1
|
Segura-Benítez M, Carbajo-García MC, Quiñonero A, De Los Santos MJ, Pellicer A, Cervelló I, Ferrero H. Endometrial extracellular vesicles regulate processes related to embryo development and implantation in human blastocysts. Hum Reprod 2025; 40:56-68. [PMID: 39576620 DOI: 10.1093/humrep/deae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/26/2024] [Indexed: 01/07/2025] Open
Abstract
STUDY QUESTION What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium? SUMMARY ANSWER EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation. WHAT IS KNOWN ALREADY EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Primary human endometrial epithelial cells (pHEECs), derived from endometrial biopsies collected from fertile oocyte donors (n = 20), were cultured in vitro to isolate secreted EVs. Following EV characterization, Day 5 human blastocysts (n = 24) were cultured in the presence or absence of the EVs for 24 h and evaluated by RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blot, nanoparticle tracking analysis, and transmission electron microscopy. Human blastocysts were devitrified, divided into two groups (n = 12/group), and cultured in vitro for 24 h with or without previously isolated EVs. RNA-sequencing analysis was performed, and DESeq2 was used to identify differentially expressed genes (DEGs) (FDR < 0.05). QIAGEN Ingenuity Pathway Analysis was used to perform the functional enrichment analysis and integration with our recently published data from the pHEECs' EV-miRNA cargo. MAIN RESULTS AND THE ROLE OF CHANCE Characterization confirmed the isolation of EVs from pHEECs' conditioned culture media. Among the DEGs in blastocysts co-cultured with EVs, we found 519 were significantly upregulated and 395 were significantly downregulated. These DEGs were significantly enriched in upregulated functions related to embryonic development, cellular invasion and migration, cell cycle, cellular organization and assembly, gene expression, and cell viability; and downregulated functions related to cell death and DNA fragmentation. Further, the intracellular signaling pathways regulated by the internalization of endometrial EVs were previously related to early embryo development and implantation potential, for their role in pluripotency, cellular homeostasis, early embryogenesis, and implantation-related processes. Finally, integrating data from miRNA cargo of EVs, we found that the miRNAs carried by endometrial EVs targeted nearly 80% of the DEGs in human blastocysts. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel insights into the functional relevance of EVs secreted by the human endometrium, and particularly the role of EV-miRNA regulation on global transcriptome behavior of human blastocysts during early embryogenesis and embryo implantation. It provides potential biomarkers that could become useful diagnostic targets for predicting implantation success. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139), and Instituto de Salud Carlos III and cofounded by the European Social Fund (ESF) "Investing in your future" through the Miguel Servet Program (CP20/00120 [H.F.]; CP19/00149 [I.C.]). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Maria Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
2
|
Guo Y, Li G, Xia F, Li C. Upregulation of RCN2 accelerates tumor progression and indicates poor prognosis in OSCC. Oral Surg Oral Med Oral Pathol Oral Radiol 2024:S2212-4403(24)00933-7. [PMID: 39730259 DOI: 10.1016/j.oooo.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a prevalent cancer of the head and neck region. However, the potential role of RCN2 in OSCC is currently not well understood. STUDY DESIGN A series of molecular biology experiments were conducted to explore the mechanism by which RCN2 promotes OSCC growth through protein kinase A (PKA). RESULTS Our results revealed a significant increase in RCN2 levels in OSCC tissues. Moreover, OSCC patients with high RCN2 expression had a significantly worse prognosis than those with lower RCN2 expression. Interestingly, PKA activity was increased in RCN2-overexpressing YD-10B cells but reduced in RCN2-knockout Ca9-22 cells. These findings suggest that RCN2-mediated PKA activity is activated in OSCC cells. Moreover, the specific PKA inhibitor H89 significantly reduced the proliferation ability of RCN2-overexpressing Ca9-22 cells. Furthermore, we identified AKT/mTORC as a downstream pathway through which PKA promotes OSCC cell proliferation. The Tumor Immune Estimation Resource database revealed that the expression level of RCN2 was correlated with the infiltration levels of B cells, CD8+ T cells, CD4+ T cells, and neutrophils in the microenvironment of OSCC. CONCLUSIONS Our study revealed that RCN2 promotes tumor progression by activating PKA/AKT/mTORC signaling, which suggests that RCN2 may serve as a potential target for OSCC treatment.
Collapse
Affiliation(s)
- Yongshan Guo
- Department of Stomatology, Xinjiang Production and Construction Corps Hospital, Urumqi, China
| | - Guolong Li
- Department of Stomatology, Xinjiang Production and Construction Corps Hospital, Urumqi, China
| | - Feifei Xia
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Changxue Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, China.
| |
Collapse
|
3
|
Tao Y, Jiang Z, Wang H, Li J, Li X, Ni J, Liu J, Xiang H, Guan C, Cao W, Li D, He K, Wang L, Hu J, Jin Y, Liao B, Zhang T, Wu X. Pseudokinase STK40 promotes T H1 and T H17 cell differentiation by targeting FOXO transcription factors. SCIENCE ADVANCES 2024; 10:eadp2919. [PMID: 39565845 PMCID: PMC11578171 DOI: 10.1126/sciadv.adp2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Inappropriate CD4+ T helper (TH) cell differentiation leads to progression of inflammatory and autoimmune diseases, yet the regulatory mechanisms governing stability and activity of transcription factors controlling TH cell differentiation remain elusive. Here, we describe how pseudokinase serine threonine kinase 40 (STK40) facilitates TH1/TH17 differentiation under pathological conditions. STK40 in T cells is dispensable for immune homeostasis in resting mice. However, mice with T cell-specific deletion of STK40 exhibit attenuated symptoms of experimental autoimmune encephalomyelitis and colitis, accompanied by diminished TH1 and TH17 cell differentiation. Mechanistically, STK40 facilitates K48-linked polyubiquitination and proteasomal degradation of FOXO1/4 through promoting their interaction with E3 ligase COP1. Inhibition of FOXO4 or FOXO1, respectively, restores differentiation potential of STK40-deficient TH1/TH17 cells. Together, our data suggest a crucial role of STK40 in TH1 and TH17 cell differentiation, thereby enabling better understanding of the molecular regulatory network of CD4+ T cell differentiation and providing effective targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongrui Xiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Guan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke He
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Liao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Toyooka Y, Aoki K, Usami FM, Oka S, Kato A, Fujimori T. Generation of pulsatile ERK activity in mouse embryonic stem cells is regulated by Raf activity. Sci Rep 2023; 13:9465. [PMID: 37301878 PMCID: PMC10257726 DOI: 10.1038/s41598-023-36424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a serine/threonine kinase that is known to regulate cellular events such as cell proliferation and differentiation. The ERK signaling pathway is activated by fibroblast growth factors, and is considered to be indispensable for the differentiation of primitive endoderm cells, not only in mouse preimplantation embryos, but also in embryonic stem cell (ESC) culture. To monitor ERK activity in living undifferentiated and differentiating ESCs, we established EKAREV-NLS-EB5 ESC lines that stably express EKAREV-NLS, a biosensor based on the principle of fluorescence resonance energy transfer. Using EKAREV-NLS-EB5, we found that ERK activity exhibited pulsatile dynamics. ESCs were classified into two groups: active cells showing high-frequency ERK pulses, and inactive cells demonstrating no detectable ERK pulses during live imaging. Pharmacological inhibition of major components in the ERK signaling pathway revealed that Raf plays an important role in determining the pattern of ERK pulses.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, Okazaki, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Fumiko Matsukawa Usami
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan
| | - Azusa Kato
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
5
|
Lee M, Oh JN, Choe GC, Kim SH, Choi KH, Lee DK, Jeong J, Lee CK. Changes in OCT4 expression play a crucial role in the lineage specification and proliferation of preimplantation porcine blastocysts. Cell Prolif 2022; 55:e13313. [PMID: 35883229 DOI: 10.1111/cpr.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Curiosity about the role of OCT4, a core transcription factor that maintains inner cell mass (ICM) formation during preimplantation embryogenesis and the pluripotent state in embryonic development, has long been an issue. OCT4 has a species-specific expression pattern in mammalian preimplantation embryogenesis and is known to play an essential role in ICM formation. However, there is a need to study new roles for OCT4-related pluripotency networks and second-cell fate decisions. MATERIALS AND METHODS To determine the functions of OCT4 in lineage specification and embryo proliferation, loss- and gain-of-function studies were performed on porcine parthenotes using microinjection. Then, we performed immunocytochemistry and quantitative real-time polymerase chain reaction (PCR) to examine the association of OCT4 with other lineage markers and its effect on downstream genes. RESULTS In OCT4-targeted late blastocysts, SOX2, NANOG, and SOX17 positive cells were decreased, and the total cell number of blastocysts was also decreased. According to real-time PCR analysis, NANOG, SOX17, and CDK4 were decreased in OCT4-targeted blastocysts, but trophoblast-related genes were increased. In OCT4-overexpressing blastocysts, SOX2 and NANOG positive cells increased, while SOX17 positive cells decreased, and while total cell number of blastocysts increased. As a result of real-time PCR analysis, the expression of SOX2, NANOG, and CDK4 was increased, but the expression of SOX17 was decreased. CONCLUSION Taken together, our results demonstrated that OCT4 leads pluripotency in porcine blastocysts and also plays an important role in ICM formation, secondary cell fate decision, and cell proliferation.
