1
|
Janczak M, Vilhjálmsdóttir J, Ädelroth P. Proton transfer in cytochrome bd-I from E. coli involves Asp-105 in CydB. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149489. [PMID: 39009175 DOI: 10.1016/j.bbabio.2024.149489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Cytochrome bds are bacterial terminal oxidases expressed under low oxygen conditions, and they are important for the survival of many pathogens and hence potential drug targets. The largest subunit CydA contains the three redox-active cofactors heme b558, heme b595 and the active site heme d. One suggested proton transfer pathway is found at the interface between the CydA and the other major subunit CydB. Here we have studied the O2 reduction mechanism in E. coli cyt. bd-I using the flow-flash technique and focused on the mechanism, kinetics and pathway for proton transfer. Our results show that the peroxy (P) to ferryl (F) transition, coupled to the oxidation of the low-spin heme b558 is pH dependent, with a maximum rate constant (~104 s-1) that is slowed down at higher pH. We assign this behavior to rate-limitation by internal proton transfer from a titratable residue with pKa ~ 9.7. Proton uptake from solution occurs with the same P➔F rate constant. Site-directed mutagenesis shows significant effects on catalytic turnover in the CydB variants Asp58B➔Asn and Asp105B➔Asn variants consistent with them playing a role in proton transfer. Furthermore, in the Asp105B➔Asn variant, the reactions up to P formation occur essentially as in the wildtype bd-I, but the P➔F transition is specifically inhibited, supporting a direct and specific role for Asp105B in the functional proton transfer pathway in bd-I. We further discuss the possible identity of the high pKa proton donor, and the conservation pattern of the Asp-105B in the cyt. bd superfamily.
Collapse
Affiliation(s)
- M Janczak
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - J Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - P Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
2
|
Murali R, Pace LA, Sanford RA, Ward LM, Lynes MM, Hatzenpichler R, Lingappa UF, Fischer WW, Gennis RB, Hemp J. Diversity and evolution of nitric oxide reduction in bacteria and archaea. Proc Natl Acad Sci U S A 2024; 121:e2316422121. [PMID: 38900790 PMCID: PMC11214002 DOI: 10.1073/pnas.2316422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Nitrous oxide is a potent greenhouse gas whose production is catalyzed by nitric oxide reductase (NOR) members of the heme-copper oxidoreductase (HCO) enzyme superfamily. We identified several previously uncharacterized HCO families, four of which (eNOR, sNOR, gNOR, and nNOR) appear to perform NO reduction. These families have novel active-site structures and several have conserved proton channels, suggesting that they might be able to couple NO reduction to energy conservation. We isolated and biochemically characterized a member of the eNOR family from the bacterium Rhodothermus marinus and found that it performs NO reduction. These recently identified NORs exhibited broad phylogenetic and environmental distributions, greatly expanding the diversity of microbes in nature capable of NO reduction. Phylogenetic analyses further demonstrated that NORs evolved multiple times independently from oxygen reductases, supporting the view that complete denitrification evolved after aerobic respiration.
Collapse
Affiliation(s)
- Ranjani Murali
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL61801
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV89154
| | - Laura A. Pace
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL61801
- meliora.bio, Salt Lake City, UT84103
| | - Robert A. Sanford
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - L. M. Ward
- Department of Geosciences, Smith College, Northampton, MA01063
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Mackenzie M. Lynes
- Department of Chemistry and Biochemistry, Thermal Biology Institute, Montana State University, Bozeman, MT59717
- Center for Biofilm Enginering, Montana State University, Bozeman, MT59717
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Thermal Biology Institute, Montana State University, Bozeman, MT59717
- Center for Biofilm Enginering, Montana State University, Bozeman, MT59717
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT59717
| | - Usha F. Lingappa
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Woodward W. Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Robert B. Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - James Hemp
- meliora.bio, Salt Lake City, UT84103
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Noodleman L, Götz AW, Han Du WG, Hunsicker-Wang L. Reaction pathways, proton transfer, and proton pumping in ba3 class cytochrome c oxidase: perspectives from DFT quantum chemistry and molecular dynamics. Front Chem 2023; 11:1186022. [PMID: 38188931 PMCID: PMC10766771 DOI: 10.3389/fchem.2023.1186022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
After drawing comparisons between the reaction pathways of cytochrome c oxidase (CcO, Complex 4) and the preceding complex cytochrome bc1 (Complex 3), both being proton pumping complexes along the electron transport chain, we provide an analysis of the reaction pathways in bacterial ba3 class CcO, comparing spectroscopic results and kinetics observations with results from DFT calculations. For an important arc of the catalytic cycle in CcO, we can trace the energy pathways for the chemical protons and show how these pathways drive proton pumping of the vectorial protons. We then explore the proton loading network above the Fe heme a3-CuB catalytic center, showing how protons are loaded in and then released by combining DFT-based reaction energies with molecular dynamics simulations over states of that cycle. We also propose some additional reaction pathways for the chemical and vector protons based on our recent work with spectroscopic support.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, United States
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
4
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
5
|
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba 3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023; 25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.
Collapse
Affiliation(s)
- Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Shaohui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Zhili Yin
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Mengguo Chen
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Illinois 60660, USA
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
6
|
Ghosh S, Zorić D, Dahl P, Bjelčić M, Johannesson J, Sandelin E, Borjesson P, Björling A, Banacore A, Edlund P, Aurelius O, Milas M, Nan J, Shilova A, Gonzalez A, Mueller U, Brändén G, Neutze R. A simple goniometer-compatible flow cell for serial synchrotron X-ray crystallography. J Appl Crystallogr 2023; 56:449-460. [PMID: 37032973 PMCID: PMC10077854 DOI: 10.1107/s1600576723001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via light-weight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Å resolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX.
Collapse
Affiliation(s)
- Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Doris Zorić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Monika Bjelčić
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Per Borjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | | | - Analia Banacore
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Anastasya Shilova
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Uwe Mueller
- Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| |
Collapse
|
7
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
8
|
Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. The Unusual Homodimer of a Heme‐Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoliang Zhu
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zeng
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Shuangbo Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Jana Juli
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Linhua Tai
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Danyang Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyun Pang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Sin Man Lam
- LipidALL Technologies Company Limited Changzhou 213022 Jiangsu Province China
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences No.1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohong Peng
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Fei Sun
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Center for Biological Imaging Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| |
Collapse
|
9
|
Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. The Unusual Homodimer of a Heme-Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Angew Chem Int Ed Engl 2021; 60:13323-13330. [PMID: 33665933 PMCID: PMC8251803 DOI: 10.1002/anie.202016785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 02/03/2023]
Abstract
The heme-copper oxidase superfamily comprises cytochrome c and ubiquinol oxidases. These enzymes catalyze the transfer of electrons from different electron donors onto molecular oxygen. A B-family cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus was discovered previously to be able to use both cytochrome c and naphthoquinol as electron donors. Its molecular mechanism as well as the evolutionary significance are yet unknown. Here we solved its 3.4 Å resolution electron cryo-microscopic structure and discovered a novel dimeric structure mediated by subunit I (CoxA2) that would be essential for naphthoquinol binding and oxidation. The unique structural features in both proton and oxygen pathways suggest an evolutionary adaptation of this oxidase to its hyperthermophilic environment. Our results add a new conceptual understanding of structural variation of cytochrome c oxidases in different species.
