1
|
Bermudez Y, Hatfield D, Muller M. A Balancing Act: The Viral-Host Battle over RNA Binding Proteins. Viruses 2024; 16:474. [PMID: 38543839 PMCID: PMC10974049 DOI: 10.3390/v16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of a productive viral infection is the co-opting of host cell resources for viral replication. Despite the host repertoire of molecular functions and biological counter measures, viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins (RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes (mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene expression and evade immune responses by altering RBP interactions. Here, we provide an extensive review of work in this area, particularly on the duality of the formation of RNP complexes that can be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained from research studies in this field.
Collapse
Affiliation(s)
| | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (Y.B.); (D.H.)
| |
Collapse
|
2
|
Angulo J, Cáceres CJ, Contreras N, Fernández-García L, Chamond N, Ameur M, Sargueil B, López-Lastra M. Polypyrimidine-Tract-Binding Protein Isoforms Differentially Regulate the Hepatitis C Virus Internal Ribosome Entry Site. Viruses 2022; 15:8. [PMID: 36680049 PMCID: PMC9864772 DOI: 10.3390/v15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Translation initiation of the hepatitis C virus (HCV) mRNA depends on an internal ribosome entry site (IRES) that encompasses most of the 5'UTR and includes nucleotides of the core coding region. This study shows that the polypyrimidine-tract-binding protein (PTB), an RNA-binding protein with four RNA recognition motifs (RRMs), binds to the HCV 5'UTR, stimulating its IRES activity. There are three isoforms of PTB: PTB1, PTB2, and PTB4. Our results show that PTB1 and PTB4, but not PTB2, stimulate HCV IRES activity in HuH-7 and HEK293T cells. In HuH-7 cells, PTB1 promotes HCV IRES-mediated initiation more strongly than PTB4. Mutations in PTB1, PTB4, RRM1/RRM2, or RRM3/RRM4, which disrupt the RRM's ability to bind RNA, abrogated the protein's capacity to stimulate HCV IRES activity in HuH-7 cells. In HEK293T cells, PTB1 and PTB4 stimulate HCV IRES activity to similar levels. In HEK293T cells, mutations in RRM1/RRM2 did not impact PTB1's ability to promote HCV IRES activity; and mutations in PTB1 RRM3/RRM4 domains reduced, but did not abolish, the protein's capacity to stimulate HCV IRES activity. In HEK293T cells, mutations in PTB4 RRM1/RRM2 abrogated the protein's ability to promote HCV IRES activity, and mutations in RRM3/RRM4 have no impact on PTB4 ability to enhance HCV IRES activity. Therefore, PTB1 and PTB4 differentially stimulate the IRES activity in a cell type-specific manner. We conclude that PTB1 and PTB4, but not PTB2, act as IRES transacting factors of the HCV IRES.
Collapse
Affiliation(s)
- Jenniffer Angulo
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Facultad de Odontología, Universidad Finis Terrae, Santiago 7501015, Chile
| | - C. Joaquín Cáceres
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nataly Contreras
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Nathalie Chamond
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Melissa Ameur
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Bruno Sargueil
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8038, Laboratoire CiTCoM, Université Paris Cité, 75006 Paris, France
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Centro de Investigaciones Médicas, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
3
|
Dhamodharan A, Okada H, Muraoka M, Wright D, Okubo A, Saga Y. P-body dynamics revealed by DDX6 protein knockdown via the auxin-inducible degron system. Dev Growth Differ 2022; 64:537-547. [PMID: 36353942 DOI: 10.1111/dgd.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The transcriptome dynamically changes via several transcriptional and post-transcriptional mechanisms. RNA-binding proteins contribute to such mechanisms to regulate the cellular status. DDX6 is one such protein and a core component of processing bodies (P-bodies), membrane-less cytosolic substructures where RNA and proteins localize and are functionally regulated. Despite the importance of DDX6, owing to the lack of tightly controlled methods for protein knockdown, it was difficult to assess in high time resolution how its depletion exactly affects the P-body assembly structure. Therefore, we adopted an advanced protein degradation method, the auxin-induced degron (AID) system, to degrade DDX6 acutely in ES cells. By introducing AID-tagged DDX6 and the E3 ligase subunit of OsTIR1 into ES cells, we successfully degraded DDX6 following auxin analog (indole-3-acetic acid, IAA) treatment. The degradation rate of DDX6 was slower than that of the cytosolic reporter protein EGFP but was enhanced by increasing the OsTIR1 dosage. Lastly, we confirmed that a substantial portion of P-bodies disappears around the time of 1 hr after IAA addition consistent with DDX6 depletion detected by western blot. In accordance with this, we detected transcriptome changes by 6 hr after IAA treatment. Therefore, we demonstrated the applicability of the AID method to gain insight into the function of P-bodies and their protein components.