Collapse
Affiliation(s)
- Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gyung Cheol Choe
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
6
|
Multi-omics evaluation of SARS-CoV-2 infected mouse lungs reveals dynamics of host responses. iScience 2022; 25:103967. [PMID: 35224468 PMCID: PMC8863311 DOI: 10.1016/j.isci.2022.103967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) throughout the world has caused millions of death, while the dynamics of host responses and the underlying regulation mechanisms during SARS-CoV-2 infection are not well depicted. Lung tissues from a mouse model sensitized to SARS-CoV-2 infection were serially collected at different time points for evaluation of transcriptome, proteome, and phosphoproteome. We showed the ebb and flow of several host responses in the lung across the viral infection. The signaling pathways and kinases regulating networks were alternated at different phases of infection. This multiplex evaluation also revealed that many kinases of the CDK and MAPK family were interactive and served as functional hubs in mediating the signal transduction during SARS-CoV-2 infection. Our study not only revealed the dynamics of lung pathophysiology and their underlying molecular mechanisms during SARS-CoV-2 infection, but also highlighted some molecules and signaling pathways that might guide future investigations on COVID-19 therapies. Multi-omics analysis profiles temporal host responses in SARS-CoV-2 infected lungs Signaling pathways and kinase regulating networks are dynamically altered The CDK and MAPK family are interactive and involved in regulating host responses
Collapse
|
7
|
Pan H, Liu Q, Zhang F, Wang X, Wang S, Shi X. High STK40 Expression as an Independent Prognostic Biomarker and Correlated with Immune Infiltrates in Low-Grade Gliomas. Int J Gen Med 2021; 14:6389-6400. [PMID: 34675607 DOI: 10.2147/ijgm.s335821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Expression of STK40 is observed in some cancer types, while its role in low-grade gliomas (LGG) is unclear. The present study aimed to demonstrate the relationship between STK40 and LGG based on The Cancer Genome Atlas (TCGA) database and bioinformatics analysis. Methods Kruskal-Wallis test, Wilcoxon sign-rank test, and logistic regression were used to evaluate the relationship between clinicopathological features and STK40 expression. Kaplan-Meier method and Cox regression analysis were used to evaluate prognostic factors. Gene set enrichment analysis (GSEA) and immuno-infiltration analysis were used to determine the significant involvement of STK40 in function. Results High STK40 expression in LGG was associated with WHO grade (P<0.001), IDH status (P<0.001), primary therapy outcome (P=0.027), 1p/19q codeletion (P<0.001) and histological type (P<0.001). High STK40 expression predicted a poorer overall survival (OS) (HR: 3.07; 95% CI: 2.09-4.51; P<0.001), progression-free survival (PFS) (HR:2.11; 95% CI: 1.59-2.81; P<0.001) and disease specific survival (DSS) (HR: 3.27; 95% CI: 2.17-4.92; P<0.001). STK40 expression (HR: 2.284; 95% CI: 1.125-4.637; P=0.022) was independently correlated with OS in LGG patients. GSEA demonstrated that pathways including cell cycle mitotic, neutrophil degranulation, signaling by Rho GTPases, signaling by interleukins, M phase, PI3K-Akt signaling pathway and naba secreted factors were differentially enriched in STK40 high expression phenotype. Immune infiltration analysis showed that STK40 expression was correlated with some types of immune infiltrating cells. Conclusion STK40 expression was significantly correlated with poor survival and immune infiltration in LGG, and it may be a promising prognostic biomarker in LGG.
Collapse
Affiliation(s)
- Heyue Pan
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Qirui Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Fuchi Zhang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Xiaohua Wang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Shouyong Wang
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| | - Xiangsong Shi
- Department of Neurology, The Third People's Hospital of Huai'an, Huai'an, Jiangsu, 223001, People's Republic of China
| |
Collapse
|
8
|
Yu LY, Tseng TJ, Lin HC, Hsu CL, Lu TX, Tsai CJ, Lin YC, Chu I, Peng CT, Chen HJ, Tsai FC. Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. SCIENCE ADVANCES 2021; 7:eabg2106. [PMID: 34321207 PMCID: PMC8318371 DOI: 10.1126/sciadv.abg2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
Integrating signals is essential for cell survival, leading to the concept of synthetic lethality. However, how signaling is integrated to control cell migration remains unclear. By conducting a "two-hit" screen, we revealed the synergistic reduction of cell migration when serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) were simultaneously suppressed. Single-cell analyses showed that STK40 knockdown reduced cell motility and coordination by strengthening focal adhesion (FA) complexes. Furthermore, STK40 knockdown reduced the stability of yes-associated protein (YAP) and subsequently decreased YAP transported into the nucleus, while MAPK inhibition further weakened YAP activities in the nucleus to disturb FA remodeling. Together, we unveiled an integrated STK40-YAP-MAPK system regulating cell migration and introduced "synthetic dysmobility" as a novel strategy to collaboratively control cell migration.
Collapse
Affiliation(s)
- Ling-Yea Yu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Jen Tseng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsuan-Chao Lin
- Department of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Lin Hsu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Xuan Lu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Ph.D. Program in Biological Sciences, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Chia-Jung Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yu-Chiao Lin
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I Chu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Tzu Peng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hou-Jen Chen
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Zhang W, Zhu Y, Zhou Y, Wang J, Jiang P, Xue L. miRNA-31 increases radiosensitivity through targeting STK40 in colorectal cancer cells. Asia Pac J Clin Oncol 2021; 18:267-278. [PMID: 34170070 PMCID: PMC9291185 DOI: 10.1111/ajco.13602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Objective To propose and verify that miRNA‐31 increases the radiosensitivity of colorectal cancer and explore its potential mechanism. Method A bioinformatics analysis was performed to confirm that the expression of miRNA‐31 was higher in colorectal cancer than in normal colorectal tissue. The expression of miRNA‐31 was detected to verify the change in its expression in a radiotherapy‐resistant cell line. Methylation was detected to explore the cause of the decrease in miRNA‐31 expression. Overexpression or inhibition of miRNA‐31 further confirmed the change in its expression in colorectal cancer cell lines. Bioinformatics methods were used to screen the downstream target genes and for experimental verification. A luciferase assay was performed to determine the miRNA‐31 binding site in STK40. Overexpression or inhibition of STK40 in colorectal cancer cell lines further confirmed the change in STK40 expression in vitro. Results The bioinformatics results showed higher expression of miRNA‐31 in tumors than in normal tissue, and miRNA‐31 mainly participated in the pathway related to cell replication. Next, we observed the same phenomenon: miRNA‐31 was expressed at higher levels in colorectal tumors than in normal colorectal tissue and its expression decreased in radiation‐resistant cell lines after radiation, implying that miRNA‐31 increased the radiosensitivity of colorectal cancer cell lines. No significant change in upstream methylation was observed. miRNA‐31 regulated the radiosensitivity of colorectal cancer cell lines by inhibiting STK40. Notably, miRNA‐31 played a role by binding to the 3′ untranslated region of SK40. STK40 negatively regulated the radiosensitivity of colorectal cancer cells. Conclusions miRNA‐31 increases the radiosensitivity of colorectal cancer cells by targeting STK40; miRNA‐31 and STK40 are expected to become potential biomarkers for increasing the sensitivity of tumor radiotherapy in clinical treatment.
Collapse
Affiliation(s)
- Weiwei Zhang
- Peking University Third Hospital, Beijing, China
| | - Yuequan Zhu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junjie Wang
- Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Relative abundance of pluripotency-associated candidate genes in immature oocytes and in vitro-produced buffalo embryos ( Bubalus bubalis). ZYGOTE 2021; 29:459-467. [PMID: 33818346 DOI: 10.1017/s0967199421000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was undertaken to analyze the relative abundance (RA) of pluripotency-associated genes (NANOG, OCT4, SOX2, c-MYC, and FOXD3) in different grades of immature oocytes and various stages of in vitro-produced buffalo embryos using RT-qPCR. Results showed that the RA of NANOG, OCT4, and FOXD3 transcripts was significantly higher (P < 0.05) in A grade oocytes compared with the other grades of oocytes. The RA of the c-MYC transcript was significantly higher (P < 0.05) in A grade compared with the C and D grades of oocytes, but the values did not differ significantly from the B grade of oocytes. The RA of the SOX2 transcript was almost similar in all grades of the oocytes. The expression levels of NANOG (P > 0.05), OCT4 (P > 0.05), c-MYC (P > 0.05) and SOX2 (P < 0.05) were higher in the blastocysts compared with the other stages of the embryos. Markedly, FOXD3 expression was significantly higher (P < 0.05) in 8-16-cell embryos compared with the 2-cell and 4-cell embryos and blastocyst, but did not differ significantly from the morula stage of the embryos. In the study, the majority of pluripotency-associated genes showed higher expression in A grade immature oocytes. Therefore, it is concluded that the A grade oocytes appeared to be more developmental competent and are suitable candidates for nuclear cloning research in buffalo. In buffalo, NANOG, OCT4, SOX2, and c-MYC are highly expressed in blastocysts compared with the other stages of embryos.
