1
|
Lo Giudice Q, Leleu M, La Manno G, Fabre PJ. Single-cell transcriptional logic of cell-fate specification and axon guidance in early-born retinal neurons. Development 2019; 146:dev.178103. [PMID: 31399471 DOI: 10.1242/dev.178103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs), cone photoreceptors (cones), horizontal cells and amacrine cells are the first classes of neurons produced in the retina. However, an important question is how this diversity of cell states is transcriptionally produced. Here, we profiled 6067 single retinal cells to provide a comprehensive transcriptomic atlas showing the diversity of the early developing mouse retina. RNA velocities unveiled the dynamics of cell cycle coordination of early retinogenesis and define the transcriptional sequences at work during the hierarchical production of early cell-fate specification. We show that RGC maturation follows six waves of gene expression, with older-generated RGCs transcribing increasing amounts of guidance cues for young peripheral RGC axons that express the matching receptors. Spatial transcriptionally deduced features in subpopulations of RGCs allowed us to define novel molecular markers that are spatially restricted. Finally, the isolation of such a spatially restricted population, ipsilateral RGCs, allowed us to identify their molecular identity at the time they execute axon guidance decisions. Together, these data represent a valuable resource shedding light on transcription factor sequences and guidance cue dynamics during mouse retinal development.
Collapse
Affiliation(s)
- Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Marion Leleu
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gioele La Manno
- Faculty of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015 Lausanne, Switzerland.,Laboratory of Neurodevelopmental Systems Biology, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre J Fabre
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
2
|
Hommyo R, Suzuki SO, Abolhassani N, Hamasaki H, Shijo M, Maeda N, Honda H, Nakabeppu Y, Iwaki T. Expression of CRYM in different rat organs during development and its decreased expression in degenerating pyramidal tracts in amyotrophic lateral sclerosis. Neuropathology 2018; 38:247-259. [PMID: 29603402 DOI: 10.1111/neup.12466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 11/30/2022]
Abstract
The protein μ-crystallin (CRYM) is a novel component of the marsupial lens that has two functions: it is a key regulator of thyroid hormone transportation and a reductase of sulfur-containing cyclic ketimines. In this study, we examined changes of the expression pattern of CRYM in different rat organs during development using immunohistochemistry and immunoblotting. As CRYM is reportedly expressed in the corticospinal tract, we also investigated CRYM expression in human cases of amyotrophic lateral sclerosis (ALS) using immunohistochemistry. In the rat brain, CRYM was expressed in the cerebral cortex, basal ganglia, hippocampus and corticospinal tract in the early postnatal period. As postnatal development progressed, CRYM expression was restricted to large pyramidal neurons in layers V and VI of the cerebral cortex and pyramidal cells in the deep layer of CA1 in the hippocampus. Even within the same regions, CRYM-positive and negative neurons were distributed in a mosaic pattern. In the kidney, CRYM was expressed in epithelial cells of the proximal tubule and mesenchymal cells of the medulla in the early postnatal period; however, CRYM expression in the medulla was lost as mesenchymal cell numbers decreased with the rapid growth of the medulla. In human ALS brains, we observed marked loss of CRYM in the corticospinal tract, especially distally. Our results suggest that CRYM may play roles in development of cortical and hippocampal pyramidal cells in the early postnatal period, and in the later period, performs cell-specific functions in selected neuronal populations. In the kidney, CRYM may play roles in maturation of renal function. The expression patterns of CRYM may reflect significance of its interactions with T3 or ketimines in these cells and organs. The results also indicate that CRYM may be used as a marker of axonal degeneration in the corticospinal tract.
Collapse
Affiliation(s)
- Reiji Hommyo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norihisa Maeda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Microarray and morphological analysis of early postnatal CRB2 mutant retinas on a pure C57BL/6J genetic background. PLoS One 2013; 8:e82532. [PMID: 24324803 PMCID: PMC3855766 DOI: 10.1371/journal.pone.0082532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/25/2013] [Indexed: 02/06/2023] Open
Abstract
In humans, the Crumbs homologue-1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. The severity of the phenotype due to human CRB1 or mouse Crb1 mutations is dependent on the genetic background. Mice on C57BL/6J background with Crb1 mutations show late onset of retinal spotting phenotype or no phenotype. Recently, we showed that conditional deletion of mouse Crb2 in the retina results in early retinal disorganization leading to severe and progressive retinal degeneration with concomitant visual loss that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Recent studies in the fruit fly and zebrafish suggest roles of the Crumbs (CRB) complex members in the regulation of cellular signalling pathways including the Notch1, mechanistic target of rapamycin complex 1 (mTORC1) and the Hippo pathway. Here, we demonstrate that mice backcrossed to C57BL/6J background with loss of CRB2 in the retina show a progressive disorganization and degeneration phenotype during late retinal development. We used microarray gene profiling to study the transcriptome of retinas lacking CRB2 during late retinal development. Unexpectedly, the retinas of newborn mice lacking CRB2 showed no changes in the transcriptome during retinal development. These findings suggest that loss of CRB2 in the developing retina results in retinal disorganization and subsequent degeneration without major changes in the transcriptome of the retina. These mice might be an interesting model to study the onset of retinal degeneration upon loss of CRB proteins.
Collapse
|
4
|
Kandpal RP, Rajasimha HK, Brooks MJ, Nellissery J, Wan J, Qian J, Kern TS, Swaroop A. Transcriptome analysis using next generation sequencing reveals molecular signatures of diabetic retinopathy and efficacy of candidate drugs. Mol Vis 2012; 18:1123-46. [PMID: 22605924 PMCID: PMC3351417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 04/28/2012] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To define gene expression changes associated with diabetic retinopathy in a mouse model using next generation sequencing, and to utilize transcriptome signatures to assess molecular pathways by which pharmacological agents inhibit diabetic retinopathy. METHODS We applied a high throughput RNA sequencing (RNA-seq) strategy using Illumina GAIIx to characterize the entire retinal transcriptome from nondiabetic and from streptozotocin-treated mice 32 weeks after induction of diabetes. Some of the diabetic mice were treated with inhibitors of receptor for advanced glycation endproducts (RAGE) and p38 mitogen activated protein (MAP) kinase, which have previously been shown to inhibit diabetic retinopathy in rodent models. The transcripts and alternatively spliced variants were determined in all experimental groups. RESULTS Next generation sequencing-based RNA-seq profiles provided comprehensive signatures of transcripts that are altered in early stages of diabetic retinopathy. These transcripts encoded proteins involved in distinct yet physiologically relevant disease-associated pathways such as inflammation, microvasculature formation, apoptosis, glucose metabolism, Wnt signaling, xenobiotic metabolism, and photoreceptor biology. Significant upregulation of crystallin transcripts was observed in diabetic animals, and the diabetes-induced upregulation of these transcripts was inhibited in diabetic animals treated with inhibitors of either RAGE or p38 MAP kinase. These two therapies also showed dissimilar regulation of some subsets of transcripts that included alternatively spliced versions of arrestin, neutral sphingomyelinase activation associated factor (Nsmaf), SH3-domain GRB2-like interacting protein 1 (Sgip1), and axin. CONCLUSIONS Diabetes alters many transcripts in the retina, and two therapies that inhibit the vascular pathology similarly inhibit a portion of these changes, pointing to possible molecular mechanisms for their beneficial effects. These therapies also changed the abundance of various alternatively spliced versions of signaling transcripts, suggesting a possible role of alternative splicing in disease etiology. Our studies clearly demonstrate RNA-seq as a comprehensive strategy for identifying disease-specific transcripts, and for determining comparative profiles of molecular changes mediated by candidate drugs.
