1
|
Fan CY, McAllister BB, Stokes-Heck S, Harding EK, Pereira de Vasconcelos A, Mah LK, Lima LV, van den Hoogen NJ, Rosen SF, Ham B, Zhang Z, Liu H, Zemp FJ, Burkhard R, Geuking MB, Mahoney DJ, Zamponi GW, Mogil JS, Ousman SS, Trang T. Divergent sex-specific pannexin-1 mechanisms in microglia and T cells underlie neuropathic pain. Neuron 2025:S0896-6273(25)00009-1. [PMID: 39892387 DOI: 10.1016/j.neuron.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Chronic pain is a leading cause of disability, affecting more women than men. Different immune cells contribute to this sexual divergence, but the mechanisms, especially in females, are not well defined. We show that pannexin-1 (Panx1) channels on microglia and T cells differentially cause mechanical allodynia, a debilitating symptom of neuropathic pain. In male rodents, Panx1 drives vascular endothelial growth factor-A (VEGF-A) release from microglia. Cell-specific knockdown of microglial Panx1 or pharmacological blockade of the VEGF receptor attenuated allodynia in nerve-injured males. In females, nerve injury increased spinal CD8+ T cells and leptin levels. Leptin release from female-derived CD8+ T cells was Panx1 dependent, and intrathecal leptin-neutralizing antibody injection sex-specifically reversed allodynia. Adoptive transfer of female-derived CD8+ T cells caused robust allodynia, which was prevented by a leptin-neutralizing antibody or leptin small interfering RNA (siRNA) knockdown. Panx1-targeted approaches may alleviate neuropathic pain in both sexes, while T cell- and leptin-directed treatments could have sex-dependent benefits for women.
Collapse
Affiliation(s)
- Churmy Y Fan
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Aliny Pereira de Vasconcelos
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Laura K Mah
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Lucas V Lima
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah F Rosen
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Boram Ham
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Zizhen Zhang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hongrui Liu
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Franz J Zemp
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Regula Burkhard
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute For Chronic Diseases, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Annie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jeffrey S Mogil
- Departments of Psychology and Anesthesia and Faculty of Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Shalina S Ousman
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Department of Cell Biology & Anatomy, University of Calgary, Calgary, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| |
Collapse
|
2
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Hosoki H, Asahi T, Nozaki C. Cannabinoid CB2 receptors enhance high-fat diet evoked peripheral neuroinflammation. Life Sci 2024; 355:123002. [PMID: 39173999 DOI: 10.1016/j.lfs.2024.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
It is known that the cannabinoid type 2 (CB2) receptor has an anti-inflammatory role. Therefore, animals without CB2 receptors show enhanced inflammation and pain in the model of chronic pain, e.g., neuropathic pain. We previously proposed the upregulated leptin signaling at the peripheral nerve as one of the underlying molecular mechanisms of pain exacerbation in nerve-injured CB2 knockouts, as they displayed robust upregulation of leptin receptors and leptin signaling in the peripheral nerve. Due to these past results, we hypothesized that CB2 receptor deficiency might also modify the peripheral neuroinflammation led by chronic exposure to a high-fat diet (HFD). Interestingly, CB2 knockout animals showed significant resistance to HFD-induced neuroinflammation. Namely, 5-week feeding of HFD induced substantial hypersensitivity in WT animals, while tactile sensitivity of HFD-fed CB2 knockouts remained intact. HFD-fed WT animals also displayed the robust upregulation of chemokine CXCR4 expression with increased macrophage infiltration, which was never observed in HFD-fed CB2 knockout mice. Moreover, 5-week HFD exposure led significant increase of CD11b+Ly6G-Ly6Chigh cells and a decrease of CD11b+Ly6G+Ly6Clow cells in the spleen of WT animals, which was also not found in either HFD-fed CB2 knockouts or standard diet-fed WT and CB2 animals. Together with past reports, these results suggest that CB2 receptors might have a double-sided regulatory role in the context of inflammation development or, more widely, immune system regulation. We propose that CB2 signaling is not always anti-inflammatory and could take a pro-inflammatory role depending on the cause of the inflammation.
Collapse
Affiliation(s)
- Haruka Hosoki
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Comprehensive Research Organization, Waseda University, Tokyo, Japan; Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| | - Chihiro Nozaki
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Global Center for Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
4
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
5
|
Ozcan M, Ayar A. Endocrine Aspects of Pain Pathophysiology: Focus on Adipose Tissue. Neuroendocrinology 2024; 114:894-906. [PMID: 38801814 DOI: 10.1159/000539531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Multiple factors, including neurobiological, hormonal, psychological, and social/cultural norms, influence the manner in which individuals experience pain. Adipose tissue, once considered solely an energy storage site, has been recognized as a significant endocrine organ that produces and releases a range of hormones and cytokines. In recent years, research has highlighted the role of adipose tissue and its endocrine factors in the pathophysiology of pain. SUMMARY This narrative review aimed to provide a comprehensive overview of the current knowledge on the endocrine aspects of pain pathophysiology, with a specific focus on adipose tissue. We examine the role of adipokines released by adipose tissue, such as leptin, adiponectin, resistin, visfatin, asprosin in pain perception and response. We also explore the clinical implications of these findings, including the potential for personalized pain management based on endocrine factors and adipose tissue. KEY MESSAGES Overall, given this background, this review intended to highlight the importance of understanding the endocrine aspects of pain pathophysiology, particularly focusing on the role of adipose tissue, in the development of chronic pain and adipokines. Better understanding the role of adipokines in pain modulation might have therapeutic implications by providing novel targets for addressing underlying mechanism rather than directly focusing on symptoms for chronic pain, particularly in obese individuals.
Collapse
Affiliation(s)
- Mete Ozcan
- Department of Biophysics, Firat University Medical Faculty, Elazig, Turkey
| | - Ahmet Ayar
- Department of Physiology, Karadeniz Technical University Medical Faculty, Trabzon, Turkey
| |
Collapse
|
6
|
Sundaram VK, Schütza V, Schröter NH, Backhaus A, Bilsing A, Joneck L, Seelbach A, Mutschler C, Gomez-Sanchez JA, Schäffner E, Sánchez EE, Akkermann D, Paul C, Schwagarus N, Müller S, Odle A, Childs G, Ewers D, Kungl T, Sitte M, Salinas G, Sereda MW, Nave KA, Schwab MH, Ost M, Arthur-Farraj P, Stassart RM, Fledrich R. Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration. Cell Metab 2023; 35:2136-2152.e9. [PMID: 37989315 PMCID: PMC10722468 DOI: 10.1016/j.cmet.2023.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.
Collapse
Affiliation(s)
- Venkat Krishnan Sundaram
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Vlad Schütza
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | | | - Aline Backhaus
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Annika Bilsing
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Lisa Joneck
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Anna Seelbach
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain; Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| | - Erik Schäffner
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | | | - Dagmar Akkermann
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Christina Paul
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nancy Schwagarus
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Silvana Müller
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Angela Odle
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| | - Gwen Childs
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Markham, AR, USA
| | - David Ewers
- Max Planck Institute of Experimental Medicine, Göttingen, Germany; Klinik für Neurologie, Universitätsmedizin Göttingen (UMG), Göttingen, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Maren Sitte
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael W Sereda
- Max Planck Institute of Experimental Medicine, Göttingen, Germany; Klinik für Neurologie, Universitätsmedizin Göttingen (UMG), Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Markus H Schwab
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Mario Ost
- Institute of Anatomy, Leipzig University, Leipzig, Germany; Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Ruth M Stassart
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany.
| | | |
Collapse
|
7
|
Zhang DH, Fan YH, Zhang YQ, Cao H. Neuroendocrine and neuroimmune mechanisms underlying comorbidity of pain and obesity. Life Sci 2023; 322:121669. [PMID: 37023950 DOI: 10.1016/j.lfs.2023.121669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Pain and obesity, as well as their associated impairments, are major health concerns. Understanding the relationship between the two is the focus of a growing body of research. However, early researches attribute increased mechanical stress from excessive weight as the main factor of obesity-related pain, which not only over-simplify the association, but also fail to explain some controversial outcomes arising from clinical investigations. This review focuses on neuroendocrine and neuroimmune modulators importantly involved in both pain and obesity, analyzing nociceptive and anti-nociceptive mechanisms based on neuroendocrine pathways including galanin, ghrelin, leptin and their interactions with other neuropeptides and hormone systems which have been reported to play roles in pain and obesity. Mechanisms of immune activities and metabolic alterations are also discussed, due to their intense interactions with neuroendocrine system and crucial roles in the development and maintenance of inflammatory and neuropathic pain. These findings have implications for health given rising rates of obesity and pain-related diagnoses, by providing novel weight-control and analgesic therapies targeted on specific pathways.
Collapse
Affiliation(s)
- Dao-Han Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ying-Hui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Zhang KW, Jia Y, Li YY, Guo DY, Li XX, Hu K, Qian XX, Chen ZH, Wu JJ, Yuan ZD, Yuan FL. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol 2023; 238:355-365. [PMID: 36571294 DOI: 10.1002/jcp.30936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.
