Ca2+ release channels revealed an intermediate layer of RyR3 expression between a near-membrane InsP3R-region and a central RyR2-region. We found that cell periphery produced two distinct forms of spontaneous Ca2+-transients: (1) large asymmetrical Ca2+ sparks under the membrane, and (2) typical Ca2+-wavelets propagating exclusively around the core of the cell. Larger cell-wide Ca2+ waves (CWWs) appeared occasionally traveling in the longitudinal direction through the core of Pcells. Large sparks arose in a micrometric space overlapping the InsP3R expression. The InsP3R antagonists 2-aminoethoxydiphenyl borate (2-APB; 3μM) and xestospongin C (XeC; 50μM) dramatically reduced their frequency. The Ca2+ wavelets propagated in a 5-10μm thick layered space which matched the intermediate zone of RyR3 expression. The wavelet incidence was unchanged by 2-APB or XeC, but was reduced by 60% in presence of the RyR3 antagonist dantrolene (10μM). The velocity of wavelets was two times larger (86±16μm/s; n=14) compared to CWWs' (46±10μm/s; n=11; P<0.05). Electric stimulation triggered a uniform and large elevation of Ca2+ concentration under the membrane which preceded the propagation of Ca2+ into the interior of the cell. Elevated Cai propagated at 150μm/s (147±34μm/s; n=5) through the region equivalent to the zone of RyR3 expression. This velocity dropped by 50% (75±24μm/s; n=5) in the central region wherein predominant RyR2 expression was detected. CONCLUSION We identified two layers of distinct Ca2+ release channels in the periphery of Pcell: an outer layer of InsP3Rs under the membrane and an inner layer of RyR3s. The propagation of Ca2+ events in these layers revealed that Ca2+ sensitivity of Ca2+ release was larger in the RyR3 layer compared to that of other sub-cellular regions. We propose that RyR3 expression in P-cells plays a role in the stability of electric function of Purkinje fibers.
Collapse
Affiliation(s)
- Rebecca E Daniels
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kazi T Haq
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lawson S Miller
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Elizabeth W Chia
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Masahito Miura
- Department of Clinical Physiology, Health Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - John J McGuire
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Bruno D Stuyvers
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
34
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:89-144. [PMID: 28212804 DOI: 10.1016/bs.apha.2016.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells.
Collapse
|
36
|
Na+ permeates through L-type Ca2+ channel in bovine airway smooth muscle. Eur J Pharmacol 2016; 782:77-88. [DOI: 10.1016/j.ejphar.2016.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
|
37
|
Jerath R, Crawford MW, Barnes VA, Harden K. Self-regulation of breathing as a primary treatment for anxiety. Appl Psychophysiol Biofeedback 2016; 40:107-15. [PMID: 25869930 DOI: 10.1007/s10484-015-9279-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Understanding the autonomic nervous system and homeostatic changes associated with emotions remains a major challenge for neuroscientists and a fundamental prerequisite to treat anxiety, stress, and emotional disorders. Based on recent publications, the inter-relationship between respiration and emotions and the influence of respiration on autonomic changes, and subsequent widespread membrane potential changes resulting from changes in homeostasis are discussed. We hypothesize that reversing homeostatic alterations with meditation and breathing techniques rather than targeting neurotransmitters with medication may be a superior method to address the whole body changes that occur in stress, anxiety, and depression. Detrimental effects of stress, negative emotions, and sympathetic dominance of the autonomic nervous system have been shown to be counteracted by different forms of meditation, relaxation, and breathing techniques. We propose that these breathing techniques could be used as first-line and supplemental treatments for stress, anxiety, depression, and some emotional disorders.