Collapse
Affiliation(s)
- Adithya Dhamodharan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Masafumi Muraoka
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Danelle Wright
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Akemi Okubo
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Lu L, Zheng J, Liu B, Wu H, Huang J, Wu L, Li D. The m7G Modification Level and Immune Infiltration Characteristics in Patients with COVID-19. J Multidiscip Healthc 2022; 15:2461-2472. [PMID: 36320552 PMCID: PMC9618243 DOI: 10.2147/jmdh.s385050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Purpose The 7-methylguanosine (m7G)-related genes were used to identify the clinical severity and prognosis of patients with coronavirus disease 2019 (COVID-19) and to identify possible therapeutic targets. Patients and Methods The GSE157103 dataset provides the transcriptional spectrum and clinical information required to analyze the expression of m7G-related genes and the disease subtypes. R language was applied for immune infiltration analysis, functional enrichment analysis, and nomogram model construction. Results Most m7G-related genes were up-regulated in COVID-19 and were closely related to immune cell infiltration. Disease subtypes were grouped using a clustering algorithm. It was found that the m7G-cluster B was associated with higher immune infiltration, lower mechanical ventilation, lower intensive care unit (ICU) status, higher ventilator-free days, and lower m7G scores. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differentially expressed genes (DEGs) between m7G-cluster A and B were enriched in viral infection and immune-related aspects, including COVID-19 infection; Th17, Th1, and Th2 cell differentiation, and human T-cell leukemia virus 1 infection. Finally, through machine learning, six disease characteristic genes, NUDT4B, IFIT5, LARP1, EIF4E, LSM1, and NUDT4, were screened and used to develop a nomogram model to estimate disease risk. Conclusion The expression of most m7G genes was higher in COVID-19 patients compared with that in non-COVID-19 patients. The m7G-cluster B showed higher immune infiltration and milder symptoms. The predictive nomogram based on the six m7G genes can be used to accurately assess risk.
Collapse
Affiliation(s)
- Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Jiaolong Zheng
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Bang Liu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Haicong Wu
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Jiaofeng Huang
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China
| | - Liqing Wu
- Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China
| | - Dongliang Li
- Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital, Fuzhou, People’s Republic of China,Department of Hepatobiliary Disease, The 900th Hospital of Joint Logistics Support Force, Fuzhou, People’s Republic of China,Correspondence: Dongliang Li, Fuzong Clinical Medical College of Fujian Medical University, The 900th Hospital of the People’s Liberation Army Joint Logistics Support Force, No. 156 Xierhuan Road, Fuzhou, Fujian, 350025, People’s Republic of China, Tel/Fax +86 591 22859128, Email
| |
Collapse
|
5
|
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet 2022; 18:e1009967. [PMID: 36197846 PMCID: PMC9534413 DOI: 10.1371/journal.pgen.1009967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily conserved RNA helicase DDX6 is a central player in post-transcriptional regulation, but its role during embryogenesis remains elusive. We here show that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 knockout (KO) mouse embryos and employing an in vitro epiblast-like cell (EpiLC) induction system. Our study unveils that DDX6 is an important BMP signaling regulator. Deletion of Ddx6 causes the aberrant upregulation of the negative regulators of BMP signaling, which is accompanied by enhanced expression of Nodal and related genes. Ddx6 KO pluripotent cells acquire higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal and Eomes expression in the primitive streak likely promotes endoderm cell fate specification while inhibiting mesoderm differentiation. We also genetically dissected major DDX6 pathways by generating Dgcr8, Dcp2, and Eif4enif1 KO models in addition to Ddx6 KO. We found that the miRNA pathway mutant Dgcr8 KO phenocopies Ddx6 KO, indicating that DDX6 mostly works along with the miRNA pathway during early development, whereas its P-body-related functions are dispensable. Therefore, we conclude that DDX6 prevents aberrant upregulation of BMP signaling inhibitors by participating in miRNA-mediated gene silencing processes. Overall, this study delineates how DDX6 affects the development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.