Collapse
Affiliation(s)
- Raj P. Kandpal
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD,Department of Basic Medical Sciences and Western Diabetes Institute, Western University of Health Sciences, Pomona, CA
| | - Harsha K. Rajasimha
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Matthew J. Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Jun Wan
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Timothy S. Kern
- Department of Medicine, Case Western Reserve University School of Medicine, and Stokes Veterans Administration Hospital, Cleveland, OH,Department of Pharmacology, Case Western Reserve University School of Medicine, and Stokes Veterans Administration Hospital, Cleveland, OH,Department of Ophthalmology, Case Western Reserve University School of Medicine, and Stokes Veterans Administration Hospital, Cleveland, OH
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Zaghloul NA, Yan B, Moody SA. Step-wise specification of retinal stem cells during normal embryogenesis. Biol Cell 2012; 97:321-37. [PMID: 15836431 DOI: 10.1042/bc20040521] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The specification of embryonic cells to produce the retina begins at early embryonic stages as a multi-step process that gradually restricts fate potentials. First, a subset of embryonic cells becomes competent to form retina by their lack of expression of endo-mesoderm-specifying genes. From these cells, a more restricted subset is biased to form retina by virtue of their close proximity to sources of bone morphogenetic protein antagonists during neural induction. During gastrulation, the definitive RSCs (retinal stem cells) are specified as the eye field by interactions with underlying mesoderm and the expression of a network of retina-specifying genes. As the eye field is transformed into the optic vesicle and optic cup, a heterogeneous population of RPCs (retinal progenitor cells) forms to give rise to the different domains of the retina: the optic stalk, retinal pigmented epithelium and neural retina. Further diversity of RPCs appears to occur under the influences of cell-cell interactions, cytokines and combinations of regulatory genes, leading to the differentiation of a multitude of different retinal cell types. This review examines what is known about each sequential step in retinal specification during normal vertebrate development, and how that knowledge will be important to understand how RSCs might be manipulated for regenerative therapies to treat retinal diseases.
Collapse
Affiliation(s)
- Norann A Zaghloul
- Department of Anatomy and Cell Biology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
6
|
Jelcick AS, Yuan Y, Leehy BD, Cox LC, Silveira AC, Qiu F, Schenk S, Sachs AJ, Morrison MA, Nystuen AM, DeAngelis MM, Haider NB. Genetic variations strongly influence phenotypic outcome in the mouse retina. PLoS One 2011; 6:e21858. [PMID: 21779340 PMCID: PMC3136482 DOI: 10.1371/journal.pone.0021858] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/07/2011] [Indexed: 01/22/2023] Open
Abstract
Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2-nb1 at embryonic day 18.5 (E18.5) and postnatal day 30.5 (P30.5). Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.
Collapse
Affiliation(s)
- Austin S. Jelcick
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yang Yuan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Barrett D. Leehy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lakeisha C. Cox
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Alexandra C. Silveira
- Ocular Molecular Genetics Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Fang Qiu
- Division of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sarah Schenk
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Andrew J. Sachs
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Margaux A. Morrison
- Ocular Molecular Genetics Institute, Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Arne M. Nystuen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Margaret M. DeAngelis
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Neena B. Haider
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kim DH, Schwartz CE. The genetics of pain: implications for evaluation and treatment of spinal disease. Spine J 2010; 10:827-40. [PMID: 20615760 DOI: 10.1016/j.spinee.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/07/2010] [Accepted: 05/22/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Variability in human pain experience appears to be at least partially determined by genetic inheritance. To the extent that awareness of individual pain sensitivity and the tendency to develop chronic pain after injury or surgery would be informative for clinical decision making, development and use of genetic testing for specific pain markers could contribute to improved outcomes in management of spinal disease. PURPOSE To review important and illustrative results from both classical and modern pain genetics studies and to introduce readers to critical definitions and concepts necessary to interpret the growing body of genetics literature relevant to spinal disease. STUDY DESIGN/SETTING Literature review and commentary. METHODS A review was performed of published English language studies in which genetic techniques were used to analyze the molecular basis of nociceptive signaling or processing with a particular emphasis on studies addressing genetic determinants of interindividual variability in pain sensitivity or predisposition to chronic pain. RESULTS There is compelling evidence indicating that interindividual differences in pain sensitivity and the risk of developing chronic pain syndromes are genetically determined. Despite a growing list of putative "pain genes," genetic association studies remain plagued with difficulty replicating initial findings in different cohorts. CONCLUSIONS Genome-wide association studies are potentially powerful means of identifying clinically relevant genetic markers predicting disease susceptibility, severity, and treatment response. However, accurate results require rigorous study design with use of large homogeneous populations and precise phenotypes.
Collapse
Affiliation(s)
- David H Kim
- Department of Orthopaedic Surgery, Tufts University Medical School, New England Baptist Hospital, Boston, MA 02120, USA.
| | | |
Collapse
|
8
|
Genini S, Zangerl B, Slavik J, Acland GM, Beltran WA, Aguirre GD. Transcriptional profile analysis of RPGRORF15 frameshift mutation identifies novel genes associated with retinal degeneration. Invest Ophthalmol Vis Sci 2010; 51:6038-50. [PMID: 20574030 DOI: 10.1167/iovs.10-5443] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. RESULTS At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. CONCLUSIONS Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process.
Collapse
Affiliation(s)
- Sem Genini
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ozduman K, Ozkan A, Yildirim O, Pamir MN, Gunel M, Kilic T. Temporal expression of angiogenesis-related genes in developing neonatal rodent retina: a novel in vivo model to study cerebral vascular development. Neurosurgery 2010; 66:538-43; discussion 543. [PMID: 20173549 DOI: 10.1227/01.neu.0000365615.24973.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Experimental models to study cerebrovascular malformations are limited therefore we used the neonatal rodent retina as a model to study cerebral angiogenesis. OBJECTIVE We performed a gene expression analysis to define temporal changes in the expression of 96 angiogenesis-related genes during retinal vascularization. METHODS A total of 72 retinas from 36 newborn C57BL/6 mice were used. Sets of neonatal mouse retinas were surgically isolated by 2-day intervals starting from postnatal day 0 to day 20 and at the 32nd day (representing adult retinas). For each of these 12 time points in the postnatal developmental period of mouse retinas, separate sets of 6 retinas from 3 mice were pooled, and their RNA was hybridized to an angiogenesis-specific gene array. Temporal expression patterns of each of the 96 angiogenesis-related genes were analyzed. For confirmation, vascular endothelial growth factor protein expression was also studied by immunohistochemistry. RESULTS Twenty-two of the 96 genes analyzed displayed a significantly different temporal expression profile, and the rest exhibited a static expression, as compared to the human glyceraldehyde-3-phosphate dehydrogenase gene. Among these genes, the temporal pattern of expression was variable, but peaks were seen mostly on days 8, 10, 12, and 16. This timing corresponds well to morphologic changes that occur in the retina during different stages of angiogenesis. CONCLUSION The neonatal rodent retina, which has a cellular architecture similar to that of the brain, has active and quantifiable angiogenic activity during the neonatal period and can be used as a simple and convenient model to study cerebral angiogenesis.