Collapse
|
11
|
Roy T, Bhattacharjee P. Performance analysis of melanoma classifier using electrical modeling technique. Med Biol Eng Comput 2020; 58:2443-2454. [PMID: 32770290 DOI: 10.1007/s11517-020-02241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
An efficient and novel modeling approach is proposed in this paper for identifying proteins or genes involved in melanoma skin cancer. Two types of classifiers are modeled, based on the chemical structure and hydropathy property of amino acids. These classifiers are further implemented using NI LabVIEW-based hardware kit to observe the real-time response for proper diagnosis. The phase responses, pole-zero diagrams, and transient responses are examined to screen out the genes related to melanoma from healthy genes. The performance of the proposed classifier is measured using various performance measurement metrics in terms of accuracy, sensitivity, specificity, etc. The classifier is experimented along with a color code scheme on skin genes and illustrates the superiority in comparison with traditional methods by achieving 94% of classification accuracy with 96% of sensitivity.Graphical abstract An equivalent electrical model is developed for designing melanoma classifier. Initially, each amino acid is modeled using the RC passive circuit depending on their physicochemical structure and hydropathy nature, to form a gene structure model. The melanoma-related genes are detected by phase, transient, and color code analysis.
Collapse
Affiliation(s)
- Tanusree Roy
- Department of Electrical and Electronics Engineering, University of Engineering and Management, Kolkata, 700135, India.
| | - Pranabesh Bhattacharjee
- Department of Electrical and Electronics Engineering, University of Engineering and Management, Kolkata, 700135, India
| |
Collapse
|
12
|
Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev 2020; 189:111286. [PMID: 32531293 DOI: 10.1016/j.mad.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Somatic cells may be reprogrammed to pluripotent state by ectopic expression of certain transcription factors; namely, OCT4, SOX2, KLF4 and c-MYC. However, the molecular and cellular mechanisms are not adequately understood, especially for human embryonic development. Studies during the last five years implicated importance of OCT4 in human zygotic genome activation (ZGA), patterns of OCT4 protein folding and role of specialized sequences in binding to DNA for modulation of gene expression during development. Epigenetic modulation of OCT4 gene and post translational modifications of OCT4 protein activity in the context of multiple cancers are important issues. A consensus is emerging that chromatin organization and epigenetic landscape play crucial roles for the interactions of transcription factors, including OCT4 with the promoters and/or regulatory sequences of genes associated with human embryonic development (ZGA through lineage specification) and that when the epigenome niche is deregulated OCT4 helps in cancer progression, and how OCT4 silencing in somatic cells of adult organisms may impact ageing.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
13
|
He F, Li N, Huang HB, Wang JB, Yang XF, Wang HD, Huang W, Li FR. LSD1 inhibition yields functional insulin-producing cells from human embryonic stem cells. Stem Cell Res Ther 2020; 11:163. [PMID: 32345350 PMCID: PMC7189473 DOI: 10.1186/s13287-020-01674-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/15/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human embryonic stem cells represent a potentially unlimited source of insulin-producing cells for diabetes therapy. While tremendous progress has been made in directed differentiation of human embryonic stem cells into IPCs in vitro, the mechanisms controlling its differentiation and function are not fully understood. Previous studies revealed that lysine-specific demethylase 1(LSD1) balanced the self-renewal and differentiation in human induced pluripotent stem cells and human embryonic stem cells. This study aims to explore the role of LSD1 in directed differentiation of human embryonic stem cells into insulin-producing cells. METHODS Human embryonic stem cell line H9 was induced into insulin-producing cells by a four-step differentiation protocol. Lentivirus transfection was applied to knockdown LSD1 expression. Immunofluorescence assay and flow cytometry were utilized to check differentiation efficiency. Western blot was used to examine signaling pathway proteins and differentiation-associated proteins. Insulin/C-peptide release was assayed by ELISA. Statistical analysis between groups was carried out with one-way ANOVA tests or a student's t test when appropriate. RESULTS Inhibition or silencing LSD1 promotes the specification of pancreatic progenitors and finally the commitment of functional insulin-producing β cells; Moreover, inhibition or silencing LSD1 activated ERK signaling and upregulated pancreatic progenitor associated genes, accelerating pre-maturation of pancreatic progenitors, and conferred the NKX6.1+ population with better proliferation ability. IPCs with LSD1 inhibitor tranylcypromine treatment displayed enhanced insulin secretion in response to glucose stimulation. CONCLUSIONS We identify a novel role of LSD1 inhibition in promoting IPCs differentiation from hESCs, which would be emerged as potential intervention for generation of functional pancreatic β cells to cure diabetes.
Collapse
Affiliation(s)
- Fei He
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Ning Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Hai-Bo Huang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Jing-Bo Wang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China
| | - Hua-Dong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, 1017 Dongmen North Road, Shenzhen, 518020, China.
- Guangdong Engineering Technology Research Center of Stem Cell and Cell therapy, Shenzhen, 518020, China.
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen, 518020, China.
| |
Collapse
|
14
|
Abstract
Stem cells are an immortal cell population capable of self-renewal; they are essential for human development and ageing and are a major focus of research in regenerative medicine. Despite considerable progress in differentiation of stem cells in vitro, culture conditions require further optimization to maximize the potential for multicellular differentiation during expansion. The aim of this study was to develop a feeder-free, serum-free culture method for human embryonic stem cells (hESCs), to establish optimal conditions for hESC proliferation, and to determine the biological characteristics of the resulting hESCs. The H9 hESC line was cultured using a homemade serum-free, feeder-free culture system, and growth was observed. The expression of pluripotency proteins (OCT4, NANOG, SOX2, LIN28, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) in hESCs was determined by immunofluorescence and western blotting. The mRNA expression levels of genes encoding nestin, brachyury and α-fetoprotein in differentiated H9 cells were determined by RT-PCR. The newly developed culture system resulted in classical hESC colonies that were round or elliptical in shape, with clear and neat boundaries. The expression of pluripotency proteins was increased, and the genes encoding nestin, brachyury, and α-fetoprotein were expressed in H9 cells, suggesting that the cells maintained in vitro differentiation capacity. Our culture system containing a unique set of components, with animal-derived substances, maintained the self-renewal potential and pluripotency of H9 cells for eight passages. Further optimization of this system may expand the clinical application of hESCs.
Collapse
|
15
|
Hu J, Li S, Sun X, Fang Z, Wang L, Xiao F, Shao M, Ge L, Tang F, Gu J, Yu H, Guo Y, Guo X, Liao B, Jin Y. Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation. J Biol Chem 2019; 294:9959-9972. [PMID: 31092598 DOI: 10.1074/jbc.ra119.007840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
Mesoderm development is a finely tuned process initiated by the differentiation of pluripotent epiblast cells. Serine/threonine kinase 40 (STK40) controls the development of several mesoderm-derived cell types, its overexpression induces differentiation of mouse embryonic stem cells (mESCs) toward the extraembryonic endoderm, and Stk40 knockout (KO) results in multiple organ failure and is lethal at the perinatal stage in mice. However, molecular mechanisms underlying the physiological functions of STK40 in mesoderm differentiation remain elusive. Here, we report that Stk40 ablation impairs mesoderm differentiation both in vitro and in vivo Mechanistically, STK40 interacts with both the E3 ubiquitin ligase mammalian constitutive photomorphogenesis protein 1 (COP1) and the transcriptional regulator proto-oncogene c-Jun (c-JUN), promoting c-JUN protein degradation. Consequently, Stk40 knockout leads to c-JUN protein accumulation, which, in turn, apparently suppresses WNT signaling activity and impairs the mesoderm differentiation process. Overall, this study reveals that STK40, together with COP1, represents a previously unknown regulatory axis that modulates the c-JUN protein level within an appropriate range during mesoderm differentiation from mESCs. Our findings provide critical insights into the molecular mechanisms regulating the c-JUN protein level and may have potential implications for managing cellular disorders arising from c-JUN dysfunction.
Collapse
Affiliation(s)
- Jing Hu
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Shuang Li
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Xiaozhi Sun
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Lina Wang
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Feng Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Laixiang Ge
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Fan Tang
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Hongyao Yu
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Bing Liao
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China,
| | - Ying Jin
- From the Basic Clinical Research Center, Renji Hospital and Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai 200025, China, .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China, and
| |
Collapse
|
16
|
Retinoic Acid Induces Differentiation of Mouse F9 Embryonic Carcinoma Cell by Modulating the miR-485 Targeting of Abhd2. Int J Mol Sci 2019; 20:ijms20092071. [PMID: 31035455 PMCID: PMC6539702 DOI: 10.3390/ijms20092071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid (RA) plays a key role in pluripotent cell differentiation. In F9 embryonic carcinoma cells, RA can induce differentiation towards somatic lineages via the Ras-extracellular signal-regulated kinase (Ras/Erk) pathway, but the mechanism through which it induces the Erk1/2 phosphorylation is unclear. Here, we show that miR-485 is a positive regulator that targets α/β-hydrolase domain-containing protein 2 (Abhd2), which can result in Erk1/2 phosphorylation and triggers differentiation. RA up-regulates miR-485 and concurrently down-regulates Abhd2. We verified that Abhd2 is targeted by miR-485 and they both can influence the phosphorylation of Erk1/2. In summary, RA can mediate cell differentiation by phosphorylating Erk1/2 via miR-485 and Abhd2.