Collapse
Affiliation(s)
- Kai-Wen Zhang
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Yue-Yue Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dan-Yang Guo
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Xiao Li
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Kai Hu
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Xiao-Xi Qian
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Department of Medicine, The Nantong University, Nantong, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Department of Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Wuxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Wuxi, China.,Affiliated Hospital of Jiangnan University, Wuxi, China.,Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Pan HT, Xi ZQ, Wei XQ, Wang K. A network pharmacology approach to predict potential targets and mechanisms of " Ramulus Cinnamomi (cassiae) - Paeonia lactiflora" herb pair in the treatment of chronic pain with comorbid anxiety and depression. Ann Med 2022; 54:413-425. [PMID: 35098831 PMCID: PMC8812742 DOI: 10.1080/07853890.2022.2031268] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) prescriptions have multiple bioactive properties. "Gui Zhi-Shao Yao" herb pair is widely used to treat chronic pain (CP), as well as anxiety and depression. However, its related targets and underlying mechanisms have not been deciphered. METHODS In this study, the network pharmacology method was used to explore the bioactive components and targets of "Gui Zhi-Shao Yao" herb pair and further elucidate its potential biological mechanisms of action in the treatment of CP with comorbid anxiety disorder (AD) and mental depression (MD). RESULTS Following a series of analyses, we identified 15 active compounds, hitting 130 potential targets. After the intersections the targets of this herb pair and CP, AD and MD - sorted by the value of degree - nine targets were identified as the vital ones: Akt1, IL6, TNF, PTGS2, JUN, CASP3, MAPK8, PPARγ and NOS3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated 11 pathways, such as AGE-RAGE signalling pathway, IL-17 signalling pathway, TNF signalling pathway, which primarily participate in the pathological processes. CONCLUSIONS This study preliminarily predicted and verified the pharmacological and molecular mechanisms of "Gui Zhi-Shao Yao" herb pair for treating CP with comorbid AD and MD from a holistic perspective. In vivo and in vitro experiments will be required to further investigate the mechanisms.KEY MESSAGEA network pharmacology approach was applied to identify key targets and molecular mechanisms.Nine targets were regarded as the vital targets for chronic pain with comorbid anxiety and depression.Predicted 11 pathways were the potential therapy targets and pharmacological mechanism of "Gui Zhi-Shao Yao" herb pair.
Collapse
Affiliation(s)
- Hao-Tian Pan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Qi Xi
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Sex Differences in Neuropathy: The Paradigmatic Case of MetFormin. Int J Mol Sci 2022; 23:ijms232314503. [PMID: 36498830 PMCID: PMC9738696 DOI: 10.3390/ijms232314503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
As a widely prescribed anti-diabetic drug, metformin has been receiving novel attention for its analgesic potential. In the study of the complex etiology of neuropathic pain (NeP), male and female individuals exhibit quite different responses characterized by higher pain sensitivity and greater NeP incidence in women. This "gender gap" in our knowledge of sex differences in pain processing strongly limits the sex-oriented treatment of patients suffering from NeP. Besides, the current investigation of the analgesic potential of metformin has not addressed the "gender gap" problem. Hence, this study focuses on metformin and sex-dependent analgesia in a murine model of NeP induced by chronic constriction injury of the sciatic nerve. We investigated sexual dimorphism in signaling pathways involved by 7 days of metformin administration, such as changes in AMP-activated protein kinase and the positive regulation of autophagy machinery, discovering that metformin affected in a sexually dimorphic manner the immunological and inflammatory response to nerve lesion. These effects were complemented by morphological and adaptive changes occurring after peripheral nerve injury. Altogether these data can contribute to explaining a number of potential mechanisms responsible for the complete recovery from NeP found in male mice, as opposed to the failure of long-lasting recovery in female animals.
Collapse
|
11
|
Gløersen M, Steen Pettersen P, Neogi T, Jafarzadeh SR, Vistnes M, Thudium CS, Bay-Jensen AC, Sexton J, Kvien TK, Hammer HB, Haugen IK. Associations of Body Mass Index With Pain and the Mediating Role of Inflammatory Biomarkers in People With Hand Osteoarthritis. Arthritis Rheumatol 2022; 74:810-817. [PMID: 35137553 PMCID: PMC9050744 DOI: 10.1002/art.42056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To examine the association of body mass index (BMI) with pain in people with hand osteoarthritis (OA), and explore whether this association, if causal, is mediated by systemic inflammatory biomarkers. METHODS In 281 Nor-Hand study participants, we estimated associations between BMI and hand pain, as measured by the Australian/Canadian Osteoarthritis Hand Index (AUSCAN; range 0-20) and Numerical Rating Scale (NRS; range 0-10); foot pain, as measured by NRS (range 0-10); knee/hip pain, as measured by the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC; range 0-20); painful total body joint count; and pain sensitization. We fit natural-effects models to estimate natural direct and natural indirect effects of BMI on pain through inflammatory biomarkers. RESULTS Each 5-unit increase in BMI was associated with more severe hand pain (on average increased AUSCAN by 0.64 [95% confidence interval (95% CI) 0.23, 1.08]), foot pain (on average increased NRS by 0.65 [95% CI 0.36, 0.92]), knee/hip pain (on average increased WOMAC by 1.31 [95% CI 0.87, 1.73]), generalized pain, and pain sensitization. Mediation analyses suggested that the effects of BMI on hand pain and painful total body joint count were partially mediated by leptin and high-sensitivity C-reactive protein (hsCRP), respectively. Effect sizes for mediation by leptin were larger for the hands than for the lower extremities, and were statistically significant for the hands only. CONCLUSION In people with hand OA, higher BMI is associated with greater pain severity in the hands, feet, and knees/hips. Systemic effects of obesity, measured by leptin, may play a larger mediating role for pain in the hands than in the lower extremities. Low-grade inflammation, measured by hsCRP, may contribute to generalized pain in overweight/obese individuals.
Collapse
Affiliation(s)
- Marthe Gløersen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Pernille Steen Pettersen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Tuhina Neogi
- Section of Rheumatology, Boston University School of Medicine, Boston, USA
| | - S. Reza Jafarzadeh
- Section of Rheumatology, Boston University School of Medicine, Boston, USA
| | - Maria Vistnes
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,Division of Medicine, Diakonhjemmet Hospital, Oslo, Norway,Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | | | | | - Joe Sexton
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Tore K. Kvien
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Hilde B. Hammer
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway,University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Ida K. Haugen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
12
|
Gao SJ, Liu DQ, Li DY, Sun J, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Adipocytokines: Emerging therapeutic targets for pain management. Biomed Pharmacother 2022; 149:112813. [PMID: 35279597 DOI: 10.1016/j.biopha.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Although pain has lower mortality rates than cancer, diabetes and stroke, pain is a predominate source of distress and disability. However, the management of pain remains an enormous problem. Many drugs used to pain treatment have more or less side effects. Therefore, the development of novel therapeutic target is critical for the treatment of pain. Notably, studies have shown that adipocytokines have a dual role in pain. Growing shreds of evidence shows that the levels of adipocytokines are upregulated or downregulated in the development of pain. In addition, substantial evidence indicates that regulation of adipocytokines levels in models of pain attenuates or promotes pain behaviors. In this review, we summarized and discussed the effect of adipocytokines in pain. These evidence indicates that adipocytokines attenuate or promote pain behaviors through interacting with their receptors, activating serotonin pathway, interacting with μ-opioid receptor, activating microglia, infiltrating macrophage and so on. Overall, adipocytokines have some potential in treating pain, but the underlying mechanisms remain unclear and need to be further studied.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
13
|
Bussmann AJC, Ferraz CR, Lima AVA, Castro JGS, Ritter PD, Zaninelli TH, Saraiva‐Santos T, Verri WA, Borghi SM. Association between IL‐10 systemic low level and pain during symptomatic SARS‐CoV‐2 infection. Pain Pract 2022; 22:453-462. [DOI: 10.1111/papr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Allan J. C. Bussmann
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Camila R. Ferraz
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Aline V. A. Lima
- Universitary Hospital Londrina State University 86038‐350 Londrina, Paraná Brazil
| | - João G. S. Castro
- Universitary Hospital Londrina State University 86038‐350 Londrina, Paraná Brazil
| | - Patrícia D. Ritter
- Departament of Pharmaceutical Sciences Health Sciences Center Londrina State University 86038‐350 Londrina, Paraná Brazil
| | - Tiago H. Zaninelli
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Telma Saraiva‐Santos
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Waldiceu A. Verri
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
| | - Sergio M. Borghi
- Department of Pathology Biological Sciences Center Londrina State University 86057‐970 Londrina, Paraná State Brazil
- Center for Research in Health Sciences University of Northern Paraná 86041‐140 Londrina, Paraná Brazil
| |
Collapse
|
14
|
Leptin promoter methylation in female patients with painful multisomatoform disorder and chronic widespread pain. Clin Epigenetics 2022; 14:13. [PMID: 35063029 PMCID: PMC8783406 DOI: 10.1186/s13148-022-01235-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Background Different functional somatic syndromes (FSS), fibromyalgia (FMS) and other unexplained painful conditions share many common clinical traits and are characterized by troubling and functionally disabling somatic symptoms. Chronic pain is most frequently reported and at the center of patients’ level of disease burden. The construct of multisomatoform disorder (MSD) allows to subsume severely impaired patients suffering from FSS, FMS and other unexplained painful conditions to be examined for common underlying processes. Altered leptin levels and a pathological response of the HPA-axis as a result of chronic stress and childhood trauma have been suggested as one of the driving factors of disease development and severity. Previous studies have demonstrated that methylation of the leptin promoter can play a regulatory role in addiction. In this study, we hypothesized that methylation of the leptin promoter is influenced by the degree of childhood traumatization and differs between patients with MSD and controls. A cohort of 151 patients with MSD and 149 matched healthy volunteers were evaluated using clinical and psychometric assessment while methylation level analysis of the leptin promoter was performed using DNA isolated from whole blood. Results In female controls, we found CpG C-167 to be negatively correlated with leptin levels, whereas in female patients CpG C-289, C-255, C-193, C-167 and methylation cluster (C-291 to C-167) at putative bindings sites for transcription factors Sp1 and c/EBPalpha were negatively correlated with leptin levels. Methylation levels were significantly lower in female patients CpG C-289 compared with controls. When looking at female patients with chronic widespread pain methylation levels were significantly lower at CpG C-289, C-255 and methylation cluster (C-291 to C-167). Conclusion Our findings support the hypothesis that epigenetic regulation of leptin plays a role in the regulation of leptin levels in patients with MSD. This effect is more pronounced in patients with chronic widespread pain. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01235-5.