Collapse
Affiliation(s)
- Guoliang Zhu
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Hui Zeng
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Shuangbo Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jana Juli
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Linhua Tai
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Danyang Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoyun Pang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Yan Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Sin Man Lam
- LipidALL Technologies Company LimitedChangzhou213022Jiangsu ProvinceChina
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesNo.1 West Beichen Road, Chaoyang DistrictBeijing100101China
| | - Yun Zhu
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guohong Peng
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Hartmut Michel
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Fei Sun
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Center for Biological ImagingInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| |
Collapse
|
10
|
Specific inhibition of proton pumping by the T315V mutation in the K channel of cytochrome ba 3 from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148450. [PMID: 34022199 DOI: 10.1016/j.bbabio.2021.148450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
Cytochrome ba3 from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons. Here we have studied the effect of the T315V substitution in the K channel on the kinetics of membrane potential generation coupled to the oxidative half-reaction of the catalytic cycle of cytochrome ba3. The results suggest that the mutated enzyme does not pump protons during the reaction of the fully reduced form with molecular oxygen in a single turnover. Specific inhibition of proton pumping in the T315V mutant appears to be a consequence of inability to provide rapid (τ ~ 100 μs) reprotonation of the internal transient proton donor(s) of the K channel. In contrast to the A family, the K channel of the B-type oxidases is necessary for the electrogenic transfer of both pumped and substrate protons during the oxidative half-reaction of the catalytic cycle.
Collapse
|
11
|
Abstract
Bacteria power their energy metabolism using membrane-bound respiratory enzymes that capture chemical energy and transduce it by pumping protons or Na+ ions across their cell membranes. Recent breakthroughs in molecular bioenergetics have elucidated the architecture and function of many bacterial respiratory enzymes, although key mechanistic principles remain debated. In this Review, we present an overview of the structure, function and bioenergetic principles of modular bacterial respiratory chains and discuss their differences from the eukaryotic counterparts. We also discuss bacterial supercomplexes, which provide central energy transduction systems in several bacteria, including important pathogens, and which could open up possible avenues for treatment of disease.
Collapse
|
12
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Noodleman L, Han Du WG, McRee D, Chen Y, Goh T, Götz AW. Coupled transport of electrons and protons in a bacterial cytochrome c oxidase-DFT calculated properties compared to structures and spectroscopies. Phys Chem Chem Phys 2021; 22:26652-26668. [PMID: 33231596 DOI: 10.1039/d0cp04848h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After a general introduction to the features and mechanisms of cytochrome c oxidases (CcOs) in mitochondria and aerobic bacteria, we present DFT calculated physical and spectroscopic properties for the catalytic reaction cycle compared with experimental observations in bacterial ba3 type CcO, also with comparisons/contrasts to aa3 type CcOs. The Dinuclear Complex (DNC) is the active catalytic reaction center, containing a heme a3 Fe center and a near lying Cu center (called CuB) where by successive reduction and protonation, molecular O2 is transformed to two H2O molecules, and protons are pumped from an inner region across the membrane to an outer region by transit through the CcO integral membrane protein. Structures, energies and vibrational frequencies for Fe-O and O-O modes are calculated by DFT over the catalytic cycle. The calculated DFT frequencies in the DNC of CcO are compared with measured frequencies from Resonance Raman spectroscopy to clarify the composition, geometry, and electronic structures of different intermediates through the reaction cycle, and to trace reaction pathways. X-ray structures of the resting oxidized state are analyzed with reference to the known experimental reaction chemistry and using DFT calculated structures in fitting observed electron density maps. Our calculations lead to a new proposed reaction pathway for coupling the PR → F → OH (ferryl-oxo → ferric-hydroxo) pathway to proton pumping by a water shift mechanism. Through this arc of the catalytic cycle, major shifts in pKa's of the special tyrosine and a histidine near the upper water pool activate proton transfer. Additional mechanisms for proton pumping are explored, and the role of the CuB+ (cuprous state) in controlling access to the dinuclear reaction site is proposed.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Blomberg MRA. Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in cbb3 Cytochrome c Oxidase. Inorg Chem 2020; 59:11542-11553. [PMID: 32799475 DOI: 10.1021/acs.inorgchem.0c01351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The superfamily of heme copper oxidases reduces molecular oxygen or nitric oxide, and the active sites comprise a high-spin heme group (a3 or b3) and a non-heme metal (CuB or FeB). The cbb3 C family of cytochrome c oxidases, with the high-spin heme b3 and CuB in the active site, is a subfamily of the heme copper oxidases that can reduce both molecular oxygen, which is the main substrate, and nitric oxide. The mechanism for NO reduction in cbb3 oxidase is studied here using hybrid density functional theory and compared to other cytochrome c oxidases (A and B families), with a high-spin heme a3 and CuB in the active site, and to cytochrome c dependent NO reductase, with a high-spin heme b3 and a non-heme FeB in the active site. It is found that the reaction mechanism and the detailed reaction energetics of the cbb3 oxidases are not similar to those of cytochrome c dependent NO reductase, which has the same type of high-spin heme group but a different non-heme metal. This is in contrast to earlier expectations. Instead, the NO reduction mechanism in cbb3 oxidases is very similar to that in the other cytochrome c oxidases, with the same non-heme metal, CuB, and is independent of the type of high-spin heme group. The conclusion is that the type of non-heme metal (CuB or FeB) in the active site of the heme copper oxidases is more important for the reaction mechanisms than the type of high-spin heme, at least for the NO reduction reaction. The reason is that the proton-coupled reduction potentials of the active site cofactors determine the energetics for the NO reduction reaction, and they depend to a larger extent on the non-heme metal. Observed differences in NO reduction reactivity among the various cytochrome c oxidases may be explained by differences outside the BNC, affecting the rate of proton transfer, rather than in the BNC itself.
Collapse
|
15
|
Cai X, Son CY, Mao J, Kaur D, Zhang Y, Khaniya U, Cui Q, Gunner MR. Identifying the proton loading site cluster in the ba 3 cytochrome c oxidase that loads and traps protons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148239. [PMID: 32531221 DOI: 10.1016/j.bbabio.2020.148239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.