Collapse
Affiliation(s)
- Jessica Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Hajime Okada
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
6
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
7
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has the largest RNA genome, approximately 30 kb, among RNA viruses. The DDX DEAD box RNA helicase is a multifunctional protein involved in all aspects of RNA metabolism. Therefore, host RNA helicases may regulate and maintain such a large viral RNA genome. In this study, I investigated the potential role of several host cellular RNA helicases in SARS-CoV-2 infection. Notably, DDX21 knockdown markedly accumulated intracellular viral RNA and viral production, as well as viral infectivity of SARS-CoV-2, indicating that DDX21 strongly restricts the SARS-CoV-2 infection. In addition, MOV10 RNA helicase also suppressed the SARS-CoV-2 infection. In contrast, DDX1, DDX5, and DDX6 RNA helicases were required for SARS-CoV-2 replication. Indeed, SARS-CoV-2 infection dispersed the P-body formation of DDX6 and MOV10 RNA helicases as well as XRN1 exonuclease, while the viral infection did not induce stress granule formation. Accordingly, the SARS-CoV-2 nucleocapsid (N) protein interacted with DDX1, DDX3, DDX5, DDX6, DDX21, and MOV10 and disrupted the P-body formation, suggesting that SARS-CoV-2 N hijacks DDX6 to carry out viral replication. Conversely, DDX21 and MOV10 restricted SARS-CoV-2 infection through an interaction of SARS-CoV-2 N with host cellular RNA helicases. Altogether, host cellular RNA helicases seem to regulate the SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 has a large RNA genome, of approximately 30 kb. To regulate and maintain such a large viral RNA genome, host RNA helicases may be involved in SARS-CoV-2 replication. In this study, I have demonstrated that DDX21 and MOV10 RNA helicases limit viral infection and replication. In contrast, DDX1, DDX5, and DDX6 are required for SARS-CoV-2 infection. Interestingly, SARS-CoV-2 infection disrupted P-body formation and attenuated or suppressed stress granule formation. Thus, SARS-CoV-2 seems to hijack host cellular RNA helicases to play a proviral role by facilitating viral infection and replication and by suppressing the host innate immune system.