Collapse
Affiliation(s)
- Ravinder Jerath
- Augusta Women's Center, 2100 Central Ave., Suite #7, Augusta, GA, 30904, USA,
| | | | | | | |
Collapse
|
38
|
Song T, Hao Q, Zheng YM, Liu QH, Wang YX. Inositol 1,4,5-trisphosphate activates TRPC3 channels to cause extracellular Ca2+ influx in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1455-66. [PMID: 26453517 DOI: 10.1152/ajplung.00148.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/04/2015] [Indexed: 11/22/2022] Open
Abstract
Transient receptor potential-3 (TRPC3) channels play a predominant role in forming nonselective cation channels (NSCCs) in airway smooth muscle cells (ASMCs) and are significantly increased in their activity and expression in asthmatic ASMCs. To extend these novel findings, we have explored the regulatory mechanisms that control the activity of TRPC3 channels. Our data for the first time reveal that inositol 1,4,5-trisphosphate (IP3), an important endogenous signaling molecule, can significantly enhance the activity of single NSCCs in ASMCs. The analog of diacylglycerol (DAG; another endogenous signaling molecule), 1-oleyl-2-acetyl-sn-glycerol (OAG), 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG), and 1-stearoyl-2-linoleoyl-sn-glycerol (SLG) all augment NSCC activity. The effects of IP3 and OAG are fully abolished by lentiviral short-hairpin (sh)RNA-mediated TRPC3 channel knockdown (KD). The stimulatory effect of IP3 is eliminated by heparin, an IP3 receptor (IP3R) antagonist that blocks the IP3-binding site, but not by xestospongin C, the IP3R antagonist that has no effect on the IP3-binding site. Lentiviral shRNA-mediated KD of IP3R1, IP3R2, or IP3R3 does not alter the excitatory effect of IP3. TRPC3 channel KD greatly inhibits IP3-induced increase in intracellular Ca(2+) concentration. IP3R1 KD produces a similar inhibitory effect. TRPC3 channel and IP3R1 KD both diminish the muscarinic receptor agonist methacholine-evoked Ca(2+) responses. Taking these findings together, we conclude that IP3, the important intracellular second messenger, may activate TRPC3 channels to cause extracellular Ca(2+) influx, in addition to opening IP3Rs to induce intracellular Ca(2+) release. This novel extracellular Ca(2+) entry route may play a significant role in mediating IP3-mediated numerous cellular responses in ASMCs and other cells.
Collapse
Affiliation(s)
- Tengyao Song
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Qiongyu Hao
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Qing-Hua Liu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| |
Collapse
|
39
|
Song T, Zheng YM, Vincent PA, Cai D, Rosenberg P, Wang YX. Canonical transient receptor potential 3 channels activate NF-κB to mediate allergic airway disease via PKC-α/IκB-α and calcineurin/IκB-β pathways. FASEB J 2015; 30:214-29. [PMID: 26373801 DOI: 10.1096/fj.15-274860] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/31/2015] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to determine the role of canonical transient receptor potential 3 (TRPC3) channel in allergen-induced airway disease (AIAD) and its underlying signaling mechanisms. The procedures included (1) intravenous injection of lentiviral TRPC3 channel or nonsilencing short hairpin ribonucleic acid (shRNA) to make the channel knockdown (KD) or control mice, (2) allergen sensitization/challenge to induce AIAD, (3) patch-clamp recording and Ca(2+) imaging to examine the channel activity, and (4) gene manipulations and other methods to determine the underlying signaling mechanisms. The findings are that (1) intravenous or intranasal delivery of TRPC3 channel lentiviral shRNAs or blocker 1-[4-[(2,3,3-trichloro-1-oxo-2-propen-1-yl)amino]phenyl]-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid prevents AIAD in mice, (2) TRPC3 channel KD and overexpression, respectively, blocks and augments protein kinase C-α/nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor-α (PKC-α/IκB-α)-mediated or calcineurin/IκB-β-dependent, NF-κB-dependent allergen-induced airway smooth muscle cell (ASMC) hyperproliferation and cyclin D1 (an important cell proliferation molecule) induction, and (3) the changes of the major molecules of the PKC-α/IκBα- and calcineurin/IκB-β-dependent NF-κB signaling pathways are also observed in asthmatic human ASMCs. The conclusions are that TRPC3 channels plays an essential role in AIAD via the PKC-α/IκB-α- and calcineurin/IκB-β-dependent NF-κB signaling pathways, and lentiviral shRNA or inhibitor of TRPC3 channels may become novel and effective treatments for AIAD.