Collapse
Affiliation(s)
- Xiuhong Cai
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Junjun Mao
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Divya Kaur
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Chemistry, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Qiang Cui
- Department of Chemistry & Department of Biomedical Engineering & Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - M R Gunner
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Department of Chemistry, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
16
|
Björck ML, Vilhjálmsdóttir J, Hartley AM, Meunier B, Näsvik Öjemyr L, Maréchal A, Brzezinski P. Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase. Sci Rep 2019; 9:20207. [PMID: 31882860 PMCID: PMC6934443 DOI: 10.1038/s41598-019-56648-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/16/2019] [Indexed: 02/04/2023] Open
Abstract
In cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than through the D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D (Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO with O2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and presumably also for proton pumping.
Collapse
Affiliation(s)
- Markus L Björck
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andrew M Hartley
- Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Amandine Maréchal
- Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK. .,Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
17
|
Koutsoupakis C, Soulimane T, Varotsis C. Discrete Ligand Binding and Electron Transfer Properties of ba 3-Cytochrome c Oxidase from Thermus thermophilus: Evolutionary Adaption to Low Oxygen and High Temperature Environments. Acc Chem Res 2019; 52:1380-1390. [PMID: 31021078 DOI: 10.1021/acs.accounts.9b00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome c oxidase (C cO) couples the oxidation of cytochrome c to the reduction of molecular oxygen to water and links these electron transfers to proton translocation. The redox-driven C cO conserves part of the released free energy generating a proton motive force that leads to the synthesis of the main biological energy source ATP. Cytochrome ba3 oxidase is a B-type oxidase from the extremely thermophilic eubacterium Thermus thermophilus with high O2 affinity, expressed under elevated temperatures and limited oxygen supply and possessing discrete structural, ligand binding, and electron transfer properties. The origin and the cause of the peculiar, as compared to other C cOs, thermodynamic and kinetic properties remain unknown. Fourier transform infrared (FTIR) and time-resolved step-scan FTIR (TRS2-FTIR) spectroscopies have been employed to investigate the origin of the binding and electron transfer properties of cytochrome ba3 oxidase in both the fully reduced (FR) and mixed valence (MV) forms. Several independent and not easily separated factors leading to increased thermostability and high O2 affinity have been determined. These include (i) the increased hydrophobicity of the active center, (ii) the existence of a ligand input channel, (iii) the high affinity of CuB for exogenous ligands, (iv) the optimized electron transfer (ET) pathways, (v) the effective proton-input channel and water-exit pathway as well the proton-loading/exit sites, (vi) the specifically engineered protein structure, and (vii) the subtle thermodynamic and kinetic regulation. We correlate the unique ligand binding and electron transfer properties of cytochrome ba3 oxidase with the existence of an adaption mechanism which is necessary for efficient function. These results suggest that a cascade of structural factors have been optimized by evolution, through protein architecture, to ensure the conversion of cytochrome ba3 oxidase into a high O2-affinity enzyme that functions effectively in its extreme native environment. The present results show that ba3-cytochrome c oxidase uses a unique structural pattern of energy conversion that has taken into account all the extreme environmental factors that affect the function of the enzyme and is assembled in such a way that its exclusive functions are secured. Based on the available data of CcOs, we propose possible factors including the rigidity and nonpolar hydrophobic interactions that contribute to the behavior observed in cytochrome ba3 oxidase.
Collapse
Affiliation(s)
- Constantinos Koutsoupakis
- Department of Environmental Science and Technology, Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus
| | - Tewfik Soulimane
- Chemical and Environmental Science Department and Materials & Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland
| | - Constantinos Varotsis
- Department of Environmental Science and Technology, Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus
| |
Collapse
|
18
|
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
19
|
Ahn YO, Albertsson I, Gennis RB, Ädelroth P. Mechanism of proton transfer through the K C proton pathway in the Vibrio cholerae cbb 3 terminal oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:1191-1198. [PMID: 30251700 PMCID: PMC6260837 DOI: 10.1016/j.bbabio.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
The heme‑copper oxidases (HCuOs) are terminal components of the respiratory chain, catalyzing oxygen reduction coupled to the generation of a proton motive force. The C-family HCuOs, found in many pathogenic bacteria under low oxygen tension, utilize a single proton uptake pathway to deliver protons both for O2 reduction and for proton pumping. This pathway, called the KC-pathway, starts at Glu-49P in the accessory subunit CcoP, and connects into the catalytic subunit CcoN via the polar residues Tyr-(Y)-227, Asn (N)-293, Ser (S)-244, Tyr (Y)-321 and internal water molecules, and continues to the active site. However, although the residues are known to be functionally important, little is known about the mechanism and dynamics of proton transfer in the KC-pathway. Here, we studied variants of Y227, N293 and Y321. Our results show that in the N293L variant, proton-coupled electron transfer is slowed during single-turnover oxygen reduction, and moreover it shows a pH dependence that is not observed in wildtype. This suggests that there is a shift in the pKa of an internal proton donor into an experimentally accessible range, from >10 in wildtype to ~8.8 in N293L. Furthermore, we show that there are distinct roles for the conserved Y321 and Y227. In Y321F, proton uptake from bulk solution is greatly impaired, whereas Y227F shows wildtype-like rates and retains ~50% turnover activity. These tyrosines have evolutionary counterparts in the K-pathway of B-family HCuOs, but they do not have the same roles, indicating diversity in the proton transfer dynamics in the HCuO superfamily.
Collapse
Affiliation(s)
- Young O Ahn
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Ingrid Albertsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
20
|
Blomberg MRA, Ädelroth P. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1223-1234. [PMID: 30248312 DOI: 10.1016/j.bbabio.2018.09.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
Cytochrome c oxidases (CcO) reduce O2 to H2O in the respiratory chain of mitochondria and many aerobic bacteria. In addition, some species of CcO can also reduce NO to N2O and water while others cannot. Here, the mechanism for NO-reduction in CcO is investigated using quantum mechanical calculations. Comparison is made to the corresponding reaction in a "true" cytochrome c-dependent NO reductase (cNOR). The calculations show that in cNOR, where the reduction potentials are low, the toxic NO molecules are rapidly reduced, while the higher reduction potentials in CcO lead to a slower or even impossible reaction, consistent with experimental observations. In both enzymes the reaction is initiated by addition of two NO molecules to the reduced active site, forming a hyponitrite intermediate. In cNOR, N2O can then be formed using only the active-site electrons. In contrast, in CcO, one proton-coupled reduction step most likely has to occur before N2O can be formed, and furthermore, proton transfer is most likely rate-limiting. This can explain why different CcO species with the same heme a3-Cu active site differ with respect to NO reduction efficiency, since they have a varying number and/or properties of proton channels. Finally, the calculations also indicate that a conserved active site valine plays a role in reducing the rate of NO reduction in CcO.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Supekar S, Kaila VRI. Dewetting transitions coupled to K-channel activation in cytochrome c oxidase. Chem Sci 2018; 9:6703-6710. [PMID: 30310604 PMCID: PMC6115622 DOI: 10.1039/c8sc01587b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c oxidase (CcO) drives aerobic respiratory chains in all organisms by transducing the free energy from oxygen reduction into an electrochemical proton gradient across a biological membrane.