Collapse
|
15
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
16
|
Martins-Oliveira M, Tavares I, Goadsby PJ. Was it something I ate? Understanding the bidirectional interaction of migraine and appetite neural circuits. Brain Res 2021; 1770:147629. [PMID: 34428465 DOI: 10.1016/j.brainres.2021.147629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]
Abstract
Migraine attacks can involve changes of appetite: while fasting or skipping meals are often reported triggers in susceptible individuals, hunger or food craving are reported in the premonitory phase. Over the last decade, there has been a growing interest and recognition of the importance of studying these overlapping fields of neuroscience, which has led to novel findings. The data suggest additional studies are needed to unravel key neurobiological mechanisms underlying the bidirectional interaction between migraine and appetite. Herein, we review information about the metabolic migraine phenotype and explore migraine therapeutic targets that have a strong input on appetite neuronal circuits, including the calcitonin gene-related peptide (CGRP), the pituitary adenylate cyclase-activating polypeptide (PACAP) and the orexins. Furthermore, we focus on potential therapeutic peptide targets that are involved in regulation of feeding and play a role in migraine pathophysiology, such as neuropeptide Y, insulin, glucagon and leptin. We then examine the orexigenic - anorexigenic circuit feedback loop and explore glucose metabolism disturbances. Additionally, it is proposed a different perspective on the most reported feeding-related trigger - skipping meals - as well as a link between contrasting feeding behaviors (skipping meals vs food craving). Our review aims to increase awareness of migraine through the lens of appetite neurobiology in order to improve our understanding of the earlier phase of migraine, encourage better studies and cross-disciplinary collaborations, and provide novel migraine-specific therapeutic opportunities.
Collapse
Affiliation(s)
- Margarida Martins-Oliveira
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Nutrition and Metabolism Department, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal.
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal.
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Disease, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Vacca V, Marinelli S, De Angelis F, Angelini DF, Piras E, Battistini L, Pavone F, Coccurello R. Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. Int J Mol Sci 2021; 22:ijms22094397. [PMID: 33922372 PMCID: PMC8122838 DOI: 10.3390/ijms22094397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Neuropathic pain (NeP) in humans is often a life-long condition with no effective therapy available. The higher incidence of female gender in NeP onset is worldwide reported, and although the cause is generally attributed to sex hormones, the actual mechanisms and the players involved are still unclear. Glial and immune cells take part in NeP development, and orchestrate the neuroimmune and inflammatory response, releasing pro-inflammatory factors with chemoattractant properties that activate resident immune cells and recruit immune cells from circulation. The neuro-immune crosstalk is a key contributor to pain hypersensitivity following peripheral nervous system injury. Our previous works showed that in spite of the fact that female mice had an earlier analgesic response than males following nerve lesion, the recovery from NeP was never complete, suggesting that this difference could occur in the very early stages after injury. To further investigate gender differences in immune and neuroimmune responses to NeP, we studied the main immune cells and mediators elicited both in plasma and sciatic nerves by peripheral nerve lesion. After injury, we found a different pattern of distribution of immune cell populations showing either a higher infiltration of T cells in nerves from females or a higher infiltration of macrophages in nerves from males. Moreover, in comparison to male mice, the levels of cytokines and chemokines were differently up- and down-regulated in blood and nerve lysates from female mice. Our study provides some novel insights for the understanding of gender-associated differences in the generation and perseveration of NeP as well as for the isolation of specific neurodegenerative mechanisms underlying NeP. The identification of gender-associated inflammatory profiles in neuropathy is of key importance for the development of differential biomarkers and gender-specific personalized medicine.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Sara Marinelli
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Federica De Angelis
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | | | - Eleonora Piras
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Luca Battistini
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Flaminia Pavone
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- Correspondence: (F.P.); (R.C.)
| | - Roberto Coccurello
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- CNR-National Research Council, CNR, Institute for Complex System (ISC), via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (F.P.); (R.C.)
| |
Collapse
|
19
|
Liang Y, Ma Y, Wang J, Nie L, Hou X, Wu W, Zhang X, Tian Y. Leptin Contributes to Neuropathic Pain via Extrasynaptic NMDAR-nNOS Activation. Mol Neurobiol 2021; 58:1185-1195. [PMID: 33099751 PMCID: PMC7878206 DOI: 10.1007/s12035-020-02180-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
Leptin is an adipocytokine that is primarily secreted by white adipose tissue, and it contributes to the pathogenesis of neuropathic pain in collaboration with N-methyl-D-aspartate receptors (NMDARs). Functional NMDARs are a heteromeric complex that primarily comprise two NR1 subunits and two NR2 subunits. NR2A is preferentially located at synaptic sites, and NR2B is enriched at extrasynaptic sites. The roles of synaptic and extrasynaptic NMDARs in the contribution of leptin to neuropathic pain are not clear. The present study examined whether the important role of leptin in neuropathic pain was related to synaptic or extrasynaptic NMDARs. We used a rat model of spared nerve injury (SNI) and demonstrated that the intrathecal administration of the NR2A-selective antagonist NVP-AAM077 and the NR2B-selective antagonist Ro25-6981 prevented and reversed mechanical allodynia following SNI. Administration of exogenous leptin mimicked SNI-induced behavioral allodynia, which was also prevented by NVP-AAM077 and Ro25-6981. Mechanistic studies showed that leptin enhanced NR2B- but not NR2A-mediated currents in spinal lamina II neurons of naïve rats. Leptin also upregulated the expression of NR2B, which was blocked by the NR2B-selective antagonist Ro25-6981, in cultured dorsal root ganglion (DRG) neurons. Leptin enhanced neuronal nitric oxide synthase (nNOS) expression, which was also blocked by Ro25-6981, in cultured DRG cells. However, leptin did not change NR2A expression, and the NR2A-selective antagonist NVP-AAM077 had no effect on leptin-enhanced nNOS expression. Our data suggest an important cellular link between the spinal effects of leptin and the extrasynaptic NMDAR-nNOS-mediated cellular mechanism of neuropathic pain.
Collapse
Affiliation(s)
- Yanling Liang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, 510515, China
| | - Yuxin Ma
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jieqin Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510515, China
| | - Lei Nie
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Xusheng Hou
- Department of Functional Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenyu Wu
- Target and Interventional Therapy Department of Oncology, First People's Hospital of Foshan, Foshan, 528000, China
| | - Xingmei Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, 510515, China.