Collapse
|
8
|
Zuo Z, Roux M, Rodriguez E, Petersen M. mRNA Decapping Factors LSM1 and PAT Paralogs Are Involved in Turnip Mosaic Virus Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:125-130. [PMID: 35100808 DOI: 10.1094/mpmi-09-21-0220-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Turnip mosaic virus is a devastating potyvirus infecting many economically important brassica crops. In response to this, the plant host engages its RNA silencing machinery, involving AGO proteins, as a prominent strategy to restrain turnip mosaic virus (TuMV) infection. It has also been shown that the mRNA decay components DCP2 and VCS partake in viral infection suppression. Here, we report that the mRNA decapping components LSM1, PAT1, PATH1, and PATH2 are essential for TuMV infection. More specifically, lsm1a/lsm1b double mutants and pat1/path1/path2 triple mutants in summ2 background exhibit resistance to TuMV. Concurrently, we observed that TuMV interferes with the decapping function of LSM1 and PAT proteins as the mRNA-decay target genes UGT87A2 and ASL9 accumulate during TuMV infection. Moreover, as TuMV coat protein can be specifically found in complexes with PAT proteins but not LSM1, this suggests that TuMV "hijacks" decapping components via PAT proteins to support viral infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Burgess HM, Vink EI, Mohr I. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Genes Dev 2022; 36:108-132. [PMID: 35193946 PMCID: PMC8887129 DOI: 10.1101/gad.349276.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Elizabeth I Vink
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
10
|
Li HC, Yang CH, Lo SY. Cellular factors involved in the hepatitis C virus life cycle. World J Gastroenterol 2021; 27:4555-4581. [PMID: 34366623 PMCID: PMC8326260 DOI: 10.3748/wjg.v27.i28.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV), an obligatory intracellular pathogen, highly depends on its host cells to propagate successfully. The HCV life cycle can be simply divided into several stages including viral entry, protein translation, RNA replication, viral assembly and release. Hundreds of cellular factors involved in the HCV life cycle have been identified over more than thirty years of research. Characterization of these cellular factors has provided extensive insight into HCV replication strategies. Some of these cellular factors are targets for anti-HCV therapies. In this review, we summarize the well-characterized and recently identified cellular factors functioning at each stage of the HCV life cycle.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| |
Collapse
|
11
|
Abstract
Several viruses were proved to inhibit the formation of RNA processing bodies (P-bodies); however, knowledge regarding whether enterovirus blocks P-body formation remains unclear, and the detailed molecular mechanisms and functions of picornavirus regulation of P-bodies are limited. Here we show the crucial role of 2A protease in inhibiting P-bodies to promote viral replication during enterovirus 71 infection. Moreover, we found that the activity of 2A protease is essential to inhibit P-body formation, which was proved by the result that infection of EV71-2AC110S, the 2A protease activity-inactivated recombinant virus, failed to block the formation of P-bodies. Furthermore, we showed DDX6, a scaffolding protein of P-bodies, interacted with viral RNA to facilitate viral replication rather than viral translation, by using a Renilla luciferase mRNA reporter system and capturing the nascent RNA assay. Altogether, our data firstly demonstrate that the 2A protease of enterovirus inhibits P-body formation to facilitate viral RNA synthesis by recruiting the P-body components to viral RNA. IMPORTANCE Processing bodies (P-bodies) are constitutively present in eukaryotic cells and play an important role in the mRNA cycle, including regulating gene expression and mRNA degradation. P-bodies are the structure that viruses to manipulate to facilitate their survival. Here, we show that the 2A protease alone was efficient to block P-body formation during enterovirus 71 infection and its activity was essential. When the assembly of P-bodies was blocked by 2A, DDX6 and 4E-T which were required for P-body formation bound to viral RNA to facilitate viral RNA synthesis. We propose a model revealing that EV71 manipulates P-body formation to generate an environment that is conducive to viral replication by facilitating viral RNA synthesis: 2A protease blocked P-body assembly to make it possible for virus to take advantage of P-body components.