Collapse
|
17
|
Park TY, Choi KH, Lee DK, Oh JN, Kim SH, Lee CK. Attempting to Convert Primed Porcine Embryonic Stem Cells into a Naive State Through the Overexpression of Reprogramming Factors. Cell Reprogram 2018; 20:289-300. [DOI: 10.1089/cell.2017.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tae-Yeong Park
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Kangwon do, Korea
| |
Collapse
|
18
|
Maubant S, Tahtouh T, Brisson A, Maire V, Némati F, Tesson B, Ye M, Rigaill G, Noizet M, Dumont A, Gentien D, Marty-Prouvost B, de Koning L, Mahmood SF, Decaudin D, Cruzalegui F, Tucker GC, Roman-Roman S, Dubois T. LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers. Oncotarget 2018; 9:22586-22604. [PMID: 29854300 PMCID: PMC5978250 DOI: 10.18632/oncotarget.25187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) account for a large proportion of breast cancer deaths, due to the high rate of recurrence from residual, resistant tumor cells. New treatments are needed, to bypass chemoresistance and improve survival. The WNT pathway, which is activated in TNBCs, has been identified as an attractive pathway for treatment targeting. We analyzed expression of the WNT coreceptors LRP5 and LRP6 in human breast cancer samples. As previously described, LRP6 was overexpressed in TNBCs. However, we also showed, for the first time, that LRP5 was overexpressed in TNBCs too. The knockdown of LRP5 or LRP6 decreased tumorigenesis in vitro and in vivo, identifying both receptors as potential treatment targets in TNBC. The apoptotic effect of LRP5 knockdown was more robust than that of LRP6 depletion. We analyzed and compared the transcriptomes of cells depleted of LRP5 or LRP6, to identify genes specifically deregulated by LRP5 potentially implicated in cell death. We identified serine/threonine kinase 40 (STK40) as one of two genes specifically downregulated soon after LRP5 depletion. STK40 was found to be overexpressed in TNBCs, relative to other breast cancer subtypes, and in various other tumor types. STK40 depletion decreased cell viability and colony formation, and induced the apoptosis of TNBC cells. In addition, STK40 knockdown impaired growth in an anchorage-independent manner in vitro and slowed tumor growth in vivo. These findings identify the largely uncharacterized putative protein kinase STK40 as a novel candidate treatment target for TNBC.
Collapse
Affiliation(s)
- Sylvie Maubant
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Tania Tahtouh
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Amélie Brisson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Virginie Maire
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Fariba Némati
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Bruno Tesson
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France.,Institut Curie, PSL Research University, INSERM U900, Paris, France
| | - Mengliang Ye
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR 1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Orsay, France.,Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry, France
| | - Maïté Noizet
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Aurélie Dumont
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Department, Genomics Platform, Paris, France
| | - Bérengère Marty-Prouvost
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Leanne de Koning
- Institut Curie, PSL Research University, Translational Research Department, Reverse-Phase Protein Array Platform, Paris, France
| | - Sardar Faisal Mahmood
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| | - Didier Decaudin
- Institut Curie, PSL Research University, Translational Research Department, Preclinical Investigation Laboratory, Paris, France
| | - Francisco Cruzalegui
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Gordon C Tucker
- Oncology Research and Development Unit, Institut de Recherches SERVIER, Croissy-Sur-Seine, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Translational Research Department, Paris, France
| | - Thierry Dubois
- Institut Curie, PSL Research University, Translational Research Department, Breast Cancer Biology Group, Paris, France
| |
Collapse
|
19
|
Pfeuty B, Kress C, Pain B. Network Features and Dynamical Landscape of Naive and Primed Pluripotency. Biophys J 2018; 114:237-248. [PMID: 29320691 PMCID: PMC5773751 DOI: 10.1016/j.bpj.2017.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022] Open
Abstract
Although the broad and unique differentiation potential of pluripotent stem cells relies on a complex transcriptional network centered around Oct4, Sox2, and Nanog, two well-distinct pluripotent states, called "naive" and "primed", have been described in vitro and markedly differ in their developmental potential, their expression profiles, their signaling requirements, and their reciprocal conversion. Aiming to determine the key features that segregate and coordinate these two states, data-driven optimization of network models is performed to identify relevant parameter regimes and reduce network complexity to its core structure. Decision dynamics of optimized networks is characterized by signal-dependent multistability and strongly asymmetric transitions among naive, primed, and nonpluripotent states. Further model perturbation and reduction approaches reveal that such a dynamical landscape of pluripotency involves a functional partitioning of the regulatory network. Specifically, two overlapping positive feedback modules, Klf4/Esrrb/Nanog and Oct4/Nanog, stabilize the naive or the primed state, respectively. In turn, their incoherent feedforward and negative feedback coupling mediated by the Erk/Gsk3 module is critical for robust segregation and sequential progression between naive and primed states before irreversible exit from pluripotency.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Laboratoire de Physique des Lasers, Atomes et Molécules, Université de Lille, CNRS, Villeneuve d'Ascq, France.
| | - Clémence Kress
- Stem Cell and Brain Research Institute, Univ. Lyon, Université Claude Bernard Lyon 1, INSERM, INRA, U1208, USC1361, Bron, France
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, Univ. Lyon, Université Claude Bernard Lyon 1, INSERM, INRA, U1208, USC1361, Bron, France
| |
Collapse
|
20
|
Wang G, Wang Q, Fan Y, He X. Reticulocalbin 2 correlates with recurrence and prognosis in colorectal cancer. Am J Cancer Res 2017; 7:2169-2179. [PMID: 29218241 PMCID: PMC5714746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023] Open
Abstract
Reticulocalbin (RCN) family members could play oncogenic roles in human malignancies and facilitate tumor cell proliferation and metastasis. However, the expression pattern and potential function of Reticulocalbin 2 (RCN2) in colorectal cancer has not been addressed yet. In the present study, we investigated the protein expression of RCN2 by immunohistochemistry assay, and analyzed its association with tumor progression, recurrence and prognosis in 326 cases of patients. Results suggested that the expression of RCN2 was up-regulated in colorectal cancer compared with paired adjacent nontumor specimens. RCN2 expression was closely related to tumor size and the depth of invasion. Kaplan-Meier analysis proved that RCN2 was associated with both disease-free survival and overall survival of patients with colorectal cancer. Moreover, cox's proportional hazards analysis showed that high RCN2 expression was an independent prognostic marker of poor outcome. Consistently, overexpressing RCN2 promoted CRC cell proliferation both in vitro and in vivo and knockdown RCN2 showed the opposite results. These results provided the first evidence that RCN2 level was increased in colorectal cancer and significantly correlated with tumor growth and proliferation. It also indicated that RCN2 might serve as a potential marker of tumor recurrence and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an 710038, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an 710038, China
| | - Yongguo Fan
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an 710038, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical UniversityXi'an 710038, China
| |
Collapse
|
21
|
JMJD1C Ensures Mouse Embryonic Stem Cell Self-Renewal and Somatic Cell Reprogramming through Controlling MicroRNA Expression. Stem Cell Reports 2017; 9:927-942. [PMID: 28826851 PMCID: PMC5599225 DOI: 10.1016/j.stemcr.2017.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
The roles of histone demethylases (HDMs) for the establishment and maintenance of pluripotency are incompletely characterized. Here, we show that JmjC-domain-containing protein 1c (JMJD1C), an H3K9 demethylase, is required for mouse embryonic stem cell (ESC) self-renewal. Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and epithelial-to-mesenchymal transition (EMT) to induce differentiation of ESCs. Inhibition of ERK/MAPK signaling rescues the differentiation phenotype caused by Jmjd1c depletion. Mechanistically, JMJD1C, with the help of pluripotency factor KLF4, maintains ESC identity at least in part by regulating the expression of the miR-200 family and miR-290/295 cluster to suppress the ERK/MAPK signaling and EMT. Additionally, we uncover that JMJD1C ensures efficient generation and maintenance of induced pluripotent stem cells, at least partially through controlling the expression of microRNAs. Collectively, we propose an integrated model of epigenetic and transcriptional control mediated by the H3K9 demethylase for ESC self-renewal and somatic cell reprogramming. JMJD1C is required for the maintenance of ESC identity Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and EMT JMJD1C interplays with KLF4 to activate the expression of miR-200 family JMJD1C ensures efficient induction of pluripotency partially via miR-200 family
Collapse
|
22
|
Zhao H, Jin Y. Signaling networks in the control of pluripotency. Curr Opin Genet Dev 2017; 46:141-148. [PMID: 28806594 DOI: 10.1016/j.gde.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are characterized by their ability of unlimited self-renewal in vitro and pluripotent developmental potential, which endows them with great values in basic research and future clinical application. However, realization of full potential of ESCs is dependent on the elucidation of molecular mechanisms governing ESCs, among which signaling pathways play critical roles. A great deal of efforts has been made in the past decades to understand what and how signaling pathways contribute to the establishment and maintenance of pluripotency. In this review, we discuss signaling networks in both mouse and human ESCs, focusing on signals involved in the control of self-renewal and differentiation. In addition, the modulation of signaling pathways by pluripotency-associated transcription factors is also briefly summarized.