| | - Yinghong Tian
- Experiment Teaching & Administration Center, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Ouhaddi Y, Najar M, Paré F, Lussier B, Urade Y, Benderdour M, Pelletier JP, Martel-Pelletier J, Fahmi H. L-PGDS deficiency accelerated the development of naturally occurring age-related osteoarthritis. Aging (Albany NY) 2020; 12:24778-24797. [PMID: 33361529 PMCID: PMC7803483 DOI: 10.18632/aging.202367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disorder among the elderly. It is characterized by progressive cartilage degradation, synovial inflammation, subchondral bone remodeling and pain. Lipocalin prostaglandin D synthase (L-PGDS) is responsible for the biosynthesis of PGD2, which has been implicated in the regulation of inflammation and cartilage biology. This study aimed to evaluate the effect of L-PGDS deficiency on the development of naturally occurring age-related OA in mice. OA-like structural changes were assessed by histology, immunohistochemistry, and micro–computed tomography. Pain related behaviours were assessed using the von Frey and the open-field assays. L-PGDS deletion promoted cartilage degradation during aging, which was associated with enhanced expression of extracellular matrix degrading enzymes, matrix metalloprotease 13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), and their breakdown products, C1,2C, VDIPEN and NITEG. Moreover, L-PGDS deletion enhanced subchondral bone changes, but had no effect on its angiogenesis. Additionally, L-PGDS deletion increased mechanical sensitivity and reduced spontaneous locomotor activity. Finally, we showed that the expression of L-PGDS was elevated in aged mice. Together, these findings indicate an important role for L-PGDS in naturally occurring age-related OA. They also suggest that L-PGDS may constitute a new efficient therapeutic target in OA.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Bertrand Lussier
- Faculty of Veterinary Medicine, Clinical Science, University of Montreal, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mohamed Benderdour
- Research Centre, Sacré-Coeur Hospital, University of Montreal, Montreal, QC H4J 1C5, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), and Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
21
|
Wei X, Jin XH, Meng XW, Hua J, Ji FH, Wang LN, Yang JP. Platelet-rich plasma improves chronic inflammatory pain by inhibiting PKM2-mediated aerobic glycolysis in astrocytes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1456. [PMID: 33313201 PMCID: PMC7723564 DOI: 10.21037/atm-20-6502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Astrocytes are highly glycolytic cells that play a crucial role in chronic pain. Recently it has been found that inflammation and metabolism are related to the inflammatory stimuli closely that cause cellular metabolic changes. Pyruvate kinase M2 (PKM2) is a critical metabolic kinase in aerobic glycolysis or the Warburg effect. Besides, it also plays a crucial role in cell proliferation and signal transduction, but its role in astrocytes is still unclear. Methods The chronic inflammatory pain model was set up by intraplantar injection of complete Freund’s adjuvant (CFA) in Sprague Dawley (SD) rats as well as the cell model was constructed by lipopolysaccharide-treated primary astrocytes. Von Frey filament stimulation was used to continuously observe the changes of pain behavior in rats after modeling. Then, immunofluorescence staining and Western blot tests were used to observe the expression levels of glial fibrillary acidic protein (GFAP), pyruvate kinase (PKM2), signal transducers and activators of transcription 3 (STAT3) and high mobility group box-1 protein (HMGB1). After that, specific kits measured lactate contents. Finally, we observed the platelet-rich plasma’s (PRP) effect on mechanical hyperalgesia in rats with inflammatory pain induced by CFA and its effect on related signal molecules. Results We found that in the CFA-induced inflammatory pain model, astrocytes were significantly activated, GFAP was increased, PKM2 was significantly up-regulated, and the glycolytic product lactate was increased. Also, intrathecal injection of PRP increased the pain threshold, inhibited the activation of astrocytes, and decreased the expression of PKM2 and aerobic glycolysis; in LPS-activated primary astrocytes as an in vitro model, we found PKM2 translocation activationSTAT3 signaling resulted in sustained activation of astrocyte marker GFAP, and the expression level and localization of p-STAT3 were correlated with PKM2. PRP could inhibit the activation of astrocytes, reduce the expression of PKM2 and the expression levels of glycolysis and GFAP, GLUT1, and p-STAT3 in astrocytes. Conclusions Our findings suggest PKM2 not only plays a glycolytic role in astrocytes, but also plays a crucial role in astrocyte-activated signaling pathways, and PRP attenuates CFA induced inflammatory pain by inhibiting aerobic glycolysis in astrocytes, providing a new therapeutic target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Hong Jin
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Wen Meng
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Hua
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fu-Hai Ji
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Na Wang
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ping Yang
- Department of Anesthesiology and Pain Management, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
Friston D, Junttila S, Lemes JBP, Laycock H, Torres-Perez JV, Want E, Gyenesei A, Nagy I. Leptin and fractalkine: novel subcutaneous cytokines in burn injury. Dis Model Mech 2020; 13:dmm042713. [PMID: 32127397 PMCID: PMC7197715 DOI: 10.1242/dmm.042713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Burn injury is a pathology underpinned by progressive and aberrant inflammation. It is a major clinical challenge to survival and quality of life. Although the complex local and disseminating pathological processes of a burn injury ultimately stem from local tissue damage, to date relatively few studies have attempted to characterise the local inflammatory mediator profile. Here, cytokine content and associated transcriptional changes were measured in rat skin for three hours immediately following induction of a scald-type (60°C, 2 min) burn injury model. Leptin (P=0.0002) and fractalkine (P=0.0478) concentrations were significantly elevated post-burn above pre-burn and control site values, coinciding with the development of burn site oedema and differential expression of leptin mRNA (P=0.0004). Further, gene sequencing enrichment analysis indicated cytokine-cytokine receptor interaction (P=1.45×10-6). Subsequent behavioural studies demonstrated that, following subcutaneous injection into the dorsum of the paw, both leptin and fractalkine induced mechanical allodynia, heat hyperalgesia and the recruitment of macrophages. This is the first report of leptin elevation specifically at the burn site, and the first report of fractalkine elevation in any tissue post-burn which, together with the functional findings, calls for exploration of the influence of these cytokines on pain, inflammation and burn wound progression. In addition, targeting these signalling molecules represents a therapeutic potential as early formative mediators of these pathological processes.
Collapse
Affiliation(s)
- Dominic Friston
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Sini Junttila
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Carl Von Linnaeus, Sao Paulo, 13083-864, Brazil
| | - Helen Laycock
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Jose Vicente Torres-Perez
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Elizabeth Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Attila Gyenesei
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
- Department of Physiology, University of Debrecen, Debrecen, Nagyerdei krt 98, H-4012, Hungary
| |
Collapse
|
23
|
Cohnen J, Kornstädt L, Hahnefeld L, Ferreiros N, Pierre S, Koehl U, Deller T, Geisslinger G, Scholich K. Tumors Provoke Inflammation and Perineural Microlesions at Adjacent Peripheral Nerves. Cells 2020; 9:cells9020320. [PMID: 32013137 PMCID: PMC7072456 DOI: 10.3390/cells9020320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer-induced pain occurs frequently in patients when tumors or their metastases grow in the proximity of nerves. Although this cancer-induced pain states poses an important therapeutical problem, the underlying pathomechanisms are not understood. Here, we implanted adenocarcinoma, fibrosarcoma and melanoma tumor cells in proximity of the sciatic nerve. All three tumor types caused mechanical hypersensitivity, thermal hyposensitivity and neuronal damage. Surprisingly the onset of the hypersensitivity was independent of physical contact of the nerve with the tumors and did not depend on infiltration of cancer cells in the sciatic nerve. However, macrophages and dendritic cells appeared on the outside of the sciatic nerves with the onset of the hypersensitivity. At the same time point downregulation of perineural tight junction proteins was observed, which was later followed by the appearance of microlesions. Fitting to the changes in the epi-/perineurium, a dramatic decrease of triglycerides and acylcarnitines in the sciatic nerves as well as an altered localization and appearance of epineural adipocytes was seen. In summary, the data show an inflammation at the sciatic nerves as well as an increased perineural and epineural permeability. Thus, interventions aiming to suppress inflammatory processes at the sciatic nerve or preserving peri- and epineural integrity may present new approaches for the treatment of tumor-induced pain.
Collapse
Affiliation(s)
- Jennifer Cohnen
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
| | - Lisa Kornstädt
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
| | - Nerea Ferreiros
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
| | - Sandra Pierre
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
| | - Ulrike Koehl
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 60596 Frankfurt/Main, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, 04103 Leipzig City, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 60596 Frankfurt/Main, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, 60596 Frankfurt/Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, University Hospital Goethe University Frankfurt, 60590 Frankfurt, Germany; (J.C.); (L.K.); (L.H.); (N.F.); (S.P.); (G.G.)
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 60596 Frankfurt/Main, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology, 60596 Frankfurt/Main, Germany
- Correspondence: ; Tel.: +49-69-6301-83103
| |
Collapse
|
24
|
The Effect of Bariatric Surgery on Migraines: a Systematic Review and Meta-analysis. Obes Surg 2019; 30:1061-1067. [PMID: 31786719 DOI: 10.1007/s11695-019-04290-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Sun L, Lv Y, Tian J, Yu T, Niu F, Zhang X, Du D. Regular Swimming Exercise Attenuated Neuroma Pain in Rats: Involvement of Leptin and Adiponectin. THE JOURNAL OF PAIN 2019; 20:1112-1124. [DOI: 10.1016/j.jpain.2019.02.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
26
|
Fujita Y, Yamashita T. The Effects of Leptin on Glial Cells in Neurological Diseases. Front Neurosci 2019; 13:828. [PMID: 31447640 PMCID: PMC6692660 DOI: 10.3389/fnins.2019.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
It is known that various endocrine modulators, including leptin and ghrelin, have neuroprotective roles in neurological diseases. Leptin is a hormone produced by adipocytes and was originally identified as a gene related to obesity in mice. The leptin receptors in the hypothalamus are the main target for the homeostatic regulation of body weight. Recent studies have demonstrated that leptin receptors are also expressed in other regions of the central nervous system (CNS), such as the hippocampus, cerebral cortex, and spinal cord. Accordingly, these studies identified the involvement of leptin in the regulation of neuronal survival and neural development. Furthermore, leptin has been shown to have neuroprotective functions in animal models of neurological diseases and demyelination. These observations also suggest that dysregulation of leptin signaling may be involved in the association between neurodegeneration and obesity. In this review, we summarize novel functions of leptin in animal models of neurodegenerative diseases. Specifically, we focus on the emerging evidence for the role of leptin in non-neuronal cells in the CNS, including astrocytes, microglia, and oligodendrocytes. Understanding leptin-mediated neuroprotective signals and molecular mechanisms underlying remyelination will be helpful to establish therapeutic strategies against neurological diseases.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Perturbations in neuroinflammatory pathways are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors. J Neuroimmunol 2019; 335:577019. [PMID: 31401418 PMCID: PMC6788784 DOI: 10.1016/j.jneuroim.2019.577019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 01/11/2023]
Abstract
Paclitaxel is a common chemotherapy drug associated with the development of chronic paclitaxel-induced peripheral neuropathy (PIPN). PIPN is associated with neuroinflammatory mechanisms in pre-clinical studies. Here, we evaluated for differential gene expression (DGE) in peripheral blood between breast cancer survivors with and without PIPN and for neuroinflammatory (NI) related signaling pathways and whole-transcriptome profiles from other experiments. Pathway impact analysis identified 8 perturbed NI related pathways. Expression profile analysis found 15 experiments having similar whole-transcriptome profiles of DGE related to neuroinflammation and PIPN. These findings suggest that perturbations in pathways associated with neuroinflammation are found in cancer survivors with PIPN. Paclitaxel-induced peripheral neuropathy (PIPN) is associated with Paclitaxel treatment Differential gene expression was associated with PIPN in breast cancer survivors. Perturbations of neuroinflammatory-related pathways were identified between survivors. Transcriptome profile was similar to other pre-clinical and clinical studies.