Collapse
|
12
|
Ali MAM. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res 2021; 296:198352. [PMID: 33640359 DOI: 10.1016/j.virusres.2021.198352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicases, the largest family of superfamily 2 helicases, are a profoundly conserved family of RNA-binding proteins, containing a distinctive Asp-Glu-Ala-Asp (D-E-A-D) sequence motif, which is the origin of their name. Aside from the ATP-dependent unwinding of RNA duplexes, which set up these proteins as RNA helicases, DEAD-box proteins have been found to additionally stimulate RNA duplex fashioning and to uproot proteins from RNA, aiding the reformation of RNA and RNA-protein complexes. There is accumulating evidence that DEAD-box helicases play functions in the recognition of foreign nucleic acids and the modification of viral infection. As intracellular parasites, viruses must avoid identification by innate immune sensing mechanisms and disintegration by cellular machinery, whilst additionally exploiting host cell activities to assist replication. The capability of DEAD-box helicases to sense RNA in a sequence-independent way, as well as the broadness of cellular roles performed by members of this family, drive them to affect innate sensing and viral infections in numerous manners. Undoubtedly, DEAD-box helicases have been demonstrated to contribute to intracellular immune recognition, function as antiviral effectors, and even to be exploited by viruses to support their replication. Relying on the virus or the viral cycle phase, a DEAD-box helicase can function either in a proviral manner or as an antiviral factor. This review gives a comprehensive perspective on the various biochemical characteristics of DEAD-box helicases and their links to structural data. It additionally outlines the multiple functions that members of the DEAD-box helicase family play during viral infections.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
13
|
Declercq M, Biquand E, Karim M, Pietrosemoli N, Jacob Y, Demeret C, Barbezange C, van der Werf S. Influenza A virus co-opts ERI1 exonuclease bound to histone mRNA to promote viral transcription. Nucleic Acids Res 2020; 48:10428-10440. [PMID: 32960265 PMCID: PMC7544206 DOI: 10.1093/nar/gkaa771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Cellular exonucleases involved in the processes that regulate RNA stability and quality control have been shown to restrict or to promote the multiplication cycle of numerous RNA viruses. Influenza A viruses are major human pathogens that are responsible for seasonal epidemics, but the interplay between viral proteins and cellular exonucleases has never been specifically studied. Here, using a stringent interactomics screening strategy and an siRNA-silencing approach, we identified eight cellular factors among a set of 75 cellular proteins carrying exo(ribo)nuclease activities or involved in RNA decay processes that support influenza A virus multiplication. We show that the exoribonuclease ERI1 interacts with the PB2, PB1 and NP components of the viral ribonucleoproteins and is required for viral mRNA transcription. More specifically, we demonstrate that the protein-protein interaction is RNA dependent and that both the RNA binding and exonuclease activities of ERI1 are required to promote influenza A virus transcription. Finally, we provide evidence that during infection, the SLBP protein and histone mRNAs co-purify with vRNPs alongside ERI1, indicating that ERI1 is most probably recruited when it is present in the histone pre-mRNA processing complex in the nucleus.
Collapse
Affiliation(s)
- Marion Declercq
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Elise Biquand
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Marwah Karim
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Yves Jacob
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Caroline Demeret
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Cyril Barbezange
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| | - Sylvie van der Werf
- Unité Génétique Moléculaire des Virus à ARN, UMR3569 CNRS, Université de Paris, Département de Virologie, Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Liu D, Ndongwe TP, Puray-Chavez M, Casey MC, Izumi T, Pathak VK, Tedbury PR, Sarafianos SG. Effect of P-body component Mov10 on HCV virus production and infectivity. FASEB J 2020; 34:9433-9449. [PMID: 32496609 DOI: 10.1096/fj.201800641r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.
Collapse
Affiliation(s)
- Dandan Liu
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Tanyaradzwa P Ndongwe
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Maritza Puray-Chavez
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Mary C Casey
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Hepatitis C Virus Translation Regulation. Int J Mol Sci 2020; 21:ijms21072328. [PMID: 32230899 PMCID: PMC7178104 DOI: 10.3390/ijms21072328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Translation of the hepatitis C virus (HCV) RNA genome is regulated by the internal ribosome entry site (IRES), located in the 5’-untranslated region (5′UTR) and part of the core protein coding sequence, and by the 3′UTR. The 5′UTR has some highly conserved structural regions, while others can assume different conformations. The IRES can bind to the ribosomal 40S subunit with high affinity without any other factors. Nevertheless, IRES activity is modulated by additional cis sequences in the viral genome, including the 3′UTR and the cis-acting replication element (CRE). Canonical translation initiation factors (eIFs) are involved in HCV translation initiation, including eIF3, eIF2, eIF1A, eIF5, and eIF5B. Alternatively, under stress conditions and limited eIF2-Met-tRNAiMet availability, alternative initiation factors such as eIF2D, eIF2A, and eIF5B can substitute for eIF2 to allow HCV translation even when cellular mRNA translation is downregulated. In addition, several IRES trans-acting factors (ITAFs) modulate IRES activity by building large networks of RNA-protein and protein–protein interactions, also connecting 5′- and 3′-ends of the viral RNA. Moreover, some ITAFs can act as RNA chaperones that help to position the viral AUG start codon in the ribosomal 40S subunit entry channel. Finally, the liver-specific microRNA-122 (miR-122) stimulates HCV IRES-dependent translation, most likely by stabilizing a certain structure of the IRES that is required for initiation.