Collapse
Affiliation(s)
- Koray Ozduman
- Laboratory of Molecular Neurosurgery, Marmara University Institute of Neurological Sciences, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
10
|
Tallis MJ, Lin Y, Rogers A, Zhang J, Street NR, Miglietta F, Karnosky DF, De Angelis P, Calfapietra C, Taylor G. The transcriptome of Populus in elevated CO reveals increased anthocyanin biosynthesis during delayed autumnal senescence. THE NEW PHYTOLOGIST 2010; 186:415-28. [PMID: 20202130 DOI: 10.1111/j.1469-8137.2010.03184.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
*The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO2 may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. *Using a plantation of Populus x euramericana grown in elevated [CO2] (e[CO2]) with free-air CO2 enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO2] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. *Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO2] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO2], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO2]/ambient CO(2) (a[CO2])) expression ratios of 39.6 and 19.3, respectively. *We showed that in e[CO2] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.
Collapse
Affiliation(s)
- M J Tallis
- School of Biological Science, Bassett Crescent East, University of Southampton, Southampton SO16 7PX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Computational prediction of neural progenitor cell fates. Nat Methods 2010; 7:213-8. [PMID: 20139969 DOI: 10.1038/nmeth.1424] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/10/2009] [Indexed: 01/29/2023]
Abstract
Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.
Collapse
|
12
|
Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KSM, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LRG. Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 2009; 28:39-52. [PMID: 19800961 DOI: 10.1016/j.ijdevneu.2009.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/09/2009] [Accepted: 09/24/2009] [Indexed: 12/29/2022] Open
Abstract
Connexin (Cx) channels and hemichannels are involved in essential processes during nervous system development such as apoptosis, propagation of spontaneous activity and interkinetic nuclear movement. In the first part of this study, we extensively characterized Cx gene and protein expression during retinal histogenesis. We observed distinct spatio-temporal patterns among studied Cx and an overriding, ubiquitous presence of Cx45 in progenitor cells. The role of Cx-mediated communication was assessed by using broad-spectrum (carbenoxolone, CBX) and Cx36/Cx50 channel-specific (quinine) blockers. In vivo application of CBX, but not quinine, caused remarkable reduction in retinal thickness, suggesting changes in cell proliferation/apoptosis ratio. Indeed, we observed a decreased number of mitotic cells in CBX-injected retinas, with no significant changes in the expression of PCNA, a marker for cells in proliferative state. Taken together, our results pointed a pivotal role of Cx45 in the developing retina. Moreover, this study revealed that Cx-mediated communication is essential in retinal histogenesis, particularly in the control of cell proliferation.
Collapse
Affiliation(s)
- Alexandre H Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. A unique program for cell death in xylem fibers of Populus stem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:260-74. [PMID: 19175765 DOI: 10.1111/j.1365-313x.2008.03777.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.
Collapse
|
14
|
Crosson LA, Kroes RA, Moskal JR, Linsenmeier RA. Gene expression patterns in hypoxic and post-hypoxic adult rat retina with special reference to the NMDA receptor and its interactome. Mol Vis 2009; 15:296-311. [PMID: 19204789 PMCID: PMC2635851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 01/24/2009] [Indexed: 11/04/2022] Open
Abstract
PURPOSE A gene expression analysis of hypoxic rat retina was undertaken to gain a deeper understanding of the possible molecular mechanisms that underlie hypoxia-induced retinal pathologies and identify possible therapeutic targets. METHODS Rats were made severely hypoxic (6%-7% O(2)) for 3 h. Some rats were sacrificed at this time, and others were allowed to recover for 24 h under normoxic conditions. A focused oligonucleotide microarray of 1,178 genes, qRT-PCR of selected transcripts, and western analysis of hypoxia inducible factor-1alpha (HIF-1alpha) were used to compare retinas from the hypoxic and recovery groups to control animals that were not made hypoxic. SAM analysis was used to identify statistically significant changes in microarray data, and the bioinformatics programs GoMiner, Gene Set Enrichment Analysis (GSEA), and HiMAP were used to identify significant ontological categories and analyze the N-methyl-D-aspartate (NMDA) receptor interactome. RESULTS HIF-1alpha protein, but not mRNA, was elevated up to 15-fold during hypoxia, beginning at 0.5 h, the shortest duration examined. Of the total of 1,178 genes examined by microarray, 119 were significantly upregulated following hypoxia. Of these, 86 were still significantly upregulated following recovery. However, 24 genes were significantly downregulated following hypoxia, with 12 still significantly downregulated after recovery. Of the 1035 genes that did not change with hypoxia, the expression of 36 genes was significantly changed after recovery. Ontological analyses showed significant upregulation of a large number of genes in the glutamate receptor family, including 3 of the 5 NMDA subunits. qRT-PCR analysis further corroborated these findings. Genes known to directly interact specifically with the NR1 subunit of the NMDA receptor were identified using HiMAP databases. GSEA analysis revealed that these genes were not affected by either hypoxia or altered after recovery. CONCLUSIONS The identification of gene expression alterations as a function of hypoxia and recovery from hypoxia is important to understand the molecular mechanisms underlying retinal dysfunction associated with a variety of diseases. Gene changes were identified in hypoxic retina that could be linked to specific networks. Retinas recovering from hypoxia also showed distinct patterns of gene expression that were different from both normoxic control retinas and hypoxic retinas, indicating that hypoxia initiates a complex pattern of gene expression. Diseases of which hypoxia is a component may exhibit the several changes found here. Several potential therapeutic targets have been identified by our approach, including modulation of NMDA receptor expression and signaling, which until now have only been shown to play a role in responding to ischemia.