Collapse
Affiliation(s)
- Tengyao Song
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yun-Min Zheng
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Peter A Vincent
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dongsheng Cai
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul Rosenberg
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yong-Xiao Wang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
40
|
Wei MY, Xue L, Tan L, Sai WB, Liu XC, Jiang QJ, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Ma LQ, Zhai K, Zou C, Guo D, Qin G, Zheng YM, Wang YX, Ji G, Liu QH. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle. PLoS One 2015; 10:e0121566. [PMID: 25822280 PMCID: PMC4378962 DOI: 10.1371/journal.pone.0121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.
Collapse
Affiliation(s)
- Ming-Yu Wei
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Tan
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Bo Sai
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Donglin Guo
- Lankenau Institute for Medical Research & Main Line Health Heart Center, 100 Lancaster Avenue, Wynnewood, PA 19096, United States of America
| | - Gangjian Qin
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, United States of America
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, United States of America
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- * E-mail: (QHL); (GJ)
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- * E-mail: (QHL); (GJ)
| |
Collapse
|
41
|
Relaxant action of plumula nelumbinis extract on mouse airway smooth muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:523640. [PMID: 25763092 PMCID: PMC4339714 DOI: 10.1155/2015/523640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/24/2014] [Indexed: 01/26/2023]
Abstract
The traditional herb Plumula Nelumbinis is widely used in the world because it has many biological activities, such as anti-inflammation, antioxidant, antihypertension, and butyrylcholinesterase inhibition. However, the action of Plumula Nelumbinis on airway smooth muscle (ASM) relaxation has not been investigated. A chloroform extract of Plumula Nelumbinis (CEPN) was prepared, which completely inhibited precontraction induced by high K+ in a concentration-dependent manner in mouse tracheal rings, but it had no effect on resting tension. CEPN also blocked voltage-dependent L-type Ca2+ channel- (VDCC-) mediated currents. In addition, ACh-induced precontraction was also completely blocked by CEPN and partially inhibited by nifedipine or pyrazole 3. Besides, CEPN partially reduced ACh-activated nonselective cation channel (NSCC) currents. Taken together, our data demonstrate that CEPN blocked VDCC and NSCC to inhibit Ca2+ influx, resulting in relaxation of precontracted ASM. This finding indicates that CEPN would be a candidate of new potent bronchodilators.
Collapse
|
42
|
Savoia CP, Liu QH, Zheng YM, Yadav V, Zhang Z, Wu LG, Wang YX. Calcineurin upregulates local Ca(2+) signaling through ryanodine receptor-1 in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2014; 307:L781-90. [PMID: 25239916 DOI: 10.1152/ajplung.00149.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Local Ca(2+) signals (Ca(2+) sparks) play an important role in multiple cellular functions in airway smooth muscle cells (ASMCs). Protein kinase Cϵ is known to downregulate ASMC Ca(2+) sparks and contraction; however, no complementary phosphatase has been shown to produce opposite effects. Here, we for the first time report that treatment with a specific calcineurin (CaN) autoinhibitory peptide (CAIP) to block CaN activity decreases, whereas application of nickel to activate CaN increases, Ca(2+) sparks in both the presence and absence of extracellular Ca(2+). Treatment with xestospogin-C to eliminate functional inositol 1,4,5-trisphosphate receptors does not prevent CAIP from inhibiting local Ca(2+) signaling. However, high ryanodine treatment almost completely blocks spark formation and prevents the nickel-mediated increase in sparks. Unlike CAIP, the protein phosphatase 2A inhibitor endothall has no effect. Local Ca(2+) signaling is lower in CaN catalytic subunit Aα gene knockout (CaN-Aα(-/-)) mouse ASMCs. The effects of CAIP and nickel are completely lost in CaN-Aα(-/-) ASMCs. Neither CAIP nor nickel produces an effect on Ca(2+) sparks in type 1 ryanodine receptor heterozygous knockout (RyR1(-/+)) mouse ASMCs. However, their effects are not altered in RyR2(-/+) or RyR3(-/-) mouse ASMCs. CaN inhibition decreases methacholine-induced contraction in isolated RyR1(+/+) but not RyR1(-/+) mouse tracheal rings. Supportively, muscarinic contractile responses are also reduced in CaN-Aα(-/+) mouse tracheal rings. Taken together, these results provide novel evidence that CaN regulates ASMC Ca(2+) sparks specifically through RyR1, which plays an important role in the control of Ca(2+) signaling and contraction in ASMCs.