Collapse
|
17
|
Gaete-Argel A, Márquez CL, Barriga GP, Soto-Rifo R, Valiente-Echeverría F. Strategies for Success. Viral Infections and Membraneless Organelles. Front Cell Infect Microbiol 2019; 9:336. [PMID: 31681621 PMCID: PMC6797609 DOI: 10.3389/fcimb.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of RNA homeostasis or “RNAstasis” is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.
Collapse
Affiliation(s)
- Aracelly Gaete-Argel
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Chantal L Márquez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gonzalo P Barriga
- Emerging Viruses Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Liu L, Weiss E, Panas MD, Götte B, Sellberg S, Thaa B, McInerney GM. RNA processing bodies are disassembled during Old World alphavirus infection. J Gen Virol 2019; 100:1375-1389. [DOI: 10.1099/jgv.0.001310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA processing bodies (P-bodies) are non-membranous cytoplasmic aggregates of mRNA and proteins involved in mRNA decay and translation repression. P-bodies actively respond to environmental stresses, associated with another type of RNA granules, known as stress granules (SGs). Alphaviruses were previously shown to block SG induction at late stages of infection, which is important for efficient viral growth. In this study, we found that P-bodies were disassembled or reduced in number very early in infection with Semliki Forest virus (SFV) or chikungunya virus (CHIKV) in a panel of cell lines. Similar to SGs, reinduction of P-bodies by a second stress (sodium arsenite) was also blocked in infected cells. The disassembly of P-bodies still occurred in non-phosphorylatable eIF2α mouse embryonal fibroblasts (MEFs) that are impaired in SG assembly. Studies of translation status by ribopuromycylation showed that P-body disassembly is independent of host translation shutoff, which requires the phosphorylation of eIF2α in the SFV- or CHIKV-infected cells. Labelling of newly synthesized RNA with bromo-UTP showed that host transcription shutoff correlated with P-body disassembly at the same early stage (3–4 h) after infection. However, inhibition of global transcription with actinomycin D (ActD) failed to disassemble P-bodies as effectively as the viruses did. Interestingly, blocking nuclear import with importazole led to an efficient P-bodies loss. Our data reveal that P-bodies are disassembled independently from SG formation at early stages of Old World alphavirus infection and that nuclear import is involved in the dynamic of P-bodies.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Eva Weiss
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Benjamin Götte
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Stina Sellberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| |
Collapse
|
19
|
Ahmed CS, Winlow PL, Parsons AL, Jopling CL. Eukaryotic translation initiation factor 4AII contributes to microRNA-122 regulation of hepatitis C virus replication. Nucleic Acids Res 2019; 46:6330-6343. [PMID: 29669014 PMCID: PMC6158612 DOI: 10.1093/nar/gky262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive sense RNA virus that persistently infects human liver, leading to cirrhosis and hepatocellular carcinoma. HCV replication requires the liver-specific microRNA-122 (miR-122). In contrast to canonical miRNA-mediated repression via 3′UTR sites, miR-122 positively regulates HCV replication by a direct interaction with the 5′ untranslated region (UTR) of the viral RNA. The protein factor requirements for this unusual miRNA regulation remain poorly understood. Here, we identify eIF4AII, previously implicated in miRNA-mediated repression via 3′UTR sites, as a host factor that is important for HCV replication. We demonstrate that eIF4AII interacts with HCV RNA and that this interaction is miR-122-dependent. We show that effective miR-122 binding to, and regulation of, HCV RNA are reduced following eIF4AII depletion. We find that the previously identified HCV co-factor CNOT1, which has also been implicated in miRNA-mediated repression via 3′UTR sites, contributes to regulation of HCV by eIF4AII. Finally, we show that eIF4AI knockdown alleviates the inhibition of HCV replication mediated by depletion of either eIF4AII or CNOT1. Our results suggest a competition effect between the eIF4A proteins to influence HCV replication by modulation of miR-122 function.