Cytochrome c oxidase (CcO) drives aerobic respiratory chains in all organisms by transducing the free energy from oxygen reduction into an electrochemical proton gradient across a biological membrane. CcO employs the so-called D- and K-channels for proton uptake, but the molecular mechanism for activation of the K-channel has remained elusive for decades. We show here by combining large-scale atomistic molecular simulations with graph-theoretical water network analysis, and hybrid quantum/classical (QM/MM) free energy calculations, that the K-channel is activated by formation of a reactive oxidized intermediate in the binuclear heme a3/CuB active site. This state induces electrostatic, hydration, and conformational changes that lower the barrier for proton transfer along the K-channel by dewetting pathways that connect the D-channel with the active site. Our combined results reconcile previous experimental findings and indicate that water dynamics plays a decisive role in the proton pumping machinery in CcO.
Collapse
Affiliation(s)
- Shreyas Supekar
- Department Chemie , Technische Universität München , Lichtenbergstraße 4 , D-85748 Garching , Germany .
| | - Ville R I Kaila
- Department Chemie , Technische Universität München , Lichtenbergstraße 4 , D-85748 Garching , Germany .
| |
Collapse
|
22
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:712-724. [PMID: 29883591 DOI: 10.1016/j.bbabio.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/05/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
The superfamily of heme‑copper oxidoreductases (HCOs) include both NO and O2 reductases. Nitric oxide reductases (NORs) are bacterial membrane enzymes that catalyze an intermediate step of denitrification by reducing nitric oxide (NO) to nitrous oxide (N2O). They are structurally similar to heme‑copper oxygen reductases (HCOs), which reduce O2 to water. The experimentally observed apparent bimolecular rate constant of NO delivery to the deeply buried catalytic site of NORs was previously reported to approach the diffusion-controlled limit (108-109 M-1 s-1). Using the crystal structure of cytochrome-c dependent NOR (cNOR) from Pseudomonas aeruginosa, we employed several protocols of molecular dynamics (MD) simulation, which include flooding simulations of NO molecules, implicit ligand sampling and umbrella sampling simulations, to elucidate how NO in solution accesses the catalytic site of this cNOR. The results show that NO partitions into the membrane, enters the enzyme from the lipid bilayer and diffuses to the catalytic site via a hydrophobic tunnel that is resolved in the crystal structures. This is similar to what has been found for O2 diffusion through the closely related O2 reductases. The apparent second order rate constant approximated using the simulation data is ~5 × 108 M-1 s-1, which is optimized by the dynamics of the amino acid side chains lining in the tunnel. It is concluded that both NO and O2 reductases utilize well defined hydrophobic tunnels to assure that substrate diffusion to the buried catalytic sites is not rate limiting under physiological conditions.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Street, Urbana, IL 61801, USA; NIH Center for Macromolecular Modeling and Bioinformatics, 405 North Mathews Avenue, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, 179 Looomis, MC-704, 1110 Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
23
|
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Cytochrome aa 3 Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O 2 for Catalysis. Biochemistry 2018; 57:2150-2161. [PMID: 29546752 DOI: 10.1021/acs.biochem.7b01194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome aa3 is the terminal respiratory enzyme of all eukaryotes and many bacteria and archaea, reducing O2 to water and harnessing the free energy from the reaction to generate the transmembrane electrochemical potential. The diffusion of O2 to the heme-copper catalytic site, which is buried deep inside the enzyme, is the initiation step of the reaction chemistry. Our previous molecular dynamics (MD) study with cytochrome ba3, a homologous enzyme of cytochrome aa3 in Thermus thermophilus, demonstrated that O2 diffuses from the lipid bilayer to its reduction site through a 25 Å long tunnel inferred by Xe binding sites detected by X-ray crystallography [Mahinthichaichan, P., Gennis, R., and Tajkhorshid, E. (2016) Biochemistry 55, 1265-1278]. Although a similar tunnel is observed in cytochrome aa3, this putative pathway appears partially occluded between the entrances and the reduction site. Also, the experimentally determined second-order rate constant for O2 delivery in cytochrome aa3 (∼108 M-1 s-1) is 10 times slower than that in cytochrome ba3 (∼109 M-1 s-1). A question to be addressed is whether cytochrome aa3 utilizes this X-ray-inferred tunnel as the primary pathway for O2 delivery. Using complementary computational methods, including multiple independent flooding MD simulations and implicit ligand sampling calculations, we probe the O2 delivery pathways in cytochrome aa3 of Rhodobacter sphaeroides. All of the O2 molecules that arrived in the reduction site during the simulations were found to diffuse through the X-ray-observed tunnel, despite its apparent constriction, supporting its role as the main O2 delivery pathway in cytochrome aa3. The rate constant for O2 delivery in cytochrome aa3, approximated using the simulation results, is 10 times slower than in cytochrome ba3, in agreement with the experimentally determined rate constants.
Collapse
Affiliation(s)
- Paween Mahinthichaichan
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert B Gennis
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
24
|
Characterization of the quinol-dependent nitric oxide reductase from the pathogen Neisseria meningitidis, an electrogenic enzyme. Sci Rep 2018; 8:3637. [PMID: 29483528 PMCID: PMC5826923 DOI: 10.1038/s41598-018-21804-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/09/2018] [Indexed: 12/01/2022] Open
Abstract
Bacterial nitric oxide reductases (NORs) catalyse the reduction of NO to N2O and H2O. NORs are found either in denitrification chains, or in pathogens where their primary role is detoxification of NO produced by the immune defense of the host. Although NORs belong to the heme-copper oxidase superfamily, comprising proton-pumping O2-reducing enzymes, the best studied NORs, cNORs (cytochrome c-dependent), are non-electrogenic. Here, we focus on another type of NOR, qNOR (quinol-dependent). Recombinant qNOR from Neisseria meningitidis, a human pathogen, purified from Escherichia coli, showed high catalytic activity and spectroscopic properties largely similar to cNORs. However, in contrast to cNOR, liposome-reconstituted qNOR showed respiratory control ratios above two, indicating that NO reduction by qNOR was electrogenic. Further, we determined a 4.5 Å crystal structure of the N. meningitidis qNOR, allowing exploration of a potential proton transfer pathway from the cytoplasm by mutagenesis. Most mutations had little effect on the activity, however the E-498 variants were largely inactive, while the corresponding substitution in cNOR was previously shown not to induce significant effects. We thus suggest that, contrary to cNOR, the N. meningitidis qNOR uses cytoplasmic protons for NO reduction. Our results allow possible routes for protons to be discussed.