Collapse
Affiliation(s)
- Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Reticulocalbin-2 enhances hepatocellular carcinoma proliferation via modulating the EGFR-ERK pathway. Oncogene 2017; 36:6691-6700. [DOI: 10.1038/onc.2017.230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/27/2017] [Accepted: 05/27/2017] [Indexed: 12/23/2022]
|
24
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Wang L, Yu H, Cheng H, He K, Fang Z, Ge L, Cheng T, Jin Y. Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 2017; 8:e2722. [PMID: 28358362 PMCID: PMC5386544 DOI: 10.1038/cddis.2017.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
The serine threonine kinase Stk40 has been shown to involve in mouse embryonic stem cell differentiation, pulmonary maturation and adipocyte differentiation. Here we report that targeted deletion of Stk40 leads to fetal liver hypoplasia and anemia in the mouse embryo. The reduction of erythrocytes in the fetal liver is accompanied by increased apoptosis and compromised erythroid maturation. Stk40-/- fetal liver cells have significantly reduced colony-forming units (CFUs) capable of erythroid differentiation, including burst forming unit-erythroid, CFU-erythroid (CFU-E), and CFU-granulocyte, erythrocyte, megakaryocyte and macrophage, but not CFU-granulocyte/macrophages. Purified Stk40-/- megakaryocyte-erythrocyte progenitors produce substantially fewer CFU-E colonies compared to control cells. Moreover, Stk40-/- fetal liver erythroblasts fail to form normal erythroblastic islands in association with wild type or Stk40-/- macrophages, indicating an intrinsic defect of Stk40-/- erythroblasts. Furthermore, the hematopoietic stem and progenitor cell pool is reduced in Stk40-/- fetal livers but still retains the multi-lineage reconstitution capacity. Finally, comparison of microarray data between wild type and Stk40-/- E14.5 fetal liver cells reveals a potential role of aberrantly activated TNF-α signaling in Stk40 depletion induced dyserythropoiesis with a concomitant increase in cleaved caspase-3 and decrease in Gata1 proteins. Altogether, the identification of Stk40 as a regulator for fetal erythroid maturation and survival provides new clues to the molecular regulation of erythropoiesis and related diseases.
Collapse
Affiliation(s)
- Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Zhuoqing Fang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laixiang Ge
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
26
|
Kaitsuka T, Kobayashi K, Otsuka W, Kubo T, Hakim F, Wei FY, Shiraki N, Kume S, Tomizawa K. Erythropoietin facilitates definitive endodermal differentiation of mouse embryonic stem cells via activation of ERK signaling. Am J Physiol Cell Physiol 2017; 312:C573-C582. [PMID: 28298334 DOI: 10.1152/ajpcell.00071.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
Artificially generated pancreatic β-cells from pluripotent stem cells are expected for cell replacement therapy for type 1 diabetes. Several strategies are adopted to direct pluripotent stem cells toward pancreatic differentiation. However, a standard differentiation method for clinical application has not been established. It is important to develop more effective and safer methods for generating pancreatic β-cells without toxic or mutagenic chemicals. In the present study, we screened several endogenous factors involved in organ development to identify the factor, which induced the efficiency of pancreatic differentiation and found that treatment with erythropoietin (EPO) facilitated the differentiation of mouse embryonic stem cells (ESCs) into definitive endoderm. At an early stage of differentiation, EPO treatment significantly increased Sox17 gene expression, as a marker of the definitive endoderm. Contrary to the canonical function of EPO, it did not affect the levels of phosphorylated JAK2 and STAT5, but stimulated the phosphorylation of ERK1/2 and Akt. The MEK inhibitor U0126 significantly inhibited EPO-induced Sox17 expression. The differentiation of ESCs into definitive endoderm is an important step for the differentiation into pancreatic and other endodermal lineages. This study suggests a possible role of EPO in embryonic endodermal development and a new agent for directing the differentiation into endodermal lineages like pancreatic β-cells.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Kobayashi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wakako Otsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Kubo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Farzana Hakim
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; and.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; and.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan;
| |
Collapse
|
27
|
PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs. Cell Stem Cell 2017; 20:274-289.e7. [DOI: 10.1016/j.stem.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 08/30/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
|
28
|
Durzynska I, Xu X, Adelmant G, Ficarro SB, Marto JA, Sliz P, Uljon S, Blacklow SC. STK40 Is a Pseudokinase that Binds the E3 Ubiquitin Ligase COP1. Structure 2017; 25:287-294. [PMID: 28089446 DOI: 10.1016/j.str.2016.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/17/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023]
Abstract
Serine/threonine kinase 40 (STK40) was originally identified as a distant homolog of Tribbles-family proteins. Despite accumulating data attesting to the importance of STK40 in a variety of different physiologic processes, little is known about its biological activity or mechanism of action. Here, we show that STK40 interacts with Constitutive Photomorphogenic Protein 1 (COP1), relying primarily on a C-terminal sequence analogous to the motif found in Tribbles proteins. In order to further elucidate structure-function relationships in STK40, we determined the crystal structure of the STK40 kinase homology domain at 2.5 Å resolution. The structure, together with ATP-binding assay results, show that STK40 is a pseudokinase, in which substitutions of conserved residues within the kinase domain prevent ATP binding. Although the structure of the kinase homology domain diverges from the analogous region of Trib1, the results reported here suggest functional parallels between STK40 and Tribbles-family proteins as COP1 adaptors.
Collapse
Affiliation(s)
- Izabela Durzynska
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Xu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Piotrek Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sacha Uljon
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA.
| | - Stephen C Blacklow
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Sharif T, Martell E, Dai C, Kennedy BE, Murphy P, Clements DR, Kim Y, Lee PWK, Gujar SA. Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy 2016; 13:264-284. [PMID: 27929731 DOI: 10.1080/15548627.2016.1260808] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pluripotency is an important feature of cancer stem cells (CSCs) that contributes to self-renewal and chemoresistance. The maintenance of pluripotency of CSCs under various pathophysiological conditions requires a complex interaction between various cellular pathways including those involved in homeostasis and energy metabolism. However, the exact mechanisms that maintain the CSC pluripotency remain poorly understood. In this report, using both human and murine models of CSCs, we demonstrate that basal levels of autophagy are required to maintain the pluripotency of CSCs, and that this process is differentially regulated by the rate-limiting enzyme in the NAD+ synthesis pathway NAMPT (nicotinamide phosphoribosyltransferase) and the transcription factor POU5F1/OCT4 (POU class 5 homeobox 1). First, our data show that the pharmacological inhibition and knockdown (KD) of NAMPT or the KD of POU5F1 in human CSCs significantly decreased the expression of pluripotency markers POU5F1, NANOG (Nanog homeobox) and SOX2 (SRY-box 2), and upregulated the differentiation markers TUBB3 (tubulin β 3 class III), CSN2 (casein β), SPP1 (secreted phosphoprotein 1), GATA6 (GATA binding protein 6), T (T brachyury transcription factor) and CDX2 (caudal type homeobox 2). Interestingly, these pluripotency-regulating effects of NAMPT and POU5F1 were accompanied by contrasting levels of autophagy, wherein NAMPT KD promoted while POU5F1 KD inhibited the autophagy machinery. Most importantly, any deviation from the basal level of autophagy, either increase (via rapamycin, serum starvation or Tat-beclin 1 [Tat-BECN1] peptide) or decrease (via ATG7 or ATG12 KD), strongly decreased the pluripotency and promoted the differentiation and/or senescence of CSCs. Collectively, these results uncover the link between the NAD+ biosynthesis pathway, CSC transcription factor POU5F1 and pluripotency, and further identify autophagy as a novel regulator of pluripotency of CSCs.
Collapse
Affiliation(s)
- Tanveer Sharif
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Emma Martell
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Cathleen Dai
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Barry E Kennedy
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Patrick Murphy
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Derek R Clements
- b Department of Pathology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Youra Kim
- b Department of Pathology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Patrick W K Lee
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada.,b Department of Pathology , Dalhousie University , Halifax , Nova Scotia , Canada
| | - Shashi A Gujar
- a Department of Microbiology and Immunology , Dalhousie University , Halifax , Nova Scotia , Canada.,b Department of Pathology , Dalhousie University , Halifax , Nova Scotia , Canada.,c Centre for Innovative and Collaborative Health Services Research, Quality and System Performance, IWK Health Centre , Halifax , Nova Scotia , Canada
| |
Collapse
|
30
|
He K, Hu J, Yu H, Wang L, Tang F, Gu J, Ge L, Wang H, Li S, Hu P, Jin Y. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. J Biol Chem 2016; 292:351-360. [PMID: 27899448 DOI: 10.1074/jbc.m116.719849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation is a precisely coordinated process, and the molecular mechanism regulating the process remains incompletely understood. Here we report the identification of serine/threonine kinase 40 (Stk40) as a novel positive regulator of skeletal myoblast differentiation in culture and fetal skeletal muscle formation in vivo We show that the expression level of Stk40 increases during skeletal muscle differentiation. Down-regulation and overexpression of Stk40 significantly decreases and increases myogenic differentiation of C2C12 myoblasts, respectively. In vivo, the number of myofibers and expression levels of myogenic markers are reduced in the fetal muscle of Stk40 knockout mice, indicating impaired fetal skeletal muscle formation. Mechanistically, Stk40 controls the protein level of histone deacetylase 5 (HDAC5) to maintain transcriptional activities of myocyte enhancer factor 2 (MEF2), a family of transcription factor important for skeletal myogenesis. Silencing of HDAC5 expression rescues the reduced myogenic gene expression caused by Stk40 deficiency. Together, our study reveals that Stk40 is required for fetal skeletal muscle development and provides molecular insights into the control of the HDAC5-MEF2 axis in skeletal myogenesis.
Collapse
Affiliation(s)
- Ke He
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Hu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongyao Yu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lina Wang
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Fan Tang
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Laixiang Ge
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongye Wang
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Sheng Li
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Ping Hu
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Ying Jin
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China, .,the Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, and
| |
Collapse
|
31
|
The application of transcriptomic data in the authentication of beef derived from contrasting production systems. BMC Genomics 2016; 17:746. [PMID: 27654331 PMCID: PMC5031250 DOI: 10.1186/s12864-016-2851-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system. RESULTS A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context. CONCLUSIONS The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.