Collapse
|
28
|
Rossi HL, Raj NR, Marquez de Prado B, Kuburas A, Luu AKS, Barr GA, Recober A. Trigeminal Pain Responses in Obese ob/ob Mice Are Modality-Specific. Neuroscience 2019; 415:121-134. [PMID: 31295530 DOI: 10.1016/j.neuroscience.2019.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.
Collapse
Affiliation(s)
- Heather L Rossi
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Nichelle R Raj
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Marquez de Prado
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Adisa Kuburas
- Department of Neurology, University of Iowa, Iowa City, IA, USA; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Anthony K S Luu
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Recober
- Department of Neurology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
29
|
Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int J Mol Sci 2019; 20:ijms20133130. [PMID: 31248061 PMCID: PMC6650904 DOI: 10.3390/ijms20133130] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic pain is a condition in which pain progresses from an acute to chronic state and persists beyond the healing process. Chronic pain impairs function and decreases patients’ quality of life. In recent years, efforts have been made to deepen our understanding of chronic pain and to develop better treatments to alleviate chronic pain. In this review, we summarize the results of previous studies, focusing on the mechanisms underlying chronic pain development and the identification of neural areas related to chronic pain. We review the association between chronic pain and negative affective states. Further, we describe the structural and functional changes in brain structures that accompany the chronification of pain and discuss various neurotransmitter families involved. Our review aims to provide guidance for the development of future therapeutic approaches that could be used in the management of chronic pain.
Collapse
|
30
|
Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay É, Omura J, Coté N, Abu-Alhayja'a R, Dumais V, Nachbar RT, Tastet L, Dahou A, Breuils-Bonnet S, Marette A, Pibarot P, Dupuis J, Paulin R, Boucherat O, Archer SL, Bonnet S, Potus F. Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circ Res 2019; 125:449-466. [PMID: 31154939 DOI: 10.1161/circresaha.118.314555] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Pulmonary hypertension (PH) due to left heart disease (LHD), or group 2 PH, is the most prevalent form of PH worldwide. PH due to LHD is often associated with metabolic syndrome (MetS). In 12% to 13% of cases, patients with PH due to LHD display vascular remodeling of pulmonary arteries (PAs) associated with poor prognosis. Unfortunately, the underlying mechanisms remain unknown; PH-targeted therapies for this group are nonexistent, and the development of a new preclinical model is crucial. Among the numerous pathways dysregulated in MetS, inflammation plays also a critical role in both PH and vascular remodeling. OBJECTIVE We hypothesized that MetS and inflammation may trigger the development of vascular remodeling in group 2 PH. METHODS AND RESULTS Using supracoronary aortic banding, we induced diastolic dysfunction in rats. Then we induced MetS by a combination of high-fat diet and olanzapine treatment. We used metformin treatment and anti-IL-6 (interleukin-6) antibodies to inhibit the IL-6 pathway. Compared with sham conditions, only supracoronary aortic banding+MetS rats developed precapillary PH, as measured by both echocardiography and right/left heart catheterization. PH in supracoronary aortic banding+MetS was associated with macrophage accumulation and increased IL-6 production in lung. PH was also associated with STAT3 (signal transducer and activator of transcription 3) activation and increased proliferation of PA smooth muscle cells, which contributes to remodeling of distal PA. We reported macrophage accumulation, increased IL-6 levels, and STAT3 activation in the lung of group 2 PH patients. In vitro, IL-6 activates STAT3 and induces human PA smooth muscle cell proliferation. Metformin treatment decreased inflammation, IL-6 levels, STAT3 activation, and human PA smooth muscle cell proliferation. In vivo, in the supracoronary aortic banding+MetS animals, reducing IL-6, either by anti-IL-6 antibody or metformin treatment, reversed pulmonary vascular remodeling and improve PH due to LHD. CONCLUSIONS We developed a new preclinical model of group 2 PH by combining MetS with LHD. We showed that MetS exacerbates group 2 PH. We provided evidence for the importance of the IL-6-STAT3 pathway in our experimental model of group 2 PH and human patients.
Collapse
Affiliation(s)
- Benoît Ranchoux
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Valérie Nadeau
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Alice Bourgeois
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Steeve Provencher
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Éve Tremblay
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Junichi Omura
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Nancy Coté
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Rami Abu-Alhayja'a
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Valérie Dumais
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Laval University, Québec City, Canada (V.D., R.T.N., A.M.)
| | - Renato T Nachbar
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Laval University, Québec City, Canada (V.D., R.T.N., A.M.)
| | - Lionel Tastet
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Abdellaziz Dahou
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Sandra Breuils-Bonnet
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - André Marette
- Institut universitaire de cardiologie et de pneumologie de Québec Research Center, Laval University, Québec City, Canada (V.D., R.T.N., A.M.)
| | - Philippe Pibarot
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Jocelyn Dupuis
- Institut de cardiologie de Montréal, Québec, Canada (J.D.)
| | - Roxane Paulin
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Olivier Boucherat
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A., F.P.)
| | - Sébastien Bonnet
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.)
| | - François Potus
- From the Pulmonary Hypertension Research Group of the Institut Universitaire de Cardiologie et de Pneumologie de Québec Research Center, Laval University, Québec City, Canada (B.R., V.N., A.B., S.P., E.T., J.O., N.C., R.A-A., L.T., A.D., S.B.-B., P.P., R.P., O.B., S.B., F.P.).,Department of Medicine, Queen's University, Kingston, Ontario, Canada (S.L.A., F.P.)
| |
Collapse
|
31
|
Saika F, Kiguchi N, Matsuzaki S, Kobayashi D, Kishioka S. Inflammatory Macrophages in the Sciatic Nerves Facilitate Neuropathic Pain Associated with Type 2 Diabetes Mellitus. J Pharmacol Exp Ther 2019; 368:535-544. [PMID: 30602591 DOI: 10.1124/jpet.118.252668] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the requirement for effective medication against neuropathic pain associated with type 2 diabetes mellitus (T2DM), mechanism-based pharmacotherapy has yet to be established. Given that long-lasting neuroinflammation, driven by inflammatory macrophages in the peripheral nerves, plays a pivotal role in intractable pain, it is important to determine whether inflammatory macrophages contribute to neuropathic pain associated with T2DM. To generate an experimental model of T2DM, C57BL/6J mice were fed a high-fat diet (HFD) ad libitum. Compared with control diet feeding, obesity and hyperglycemia were observed after HFD feeding, and the mechanical pain threshold evaluated using the von Frey test was found to be decreased, indicating the development of mechanical allodynia. The expression of mRNA markers for macrophages, inflammatory cytokines, and chemokines were significantly upregulated in the sciatic nerve (SCN) after HFD feeding. Perineural administration of saporin-conjugated anti-Mac1 antibody (Mac1-Sap) improved HFD-induced mechanical allodynia. Moreover, treatment of Mac1-Sap decreased the accumulation of F4/80+ macrophages and the upregulation of inflammatory mediators in the SCN after HFD feeding. Inoculation of lipopolysaccharide-activated peritoneal macrophages in tissue surrounding the SCN elicited mechanical allodynia. Furthermore, pharmacological inhibition of inflammatory macrophages by either perineural or systemic administration of TC-2559 [4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine difumarate], a α4β2 nicotinic acetylcholine receptor-selective agonist, relieved HFD-induced mechanical allodynia. Taken together, inflammatory macrophages that accumulate in the SCN mediate the pathophysiology of neuropathic pain associated with T2DM. Inhibitory agents for macrophage-driven neuroinflammation could be potential candidates for novel pharmacotherapy against intractable neuropathic pain.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
32
|
Seringec Akkececi N, Oksuz G, Urfalioğlu A, Gunesacar R, Bakacak M, Arslan M, Kelleci BM. Preoperative Serum Leptin Level Is Associated with Preoperative Pain Threshold and Postoperative Analgesic Consumption in Patients Undergoing Cesarean Section. Med Princ Pract 2019; 28:333-340. [PMID: 31022717 PMCID: PMC6639575 DOI: 10.1159/000500556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/25/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the preoperative level of serum leptin in cesarean section (C-section) patients with and without acute labor pain and its association with postoperative analgesic consumption and preoperative pain threshold. MATERIALS AND METHODS Preoperative leptin levels, preoperative pain threshold, postoperative analgesic consumption in the first 24 h, and postoperative pain severity (visual analog scale (VAS) scores at 1, 2, 4, 6, 12, and 24 h postoperatively) in C-section patients with labor pain (emergency C-section; n = 21) and without labor pain (elective C-section; n = 25) were compared. RESULTS There were no significant differences between the groups regarding the demographic characteristics. Leptin levels, postoperative VAS scores, and analgesic consumption were significantly higher in the group with labor pain, while the preoperative pain threshold was lower. Serum leptin levels correlated negatively with pain threshold and positively with postoperative analgesic consumption. Multiple linear regression analyses in our study revealed that the preoperative leptin levels and having an emergency C-section independently affected the postoperative analgesic consumption and preoperative pain threshold, whereas their combined effects on these parameters were statistically not significant. CONCLUSION Preoperative levels of serum leptin were higher in C-section patients with labor pain than in those without labor pain, and increased serum leptin levels were associated with decreased preoperative pain threshold and increased postoperative analgesic consumption in our study population. Postoperative analgesic requirements may vary among patients, and their requirements might be predicted using preoperative indicators. Serum levels of leptin might be one such indicator and this warrants further studies with larger sample sizes.