Collapse
Affiliation(s)
- Carlo P Savoia
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Qing-Hua Liu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Vishal Yadav
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Zhen Zhang
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York;
| |
Collapse
|
43
|
Thompson MA, Prakash YS, Pabelick CM. Arachidonate-regulated Ca(2+) influx in human airway smooth muscle. Am J Respir Cell Mol Biol 2014; 51:68-76. [PMID: 24471656 DOI: 10.1165/rcmb.2013-0144oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasma membrane Ca(2+) influx, especially store-operated Ca(2+) entry triggered by sarcoplasmic reticulum (SR) Ca(2+) release, is a key component of intracellular calcium concentration ([Ca(2+)]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca(2+) oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca(2+)]i oscillations involve Ca(2+) influx via arachidonic acid (AA) -stimulated channels, which show similarities to store-operated Ca(2+) entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca(2+) channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca(2+) indicator, fura-2, AA (1-10 μM) triggered [Ca(2+)]i oscillations that were inhibited by removal of extracellular Ca(2+). Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca(2+)]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca(2+) release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca(2+)]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca(2+)]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca(2+)-regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca(2+) channels could potentially contribute to increased [Ca(2+)]i in diseases such asthma.
Collapse
|
44
|
Zhang T, Luo XJ, Sai WB, Yu MF, Li WE, Ma YF, Chen W, Zhai K, Qin G, Guo D, Zheng YM, Wang YX, Shen JH, Ji G, Liu QH. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle. PLoS One 2014; 9:e101578. [PMID: 24992312 PMCID: PMC4081631 DOI: 10.1371/journal.pone.0101578] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/06/2014] [Indexed: 02/01/2023] Open
Abstract
Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs) or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs). In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs) precontracted with acetylcholine (ACH). In the presence of nifedipine (10 µM), ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs), and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs) were blocked by chloroquine. Pyrazole 3 (Pyr3), an inhibitor of transient receptor potential C3 (TRPC3) channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.
Collapse
Affiliation(s)
- Ting Zhang
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiao-Jing Luo
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Bo Sai
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Meng-Fei Yu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen-Er Li
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yun-Fei Ma
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Weiwei Chen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Gangjian Qin
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Donglin Guo
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Lankenau Institute for Medical Research & Main Line Health Heart Center, Wynnewood, Pennsylvania, United States of America
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, United States of America
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, United States of America
| | - Jin-Hua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (QHL); (GJ)
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- * E-mail: (QHL); (GJ)
| |
Collapse
|
45
|
Sai WB, Yu MF, Wei MY, Lu Z, Zheng YM, Wang YX, Qin G, Guo D, Ji G, Shen J, Liu QH. Bitter tastants induce relaxation of rat thoracic aorta precontracted with high K+. Clin Exp Pharmacol Physiol 2014; 41:301-8. [DOI: 10.1111/1440-1681.12217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Wen-Bo Sai
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China; College of Life Sciences; South-Central University for Nationalities; Wuhan China
| | - Meng-Fei Yu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China; College of Life Sciences; South-Central University for Nationalities; Wuhan China
| | - Ming-Yu Wei
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China; College of Life Sciences; South-Central University for Nationalities; Wuhan China
| | - Zhongju Lu
- Department of Physiology and Biophysics; State University of New York; Stony Brook NY USA
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences; Albany Medical College; Albany NY USA
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences; Albany Medical College; Albany NY USA
| | - Gangjian Qin