Collapse
Affiliation(s)
- Lori Ann Crosson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - Roger A. Kroes
- Department of Biomedical Engineering, Northwestern University, Evanston, IL,The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL
| | - Joseph R. Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL,The Falk Center for Molecular Therapeutics, Northwestern University, Evanston, IL
| | - Robert A. Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL,Department of Neurobiology & Physiology, Northwestern University, Evanston, IL
| |
Collapse
|
15
|
Sjödin A, Wissel K, Bylesjö M, Trygg J, Jansson S. Global expression profiling in leaves of free-growing aspen. BMC PLANT BIOLOGY 2008; 8:61. [PMID: 18500984 PMCID: PMC2416451 DOI: 10.1186/1471-2229-8-61] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/23/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND Genomic studies are routinely performed on young plants in controlled environments which is very different from natural conditions. In reality plants in temperate countries are exposed to large fluctuations in environmental conditions, in the case of perennials over several years. We have studied gene expression in leaves of a free-growing aspen (Populus tremula) throughout multiple growing seasons RESULTS We show that gene expression during the first month of leaf development was largely determined by a developmental program although leaf expansion, chlorophyll accumulation and the speed of progression through this program was regulated by the temperature. We were also able to define "transcriptional signatures" for four different substages of leaf development. In mature leaves, weather factors were important for gene regulation. CONCLUSION This study shows that multivariate methods together with high throughput transcriptional methods in the field can provide additional, novel information as to plant status under changing environmental conditions that is impossible to mimic in laboratory conditions. We have generated a dataset that could be used to e.g. identify marker genes for certain developmental stages or treatments, as well as to assess natural variation in gene expression.
Collapse
Affiliation(s)
- Andreas Sjödin
- Um eå Plant Science Centre, Department of Plant Physiology, Um eå University, SE-901 87 Um eå, Sweden
| | - Kirsten Wissel
- Um eå Plant Science Centre, Department of Plant Physiology, Um eå University, SE-901 87 Um eå, Sweden
- Department of Otolaryngology, Medical University of Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Max Bylesjö
- Research Group for Chemometrics, Department of Chemistry, Um eå University, SE-901 87 Um eå, Sweden
| | - Johan Trygg
- Research Group for Chemometrics, Department of Chemistry, Um eå University, SE-901 87 Um eå, Sweden
| | - Stefan Jansson
- Um eå Plant Science Centre, Department of Plant Physiology, Um eå University, SE-901 87 Um eå, Sweden
| |
Collapse
|
16
|
Abstract
A methodology for microdissecting intact retinas from zebrafish embryos at early developmental stages for expression profiling was developed in this study. Total RNA was extracted consistently and reproducibly from the dissected retinas using a customized extraction protocol. The results from microarray experiments indicated that the purified RNA samples faithfully represented the biological differences among different types of samples. Genes that were differentially expressed in a particular neuronal layer or region of the retina were detectable by microarray experiments. In conclusion, this methodology makes it possible to obtain retinal-specific total RNA for genomics research on retinal development in zebrafish.
Collapse
Affiliation(s)
- Yuk Fai Leung
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
17
|
Ben-Shlomo G, Ofri R, Bandah D, Rosner M, Sharon D. Microarray-based gene expression analysis during retinal maturation of albino rats. Graefes Arch Clin Exp Ophthalmol 2008; 246:693-702. [PMID: 18286297 DOI: 10.1007/s00417-008-0772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/03/2008] [Accepted: 01/12/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In recent years, the rat has become a commonly-used animal model for the study of retinal diseases. Similar to other tissues, the retina undergoes significant functional changes during maturation. Aiming to gain knowledge on additional aspects of retinal maturation, we performed gene expression and histological analyses of the rat retina during maturation. METHODS Rat retinas were dissected at three time points. Histological examination of the samples was performed, and the expression levels of retinal genes were evaluated using the rat whole-genome microarray system. Quantitative real-time PCR analysis was used to validate selected expression patterns. Various statistical and bioinformatic tools were used to identify differentially expressed genes. RESULTS The microarray analysis revealed a relatively high number of highly expressed non-annotated genes. We identified 603 differentially expressed genes, which were grouped into six clusters based on changes in expression levels during the first 20 weeks of life. A bioinformatic analysis of these clusters revealed sets of genes encoding proteins with functions that are likely to be relevant to retinal maturation (potassium, sodium, calcium, and chloride channels, synaptic vesicle transport, and axonogenesis). The histological analysis revealed a significant reduction of outer nuclear layer thickness and retinal ganglion cell number during maturation. CONCLUSIONS These data, taken together with our previously reported electrophysiological data, contribute to our understanding of the retinal maturation processes of this widely-used animal model.
Collapse
Affiliation(s)
- Gil Ben-Shlomo
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
18
|
Hecker LA, Alcon TC, Honavar VG, Greenlee MHW. Using a seed-network to query multiple large-scale gene expression datasets from the developing retina in order to identify and prioritize experimental targets. Bioinform Biol Insights 2008; 2:401-12. [PMID: 19812791 PMCID: PMC2735966 DOI: 10.4137/bbi.s417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Understanding the gene networks that orchestrate the differentiation of retinal progenitors into photoreceptors in the developing retina is important not only due to its therapeutic applications in treating retinal degeneration but also because the developing retina provides an excellent model for studying CNS development. Although several studies have profiled changes in gene expression during normal retinal development, these studies offer at best only a starting point for functional studies focused on a smaller subset of genes. The large number of genes profiled at comparatively few time points makes it extremely difficult to reliably infer gene networks from a gene expression dataset. We describe a novel approach to identify and prioritize from multiple gene expression datasets, a small subset of the genes that are likely to be good candidates for further experimental investigation. We report progress on addressing this problem using a novel approach to querying multiple large-scale expression datasets using a 'seed network' consisting of a small set of genes that are implicated by published studies in rod photoreceptor differentiation. We use the seed network to identify and sort a list of genes whose expression levels are highly correlated with those of multiple seed network genes in at least two of the five gene expression datasets. The fact that several of the genes in this list have been demonstrated, through experimental studies reported in the literature, to be important in rod photoreceptor function provides support for the utility of this approach in prioritizing experimental targets for further experimental investigation. Based on Gene Ontology and KEGG pathway annotations for the list of genes obtained in the context of other information available in the literature, we identified seven genes or groups of genes for possible inclusion in the gene network involved in differentiation of retinal progenitor cells into rod photoreceptors. Our approach to querying multiple gene expression datasets using a seed network constructed from known interactions between specific genes of interest provides a promising strategy for focusing hypothesis-driven experiments using large-scale 'omics' data.
Collapse
Affiliation(s)
- Laura A Hecker
- Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
19
|
Szpara ML, Vranizan K, Tai YC, Goodman CS, Speed TP, Ngai J. Analysis of gene expression during neurite outgrowth and regeneration. BMC Neurosci 2007; 8:100. [PMID: 18036227 PMCID: PMC2245955 DOI: 10.1186/1471-2202-8-100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 11/23/2007] [Indexed: 01/08/2023] Open
Abstract
Background The ability of a neuron to regenerate functional connections after injury is influenced by both its intrinsic state and also by extrinsic cues in its surroundings. Investigations of the transcriptional changes undergone by neurons during in vivo models of injury and regeneration have revealed many transcripts associated with these processes. Because of the complex milieu of interactions in vivo, these results include not only expression changes directly related to regenerative outgrowth and but also unrelated responses to surrounding cells and signals. In vitro models of neurite outgrowth provide a means to study the intrinsic transcriptional patterns of neurite outgrowth in the absence of extensive extrinsic cues from nearby cells and tissues. Results We have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo. Conclusion Many gene expression changes undergone by SCG and DRG during in vitro outgrowth are shared between these two tissue types and in common with in vivo regeneration models. This suggests that the genes identified in this in vitro study may represent new candidates worthy of further study for potential roles in the therapeutic regrowth of neuronal connections.