Collapse
Affiliation(s)
- Nurten Seringec Akkececi
- Department of Physiology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey,
| | - Gozen Oksuz
- Department of Anesthesia and Reanimation, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Aykut Urfalioğlu
- Department of Anesthesia and Reanimation, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ramazan Gunesacar
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Murat Bakacak
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mahmut Arslan
- Department of Anesthesia and Reanimation, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Bekir Mehmet Kelleci
- Department of Medical Biology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
33
|
Nozaki C, Nent E, Bilkei-Gorzo A, Zimmer A. Involvement of leptin signaling in the development of cannabinoid CB2 receptor-dependent mirror image pain. Sci Rep 2018; 8:10827. [PMID: 30018366 PMCID: PMC6050271 DOI: 10.1038/s41598-018-28507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Neuropathic pain typically appears in a region innervated by an injured or diseased nerve and, in some instances, also on the contralateral side. This so-called mirror image pain is often observed in mice lacking CB2 receptors after sciatic nerve injury, but the underlying mechanisms for this phenotype largely remain unclear. Here we focused on peripheral leptin signaling, which modulates neuropathic pain development and interacts with the endocannabinoid system. Leptin production is induced at the site of nerve injury in CB2-deficient mice (CB2-KO) mice and wild type controls (WT). However, induction of leptin receptor expression was only observed in the injured nerve of CB2-KO mice. This was paralleled by a stimulation of the leptin receptor-downstream STAT3 signaling and an infiltration of F4/80-positive macrophages. Interestingly, an upregulation of leptin receptor expression STAT3 activity and macrophage infiltration was also observed on the non-injured nerve of CB2-KO mice thus reflecting the mirror image pain in CB2-KO animals. Importantly, perineurally-administered leptin-neutralizing antibodies reduced mechanical hyperalgesia, blocked mirror image pain and inhibited the recruitment of F4/80-positive macrophages. These results identify peripheral leptin signaling as an important modulator of CB2 signaling in neuropathic pain.
Collapse
Affiliation(s)
- Chihiro Nozaki
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Elisa Nent
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
34
|
Hu ZJ, Han W, Cao CQ, Mao-Ying QL, Mi WL, Wang YQ. Peripheral Leptin Signaling Mediates Formalin-Induced Nociception. Neurosci Bull 2017; 34:321-329. [PMID: 29204732 DOI: 10.1007/s12264-017-0194-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence suggests that obesity is associated with chronic pain. However, whether obesity is associated with acute inflammatory pain is unknown. Using a well-established obese mouse model induced by a high-fat diet, we found that: (1) the acute thermal pain sensory threshold did not change in obese mice; (2) the model obese mice had fewer nociceptive responses in formalin-induced inflammatory pain tests; restoring the obese mice to a chow diet for three weeks partly recovered their pain sensation; (3) leptin injection induced significant phosphorylation of STAT3 in control mice but not in obese mice, indicating the dysmodulation of topical leptin-leptin receptor signaling in these mice; and (4) leptin-leptin receptor signaling-deficient mice (ob/ob and db/db) or leptin-leptin receptor pathway blockade with a leptin receptor antagonist and the JAK2 inhibitor AG 490 in wild-type mice reduced their nociceptive responses in formalin tests. These results indicate that leptin plays a role in nociception induced by acute inflammation and that interference in the leptin-leptin receptor pathway could be a peripheral target against acute inflammatory pain.
Collapse
Affiliation(s)
- Zhi-Jing Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
- WuXi AppTec, Shanghai, 200131, China
| | - Wei Han
- WuXi AppTec, Shanghai, 200131, China
| | | | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int J Mol Sci 2017; 18:ijms18112296. [PMID: 29104252 PMCID: PMC5713266 DOI: 10.3390/ijms18112296] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1) macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| |
Collapse
|
36
|
Chang KT, Lin YL, Lin CT, Tsai MJ, Huang WC, Shih YH, Lee YY, Cheng H, Huang MC. Data on the expression of leptin and leptin receptor in the dorsal root ganglion and spinal cord after preganglionic cervical root avulsion. Data Brief 2017; 15:567-572. [PMID: 29071294 PMCID: PMC5651484 DOI: 10.1016/j.dib.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
Leptin (Lep) is mainly, although not exclusively, secreted by adipocytes. In addition to regulating lipid metabolism, it is also a proinflammatory factor and involved in the development of neuropathic pain after peripheral nerve injuries (PNI) (Lim et al., 2009; Maeda et al., 2009) [1,2]. Leptin or its messenger ribonucleic acid expression has been found in various brain regions normally and in the dorsal horn after PNI (Lim et al., 2009; Ur et al., 2002; La Cava et al., 2004; White et al., 2004) [1,[3], [4], [5]]. However, the expression pattern of Lep and Leptin receptor (LepR) after preganglionic cervical root avulsion (PCRA) is still unknown. We provide data in this article related to Chang et al. (2017) [6]. Here, our data showed a profound Lep and LepR expression in the neurons of dorsal root ganglion (DRG) after PCRA. Moreover, the expression of Lep and LepR were also identified in significant portions of the neurons and microglia located in the dorsal horn. The roles of these increased expressions in the development of neuropathic pain after PCRA deserve further study.
Collapse
Affiliation(s)
- Kai-Ting Chang
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Lo Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Te Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan.,Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chao Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan.,Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
37
|
Xiong Y, Page JC, Narayanan N, Wang C, Jia Z, Yue F, Shi X, Jin W, Hu K, Deng M, Shi R, Shan T, Yang G, Kuang S. Peripheral Neuropathy and Hindlimb Paralysis in a Mouse Model of Adipocyte-Specific Knockout of Lkb1. EBioMedicine 2017; 24:127-136. [PMID: 29032027 PMCID: PMC5652135 DOI: 10.1016/j.ebiom.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/11/2023] Open
Abstract
Brown adipose tissues (BAT) burn lipids to generate heat through uncoupled respiration, thus representing a powerful target to counteract lipid accumulation and obesity. The tumor suppressor liver kinase b1 (Lkb1) is a key regulator of cellular energy metabolism; and adipocyte-specific knockout of Lkb1 (Ad-Lkb1 KO) leads to the expansion of BAT, improvements in systemic metabolism and resistance to obesity in young mice. Here we report the unexpected finding that the Ad-Lkb1 KO mice develop hindlimb paralysis at mid-age. Gene expression analyses indicate that Lkb1 KO upregulates the expression of inflammatory cytokines in interscapular BAT and epineurial brown adipocytes surrounding the sciatic nerve. This is followed by peripheral neuropathy characterized by infiltration of macrophages into the sciatic nerve, axon degeneration, reduced nerve conductance, and hindlimb paralysis. Mechanistically, Lkb1 KO reduces AMPK phosphorylation and amplifies mammalian target-of-rapamycin (mTOR)-dependent inflammatory signaling specifically in BAT but not WAT. Importantly, pharmacological or genetic inhibition of mTOR ameliorates inflammation and prevents paralysis. These results demonstrate that BAT inflammation is linked to peripheral neuropathy.
Collapse
Affiliation(s)
- Yan Xiong
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA; Joint Laboratory of Lipid Metabolism, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jessica C Page
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Xine Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wen Jin
- Joint Laboratory of Lipid Metabolism, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Keping Hu
- Joint Laboratory of Lipid Metabolism, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; School of Materials Engineering(,) Purdue University, West Lafayette, IN 47907, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA; Joint Laboratory of Lipid Metabolism, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
38
|
High-fat diet increases pain behaviors in rats with or without obesity. Sci Rep 2017; 7:10350. [PMID: 28871134 PMCID: PMC5583349 DOI: 10.1038/s41598-017-10458-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with increased risk for chronic pain. Basic mechanisms for this association are poorly understood. Using a milder version of a radicular pain model, local inflammation of the dorsal root ganglion (DRG), we observed marked increases in mechanical and cold allodynia in rats of both sexes that were maintained on a high-fat diet (HFD) for 6 weeks prior to DRG inflammation. Notably, this increase in pain-related behaviors occurred in both Long-Evans and Sprague-Dawley rats despite the fact that the 6-week HFD exposure induced obesity (e.g., increased insulin, leptin, weight, and percent body fat) in the Long-Evans, but not Sprague-Dawley, strains. This suggested that HFD, rather than obesity per se, increased pain behaviors. Increased pain behaviors were observed even after a much shorter (1 week) exposure to the HFD but the effect was smaller. HFD also increased behavioral responses and paw swelling to paw injection of complete Freund’s adjuvant, a model of peripheral inflammatory pain. No change was detected in plasma cytokine levels in HFD rats. However, increased macrophage infiltration of the DRG was observed in response to the HFD, absent any pain model. The results suggest that HFD can increase pain even when it does not cause obesity.