Collapse
|
32
|
Zhao XM, Cui LS, Hao HS, Wang HY, Zhao SJ, Du WH, Wang D, Liu Y, Zhu HB. Transcriptome analyses of inner cell mass and trophectoderm cells isolated by magnetic-activated cell sorting from bovine blastocysts using single cell RNA-seq. Reprod Domest Anim 2016; 51:726-35. [PMID: 27440443 DOI: 10.1111/rda.12737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Research on bovine embryonic stem cells (bESCs) has been hampered because bESCs are cultured in conditions that are based on information obtained from culturing mouse and human inner cell mass (ICM) cells. The aim of this study was to compare gene expression in ICM and trophectoderm (TE) cell lineages of bovine embryos and to discuss the findings relative to information available for mice and humans. We separated a high-purity (>90%) ICM and TE from bovine blastocysts by magnetic-activated cell sorting and analysed their transcriptomes by single cell RNA-seq. Differentially expressed genes (DEGs) were assessed using Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases. Finally, qRT-PCR was performed to validate the RNA-seq results. From 207 DEGs identified (adjusted p ≤ .05; fold change ≥2), 159 and 48 had greater expression in the ICM and TE cells respectively. We validated 27 genes using qRT-PCR and found their expression patterns were mostly similar to those of RNA-seq, including 12 novel ICM-dominant (HNF4A, CCL24, FGFR4, IFITM3, PTCHD2, GJB5, FN1, KLK7, PRDM14, GRP, FGF19 and GCM1) and two novel TE-dominant (SLC10A1 and WNT4) genes. Bioinformatics analysis showed that these DEGs are involved in many important pathways, such as MAPK and cancer cell pathways, and these pathways have been shown to play essential roles in mouse and human ESCs in the self-renewal and pluripotent maintenance. As a conclusion, there were sufficient differences to allow us to conclude that the control of pluripotency in bovine ICM cells is species-specific.
Collapse
Affiliation(s)
- X-M Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - L-S Cui
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-S Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-Y Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - S-J Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - W-H Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - D Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Y Liu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - H-B Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
33
|
Yang L, Ge Y, Lin S, Fang X, Zhou L, Gao J. Sevoflurane inhibits the self-renewal of mouse embryonic stem cells via the GABAAR-ERK signaling pathway. Mol Med Rep 2016; 14:2119-26. [DOI: 10.3892/mmr.2016.5466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
|
34
|
Dzobo K, Vogelsang M, Parker MI. Wnt/β-Catenin and MEK-ERK Signaling are Required for Fibroblast-Derived Extracellular Matrix-Mediated Endoderm Differentiation of Embryonic Stem Cells. Stem Cell Rev Rep 2016; 11:761-73. [PMID: 26022506 DOI: 10.1007/s12015-015-9598-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human embryonic stem cells (hESCs) have the potential to differentiate into all cells of the three germ layers, thus making them an attractive source of cells for use in regenerative medicine. The greatest challenge lies in regulating the differentiation of hESCs into specific cell lineages by both intrinsic and extrinsic factors. In this study we determined the effect of a fibroblast-derived extracellular matrix (fd-ECM) on hESCs differentiation. We demonstrate that growth of hESCs on fd-ECM results in hESCs losing their stemness and proliferation potential. As the stem cells differentiate they attain gene expression profiles similar to the primitive streak of the in vivo embryo. The activation of both the MEK-ERK and Wnt/β-catenin signaling pathways is required for the fd-ECM-mediated differentiation of hESCs towards the endoderm and involves integrins α1, α2, α3 and β1. This study illustrates the importance of the cellular microenvironment in directing stem cell fate and that the nature and composition of the extracellular matrix is a crucial determining factor.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, Wernher and Beit Building (South), UCT Campus, International Centre for Genetic Engineering and Biotechnology (ICGEB), Anzio Road, Observatory, 7925, Cape Town, South Africa
| | | | | |
Collapse
|
35
|
Liu J, Luo X, Xu Y, Gu J, Tang F, Jin Y, Li H. Single-stranded DNA binding protein Ssbp3 induces differentiation of mouse embryonic stem cells into trophoblast-like cells. Stem Cell Res Ther 2016; 7:79. [PMID: 27236334 PMCID: PMC4884356 DOI: 10.1186/s13287-016-0340-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrinsic factors and extrinsic signals which control unlimited self-renewal and developmental pluripotency in embryonic stem cells (ESCs) have been extensively investigated. However, a much smaller number of factors involved in extra-embryonic trophoblast differentiation from ESCs have been studied. In this study, we investigated the role of the single-stranded DNA binding protein, Ssbp3, for the induction of trophoblast-like differentiation from mouse ESCs. METHODS Gain- and loss-of-function experiments were carried out through overexpression or knockdown of Ssbp3 in mouse ESCs under self-renewal culture conditions. Expression levels of pluripotency and lineage markers were detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses. The global gene expression profile in Ssbp3-overexpressing cells was determined by affymetrix microarray. Gene ontology and pathway terms were analyzed and further validated by qRT-PCR and Western blotting. The methylation status of the Elf5 promoter in Ssbp3-overexpressing cells was detected by bisulfite sequencing. The trophoblast-like phenotype induced by Ssbp3 was also evaluated by teratoma formation and early embryo injection assays. RESULTS Forced expression of Ssbp3 in mouse ESCs upregulated expression levels of lineage-associated genes, with trophoblast cell markers being the highest. In contrast, depletion of Ssbp3 attenuated the expression of trophoblast lineage marker genes induced by downregulation of Oct4 or treatment with BMP4 and bFGF in ESCs. Interestingly, global gene expression profiling analysis indicated that Ssbp3 overexpression did not significantly alter the transcript levels of pluripotency-associated transcription factors. Instead, Ssbp3 promoted the expression of early trophectoderm transcription factors such as Cdx2 and activated MAPK/Erk1/2 and TGF-β pathways. Furthermore, overexpression of Ssbp3 reduced the methylation level of the Elf5 promoter and promoted the generation of teratomas with internal hemorrhage, indicative of the presence of trophoblast cells. CONCLUSIONS This study identifies Ssbp3, a single-stranded DNA binding protein, as a regulator for mouse ESCs to differentiate into trophoblast-like cells. This finding is helpful to understand the regulatory networks for ESC differentiation into extra-embryonic lineages.
Collapse
Affiliation(s)
- Jifeng Liu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinlong Luo
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Present address: KU Leuven Department of Development and Regeneration, Stem Cell Institute Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Yanli Xu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Fan Tang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| | - Hui Li
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, New Life Science Building A, Room 1328, 320 Yue Yang Road, Shanghai, 200032, China.
| |
Collapse
|
36
|
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M. Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle 2016; 14:1596-610. [PMID: 25928475 DOI: 10.1080/15384101.2015.1026485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions. Mad2l2(-/-) ESCs were unstable in LIF/serum medium, and differentiated into primitive endoderm. However, they could be stably propagated using small molecule inhibitors of MAPK signaling. Several components of the MAPK cascade were up- or downregulated even in undifferentiated Mad2l2(-/-) ESCs. Global levels of repressive histone H3 variants were increased in mutant ESCs, and the epigenetic signatures on pluripotency-, primitive endoderm-, and MAPK-related loci differed. Thus, H3K9me2 repressed the Nanog promoter, while the promoter of Gata4 lost H3K27me3 and became de-repressed in LIF/serum condition. Promoters associated with genes involved in MAPK signaling also showed misregulation of these histone marks. Such epigenetic modifications could be indirect consequences of mutating Mad2l2. However, our previous observations suggested the histone methyltransferases as direct (G9a) or indirect (Ezh2) targets of Mad2l2. In effect, the intricate balance necessary for pluripotency becomes perturbed in the absence of Mad2l2.
Collapse
Affiliation(s)
- Mehdi Pirouz
- a Department of Molecular Cell Biology ; Max Planck Institute for Biophysical Chemistry ; Goettingen ; Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Sun M, Liao B, Tao Y, Chen H, Xiao F, Gu J, Gao S, Jin Y. Calcineurin-NFAT Signaling Controls Somatic Cell Reprogramming in a Stage-Dependent Manner. J Cell Physiol 2015; 231:1151-62. [PMID: 26448199 DOI: 10.1002/jcp.25212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022]
Abstract
Calcineurin-NFAT signaling is critical for early lineage specification of mouse embryonic stem cells and early embryos. However, its roles in somatic cell reprogramming remain unknown. Here, we report that calcineurin-NFAT signaling has a dynamic activity and plays diverse roles at different stages of reprogramming. At the early stage, calcineurin-NFAT signaling is transiently activated and its activation is required for successful reprogramming. However, at the late stage of reprogramming, activation of calcineurin-NFAT signaling becomes a barrier for reprogramming and its inactivation is critical for successful induction of pluripotency. Mechanistically, calcineurin-NFAT signaling contributes to the reprogramming through regulating multiple early events during reprogramming, including mesenchymal to epithelial transition (MET), cell adhesion and emergence of SSEA1(+) intermediate cells. Collectively, this study reveals for the first time the important roles of calcineurin-NFAT signaling during somatic cell reprogramming and provides new insights into the molecular regulation of reprogramming.