Collapse
Affiliation(s)
- Moriah L Szpara
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Griffin RS, Costigan M, Brenner GJ, Him Eddie Ma C, Scholz J, Moss A, Allchorne AJ, Stahl GL, Woolf CJ. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 2007; 27:8699-708. [PMID: 17687047 PMCID: PMC6672952 DOI: 10.1523/jneurosci.2018-07.2007] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microarray expression profiles reveal substantial changes in gene expression in the ipsilateral dorsal horn of the spinal cord in response to three peripheral nerve injury models of neuropathic pain. However, only 54 of the 612 regulated genes are commonly expressed across all the neuropathic pain models. Many of the commonly regulated transcripts are immune related and include the complement components C1q, C3, and C4, which we find are expressed only by microglia. C1q and C4 are, moreover, the most strongly regulated of all 612 regulated genes. In addition, we find that the terminal complement component C5 and the C5a receptor (C5aR) are upregulated in spinal microglia after peripheral nerve injury. Mice null for C5 had reduced neuropathic pain sensitivity, excluding C3a as a pain effector. C6-deficient rats, which cannot form the membrane attack complex, have a normal neuropathic pain phenotype. However, C5a applied intrathecally produces a dose-dependent, slow-onset cold pain in naive animals. Furthermore, a C5aR peptide antagonist reduces cold allodynia in neuropathic pain models. We conclude that induction of the complement cascade in spinal cord microglia after peripheral nerve injury contributes to neuropathic pain through the release and action of the C5a anaphylatoxin peptide.
Collapse
Affiliation(s)
- Robert S. Griffin
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Michael Costigan
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Gary J. Brenner
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Chi Him Eddie Ma
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Joachim Scholz
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Andrew Moss
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Andrew J. Allchorne
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| | - Gregory L. Stahl
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Clifford J. Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, and
| |
Collapse
|
21
|
Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP. Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:557-73. [PMID: 17419838 DOI: 10.1111/j.1365-313x.2007.03077.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have performed transcript and metabolite profiling of isolated cambial meristem cells of the model tree aspen during the course of their activity-dormancy cycle to better understand the environmental and hormonal regulation of this process in perennial plants. Considerable modulation of cambial transcriptome and metabolome occurs throughout the activity-dormancy cycle. However, in addition to transcription, post-transcriptional control is also an important regulatory mechanism as exemplified by the regulation of cell-cycle genes during the reactivation of cambial cell division in the spring. Genes related to cold hardiness display temporally distinct induction patterns in the autumn which could explain the step-wise development of cold hardiness. Factors other than low temperature regulate the induction of early cold hardiness-related genes whereas abscisic acid (ABA) could potentially regulate the induction of late cold hardiness-related genes in the autumn. Starch breakdown in the autumn appears to be regulated by the 'short day' signal and plays a key role in providing substrates for the production of energy, fatty acids and cryoprotectants. Catabolism of sucrose and fats provides energy during the early stages of reactivation in the spring, whereas the reducing equivalents are generated through activation of the pentose phosphate shunt. Modulation of gibberellin (GA) signaling and biosynthesis could play a key role in the regulation of cambial activity during the activity-dormancy cycle as suggested by the induction of PttRGA which encodes a negative regulator of growth in the autumn and that of a GA-20 oxidase, a key gibberellin biosynthesis gene during reactivation in spring. In summary, our data reveal the dynamics of transcriptional and metabolic networks and identify potential targets of environmental and hormonal signals in the regulation of the activity-dormancy cycle in cambial meristem.
Collapse
Affiliation(s)
- Nathalie Druart
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, The Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 2007; 235:3404-12. [PMID: 17039550 PMCID: PMC2730892 DOI: 10.1002/dvdy.20978] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mammary gland develops in a process known as branching morphogenesis, whereby a distal epithelial bud extends and bifurcates to form an extensive ductal network. Compared with other branched organs, such as the lung and kidney, little is known about the molecular basis of branching in the mammary gland. Here we report a microarray profiling strategy to identify novel genes that may regulate mammary branching. We microdissected terminal end bud (TEB) and mature duct microenvironments from beta-actin-green fluorescent protein reporter mice and compared their RNA expression profiles with epithelium-free mammary stroma by means of microarray. We identified 1,074 genes enriched in the TEB microenvironment, 222 genes enriched in the mature duct microenvironment, and 385 genes enriched in both TEB and mature duct microenvironments. The microarray correctly predicted the expression of genes known to be enriched in the epithelium (Ets-5) and stroma (MMP-14) of TEBs and in the mature duct microenvironment (MMP-3). The microarray also correctly predicted the localization of previously uncharacterized genes, such as the TEB-enriched SPRR-1a, the duct-enriched casein-gamma, and the general epithelial marker pleiotrophin. Analysis of genes enriched in TEBs revealed several genes in the Wnt (Wnt-2, Wnt-5a, Wnt-7b, Dsh-3, Frizzled-1, Frizzled-2), hedgehog (Dhh), ephrin (Ephrin-B1, Eph-A2), and transcription factor (Twist-1, Twist-2, Snail) families. In situ hybridization verified that these genes were enriched in the TEB epithelium (Wnt-5a, Wnt-7b, Dhh, Eph-A2) or TEB stroma (Wnt-2, Frizzled-1, Ephrin-B1). We discuss the potential roles of these genes in mammary branching morphogenesis.
Collapse
Affiliation(s)
| | - Zena Werb
- Correspondence to: Zena Werb, Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452. E-mail:
| |
Collapse
|
23
|
Leung YF, Ma P, Dowling JE. Gene expression profiling of zebrafish embryonic retinal pigment epithelium in vivo. Invest Ophthalmol Vis Sci 2007; 48:881-90. [PMID: 17251491 PMCID: PMC2663524 DOI: 10.1167/iovs.06-0723] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Eye development and photoreceptor maintenance is dependent on the retinal pigment epithelium (RPE), a thin layer of cells that underlies the neural retina. Despite its importance, development of RPE has not been studied by a genomic approach. In this study, a microarray expression-profiling methodology was established for studying RPE development. METHODS The intact retina with RPE attached was dissected from developing embryos, and differentially expressed genes in RPE were inferred by comparing the dissected tissues with retinas without RPE, in microarray and statistical analyses. RESULTS Of the probesets used, 8810 were significantly expressed in RPE at 52 hours postfertilization (hpf), of which 1443 may have biologically meaningful expression levels. Further, 78 and 988 probesets were found to be significantly over- or underexpressed in RPE, respectively, compared with retina. Also, 79.2% (38/48) of the known overexpressed probesets were independently validated as RPE-related transcripts. CONCLUSIONS The results strongly suggest that this methodology can obtain in vivo RPE-specific gene expression from the zebrafish embryos and identify novel RPE markers.