- Department of Medicine-Cardiology; Feinberg Cardiovascular Research Institute; North-western, University Feinberg School of Medicine; Chicago IL USA
| | - Donglin Guo
- Lankenau Institute for Medical Research and Main Line Health Heart Center; Wynnewood PA USA
| | - Guangju Ji
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China; College of Life Sciences; South-Central University for Nationalities; Wuhan China
| | - Qing-Hua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China; College of Life Sciences; South-Central University for Nationalities; Wuhan China
| |
Collapse
|
46
|
Shigemasa Y, Lam M, Mitsui R, Hashitani H. Voltage dependence of slow wave frequency in the guinea pig prostate. J Urol 2014; 192:1286-92. [PMID: 24641914 DOI: 10.1016/j.juro.2014.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Spontaneous phasic contractions of the guinea pig prostate stroma result from the generation of slow waves that appear to primarily rely on spontaneous Ca(2+) release from the endoplasmic/sarcoplasmic reticulum and subsequent opening of Ca(2+) activated chloride channels. We investigated voltage dependent mechanisms in the regulation of slow wave frequency. MATERIALS AND METHODS Changes in membrane potential were recorded using conventional intracellular recording techniques while simultaneously measuring the isometric tension of guinea pig prostate lobes. Fluorescence immunohistochemistry was done to determine the cellular composition of the prostate stroma. RESULTS Depolarization induced by high K(+) solution, K(+) free solution or outward current injection was associated with increased slow wave frequency. In contrast, hyperpolarization induced by the re-addition of K(+), adenosine triphosphate sensitive K(+) channel openers or inward current injection prevented slow wave generation. K(+) channel openers induced hyperpolarization and the cessation of slow waves was reversed by glibenclamide (10 μM). Nifedipine (1 to 10 μM) shortened the duration of slow waves and pacemaker potentials but often failed to prevent their generation and associated contractions. Subsequently Ni(2+) (100 μM) or mibefradil (1 μM) largely suppressed slow waves and abolished residual contractions. Immunohistochemistry revealed small interconnected smooth muscle bundles as well as vimentin positive interstitial cells but failed to show a network of Kit positive interstitial cells. CONCLUSIONS Prostate slow wave frequency is voltage dependent due to the significant contribution of L-type and T-type Ca(2+) channels. Prostate slow waves may arise from cooperation between spontaneous Ca(2+) release from internal stores and plasmalemmal voltage dependent Ca(2+) channels.
Collapse
Affiliation(s)
- Yusuke Shigemasa
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michelle Lam
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
47
|
Flores-Soto E, Reyes-García J, Sommer B, Montaño LM. Sarcoplasmic reticulum Ca(2+) refilling is determined by L-type Ca(2+) and store operated Ca(2+) channels in guinea pig airway smooth muscle. Eur J Pharmacol 2013; 721:21-8. [PMID: 24113526 DOI: 10.1016/j.ejphar.2013.09.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022]
Abstract
Sarcoplasmic reticulum Ca(2+) refilling (SRREF) is crucial to sustain the agonists induced airway smooth muscle contraction. Nevertheless, its mechanisms have not been clearly described yet, although L-type voltage dependent, store operated, receptor operated channels and the Na(+)/Ca(2+) exchanger in its reverse mode (NCXREV) have been proposed as Ca(2+) handling proteins participating in this process. We found that in guinea pig and bovine tracheal smooth muscle, SRREF induced by caffeine was completely abolished by thapsigargin, even in the presence of Bay K8644, an activator of the L-type Ca(2+) channel. Activation of NCXREV in guinea pig tracheal myocytes increased SRREF in ~70%, while opening of the L-type Ca(2+) channels with Bay K8644 and favoring the capacitative Ca(2+) entry with 2-APB (32 μM) also augmented the SRREF by ~170% and ~71%, respectively. Methoxyverapamil (D-600, an L-type Ca(2+) channel blocker), 2-APB (100 µM, antagonist of the capacitative Ca(2+) entry) and PPADS (NCXREV blocker) diminished the SRREF by ~63%, ~72% and ~31%, respectively. The simultaneous addition of D-600 and 2-APB annulled SRREF. These last results were also seen when carbachol was used instead of caffeine. In tracheal rings, 2-APB and nifedipine abolished the carbachol-induced contraction. We concluded that the sarcoplasmic reticulum Ca(2+) pump is the only mechanism involved in the SRREF and that L-type Ca(2+) voltage dependent and store operated Ca(2+) channels are the principal membranal Ca(2+) handling proteins that provide extracellular Ca(2+) for SRREF and carbachol-induced contraction in the guinea pig airway smooth muscle; NCXREV seems to play a minor role.