Collapse
|
25
|
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018; 118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
This review focuses on the type
A cytochrome c oxidases (CcO), which
are found in all mitochondria
and also in several aerobic bacteria. CcO catalyzes
the respiratory reduction of dioxygen (O2) to water by
an intriguing mechanism, the details of which are fairly well understood
today as a result of research for over four decades. Perhaps even
more intriguingly, the membrane-bound CcO couples
the O2 reduction chemistry to translocation of protons
across the membrane, thus contributing to generation of the electrochemical
proton gradient that is used to drive the synthesis of ATP as catalyzed
by the rotary ATP synthase in the same membrane. After reviewing the
structure of the core subunits of CcO, the active
site, and the transfer paths of electrons, protons, oxygen, and water,
we describe the states of the catalytic cycle and point out the few
remaining uncertainties. Finally, we discuss the mechanism of proton
translocation and the controversies in that area that still prevail.
Collapse
Affiliation(s)
- Mårten Wikström
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland
| | - Klaas Krab
- Department of Molecular Cell Physiology , Vrije Universiteit , P.O. Box 7161 , Amsterdam 1007 MC , The Netherlands
| | - Vivek Sharma
- Institute of Biotechnology , University of Helsinki , P.O. Box 56 , Helsinki FI-00014 , Finland.,Department of Physics , University of Helsinki , P.O. Box 64 , Helsinki FI-00014 , Finland
| |
Collapse
|
26
|
Siletsky SA, Belevich I, Belevich NP, Soulimane T, Wikström M. Time-resolved generation of membrane potential by ba 3 cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and O H states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:915-926. [PMID: 28807731 DOI: 10.1016/j.bbabio.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between CuA and heme b. The slow phase includes electron redistribution from both CuA and heme b to heme a3, and electrogenic proton transfer coupled to reduction of heme a3. The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a3 is reduced, but there is no proton pumping and no reduction of CuB. Single-electron reduction of the oxidized "unrelaxed" state (OH→EH transition) is accompanied by electrogenic reduction of the heme b/heme a3 pair by CuA in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a3 pair to the CuB site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach CuB the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H+/e-, probably due to the formed membrane potential in the experiment.
Collapse
Affiliation(s)
- Sergey A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Ilya Belevich
- Helsinki Bioenergetics Group, Institute of Biotechnology, P.O. Box 65, FI-00014, University of Helsinki, Finland
| | - Nikolai P Belevich
- Helsinki Bioenergetics Group, Institute of Biotechnology, P.O. Box 65, FI-00014, University of Helsinki, Finland
| | - Tewfik Soulimane
- Department of Chemical Sciences and Bernal Research Institute, University of Limerick, Ireland
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, P.O. Box 65, FI-00014, University of Helsinki, Finland
| |
Collapse
|
27
|
Andersson R, Safari C, Dods R, Nango E, Tanaka R, Yamashita A, Nakane T, Tono K, Joti Y, Båth P, Dunevall E, Bosman R, Nureki O, Iwata S, Neutze R, Brändén G. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci Rep 2017; 7:4518. [PMID: 28674417 PMCID: PMC5495810 DOI: 10.1038/s41598-017-04817-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022] Open
Abstract
Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba3-type and aa3-type cytochrome c oxidases around the proton-loading site are also described.
Collapse
Affiliation(s)
- Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Dods
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
28
|
Poiana F, von Ballmoos C, Gonska N, Blomberg MRA, Ädelroth P, Brzezinski P. Splitting of the O-O bond at the heme-copper catalytic site of respiratory oxidases. SCIENCE ADVANCES 2017; 3:e1700279. [PMID: 28630929 PMCID: PMC5473675 DOI: 10.1126/sciadv.1700279] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/20/2017] [Indexed: 05/30/2023]
Abstract
Heme-copper oxidases catalyze the four-electron reduction of O2 to H2O at a catalytic site that is composed of a heme group, a copper ion (CuB), and a tyrosine residue. Results from earlier experimental studies have shown that the O-O bond is cleaved simultaneously with electron transfer from a low-spin heme (heme a/b), forming a ferryl state (PR ; Fe4+=O2-, CuB2+-OH-). We show that with the Thermus thermophilus ba3 oxidase, at low temperature (10°C, pH 7), electron transfer from the low-spin heme b to the catalytic site is faster by a factor of ~10 (τ ≅ 11 μs) than the formation of the PR ferryl (τ ≅110 μs), which indicates that O2 is reduced before the splitting of the O-O bond. Application of density functional theory indicates that the electron acceptor at the catalytic site is a high-energy peroxy state [Fe3+-O--O-(H+)], which is formed before the PR ferryl. The rates of heme b oxidation and PR ferryl formation were more similar at pH 10, indicating that the formation of the high-energy peroxy state involves proton transfer within the catalytic site, consistent with theory. The combined experimental and theoretical data suggest a general mechanism for O2 reduction by heme-copper oxidases.
Collapse
Affiliation(s)
- Federica Poiana
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Nathalie Gonska
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Margareta R. A. Blomberg
- Department of Organic Chemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
29
|
Carvalheda CA, Pisliakov AV. Insights into proton translocation in cbb 3 oxidase from MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:396-406. [PMID: 28259641 DOI: 10.1016/j.bbabio.2017.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/03/2017] [Accepted: 02/27/2017] [Indexed: 01/18/2023]
Abstract
Heme-copper oxidases are membrane protein complexes that catalyse the final step of the aerobic respiration, namely the reduction of oxygen to water. The energy released during catalysis is coupled to the active translocation of protons across the membrane, which contributes to the establishment of an electrochemical gradient that is used for ATP synthesis. The distinctive C-type (or cbb3) cytochrome c oxidases, which are mostly present in proteobacteria, exhibit a number of unique structural and functional features, including high catalytic activity at low oxygen concentrations. At the moment, the functioning mechanism of C-type oxidases, in particular the proton transfer/pumping mechanism presumably via a single proton channel, is still poorly understood. In this work we used all-atom molecular dynamics simulations and continuum electrostatics calculations to obtain atomic-level insights into the hydration and dynamics of a cbb3 oxidase. We provide the details of the water dynamics and proton transfer pathways for both the "chemical" and "pumped" protons, and show that formation of protonic connections is strongly affected by the protonation state of key residues, namely H243, E323 and H337.