Collapse
Affiliation(s)
| | - Poppy L Winlow
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Catherine L Jopling
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
20
|
RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends Microbiol 2019; 27:792-805. [PMID: 31213342 DOI: 10.1016/j.tim.2019.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/21/2022]
Abstract
RNA silencing is a fundamental, evolutionarily conserved mechanism that regulates gene expression in eukaryotes. It also functions as a primary immune defense in microbes, such as viruses in plants. In addition to RNA silencing, RNA decay and RNA quality-control pathways are also two ancestral forms of intrinsic antiviral immunity, and the three RNA-targeted pathways may operate cooperatively for their antiviral function. Plant viruses encode viral suppressors of RNA silencing (VSRs) to suppress RNA silencing and facilitate virus infection. In response, plants may activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression. In this review, we summarize current knowledge of RNA silencing, RNA decay, and RNA quality control in antiviral defense, and highlight the mechanisms by which viruses compromise RNA-targeted immunity for their infection and survival in plants.
Collapse
|
21
|
ADAR1 affects HCV infection by modulating innate immune response. Antiviral Res 2018; 156:116-127. [PMID: 29906476 DOI: 10.1016/j.antiviral.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) is a globally prevalent infectious pathogen. As many as 80% of people infected with HCV do not control the virus and develop a chronic infection. Response to interferon (IFN) therapy is widely variable in chronic HCV infected patients, suggesting that HCV has evolved mechanisms to suppress and evade innate immunity responsible for its control and elimination. Adenosine deaminase acting on RNA 1 (ADAR1) is a relevant factor in the regulation of the innate immune response. The loss of ADAR1 RNA-editing activity and the resulting loss of inosine bases in RNA are critical in producing aberrant RLR-mediated innate immune response, mediated by RNA sensors MDA5 and RIG-I. Here, we describe ADAR1 role as a regulator of innate and antiviral immune function in HCV infection, both in vitro and in patients. Polymorphisms within ADAR1 gene were found significantly associated to poor clinical outcome to HCV therapy and advanced liver fibrosis in a cohort of HCV and HIV-1 coinfected patients. Moreover, ADAR1 knockdown in primary macrophages and Huh7 hepatoma cells enhanced IFN and IFN stimulated gene expression and increased HCV replication in vitro. Overall, our results demonstrate that ADAR1 regulates innate immune signaling and is an important contributor to the outcome of the HCV virus-host interaction. ADAR1 is a potential target to boost antiviral immune response in HCV infection.
Collapse
|
22
|
Lumb JH, Li Q, Popov LM, Ding S, Keith MT, Merrill BD, Greenberg HB, Li JB, Carette JE. DDX6 Represses Aberrant Activation of Interferon-Stimulated Genes. Cell Rep 2018; 20:819-831. [PMID: 28746868 DOI: 10.1016/j.celrep.2017.06.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
The innate immune system tightly regulates activation of interferon-stimulated genes (ISGs) to avoid inappropriate expression. Pathological ISG activation resulting from aberrant nucleic acid metabolism has been implicated in autoimmune disease; however, the mechanisms governing ISG suppression are unknown. Through a genome-wide genetic screen, we identified DEAD-box helicase 6 (DDX6) as a suppressor of ISGs. Genetic ablation of DDX6 induced global upregulation of ISGs and other immune genes. ISG upregulation proved cell intrinsic, imposing an antiviral state and making cells refractory to divergent families of RNA viruses. Epistatic analysis revealed that ISG activation could not be overcome by deletion of canonical RNA sensors. However, DDX6 deficiency was suppressed by disrupting LSM1, a core component of mRNA degradation machinery, suggesting that dysregulation of RNA processing underlies ISG activation in the DDX6 mutant. DDX6 is distinct among DExD/H helicases that regulate the antiviral response in its singular ability to negatively regulate immunity.