Collapse
|
39
|
Chang KT, Lin YL, Lin CT, Hong CJ, Tsai MJ, Huang WC, Shih YH, Lee YY, Cheng H, Huang MC. Leptin is essential for microglial activation and neuropathic pain after preganglionic cervical root avulsion. Life Sci 2017; 187:31-41. [PMID: 28822786 DOI: 10.1016/j.lfs.2017.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022]
Abstract
AIMS Preganglionic cervical root avulsion (PCRA) affects both the peripheral and central nervous systems and is often associated with neuropathic pain. Unlike peripheral nerve injuries (PNI), central lesions caused by disruption of cervical roots from the spinal cord following PCRA contribute to the generation of neuropathic pain. Leptin is involved in the development of neuropathic pain after PNI by affecting neurons. However, whether leptin is involved in microglial activation leading to neuropathic pain after PCRA is unknown. MAIN METHODS Preganglionic avulsion of the left 6th-8th cervical roots was performed in C57B/6J mice and leptin-deficient mice. A leptin antagonist or leptin was administered to C57B/6J mice and leptin-deficient mice after injury, respectively. The expression pattern of spinal and supraspinal microglia was examined by immunofluorescent staining. Von Frey filaments were used to test pain sensitivity. KEY FINDINGS Leptin is essential for the development of neuropathic pain after PCRA. Allodynia was absent in the leptin-deficient mice and the mice administered the leptin antagonist. We also found that leptin deficiency or the administration of its antagonist inhibited the development of microgliosis in the dorsal horn and brainstem. Furthermore, increase in the expression of CD86 and iNOS, and Wallerian degeneration were noted in the spinal cord. The administration of exogenous leptin to leptin-deficient mice reversed these effects. SIGNIFICANCE We concluded that leptin is involved in the proliferation and activation of microglia, which in turn enhances the development of neuropathic pain. Blocking the effects of leptin might be a target for the treatment of neuropathic pain after PCRA.
Collapse
Affiliation(s)
- Kai-Ting Chang
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Lo Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Te Lin
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chen-Jei Hong
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chao Huang
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
40
|
Paiva ES, Andretta A, Batista ED, Lobo MMMT, Miranda RCD, Nisihara R, Schieferdecker MEM, Boguszewski CL. Serum levels of leptin and adiponectin and clinical parameters in women with fibromyalgia and overweight/obesity. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:249-256. [PMID: 28226002 PMCID: PMC10118809 DOI: 10.1590/2359-3997000000248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/25/2016] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The objectives of this study were to evaluate the serum levels of adipokines in women with fibromyalgia with and without overweight/obesity, and to correlate the adipokines levels with clinical parameters associated with fibromyalgia and adipose tissue mass (body fat). SUBJECTS AND METHODS The study included 100 women divided into four groups: (a) fibromyalgia and overweight/obesity; (b) fibromyalgia and normal weight; (c) controls and overweight/obesity; and (d) controls and normal weight. Patients and controls were evaluated for clinical, anthropometric, and fibromyalgia-related parameters. Assessments included serum levels of leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), and C-reactive protein (CRP). Levels of adipokines were further adjusted for fat mass. RESULTS Fibromyalgia patients with overweight/obesity or normal weight had no differences in clinical parameters. Unadjusted leptin levels were lower in fibromyalgia patients than controls, a finding that was more remarkable in fibromyalgia patients with overweight/obesity. Leptin levels had no correlation with clinical parameters of fibromyalgia or inflammation markers (MCP-1 and CRP), and adiponectin levels showed no difference between groups. CONCLUSIONS No correlation was observed between adjusted leptin levels and clinical parameters of fibromyalgia. Patients with fibromyalgia and overweight/obesity presented lower levels of leptin than controls with overweight/obesity.
Collapse
|
41
|
Bjersing JL, Larsson A, Palstam A, Ernberg M, Bileviciute-Ljungar I, Löfgren M, Gerdle B, Kosek E, Mannerkorpi K. Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC Musculoskelet Disord 2017; 18:106. [PMID: 28288611 PMCID: PMC5348801 DOI: 10.1186/s12891-017-1477-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Chronic pain and fatigue improves by exercise in fibromyalgia (FM) but underlying mechanisms are not known. Obesity is increased among FM patients and associates with higher levels of pain. Symptom improvement after aerobic exercise is affected by body mass index (BMI) in FM. Metabolic factors such as insulin-like growth factor 1 (IGF-1) and leptin may be involved. In this study, the aim was to evaluate the role of metabolic factors in lean, overweight and obese women during resistance exercise, in relation to symptom severity and muscle strength in women with FM. Methods Forty-three women participated in supervised progressive resistance exercise, twice weekly for 15-weeks. Serum free and total IGF-1, IGF-binding protein 3 (IGFBP3), adiponectin, leptin and resistin were determined at baseline and after 15-weeks. Level of current pain was rated on a visual analogue scale (0–100 mm). Level of fatigue was rated by multidimensional fatigue inventory (MFI-20) subscale general fatigue (MFIGF). Knee extension force, elbow flexion force and handgrip force were assessed by dynamometers. Results Free IGF-1 (p = 0.047), IGFBP3 (p = 0.025) and leptin (p = 0.008) were significantly decreased in lean women (n = 18), but not in the overweight (n = 17) and the obese (n = 8). Lean women with FM benefited from resistance exercise with improvements in current pain (p= 0.039, n = 18), general fatigue (MFIGF, p = 0.022, n = 18) and improved elbow-flexion force (p = 0.017, n = 18). In overweight and obese women with FM there was no significant improvement in pain or fatigue but an improvement in elbow flexion (p = 0.049; p = 0.012) after 15 weeks of resistance exercise. Conclusion The clearest clinical response to resistance exercise was found in lean patients with FM. In these individuals, individualized resistance exercise was followed by changes in IGF-1 and leptin, reduced pain, fatigue and improved muscular strength. In overweight and obese women FM markers of metabolic signaling and clinical symptoms were unchanged, but strength was improved in the upper limb. Resistance exercise combined with dietary interventions might benefit patients with FM and overweight. Trial registration The trial was registered 21 of October 2010 with ClinicalTrials.gov identification number: NCT01226784.
Collapse
Affiliation(s)
- Jan L Bjersing
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Gothenburg, Sweden. .,Sahlgrenska University Hospital, Rheumatology, Gothenburg, Sweden.
| | - Anette Larsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Gothenburg, Sweden.,University of Gothenburg Centre for Person Centered Care (GPCC), Gothenburg, Sweden
| | - Annie Palstam
- University of Gothenburg Centre for Person Centered Care (GPCC), Gothenburg, Sweden.,Institute of Neuroscience and Physiology/Physiotherapy, Section of Clinical Neuroscience and Rehabilitation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Ernberg
- Department of Dental Medicine and Scandinavian Center for Orofacial Neurosciences (SCON) Karolinska Institutet, Stockholm, Sweden
| | | | - Monika Löfgren
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Björn Gerdle
- Department of Medical and Health Sciences, Faculty of Medicine and Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergotland, Linköping, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Spine Center, Stockholm, Sweden
| | - Kaisa Mannerkorpi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, Box 480, 40530, Gothenburg, Sweden.,Institute of Neuroscience and Physiology/Physiotherapy, Section of Clinical Neuroscience and Rehabilitation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Physiotherapy and Occupational therapy, Gothenburg, Sweden
| |
Collapse
|
42
|
Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J Chem Neuroanat 2017; 81:34-41. [PMID: 28163216 DOI: 10.1016/j.jchemneu.2017.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/20/2022]
Abstract
Peripheral nerve injury is a widespread and disabling condition that can impair the individual's daily life. Studies involving medications that may positively affect peripheral nerve regeneration are rare. The aim of this study was to investigate new treatments after peripheral nerve injury using various neuroprotectants, melatonin, alcar and leptin, in the regenerative process in an experimental rat model. Wistar albino rats were randomly divided into eight groups containing equal number of animals. Intraperitoneal injection of melatonin (50mg/kg, for 21days), leptin (1mg/kg, for 21days) and acetyl-l-carnitine (50mg/kg, for six weeks) was performed postoperatively. Histological and electromyographical assessments of the regenerated nerves were performed 12 weeks after surgery. Stereological analysis was performed to estimate myelinated and unmyelinated axon numbers, surface area, myelin thickness and the myelin thickness/axon diameter ratio for each group. The results showed that only alcar has a beneficial effect on the regeneration of unmyelinated axons. Neither melatonin and leptin nor alcar were observed to have any therapeutic effect on the regeneration of myelinated axons. Alcar therapy has a positive effect on the regeneration of unmyelinated fiber in the sciatic nerve. However, the same effect was not observed in myelinated nerve fibers after intraperitoneal application of melatonin and leptin.