Collapse
Affiliation(s)
- Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | |
Collapse
|
48
|
Goldklang MP, Perez-Zoghbi JF, Trischler J, Nkyimbeng T, Zakharov SI, Shiomi T, Zelonina T, Marks AR, D'Armiento JM, Marx SO. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. FASEB J 2013; 27:4975-86. [PMID: 23995289 DOI: 10.1096/fj.13-235176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Large conductance voltage- and calcium-activated potassium (BK) channels are highly expressed in airway smooth muscle (ASM). Utilizing the ovalbumin (OVA) and house dust mite (HDM) models of asthma in C57BL/6 mice, we demonstrate that systemic administration of the BK channel agonist rottlerin (5 μg/g) during the challenge period reduced methacholine-induced airway hyperreactivity (AHR) in OVA- and HDM-sensitized mice (47% decrease in peak airway resistance in OVA-asthma animals, P<0.01; 54% decrease in HDM-asthma animals, P<0.01) with a 35-40% reduction in inflammatory cells and 20-35% reduction in Th2 cytokines in bronchoalveolar lavage fluid. Intravenous rottlerin (5 μg/g) reduced AHR within 5 min in the OVA-asthma mice by 45% (P<0.01). With the use of an ex vivo lung slice technique, rottlerin relaxed acetylcholine-stimulated murine airway lumen area to 87 ± 4% of the precontracted area (P<0.01 vs. DMSO control). Rottlerin increased BK channel activity in human ASM cells (V50 shifted by 73.5±13.5 and 71.8±14.6 mV in control and asthmatic cells, respectively, both P<0.05 as compared with pretreatment) and reduced the frequency of acetylcholine-induced Ca(2+) oscillations in murine ex vivo lung slices. These findings suggest that rottlerin, with both anti-inflammatory and ASM relaxation properties, may have benefit in treating asthma.
Collapse
Affiliation(s)
- Monica P Goldklang
- 1S.O.M., Columbia University, 630 West 168th St., P&S 9-420, New York, NY 10032, USA. ; A.R.M., Columbia University, Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Avenue, Room 520, New York, NY 10032, USA. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sundelacruz S, Levin M, Kaplan DL. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue Eng Part A 2013; 19:1889-908. [PMID: 23738690 DOI: 10.1089/ten.tea.2012.0425.rev] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na(+)/K(+) ATPase inhibitor, or by treatment with high concentrations of extracellular K(+). To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
50
|
Norton CE, Broughton BRS, Jernigan NL, Walker BR, Resta TC. Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2. Antioxid Redox Signal 2013; 18:1777-88. [PMID: 22966991 PMCID: PMC3619151 DOI: 10.1089/ars.2012.4836] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS Chronic hypoxia (CH) enhances depolarization-induced myofilament Ca(2+) sensitization and resultant pulmonary arterial constriction through superoxide (O(2)(-))-dependent stimulation of RhoA. Because NAD(P)H oxidase (NOX) has been implicated in the development of pulmonary hypertension, we hypothesized that vascular smooth muscle (VSM) depolarization increases NOX-derived O(2)(-) production leading to myofilament Ca(2+) sensitization and augmented vasoconstrictor reactivity following CH. As epidermal growth factor receptor (EGFR) mediates Rac1-dependent NOX activation in renal mesangial cells, we further sought to examine the role EGFR plays in this response. RESULTS Vasoconstrictor responses to depolarizing concentrations of KCl were greater in lungs isolated from CH (4 wk, 0.5 atm) rats compared to normoxic controls, and this effect of CH was abolished by the general NOX inhibitor, apocynin. CH similarly augmented KCl-induced vasoconstriction and O(2)(-) generation (assessed using the fluorescent indicator, dihydroethidium) in Ca(2+)-permeabilized, pressurized small pulmonary arteries. These latter responses to CH were prevented by general inhibition of NOX isoforms (apocynin, diphenylene iodonium), and by selective inhibition of NOX 2 (gp91ds-tat), Rac1 (NSC 23766), and EGFR (AG 1478). Consistent with these observations, CH increased KCl-induced EGFR phosphorylation, and augmented depolarization-induced Rac1 activation in an EGFR-dependent manner. INNOVATION This study establishes a novel signaling axis in VSM linking membrane depolarization to contraction that is independent of Ca(2+) influx, and which mediates myofilament Ca(2+) sensitization in the hypertensive pulmonary circulation. CONCLUSION CH augments membrane depolarization-induced pulmonary VSM Ca(2+) sensitization and vasoconstriction through EGFR-dependent stimulation of Rac1 and NOX 2.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|