Collapse
Affiliation(s)
- Catarina A Carvalheda
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Sciences and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| | - Andrei V Pisliakov
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom; Physics, School of Sciences and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom.
| |
Collapse
|
30
|
Funatogawa C, Li Y, Chen Y, McDonald W, Szundi I, Fee JA, Stout CD, Einarsdóttir Ó. Role of the Conserved Valine 236 in Access of Ligands to the Active Site of Thermus thermophilus ba3 Cytochrome Oxidase. Biochemistry 2016; 56:107-119. [DOI: 10.1021/acs.biochem.6b00590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chie Funatogawa
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Yang Li
- Department
of Molecular Biology, The Scripps Institute, MB-8, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ying Chen
- Department
of Molecular Biology, The Scripps Institute, MB-8, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - William McDonald
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Istvan Szundi
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - James A. Fee
- Department
of Molecular Biology, The Scripps Institute, MB-8, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - C. David Stout
- Department
of Molecular Biology, The Scripps Institute, MB-8, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ólöf Einarsdóttir
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
31
|
Mayne CG, Arcario MJ, Mahinthichaichan P, Baylon JL, Vermaas JV, Navidpour L, Wen PC, Thangapandian S, Tajkhorshid E. The cellular membrane as a mediator for small molecule interaction with membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2290-2304. [PMID: 27163493 PMCID: PMC4983535 DOI: 10.1016/j.bbamem.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
The cellular membrane constitutes the first element that encounters a wide variety of molecular species to which a cell might be exposed. Hosting a large number of structurally and functionally diverse proteins associated with this key metabolic compartment, the membrane not only directly controls the traffic of various molecules in and out of the cell, it also participates in such diverse and important processes as signal transduction and chemical processing of incoming molecular species. In this article, we present a number of cases where details of interaction of small molecular species such as drugs with the membrane, which are often experimentally inaccessible, have been studied using advanced molecular simulation techniques. We have selected systems in which partitioning of the small molecule with the membrane constitutes a key step for its final biological function, often binding to and interacting with a protein associated with the membrane. These examples demonstrate that membrane partitioning is not only important for the overall distribution of drugs and other small molecules into different compartments of the body, it may also play a key role in determining the efficiency and the mode of interaction of the drug with its target protein. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Christopher G Mayne
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Mark J Arcario
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States; College of Medicine, University of Illinois at Urbana-Champaign, United States.
| | - Paween Mahinthichaichan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States.
| | - Javier L Baylon
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States.
| | - Josh V Vermaas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States.
| | - Latifeh Navidpour
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Po-Chao Wen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States.
| | - Sundarapandian Thangapandian
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, United States; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, United States; College of Medicine, University of Illinois at Urbana-Champaign, United States.
| |
Collapse
|
32
|
Yang L, Skjevik ÅA, Han Du WG, Noodleman L, Walker RC, Götz AW. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1594-1606. [PMID: 27317965 PMCID: PMC4995112 DOI: 10.1016/j.bbabio.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/21/2016] [Accepted: 06/14/2016] [Indexed: 01/22/2023]
Abstract
Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376.
Collapse
Affiliation(s)
- Longhua Yang
- Department of Chemistry, Nanchang University, 999 Xuefudadao, Nanchang, Jiangxi 330031, China; San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA
| | - Åge A Skjevik
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, GAC1118, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Lyons JA, Hilbers F, Caffrey M. Structure and Function of Bacterial Cytochrome c Oxidases. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Draft Genome Sequence of Ardenticatena maritima 110S, a Thermophilic Nitrate- and Iron-Reducing Member of the Chloroflexi Class Ardenticatenia. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01347-15. [PMID: 26586887 PMCID: PMC4653789 DOI: 10.1128/genomea.01347-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report here the draft genome sequence of Ardenticatena maritima 110S, the first sequenced member of class Ardenticatenia of the phylum Chloroflexi. This thermophilic organism is capable of a range of physiologies, including aerobic respiration and iron reduction. It also encodes a complete denitrification pathway with a novel nitric oxide reductase.
Collapse
|
35
|
Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus. Biophys J 2015; 107:2177-84. [PMID: 25418102 DOI: 10.1016/j.bpj.2014.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.
Collapse
|
36
|
Yoshikawa S, Shimada A, Shinzawa-Itoh K. Respiratory conservation of energy with dioxygen: cytochrome C oxidase. Met Ions Life Sci 2015; 15:89-130. [PMID: 25707467 DOI: 10.1007/978-3-319-12415-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cytochrome c oxidase (CcO) is the terminal oxidase of cell respiration which reduces molecular oxygen (O₂) to H2O coupled with the proton pump. For elucidation of the mechanism of CcO, the three-dimensional location and chemical reactivity of each atom composing the functional sites have been extensively studied by various techniques, such as crystallography, vibrational and time-resolved electronic spectroscopy, since the X-ray structures (2.8 Å resolution) of bovine and bacterial CcO have been published in 1995.X-ray structures of bovine CcO in different oxidation and ligand binding states showed that the O₂reduction site, which is composed of Fe (heme a 3) and Cu (CuB), drives a non-sequential four-electron transfer for reduction of O₂to water without releasing any reactive oxygen species. These data provide the crucial structural basis to solve a long-standing problem, the mechanism of the O₂reduction.Time-resolved resonance Raman and charge translocation analyses revealed the mechanism for coupling between O₂reduction and the proton pump: O₂is received by the O₂reduction site where both metals are in the reduced state (R-intermediate), giving the O₂-bound form (A-intermediate). This is spontaneously converted to the P-intermediate, with the bound O₂fully reduced to 2 O²⁻. Hereafter the P-intermediate receives four electron equivalents from the second Fe site (heme a), one at a time, to form the three intermediates, F, O, and E to regenerate the R-intermediate. Each electron transfer step from heme a to the O₂reduction site is coupled with the proton pump.X-ray structural and mutational analyses of bovine CcO show three possible proton transfer pathways which can transfer pump protons (H) and chemical (water-forming) protons (K and D). The structure of the H-pathway of bovine CcO indicates that the driving force of the proton pump is the electrostatic repulsion between the protons on the H-pathway and positive charges of heme a, created upon oxidation to donate electrons to the O₂reduction site. On the other hand, mutational and time-resolved electrometric findings for the bacterial CcO strongly suggest that the D-pathway transfers both pump and chemical protons. However, the structure for the proton-gating system in the D-pathway has not been experimentally identified. The structural and functional diversities in CcO from various species suggest a basic proton pumping mechanism in which heme a pumps protons while heme a 3 reduces O₂as proposed in 1978.