Collapse
Affiliation(s)
- Yuk Fai Leung
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
24
|
Jaroudi S, SenGupta S. DNA repair in mammalian embryos. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2007; 635:53-77. [PMID: 17141556 DOI: 10.1016/j.mrrev.2006.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/15/2022]
Abstract
Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.
Collapse
Affiliation(s)
- Souraya Jaroudi
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Sioban SenGupta
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
25
|
Mühleisen TW, Agoston Z, Schulte D. Retroviral misexpression of cVax disturbs retinal ganglion cell axon fasciculation and intraretinal pathfinding in vivo and guidance of nasal ganglion cell axons in vivo. Dev Biol 2006; 297:59-73. [PMID: 16769047 DOI: 10.1016/j.ydbio.2006.04.466] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 03/31/2006] [Accepted: 04/26/2006] [Indexed: 01/20/2023]
Abstract
The transcription factor cVax (Vax2) is expressed in the ventral neural retina and restricted expression is a prerequisite for at least three prominent aspects of retinal dorsal-ventral patterning: polarized expression of EphB/B-ephrin molecules, the retinotectal projection and the distribution of rod photoreceptors across the retina. In the chick retina, the fasciculation pattern of ganglion cell axons also differs between the dorsal and ventral eye. To investigate the molecular mechanisms involved, the nerve fiber layer was analyzed after retroviral misexpression of several factors known to regulate the positional specification of retinal ganglion cells. Forced cVax expression ventralized the fasciculation pattern and caused axon pathfinding errors near the optic disc. Ectopic expression of different ephrin molecules indicated that axon fasciculation is, at least in part, mediated by the EphB system. Finally, we report that retroviral misexpression of cVax increased the pool of EphA4 receptors phosphorylated on tyrosine residues and altered the guidance preference of nasal axons in vitro. These results identify novel functions for cVax in intraretinal axon fasciculation and pathfinding as well as suggest a mechanism to explain how restricted cVax expression may influence map formation along the dorso-ventral and antero-posterior axes of the optic tectum.
Collapse
Affiliation(s)
- Thomas W Mühleisen
- Max-Planck-Institute für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt am Main, Germany
| | | | | |
Collapse
|
26
|
Zhang SSM, Xu X, Liu MG, Zhao H, Soares MB, Barnstable CJ, Fu XY. A biphasic pattern of gene expression during mouse retina development. BMC DEVELOPMENTAL BIOLOGY 2006; 6:48. [PMID: 17044933 PMCID: PMC1633734 DOI: 10.1186/1471-213x-6-48] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 10/17/2006] [Indexed: 12/19/2022]
Abstract
BACKGROUND Between embryonic day 12 and postnatal day 21, six major neuronal and one glia cell type are generated from multipotential progenitors in a characteristic sequence during mouse retina development. We investigated expression patterns of retina transcripts during the major embryonic and postnatal developmental stages to provide a systematic view of normal mouse retina development, RESULTS A tissue-specific cDNA microarray was generated using a set of sequence non-redundant EST clones collected from mouse retina. Eleven stages of mouse retina, from embryonic day 12.5 (El2.5) to postnatal day 21 (PN21), were collected for RNA isolation. Non-amplified RNAs were labeled for microarray experiments and three sets of data were analyzed for significance, hierarchical relationships, and functional clustering. Six individual gene expression clusters were identified based on expression patterns of transcripts through retina development. Two developmental phases were clearly divided with postnatal day 5 (PN5) as a separate cluster. Among 4,180 transcripts that changed significantly during development, approximately 2/3 of the genes were expressed at high levels up until PN5 and then declined whereas the other 1/3 of the genes increased expression from PN5 and remained at the higher levels until at least PN21. Less than 1% of the genes observed showed a peak of expression between the two phases. Among the later increased population, only about 40% genes are correlated with rod photoreceptors, indicating that multiple cell types contributed to gene expression in this phase. Within the same functional classes, however, different gene populations were expressed in distinct developmental phases. A correlation coefficient analysis of gene expression during retina development between previous SAGE studies and this study was also carried out. CONCLUSION This study provides a complementary genome-wide view of common gene dynamics and a broad molecular classification of mouse retina development. Different genes in the same functional clusters are expressed in the different developmental stages, suggesting that cells might change gene expression profiles from differentiation to maturation stages. We propose that large-scale changes in gene regulation during development are necessary for the final maturation and function of the retina.
Collapse
Affiliation(s)
- Samuel Shao-Min Zhang
- Departments of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xuming Xu
- Departments of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mu-Gen Liu
- Departments of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Epidemiology and Public Health and Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marcelo Bento Soares
- Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Illinois, USA
| | - Colin J Barnstable
- Departments of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xin-Yuan Fu
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indiana, USA
| |
Collapse
|
27
|
Matsubara S, Hurry V, Druart N, Benedict C, Janzik I, Chavarría-Krauser A, Walter A, Schurr U. Nocturnal changes in leaf growth of Populus deltoides are controlled by cytoplasmic growth. PLANTA 2006; 223:1315-28. [PMID: 16333638 DOI: 10.1007/s00425-005-0181-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/18/2005] [Indexed: 05/05/2023]
Abstract
Growing leaves do not expand at a constant rate but exhibit pronounced diel growth rhythms. However, the mechanisms giving rise to distinct diel growth dynamics in different species are still largely unknown. As a first step towards identifying genes controlling rate and timing of leaf growth, we analysed the transcriptomes of rapidly expanding and fully expanded leaves of Populus deltoides Bartr. ex. Marsh at points of high and low expansion at night. Tissues with well defined temporal growth rates were harvested using an online growth-monitoring system based on a digital image sequence processing method developed for quantitative mapping of dicot leaf growth. Unlike plants studied previously, leaf growth in P. deltoides was characterised by lack of a base-tip gradient across the lamina, and by maximal and minimal growth at dusk and dawn, respectively. Microarray analysis revealed that the nocturnal decline in growth coincided with a concerted down-regulation of ribosomal protein genes, indicating deceleration of cytoplasmic growth. In a subsequent time-course experiment, Northern blotting and real-time RT-PCR confirmed that the ribosomal protein gene RPL12 and a cell-cycle gene H2B were down-regulated after midnight following a decrease in cellular carbohydrate concentrations. Thus, we propose that the spatio-temporal growth pattern in leaves of P. deltoides primarily arises from cytoplasmic growth whose activity increases from afternoon to midnight and thereafter decreases in this species.