Collapse
Affiliation(s)
- Ming Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Liao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yu Tao
- National Institute of Biological Sciences, Beijing, China.,The College of Life Science, Beijing Normal University, Beijing, China
| | - Hao Chen
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Gu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Macrophages Contribute to the Progression of Infantile Hemangioma by Regulating the Proliferation and Differentiation of Hemangioma Stem Cells. J Invest Dermatol 2015; 135:3163-3172. [PMID: 26288359 DOI: 10.1038/jid.2015.321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Macrophage infiltration has been implicated in infantile hemangioma (IH), the most common tumor of infancy. However, the exact role of macrophages in IH remains unknown. This study aims to clarify the functional significance of macrophages in the progression of IH. The distribution of macrophages in human IH was analyzed, and our results revealed that polarized macrophages were more prevalent in proliferating IHs than in involuting IHs, which was consistent with the increased macrophage-related cytokines in proliferating IHs. In vitro results further demonstrated that polarized macrophages effectively promoted the proliferation of hemangioma stem cells (HemSCs) and suppressed their adipogenesis in an Akt- and extracellular signal-regulated kinase 1/2 (Erk1/2)-dependent manner. Moreover, M2- but not M1-polarized macrophages promoted the endothelial differentiation of HemSCs. Furthermore, mixing macrophages in a murine hemangioma model elevated microvessel density and postponed fat tissue formation, which was concomitant with the activation of Akt and Erk1/2 signals. Cluster analysis revealed a close correlation among the macrophage markers, Ki67, vascular endothelial growth factor (VEGF), p-Akt, and p-Erk1/2 in human IH tissues. Collectively, our results suggest that macrophages in IH contribute to tumor progression by promoting the proliferation and endothelial differentiation while suppressing the adipogenesis of HemSCs. These findings indicate that targeting the infiltrating macrophages in IH is a promising therapeutic approach to accelerate IH regression.
Collapse
|
39
|
Yu H, He K, Wang L, Hu J, Gu J, Zhou C, Lu R, Jin Y. Stk40 represses adipogenesis through translational control of CCAAT/enhancer-binding proteins. J Cell Sci 2015; 128:2881-90. [PMID: 26065429 DOI: 10.1242/jcs.170282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023] Open
Abstract
A better understanding of molecular regulation in adipogenesis might help the development of efficient strategies to cope with obesity-related diseases. Here, we report that CCAAT/enhancer-binding protein (C/EBP) β and C/EBPδ, two crucial pro-adipogenic transcription factors, are controlled at a translational level by serine/threonine kinase 40 (Stk40). Genetic knockout (KO) or knockdown (KD) of Stk40 leads to increased protein levels of C/EBP proteins and adipocyte differentiation in mouse embryonic fibroblasts (MEFs), fetal liver stromal cells, and mesenchymal stem cells (MSCs). In contrast, overexpression of Stk40 abolishes the enhanced C/EBP protein translation and adipogenesis observed in Stk40-KO and -KD cells. Functionally, knockdown of C/EBPβ eliminates the enhanced adipogenic differentiation in Stk40-KO and -KD cells substantially. Mechanistically, deletion of Stk40 enhances phosphorylation of eIF4E-binding protein 1, leading to increased eIF4E-dependent translation of C/EBPβ and C/EBPδ. Knockdown of eIF4E in MSCs decreases translation of C/EBP proteins. Moreover, Stk40-KO fetal livers display an increased adipogenic program and aberrant lipid and steroid metabolism. Collectively, our study uncovers a new repressor of C/EBP protein translation as well as adipogenesis and provides new insights into the molecular mechanism underpinning the adipogenic program.
Collapse
Affiliation(s)
- Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Hu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chenlin Zhou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Lu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
40
|
Vasudevan HN, Mazot P, He F, Soriano P. Receptor tyrosine kinases modulate distinct transcriptional programs by differential usage of intracellular pathways. eLife 2015; 4. [PMID: 25951516 PMCID: PMC4450512 DOI: 10.7554/elife.07186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 11/27/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) signal through shared intracellular pathways yet mediate distinct outcomes across many cell types. To investigate the mechanisms underlying RTK specificity in craniofacial development, we performed RNA-seq to delineate the transcriptional response to platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling in mouse embryonic palatal mesenchyme cells. While the early gene expression profile induced by both growth factors is qualitatively similar, the late response is divergent. Comparing the effect of MEK (Mitogen/Extracellular signal-regulated kinase) and PI3K (phosphoinositide-3-kinase) inhibition, we find the FGF response is MEK dependent, while the PDGF response is PI3K dependent. Furthermore, FGF promotes proliferation but PDGF favors differentiation. Finally, we demonstrate overlapping domains of PDGF-PI3K signaling and osteoblast differentiation in the palate and increased osteogenesis in FGF mutants, indicating this differentiation circuit is conserved in vivo. Our results identify distinct responses to PDGF and FGF and provide insight into the mechanisms encoding RTK specificity. DOI:http://dx.doi.org/10.7554/eLife.07186.001 Cells produce many different proteins that play a variety of important roles. For example, proteins called receptor tyrosine kinases can detect particular molecules and send signals to other parts of the cell to regulate the activity (or “expression”) of genes involved in cell division, movement, and other processes. Humans have 58 receptor tyrosine kinases, and defects in these proteins have been linked to diseases such as cancer and diabetes. However, many different receptors regulate the activities of shared sets of genes, so it is not clear how an individual receptor can specifically control the genes involved in a particular process. Two receptor tyrosine kinases called PDGFR and FGFR are crucial for the development of the face, palate, and head in humans and other animals. Vasudevan et al. used a technique called RNA-sequencing to find out which genes are regulated by these receptors in mouse palate cells. The experiments show that there is a common set of genes whose activities change quickly—within 1 hour—in response to the activation of either PDGFR or FGFR. However, several hours later, cells in which PDGFR is activated have different patterns of gene expression compared to those with active FGFR. Vasudevan et al. also found that FGFR promotes cell division, while PDGFR promotes the changing of palate cells into different types with more specialized roles. These different outcomes arise because PDGFR and FGFR use different signaling pathways that involve distinct proteins. For example, a protein called PI3K is critical for changes in gene expression in response to PDGFR but not FGFR. These results suggest that PGDRF and FGFR control different cellular processes in the palate by sending distinct signals into the cell. Understanding the receptor tyrosine kinases and the networks of genes they activate will help us to identify the signals that are important for other processes, such as the development of the face. DOI:http://dx.doi.org/10.7554/eLife.07186.002
Collapse
Affiliation(s)
- Harish N Vasudevan
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Fenglei He
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
41
|
Ren J, Briones V, Barbour S, Yu W, Han Y, Terashima M, Muegge K. The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res 2015; 43:1444-55. [PMID: 25578963 PMCID: PMC4330352 DOI: 10.1093/nar/gku1371] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022] Open
Abstract
Lsh, a chromatin remodeling protein of the SNF2 family, is critical for normal heterochromatin structure. In particular, DNA methylation at repeat elements, a hallmark of heterochromatin, is greatly reduced in Lsh(-/-) (KO) cells. Here, we examined the presumed nucleosome remodeling activity of Lsh on chromatin in the context of DNA methylation. We found that dynamic CG methylation was dependent on Lsh in embryonic stem cells. Moreover, we demonstrate that ATP function is critical for de novo methylation at repeat sequences. The ATP binding site of Lsh is in part required to promote stable association of the DNA methyltransferase 3b with the repeat locus. By performing nucleosome occupancy assays, we found distinct nucleosome occupancy in KO ES cells compared to WT ES cells after differentiation. Nucleosome density was restored to wild-type level by re-expressing wild-type Lsh but not the ATP mutant in KO ES cells. Our results suggest that ATP-dependent nucleosome remodeling is the primary molecular function of Lsh, which may promote de novo methylation in differentiating ES cells.
Collapse
Affiliation(s)
- Jianke Ren
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Victorino Briones
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Samantha Barbour
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Weishi Yu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Minoru Terashima
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
42
|
Zhu L, Zhang S, Jin Y. Foxd3 suppresses NFAT-mediated differentiation to maintain self-renewal of embryonic stem cells. EMBO Rep 2014; 15:1286-96. [PMID: 25378483 DOI: 10.15252/embr.201438643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pluripotency-associated transcription factor Foxd3 is required for maintaining pluripotent cells. However, molecular mechanisms underlying its function are largely unknown. Here, we report that Foxd3 suppresses differentiation induced by calcineurin-NFAT signaling to maintain the ESC identity. Mechanistically, Foxd3 interacts with NFAT proteins and recruits co-repressor Tle4, a member of the Tle repressor family highly expressed in undifferentiated ESCs, to suppress NFATc3's transcriptional activities. Furthermore, global transcriptome analysis shows that Foxd3 and NFATc3 co-regulate a set of differentiation-associated genes in ESCs. Collectively, our study establishes a molecular and functional link between a pluripotency-associated factor and an important ESC differentiation-inducing pathway.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shiyue Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
H3K36 Histone Methyltransferase Setd2 Is Required for Murine Embryonic Stem Cell Differentiation toward Endoderm. Cell Rep 2014; 8:1989-2002. [DOI: 10.1016/j.celrep.2014.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/06/2014] [Accepted: 08/04/2014] [Indexed: 11/17/2022] Open
|
44
|
Xu H, Tsang KS, Wang Y, Chan JC, Xu G, Gao WQ. Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and β-catenin signaling. J Biol Chem 2014; 289:26290-26301. [PMID: 25092289 DOI: 10.1074/jbc.m114.572560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tremendous efforts have been made to elucidate the molecular mechanisms that control the specification of definitive endoderm cell fate in gene knockout mouse models and ES cell (ESC) differentiation models. However, the impact of the unfolded protein response (UPR), because of the stress of the endoplasmic reticulum on endodermal specification, is not well addressed. We employed UPR-inducing agents, thapsigargin and tunicamycin, in vitro to induce endodermal differentiation of mouse ESCs. Apart from the endodermal specification of ESCs, Western blotting demonstrated the enhanced phosphorylation of Smad2 and nuclear translocation of β-catenin in ESC-derived cells. The inclusion of the endoplasmic reticulum stress inhibitor tauroursodeoxycholic acid to the induction cultures prevented the differentiation of ESCs into definitive endodermal cells even when Activin A was supplemented. Also, the addition of the TGF-β inhibitor SB431542 and the Wnt/β-catenin antagonist IWP-2 negated the endodermal differentiation of ESCs mediated by thapsigargin and tunicamycin. These data suggest that the activation of the UPR appears to orchestrate the induction of the definitive endodermal cell fate of ESCs via both the Smad2 and β-catenin signaling pathways. The prospective regulatory machinery may be helpful for directing ESCs to differentiate into definitive endodermal cells for cellular therapy in the future.