Collapse
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan,
| | | | | |
Collapse
|
37
|
Al-Attar S, de Vries S. An electrogenic nitric oxide reductase. FEBS Lett 2015; 589:2050-7. [PMID: 26149211 DOI: 10.1016/j.febslet.2015.06.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor.
Collapse
Affiliation(s)
- Sinan Al-Attar
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, The Netherlands
| | - Simon de Vries
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, The Netherlands.
| |
Collapse
|
38
|
Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via changes in pKA and conformation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1837:1998-2003. [PMID: 25149865 DOI: 10.1016/j.bbabio.2014.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 11/21/2022]
Abstract
The metabolism of aerobic life uses the conversion of molecular oxygen to water as an energy source. This reaction is catalyzed by cytochrome e oxidase (CeO) consuming four electrons and four protons, which move along specific routes. While all four electrons are transferred via the same cofactors to the binuclear reaction center (BNC), the protons take two different routes in the A-type CeO, i.e., two of the four chemical protons consumed in the reaction arrive via the D-channel in the oxidative first half starting after oxygen binding. The other two chemical protons enter via the K-channel in the reductive second half of the reaction cycle. To date, the mechanism behind these separate proton transport pathways has not been understood. In this study, we propose a model that can explain the reaction-step specific opening and closing of the K-channel by conformational and pKA changes of its central lysine 362. Molecular dynamics simulations reveal an upward movement of Lys362 towards the BNC, which had already been supposed by several experimental studies. Redox state-dependent pKA calculations provide evidence that Lys362 may protonate transiently, thereby opening the K-channel only in the reductive second half of the reaction cycle. From our results, we develop a model that assigns a key role to Lys362 in the proton gating between the two proton input channels of the A-type CeO.
Collapse
|
39
|
Arjona D, Wikström M, Ädelroth P. Nitric oxide is a potent inhibitor of the cbb(3)-type heme-copper oxidases. FEBS Lett 2015; 589:1214-8. [PMID: 25862499 DOI: 10.1016/j.febslet.2015.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/29/2022]
Abstract
C-type heme-copper oxidases terminate the respiratory chain in many pathogenic bacteria, and will encounter elevated concentrations of NO produced by the immune defense of the host. Thus, a decreased sensitivity to NO in C-type oxidases would increase the survival of these pathogens. Here we have compared the inhibitory effect of NO in C-type oxidases to that in the mitochondrial A-type. We show that O2-reduction in both the Rhodobacter sphaeroides and Vibrio cholerae C-type oxidases is strongly and reversibly inhibited by submicromolar NO, with an inhibition pattern similar to the A-type. Thus, NO tolerance in pathogens with a C-type terminal oxidase has to rely mainly on other mechanisms.
Collapse
Affiliation(s)
- Davinia Arjona
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
40
|
Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site. Proc Natl Acad Sci U S A 2015; 112:3397-402. [PMID: 25733886 DOI: 10.1073/pnas.1422434112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ba3-type cytochrome c oxidase from Thermus thermophilus is a membrane-bound protein complex that couples electron transfer to O2 to proton translocation across the membrane. To elucidate the mechanism of the redox-driven proton pumping, we investigated the kinetics of electron and proton transfer in a structural variant of the ba3 oxidase where a putative "pump site" was modified by replacement of Asp372 by Ile. In this structural variant, proton pumping was uncoupled from internal electron transfer and O2 reduction. The results from our studies show that proton uptake to the pump site (time constant ∼65 μs in the wild-type cytochrome c oxidase) was impaired in the Asp372Ile variant. Furthermore, a reaction step that in the wild-type cytochrome c oxidase is linked to simultaneous proton uptake and release with a time constant of ∼1.2 ms was slowed to ∼8.4 ms, and in Asp372Ile was only associated with proton uptake to the catalytic site. These data identify reaction steps that are associated with protonation and deprotonation of the pump site, and point to the area around Asp372 as the location of this site in the ba3 cytochrome c oxidase.
Collapse
|
41
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
42
|
Affiliation(s)
- Shinya Yoshikawa
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| | - Atsuhiro Shimada
- Picobiology Institute, Graduate
School of Life Science, University of Hyogo, Kamigohri Akoh Hyogo, 678-1297, Japan
| |
Collapse
|
43
|
Goyal P, Yang S, Cui Q. Microscopic basis for kinetic gating in Cytochrome c oxidase: insights from QM/MM analysis. Chem Sci 2015; 6:826-841. [PMID: 25678950 PMCID: PMC4321873 DOI: 10.1039/c4sc01674b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps.
Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps. For the proton pump cytochrome c oxidase, while the regulation of thermodynamic driving force for key proton transfers has been discussed in great detail, the microscopic basis for the control of proton transfer kinetics has been poorly understood. Here we carry out extensive QM/MM free energy simulations to probe the kinetics of relevant proton transfer steps and analyze the effects of local structure and hydration level. We show that protonation of the proton loading site (PLS, taken to be a propionate of heme a3) requires a concerted process in which a key glutamic acid (Glu286H) delivers the proton to the PLS while being reprotonated by an excess proton coming from the D-channel. The concerted nature of the mechanism is a crucial feature that enables the loading of the PLS before the cavity containing Glu286 is better hydrated to lower its pKa to experimentally measured range; the charged rather than dipolar nature of the process also ensures a tight coupling with heme a reduction, as emphasized by Siegbahn and Blomberg. In addition, we find that rotational flexibility of the PLS allows its protonation before that of the binuclear center (the site where oxygen gets reduced to water). Together with our recent study (P. Goyal, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 18886–18891) that focused on the modulation of Glu286 pKa, the current work suggests a mechanism that builds in a natural sequence for the protonation of the PLS prior to that of the binuclear center. This provides microscopic support to the kinetic constraints revealed by kinetic network analysis as essential elements that ensure an efficient vectorial proton transport in cytochrome c oxidase.
Collapse
Affiliation(s)
- Puja Goyal
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Shuo Yang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
44
|
Conformational coupling between the active site and residues within the K(C)-channel of the Vibrio cholerae cbb3-type (C-family) oxygen reductase. Proc Natl Acad Sci U S A 2014; 111:E4419-28. [PMID: 25288772 DOI: 10.1073/pnas.1411676111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K(C)-channel is a conserved glutamate in subunit III. However, the majority of the K(C)-channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K(C)-channel, was found to depend on the conformation of Y241(Vc), located in subunit I at the interface with subunit III. Mutations of Y241(Vc) (to A/F/H/S) in the Vibrio cholerae cbb3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b3. The data suggest a linkage between residues lining the K(C)-channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241(Vc) and the active site cross-linked Y255(Vc), as well as two CuB histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.