Collapse
Affiliation(s)
- Shizue Matsubara
- Institut for Chemistry and Dynamics of the Geosphere: Phytosphere (ICG-III), Research Centre Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Druart N, Rodríguez-Buey M, Barron-Gafford G, Sjödin A, Bhalerao R, Hurry V. Molecular targets of elevated [CO 2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:121-131. [PMID: 32689219 DOI: 10.1071/fp05139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 09/20/2005] [Indexed: 06/11/2023]
Abstract
We report the first comprehensive analysis of the effects of elevated [CO2] on gene expression in source leaf and stem sink tissues in woody plants. We have taken advantage of coppiced Populus deltoides (Bartr.) stands grown for 3 years under three different and constant elevated [CO2] in the agriforest mesocosms of Biosphere 2. Leaf area per tree was doubled by elevated [CO2] but although growth at 800 v. 400 µmol mol-1 CO2 resulted in a significant increase in stem biomass, growth was not stimulated at 1200 µmol mol-1 CO2. Growth under elevated [CO2] also resulted in significant increases in stem wood density. Analysis of expression data for the 13 490 clones present on POP1 microarrays revealed 95 and 277 [CO2]-responsive clones in leaves and stems respectively, with the response being stronger at 1200 µmol mol-1. When these [CO2]-responsive genes were assigned to functional categories, metabolism-related genes were the most responsive to elevated [CO2]. However within this category, expression of genes relating to bioenergetic processes was unchanged in leaves whereas the expression of genes for storage proteins and of those involved in control of wall expansion was enhanced. In contrast to leaves, the genes up-regulated in stems under elevated [CO2] were primarily enzymes responsible for lignin formation and polymerisation or ethylene response factors, also known to induce lignin biosynthesis. Concomitant with this enhancement of lignin biosynthesis in stems, there was a pronounced repression of genes related to cell wall formation and cell growth. These changes in gene expression have clear consequences for long-term carbon sequestration, reducing the carbon-fertilisation effect, and the potential for increased lignification may negatively impact on future wood quality for timber and paper production.
Collapse
Affiliation(s)
- Nathalie Druart
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Marisa Rodríguez-Buey
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Greg Barron-Gafford
- Biosphere 2 Laboratory, Columbia University, Oracle AZ 85623, USA. Current address: Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85719, USA
| | - Andreas Sjödin
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
29
|
Azadi S, Paquet-Durand F, Medstrand P, van Veen T, Ekström PAR. Up-regulation and increased phosphorylation of protein kinase C (PKC) delta, mu and theta in the degenerating rd1 mouse retina. Mol Cell Neurosci 2006; 31:759-73. [PMID: 16503160 DOI: 10.1016/j.mcn.2006.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/16/2005] [Accepted: 01/06/2006] [Indexed: 11/18/2022] Open
Abstract
The rd1 mouse serves as a model for inherited photoreceptor degeneration: retinitis pigmentosa. Microarray techniques were employed to compare the transcriptomes of rd1 and congenic wild-type retinas at postnatal day 11, when degenerative processes have started but most photoreceptors are still present. Of the several genes that were differentially expressed, focus was put on those associated with the protein kinase C (PKC) signaling pathway, in particular PKCdelta, mu and theta. Microarray identified these as being up-regulated in the rd1 retina, which was confirmed by QRT-PCR. Western blotting and immunostaining, using antibodies against either total or phosphorylated variants of the PKC isoforms, revealed increased expression and phosphorylation of PKCdelta, mu and theta in the rd1 retina at the protein level as well. Our results suggest that these PKC isoforms are involved in rd1 degeneration.
Collapse
Affiliation(s)
- Seifollah Azadi
- Department of Ophthalmology, Lund University, BMC-B13, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
30
|
Abstract
Gradients of axon guidance molecules have long been postulated to control the development of the organization of neural connections into topographic maps. We review progress in identifying molecules required for mapping and the mechanisms by which they act, focusing on the visual system, the predominant model for map development. The Eph family of receptor tyrosine kinases and their ligands, the ephrins, remain the only molecules that meet all criteria for graded topographic guidance molecules, although others fulfill some criteria. Recent reports further define their modes of action and new roles for them, including EphB/ephrin-B control of dorsal-ventral mapping, bidirectional signaling of EphAs/ephrin-As, bifunctional action of ephrins as attractants or repellents in a context-dependent manner, and complex interactions between multiple guidance molecules. In addition, spontaneous patterned neural activity has recently been shown to be required for map refinement during a brief critical period. We speculate on additional activities required for map development and suggest a synthesis of molecular and cellular mechanisms within the context of the complexities of map development.
Collapse
Affiliation(s)
- Todd McLaughlin
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
31
|
Taylor G, Street NR, Tricker PJ, Sjödin A, Graham L, Skogström O, Calfapietra C, Scarascia-Mugnozza G, Jansson S. The transcriptome of Populus in elevated CO2. THE NEW PHYTOLOGIST 2005; 167:143-54. [PMID: 15948837 DOI: 10.1111/j.1469-8137.2005.01450.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The consequences of increasing atmospheric carbon dioxide for long-term adaptation of forest ecosystems remain uncertain, with virtually no studies undertaken at the genetic level. A global analysis using cDNA microarrays was conducted following 6 yr exposure of Populus x euramericana (clone I-214) to elevated [CO(2)] in a FACE (free-air CO(2) enrichment) experiment. Gene expression was sensitive to elevated [CO(2)] but the response depended on the developmental age of the leaves, and < 50 transcripts differed significantly between different CO(2) environments. For young leaves most differentially expressed genes were upregulated in elevated [CO(2)], while in semimature leaves most were downregulated in elevated [CO(2)]. For transcripts related only to the small subunit of Rubisco, upregulation in LPI 3 and downregulation in LPI 6 leaves in elevated CO(2) was confirmed by anova. Similar patterns of gene expression for young leaves were also confirmed independently across year 3 and year 6 microarray data, and using real-time RT-PCR. This study provides the first clues to the long-term genetic expression changes that may occur during long-term plant response to elevated CO(2).
Collapse
Affiliation(s)
- Gail Taylor
- School of Biological Sciences, Bassett Crescent East, University of Southampton, SO16 7PX, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Qian J, Esumi N, Chen Y, Wang Q, Chowers I, Zack DJ. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation. Nucleic Acids Res 2005; 33:3479-91. [PMID: 15967807 PMCID: PMC1153713 DOI: 10.1093/nar/gki658] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/28/2005] [Accepted: 05/26/2005] [Indexed: 01/22/2023] Open
Abstract
Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX.
Collapse
Affiliation(s)
- Jiang Qian
- Wilmer Institute, Johns Hopkins University School of Medicine Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Regenerative medicine constitutes a potentially promising therapy for blind people suffering from retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. For the realization of retinal regeneration, it is necessary to establish 1) a method to produce functional photoreceptor cells in vitro and 2) successful transplantation of the donor cells to connect their axons to the recipient secondary neurons so that they can function properly. The results of experimental transplantation of human retinal photoreceptor cells from cadaveric eyes or of fetal retinal cells into the retina of RP patients have not been satisfactory, but encouraging enough to indicate that the transplantation of developing retinal cells may have beneficial results. Recently, attempts have been made to generate photoreceptor-like cells from stem cells, but it remains to be seen whether they are in fact photoreceptor cells. It is therefore important to fully understand the mechanisms involved in the development of these cells, and to characterize them not only by transcriptome but also by functional analysis.