Collapse
Affiliation(s)
- Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and.
| |
Collapse
|
45
|
Establishment of adult mouse testis-derived multipotent germ line stem cells and comparison of lineage-specific differentiation potential. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Zfp322a Regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet 2014; 10:e1004038. [PMID: 24550733 PMCID: PMC3923668 DOI: 10.1371/journal.pgen.1004038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts are characterised by their ability to self-renew and their potential to differentiate into many different cell types. Recent studies have shown that zinc finger proteins are crucial for maintaining pluripotent ES cells. Mouse zinc finger protein 322a (Zfp322a) is expressed in the ICM of early mouse embryos. However, little is known regarding the role of Zfp322a in the pluripotency maintenance of mouse ES cells. Here, we report that Zfp322a is required for mES cell identity since depletion of Zfp322a directs mES cells towards differentiation. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays revealed that Zfp322a binds to Pou5f1 and Nanog promoters and regulates their transcription. These data along with the results obtained from our ChIP-seq experiment showed that Zfp322a is an essential component of mES cell transcription regulatory network. Targets which are directly regulated by Zfp322a were identified by correlating the gene expression profile of Zfp322a RNAi-treated mES cells with the ChIP-seq results. These experiments revealed that Zfp322a inhibits mES cell differentiation by suppressing MAPK pathway. Additionally, Zfp322a is found to be a novel reprogramming factor that can replace Sox2 in the classical Yamanaka's factors (OSKM). It can be even used in combination with Yamanaka's factors and that addition leads to a higher reprogramming efficiency and to acceleration of the onset of the reprogramming process. Together, our results demonstrate that Zfp322a is a novel essential component of the transcription factor network which maintains the identity of mouse ES cells. Embryonic stem (ES) cells are featured by their ability to self-renew and by their potential to differentiate into many different cell types. Recent studies have revealed that the unique properties of mouse ES cells are governed by a specific transcription regulatory network, including master regulators Oct4/Sox2/Nanog and other pluripotency factors. The importance of these factors was highlighted by the subsequent finding that combination of several transcription factors can reprogram differentiated fibroblasts back to pluripotent stem cells. Here, we report that Zfp322a is a novel factor which is required for mES cell identity. We revealed that Zfp322a can regulate the key pluripotency genes Pou5f1 and Nanog and functions as a repressor of MAPK/ERK pathway in mES cells, therefore preventing mES cell differentiation. Furthermore, we discovered that Zfp332a can promote the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Our results reveal that Zfp322a is a novel essential transcription factor which not only regulates ES cell pluripotency but also enhances iPSC formation.
Collapse
|
47
|
Zhang J, Zhang J, Zhao C, Shen R, Guo X, Li C, Ling X, Liu C. Analysis of transcription factor Stk40 expression and function during mouse pre-implantation embryonic development. Mol Med Rep 2013; 9:535-40. [PMID: 24276375 DOI: 10.3892/mmr.2013.1828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/14/2013] [Indexed: 11/06/2022] Open
Abstract
Determining the molecular mechanisms in the regulation of early embryonic development is crucial for assisted reproductive technology clinical applications. Serine/threonine protein kinase 40 (Stk40) is a member of the serine/threonine kinase family. It is essential in diverse signaling pathways associated with a wide range of cellular activities, including proliferation, differentiation, survival and apoptosis. However, its involvement and molecular mechanisms in pre‑implantation embryonic development have not been well‑defined. In the present study, it was demonstrated that Stk40 was involved in the development of mouse pre‑implantation embryos. Immunofluorescence and confocal microscopy analyses showed that Stk40 was equally expressed in the nuclei and cytoplasm during all stages of pre‑implantation mouse embryos of imprinting control region mice. Reverse transcription‑polymerase chain reaction showed a significantly higher transcription rate of Stk40 mRNA in the two‑cell stage. The results demonstrated that Stk40 downregulation by microinjection of small interfering RNA into the mouse zygote markedly decreased the blastulation compared with that in the control (Stk40i‑1 vs. control: 65.2% and 77.0%, P<0.05 and Stk40i‑2 vs. control: 49.8% and 70.1%, respectively, P<0.05). In addition, silencing of Stk40 significantly increased the transcription rate of reticulocalbin‑2, whereas that of the homeobox protein, Cdx2, was decreased. In conclusion, the results suggested that Stk40 may be critical in the development of pre‑implantation embryos.
Collapse
Affiliation(s)
- Junqiang Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Juanjuan Zhang
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chun Zhao
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Rong Shen
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Xirong Guo
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chaojun Li
- Key Laboratory of Model Animals for Disease Study of Ministry of Education, Model Animal Research Centre, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiufeng Ling
- Department of Reproduction, Nanjing Maternity and Child Health Care Hospital, Affiliated to Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
48
|
Wu Y, Ai Z, Yao K, Cao L, Du J, Shi X, Guo Z, Zhang Y. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Exp Cell Res 2013; 319:2684-99. [PMID: 24021571 DOI: 10.1016/j.yexcr.2013.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network.
Collapse
Affiliation(s)
- Yongyan Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang Z, Wang JC, Howells W, Lin P, Agrawal A, Edenberg HJ, Tischfield JA, Schuckit MA, Bierut LJ, Goate A, Rice JP. Dosage transmission disequilibrium test (dTDT) for linkage and association detection. PLoS One 2013; 8:e63526. [PMID: 23691058 PMCID: PMC3653954 DOI: 10.1371/journal.pone.0063526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 04/06/2013] [Indexed: 11/26/2022] Open
Abstract
Both linkage and association studies have been successfully applied to identify disease susceptibility genes with genetic markers such as microsatellites and Single Nucleotide Polymorphisms (SNPs). As one of the traditional family-based studies, the Transmission/Disequilibrium Test (TDT) measures the over-transmission of an allele in a trio from its heterozygous parents to the affected offspring and can be potentially useful to identify genetic determinants for complex disorders. However, there is reduced information when complete trio information is unavailable. In this study, we developed a novel approach to "infer" the transmission of SNPs by combining both the linkage and association data, which uses microsatellite markers from families informative for linkage together with SNP markers from the offspring who are genotyped for both linkage and a Genome-Wide Association Study (GWAS). We generalized the traditional TDT to process these inferred dosage probabilities, which we name as the dosage-TDT (dTDT). For evaluation purpose, we developed a simulation procedure to assess its operating characteristics. We applied the dTDT to the simulated data and documented the power of the dTDT under a number of different realistic scenarios. Finally, we applied our methods to a family study of alcohol dependence (COGA) and performed individual genotyping on complete families for the top signals. One SNP (rs4903712 on chromosome 14) remained significant after correcting for multiple testing Methods developed in this study can be adapted to other platforms and will have widespread applicability in genomic research when case-control GWAS data are collected in families with existing linkage data.
Collapse
Affiliation(s)
- Zhehao Zhang
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - Jen-Chyong Wang
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - William Howells
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - Peng Lin
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jay A. Tischfield
- LSB 136, Rutgers University, Piscataway, New Jersey, United States of America
| | - Marc A. Schuckit
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Laura J. Bierut
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - Alison Goate
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| | - John P. Rice
- Washington University School of Medicine, Department of Psychiatry, St. Louis, Missouri, United States of America
| |
Collapse
|
50
|
Arf tumor suppressor and miR-205 regulate cell adhesion and formation of extraembryonic endoderm from pluripotent stem cells. Proc Natl Acad Sci U S A 2013; 110:E1112-21. [PMID: 23487795 DOI: 10.1073/pnas.1302184110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Induction of the Arf tumor suppressor (encoded by the alternate reading frame of the Cdkn2a locus) following oncogene activation engages a p53-dependent transcriptional program that limits the expansion of incipient cancer cells. Although the p19(Arf) protein is not detected in most tissues of fetal or young adult mice, it is physiologically expressed in the fetal yolk sac, a tissue derived from the extraembryonic endoderm (ExEn). Expression of the mouse p19(Arf) protein marks late stages of ExEn differentiation in cultured embryoid bodies (EBs) derived from either embryonic stem cells or induced pluripotent stem cells. Arf inactivation delays differentiation of the ExEn lineage within EBs, but not the formation of other germ cell lineages from pluripotent progenitors. Arf is required for the timely induction of ExEn cells in response to Ras/Erk signaling and, in turn, acts through p53 to ensure the development, but not maintenance, of the ExEn lineage. Remarkably, a significant temporal delay in ExEn differentiation detected during the maturation of Arf-null EBs is rescued by enforced expression of mouse microRNA-205 (miR-205), a microRNA up-regulated by p19(Arf) and p53 that controls ExEn cell migration and adhesion. The noncanonical and canonical roles of Arf in ExEn development and tumor suppression, respectively, may be conceptually linked through mechanisms that govern cell attachment and migration.
Collapse
|