Collapse
|
45
|
Sharma V, Wikström M. A structural and functional perspective on the evolution of the heme-copper oxidases. FEBS Lett 2014; 588:3787-92. [PMID: 25261254 DOI: 10.1016/j.febslet.2014.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/15/2022]
Abstract
The heme-copper oxidases (HCOs) catalyze the reduction of O2 to water, and couple the free energy to proton pumping across the membrane. HCOs are divided into three sub-classes, A, B and C, whose order of emergence in evolution has been controversial. Here we have analyzed recent structural and functional data on HCOs and their homologues, the nitric oxide reductases (NORs). We suggest that the C-type oxidases are ancient enzymes that emerged from the NORs. In contrast, the A-type oxidases are the most advanced from both structural and functional viewpoints, which we interpret as evidence for having evolved later.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland.
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
46
|
Noodleman L, Han Du WG, Fee J, Götz AW, Walker RC. Linking chemical electron-proton transfer to proton pumping in cytochrome c oxidase: broken-symmetry DFT exploration of intermediates along the catalytic reaction pathway of the iron-copper dinuclear complex. Inorg Chem 2014; 53:6458-72. [PMID: 24960612 PMCID: PMC4095914 DOI: 10.1021/ic500363h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 12/23/2022]
Abstract
After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3-CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185-190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment.
Collapse
Affiliation(s)
- Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC15, La Jolla, California 92037, United States
| | - Wen-Ge Han Du
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC15, La Jolla, California 92037, United States
| | - James
A. Fee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC15, La Jolla, California 92037, United States
| | - Andreas W. Götz
- San Diego Supercomputer
Center and Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, MC0505, La Jolla, California 92093, United States
| | - Ross C. Walker
- San Diego Supercomputer
Center and Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, MC0505, La Jolla, California 92093, United States
| |
Collapse
|
47
|
Svahn E, Faxén K, Gennis RB, Brzezinski P. Proton pumping by an inactive structural variant of cytochrome c oxidase. J Inorg Biochem 2014; 140:6-11. [PMID: 25042731 DOI: 10.1016/j.jinorgbio.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The aa3-type cytochrome c oxidases (CytcOs) from e.g. Rhodobacter sphaeroides and Paracoccus denitrificans harbor two proton-transfer pathways. The K pathway is used for proton uptake upon reduction of the CytcO, while the D pathway is used after binding of O2 to the catalytic site. The aim of the present study was to determine whether or not CytcO in which the K pathway is blocked (by e.g. the Lys362Met replacement) is capable of pumping protons. The process can not be studied using conventional assays because the O2-reduction activity is too low when the K pathway is blocked. Consequently, proton pumping with a blocked K pathway has not been demonstrated directly. Here, the Lys362Met and Ser299Glu structural variants were reconstituted in liposomes and allowed to (slowly) become completely reduced. Then, the reaction with O2 was studied with μs time resolution after flash photolysis of a blocking CO ligand bound to heme a3. The data show that with both the inactive Lys362Met and partly active Ser299Glu variants proton release occurred with the same time constants as with the wild-type oxidase, i.e. ~200μs and ~3ms, corresponding in time to formation of the ferryl and oxidized states, respectively. Thus, the data show that the K pathway is not required for proton pumping, suggesting that D and K pathways operate independently of each other after binding of O2 to the catalytic site.
Collapse
Affiliation(s)
- Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristina Faxén
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana Champaign, Urbana, IL 61801, United States
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
48
|
Rauhamäki V, Wikström M. The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:999-1003. [PMID: 24583065 DOI: 10.1016/j.bbabio.2014.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/27/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
Abstract
The heme-copper oxidases may be divided into three categories, A, B, and C, which include cytochrome c and quinol-oxidising enzymes. All three types are known to be proton pumps and are found in prokaryotes, whereas eukaryotes only contain A-type cytochrome c oxidase in their inner mitochondrial membrane. However, the bacterial B- and C-type enzymes have often been reported to pump protons with an H(+)/e(-) ratio of only one half of the unit stoichiometry in the A-type enzyme. We will show here that these observations are likely to be the result of difficulties with the measuring technique together with a higher sensitivity of the B- and C-type enzymes to the protonmotive force that opposes pumping. We find that under optimal conditions the H(+)/e(-) ratio is close to unity in all the three heme-copper oxidase subfamilies. A higher tendency for proton leak in the B- and C-type enzymes may result from less efficient gating of a proton pump mechanism that we suggest evolved before the so-called D-channel of proton transfer. There is also a discrepancy between results using whole bacterial cells vs. phospholipid vesicles inlaid with oxidase with respect to the observed proton pumping after modification of the D-channel residue asparagine-139 (Rhodobacter sphaeroides numbering) to aspartate in A-type cytochrome c oxidase. This discrepancy might also be explained by a higher sensitivity of proton pumping to protonmotive force in the mutated variant. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland.
| |
Collapse
|
49
|
The K(C) channel in the cbb3-type respiratory oxygen reductase from Rhodobacter capsulatus is required for both chemical and pumped protons. J Bacteriol 2014; 196:1825-32. [PMID: 24563037 DOI: 10.1128/jb.00005-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The heme-copper superfamily of proton-pumping respiratory oxygen reductases are classified into three families (A, B, and C families) based on structural and phylogenetic analyses. Most studies have focused on the A family, which includes the eukaryotic mitochondrial cytochrome c oxidase as well as many bacterial homologues. Members of the C family, also called the cbb3-type oxygen reductases, are found only in prokaryotes and are of particular interest because of their presence in a number of human pathogens. All of the heme-copper oxygen reductases require proton-conducting channels to convey chemical protons to the active site for water formation and to convey pumped protons across the membrane. Previous work indicated that there is only one proton-conducting input channel (the K(C) channel) present in the cbb3-type oxygen reductases, which, if correct, must be utilized by both chemical protons and pumped protons. In this work, the effects of mutations in the K(C) channel of the cbb3-type oxygen reductase from Rhodobacter capsulatus were investigated by expressing the mutants in a strain lacking other respiratory oxygen reductases. Proton pumping was evaluated by using intact cells, and catalytic oxygen reductase activity was measured in isolated membranes. Two mutations, N346M and Y374F, severely reduced catalytic activity, presumably by blocking the chemical protons required at the active site. One mutation, T272A, resulted in a substantially lower proton-pumping stoichiometry but did not inhibit oxygen reductase activity. These are the first experimental data in support of the postulate that pumped protons are taken up from the bacterial cytoplasm through the K(C) channel.
Collapse
|
50
|
Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing. Mol Biotechnol 2013; 54:900-12. [PMID: 23307295 DOI: 10.1007/s12033-012-9639-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats.
Collapse
|