Collapse
|
43
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
44
|
Abstract
Obesity is associated with several pain disorders including headache. The effects of obesity on the trigeminal nociceptive system, which mediates headache, remain unknown. We used 2 complementary mouse models of obesity (high-fat diet and leptin deficiency) to examine this. We assessed capsaicin-induced nocifensive behavior and photophobia in obese and control mice. Calcium imaging was used to determine the effects of obesity on the activity of primary trigeminal afferents in vitro. We found that obese mice had a normal acute response to a facial injection of capsaicin, but they developed photophobic behavior at doses that had no effect on control mice. We observed higher calcium influx in cultured trigeminal ganglia neurons from obese mice and a higher percentage of medium to large diameter capsaicin-responsive cells. These findings demonstrate that obesity results in functional changes in the trigeminal system that may contribute to abnormal sensory processing. Our findings provide the foundation for in-depth studies to improve the understanding of the effects of obesity on the trigeminal system and may have implications for the pathophysiology of headache disorders.
Collapse
|
45
|
Inoue R, Sumitani M, Yasuda T, Tsuji M, Nakamura M, Shimomura I, Shibata M, Yamada Y. Independent Risk Factors for Positive and Negative Symptoms in Patients with Diabetic Polyneuropathy. J Pain Palliat Care Pharmacother 2016; 30:178-83. [PMID: 27337438 DOI: 10.1080/15360288.2016.1192081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Patients with diabetes occasionally develop diabetic polyneuropathy (DPN), which is characterized by both positive symptoms such as pain and negative symptoms such as numbness/dysesthesia. However, these symptoms have always been collectively analyzed to determine their risk factors. This study aimed to independently analyze the risk factors for neuropathic pain and numbness/dysesthesia in DPN patients. In total, 298 patients with diabetes (age: 61.1 ± 10.4 years; 176 male) were included. The relationships among the incidence of DPN and its clinical parameters were determined using logistic regression models. Then, the statistical model was applied in two groups of DPN patients: those with pain only or both pain and the negative symptoms (pain group; n = 25) and those with the negative symptoms only or both pain and the negative symptoms (numbness/dysesthesia group; n = 60). All logistic regression models were adjusted for the duration of diabetes, glycosylated hemoglobin levels, and age. The depression score was higher for patients with DPN than for those without, although it did not reach an abnormal level. An abnormal Achilles tendon reflex (ATR) and insulin treatment, but not smoking, hypertension, hyperlipidemia, and diabetic retinopathy, were associated with DPN. Furthermore, female sex and an abnormal ATR and insulin treatment were significant clinical features in the pain and numbness/numbness groups, respectively. Overweight and obesity were the common clinical features in both groups. We conclude that the positive and negative symptoms of DPN possibly have independent risk factors, suggesting different underlying mechanisms and the need for separate diagnosis and treatment.
Collapse
|
46
|
Younger J, Kapphahn K, Brennan K, Sullivan SD, Stefanick ML. Association of Leptin with Body Pain in Women. J Womens Health (Larchmt) 2016; 25:752-60. [PMID: 27028709 PMCID: PMC4939369 DOI: 10.1089/jwh.2015.5509] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Leptin, an appetite-regulatory hormone, is also known to act as a proinflammatory adipokine. One of the effects of increased systemic leptin concentrations may be greater sensitivity to pain. We report the results of two studies examining the association between leptin and pain: a small pilot longitudinal study, followed by a large cross-sectional study. In Study 1, three women with physician-diagnosed fibromyalgia provided blood draws daily for 25 consecutive days, as well as daily self-reported musculoskeletal pain. Daily fluctuations in serum leptin were positively associated with pain across all three participants (F (1,63) = 12.8, p < 0.001), with leptin predicting ∼49% of the pain variance. In Study 2, the relationship between leptin and body pain was examined in a retrospective cross-sectional analysis of 5676 generally healthy postmenopausal women from the Women's Health Initiative. Leptin levels obtained from single blood draws were tested for a relationship with self-reported body pain. Body mass index (BMI) was also included as a predictor of pain. Both leptin and BMI were found to be independently associated with self-reported pain (p = 0.001 and p < 0.001, respectively), with higher leptin levels and greater BMI each being associated with greater pain. Leptin appears to be a predictor of body pain both within- and between-individuals and may be a driver of generalized pain states such as fibromyalgia.
Collapse
Affiliation(s)
- Jarred Younger
- 1 University of Alabama at Birmingham , Birmingham, Alabama
| | | | | | | | - Marcia L Stefanick
- 5 Department of Medicine, Stanford Prevention Research Center, Stanford University , Stanford, California
| |
Collapse
|
47
|
Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency. Neuropsychopharmacology 2016; 41:508-20. [PMID: 26081302 PMCID: PMC5130126 DOI: 10.1038/npp.2015.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.
Collapse
|
48
|
Zhang FF, Morioka N, Harano S, Nakamura Y, Liu K, Nishibori M, Hisaoka-Nakashima K, Nakata Y. Perineural expression of high-mobility group box-1 contributes to long-lasting mechanical hypersensitivity via matrix metalloprotease-9 up-regulation in mice with painful peripheral neuropathy. J Neurochem 2015; 136:837-850. [PMID: 26578177 DOI: 10.1111/jnc.13434] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/06/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022]
Abstract
High-mobility group box-1 (HMGB1) has been shown to be critical in the modulation of nociceptive transduction following a peripheral neuropathy. However, the precise role of peripherally expressed HMGB1 in neuropathic pain has yet to be fully elaborated. Following a partial sciatic nerve ligation (PSNL) in mice, a persistent ipsilateral up-regulation of HMGB1 was observed from 3 to 21 days after PSNL, in paralleled with a robust ipsilateral hind paw mechanical hypersensitivity. Increased HMGB1 was detected in both infiltrating macrophages and proliferating Schwann cells in the ipsilateral nerve 14 days following PSNL. Repeated perineural treatment with anti-HMGB1 antibody significantly ameliorated PSNL-induced mechanical hypersensitivity. Several pronociceptive molecules, including matrix metalloprotease-9 (MMP-9), tumor necrosis factor-α, interleukin-1β (IL-1β), and cyclooxygenase-2, were up-regulated in injured sciatic nerve 14 days following PSNL. Repeated perineural treatment with an anti-HMGB1 antibody significantly suppressed expression of MMP-9, but not other pronociceptive molecules. Perineural treatment with a selective MMP-9 inhibitor ameliorated PSNL-induced mechanical hypersensitivity. The current findings demonstrate that the maintenance of the neuropathic state following an injured nerve is dependent on the up-regulation of HMGB1 and MMP-9. Thus, blocking HMGB1 function in sciatic nerve could be a potent therapeutic strategy for the treatment of neuropathic pain. Increased peripheral high-mobility group box-1 (HMGB1) is involved in the modulation of nociceptive transduction following a peripheral neuropathy. Following nerve injury in mice, increased HMGB1 is detected in both infiltrating macrophages and proliferating Schwann cells in the ipsilateral nerve. Repeated perineural treatment with anti-HMGB1 antibody significantly ameliorates nerve injury-induced mechanical hypersensitivity, and suppresses expression of matrix metalloprotease-9 (MMP-9). The findings demonstrate that the maintenance of the neuropathic state following an injury nerve is dependent on the up-regulation of HMGB1 and MMP-9.
Collapse
Affiliation(s)
- Fang Fang Zhang
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | - Sakura Harano
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | - Keyue Liu
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Minami-ku, Hiroshima, Japan
| |
Collapse
|
49
|
Ontogenic expression profiles and oxaliplatin regulation of leptin expression in mice dorsal root ganglion. Neuroreport 2015; 26:870-6. [PMID: 26302162 DOI: 10.1097/wnr.0000000000000440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leptin is widely distributed in many tissues, including the nervous system. However, the ontogeny of leptin expression in the dorsal root ganglion (DRG) is unclear. Recent studies have shown that leptin is involved in the regulation of neuropathic pain induced by nerve injury. Our previous results showed that exogenous leptin administration alleviated the pain behaviors induced by chronic constriction sciatic nerve injury. In the present study, the ontogenic expression of leptin was detected in the DRG of the mouse embryo at days 15.5 (E15.5), E17.5, and E19.5 of gestation and in the postnatal mouse at days 5 (P5), P15, and P25, and in the adult mouse. Leptin immunoreactivity and mRNA were not found in DRG at E15.5. The percentage of leptin immunopositive (leptin) neurons was about 27% at E17.5. It continued to increase to about 70% at P5. From P5 to P15, there was no significant change. The proportion of DRG neurons positive for leptin decreased after P15 and there were about 41% leptin neurons in adults. The expression profile of leptin mRNA is similar to leptin immunoreactivity. Oxaliplatin (OXA) is an effective platinum-based drug used as first-line chemotherapy for advanced colorectal cancer. However, it may induce neuropathic pain. In the current study, we found that the expression of leptin was increased in the lumbar 4-6 DRG of OXA-treated mice. These results indicate that leptin is involved in the regulation of DRG development and OXA-induced neuropathic pain.
Collapse
|
50
|
Kiguchi N, Saika F, Kobayashi Y, Ko MC, Kishioka S. TC-2559, an α4β2 nicotinic acetylcholine receptor agonist, suppresses the expression of CCL3 and IL-1β through STAT3 inhibition in cultured murine macrophages. J Pharmacol Sci 2015; 128:83-6. [DOI: 10.1016/j.jphs.2015.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/07/2015] [Accepted: 04/28/2015] [Indexed: 01/08/2023] Open
|