Collapse
Affiliation(s)
- Masayuki Akimoto
- Translational Research Center, Kyoto University Hospital, Japan.
| |
Collapse
|
34
|
Mecham BH, Wetmore DZ, Szallasi Z, Sadovsky Y, Kohane I, Mariani TJ. Increased measurement accuracy for sequence-verified microarray probes. Physiol Genomics 2004; 18:308-15. [PMID: 15161964 DOI: 10.1152/physiolgenomics.00066.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microarrays have been extensively used to investigate genome-wide expression patterns. Although this technology has been tremendously successful, it has suffered from suboptimal individual measurement precision. Significant improvements in this respect have been recently made. In an effort to further explore the underlying variability, we have attempted to globally assess the accuracy of individual probe sequences used to query gene expression. For mammalian Affymetrix microarrays, we identify an unexpectedly large number of probes (greater than 19% of the probes on each platform) that do not correspond to their appropriate mRNA reference sequence (RefSeq). Compared with data derived from inaccurate probes, we find that data derived from sequence-verified probes show 1) increased precision in technical replicates, 2) increased accuracy translating data from one generation microarray to another, 3) increased accuracy translating data from oligonucleotide to cDNA microarrays, and 4) improved capture of biological information in human clinical specimens. The logical conclusion of this work is that probes containing the most reliable sequence information provide the most accurate results. Our data reveal that the identification and removal of inaccurate probes can significantly improve this technology.
Collapse
Affiliation(s)
- Brigham H Mecham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Pulmonary Bioinformatics, the Lung Biology Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Kultima K, Nyström AM, Scholz B, Gustafson AL, Dencker L, Stigson M. Valproic acid teratogenicity: a toxicogenomics approach. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1225-1235. [PMID: 15345369 PMCID: PMC1277116 DOI: 10.1289/txg.7034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/03/2004] [Indexed: 05/24/2023]
Abstract
Embryonic development is a highly coordinated set of processes that depend on hierarchies of signaling and gene regulatory networks, and the disruption of such networks may underlie many cases of chemically induced birth defects. The antiepileptic drug valproic acid (VPA) is a potent inducer of neural tube defects (NTDs) in human and mouse embryos. As with many other developmental toxicants however, the mechanism of VPA teratogenicity is unknown. Using microarray analysis, we compared the global gene expression responses to VPA in mouse embryos during the critical stages of teratogen action in vivo with those in cultured P19 embryocarcinoma cells in vitro. Among the identified VPA-responsive genes, some have been associated previously with NTDs or VPA effects [vinculin, metallothioneins 1 and 2 (Mt1, Mt2), keratin 1-18 (Krt1-18)], whereas others provide novel putative VPA targets, some of which are associated with processes relevant to neural tube formation and closure [transgelin 2 (Tagln2), thyroid hormone receptor interacting protein 6, galectin-1 (Lgals1), inhibitor of DNA binding 1 (Idb1), fatty acid synthase (Fasn), annexins A5 and A11 (Anxa5, Anxa11)], or with VPA effects or known molecular actions of VPA (Lgals1, Mt1, Mt2, Id1, Fasn, Anxa5, Anxa11, Krt1-18). A subset of genes with a transcriptional response to VPA that is similar in embryos and the cell model can be evaluated as potential biomarkers for VPA-induced teratogenicity that could be exploited directly in P19 cell-based in vitro assays. As several of the identified genes may be activated or repressed through a pathway of histone deacetylase (HDAC) inhibition and specificity protein 1 activation, our data support a role of HDAC as an important molecular target of VPA action in vivo.
Collapse
Affiliation(s)
- Kim Kultima
- Department of Pharmaceutical Biosciences, Division of Toxicology, The Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Shintani T, Kato A, Yuasa-Kawada J, Sakuta H, Takahashi M, Suzuki R, Ohkawara T, Takahashi H, Noda M. Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. ACTA ACUST UNITED AC 2004; 59:34-47. [PMID: 15007825 DOI: 10.1002/neu.10338] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To understand the molecular basis of topographic retinotectal projection, an overall view of the asymmetrically expressed molecules in the developing retina is needed. We performed a large-scale screening using restriction landmark cDNA scanning (RLCS) in the embryonic day 8 (E8) chick retina. RLCS is a cDNA display system, in which a large number of cDNA species are displayed as two-dimensional spots with intensities reflecting their expression levels as mRNA. We searched for spots that gave different signal intensities between the nasal and temporal retinas or between the dorsal and ventral retinas, and detected about 200 spots that were preferential on one side in the retina. The asymmetric expression of each gene was verified by Northern blotting and in situ hybridization. By subsequent analyses using molecular cloning, DNA sequencing, and database searching, 33 asymmetric molecules along the nasotemporal (N-T) axis and 20 along the dorsoventral (D-V) axis were identified. These included transcription factors, secretory factors, transmembrane proteins, and intracellular proteins with various putative functions. Their expression profiles revealed by in situ hybridization are highly diverse and individual. Moreover, many of them begin to be expressed in the retina from the early developmental stages, suggesting that they are implicated in the establishment and maintenance of regional specificity in the developing retina. The molecular repertoire revealed by this work will provide candidates for future studies to elucidate the molecular mechanisms of topographic retinotectal map formation.
Collapse
Affiliation(s)
- Takafumi Shintani
- Division of Molecular Neurobiology, National Institute for Basic Biology, and Department of Molecular Biomechanics, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Clarkson RWE, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2003; 6:R92-109. [PMID: 14979921 PMCID: PMC400653 DOI: 10.1186/bcr754] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 11/15/2003] [Accepted: 11/21/2003] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION In order to gain a better understanding of the molecular processes that underlie apoptosis and tissue regression in mammary gland, we undertook a large-scale analysis of transcriptional changes during the mouse mammary pregnancy cycle, with emphasis on the transition from lactation to involution. METHOD Affymetrix microarrays, representing 8618 genes, were used to compare mammary tissue from 12 time points (one virgin, three gestation, three lactation and five involution stages). Six animals were used for each time point. Common patterns of gene expression across all time points were identified and related to biological function. RESULTS The majority of significantly induced genes in involution were also differentially regulated at earlier stages in the pregnancy cycle. This included a marked increase in inflammatory mediators during involution and at parturition, which correlated with leukaemia inhibitory factor-Stat3 (signal transducer and activator of signalling-3) signalling. Before involution, expected increases in cell proliferation, biosynthesis and metabolism-related genes were observed. During involution, the first 24 hours after weaning was characterized by a transient increase in expression of components of the death receptor pathways of apoptosis, inflammatory cytokines and acute phase response genes. After 24 hours, regulators of intrinsic apoptosis were induced in conjunction with markers of phagocyte activity, matrix proteases, suppressors of neutrophils and soluble components of specific and innate immunity. CONCLUSION We provide a resource of mouse mammary gene expression data for download or online analysis. Here we highlight the sequential induction of distinct apoptosis pathways in involution and the stimulation of immunomodulatory signals, which probably suppress the potentially damaging effects of a cellular inflammatory response while maintaining an appropriate antimicrobial and phagocytic environment.
Collapse
|