Collapse
Affiliation(s)
- Jennifer H Lumb
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lauren M Popov
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Siyuan Ding
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Marie T Keith
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Bryan D Merrill
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Harry B Greenberg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Quintela BDM, Conway JM, Hyman JM, Guedj J, Dos Santos RW, Lobosco M, Perelson AS. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents. Front Microbiol 2018; 9:601. [PMID: 29670586 PMCID: PMC5893852 DOI: 10.3389/fmicb.2018.00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
The dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modeling approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.
Collapse
Affiliation(s)
- Barbara de M Quintela
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, PA, United States
| | - James M Hyman
- Mathematics Department, Tulane University, New Orleans, LA, United States
| | - Jeremie Guedj
- IAME, UMR 1137, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Rodrigo W Dos Santos
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo Lobosco
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
24
|
Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol 2018; 9:395. [PMID: 29593672 PMCID: PMC5857606 DOI: 10.3389/fmicb.2018.00395] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) preferentially replicates in the human liver and frequently causes chronic infection, often leading to cirrhosis and liver cancer. HCV is an enveloped virus classified in the genus Hepacivirus in the family Flaviviridae and has a single-stranded RNA genome of positive orientation. The HCV RNA genome is translated and replicated in the cytoplasm. Translation is controlled by the Internal Ribosome Entry Site (IRES) in the 5' untranslated region (5' UTR), while also downstream elements like the cis-replication element (CRE) in the coding region and the 3' UTR are involved in translation regulation. The cis-elements controlling replication of the viral RNA genome are located mainly in the 5'- and 3'-UTRs at the genome ends but also in the protein coding region, and in part these signals overlap with the signals controlling RNA translation. Many long-range RNA-RNA interactions (LRIs) are predicted between different regions of the HCV RNA genome, and several such LRIs are actually involved in HCV translation and replication regulation. A number of RNA cis-elements recruit cellular RNA-binding proteins that are involved in the regulation of HCV translation and replication. In addition, the liver-specific microRNA-122 (miR-122) binds to two target sites at the 5' end of the viral RNA genome as well as to at least three additional target sites in the coding region and the 3' UTR. It is involved in the regulation of HCV RNA stability, translation and replication, thereby largely contributing to the hepatotropism of HCV. However, we are still far from completely understanding all interactions that regulate HCV RNA genome translation, stability, replication and encapsidation. In particular, many conclusions on the function of cis-elements in HCV replication have been obtained using full-length HCV genomes or near-full-length replicon systems. These include both genome ends, making it difficult to decide if a cis-element in question acts on HCV replication when physically present in the plus strand genome or in the minus strand antigenome. Therefore, it may be required to use reduced systems that selectively focus on the analysis of HCV minus strand initiation and/or plus strand initiation.
Collapse
Affiliation(s)
- Michael Niepmann
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Lyudmila A Shalamova
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Gesche K Gerresheim
- Medical Faculty, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany.,Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Rossbach
- Faculty of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Fernández-Carrillo C, Pérez-Vilaró G, Díez J, Pérez-Del-Pulgar S. Hepatitis C virus plays with fire and yet avoids getting burned. A review for clinicians on processing bodies and stress granules. Liver Int 2018; 38:388-398. [PMID: 28782251 DOI: 10.1111/liv.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 08/02/2017] [Indexed: 02/13/2023]
Abstract
Over the last few years, many reports have defined several types of RNA cell granules composed of proteins and messenger RNA (mRNA) that regulate gene expression on a post-transcriptional level. Processing bodies (P-bodies) and stress granules (SGs) are among the best-known RNA granules, only detectable when they accumulate into very dynamic cytosolic foci. Recently, a tight association has been found between positive-stranded RNA viruses, including hepatitis C virus (HCV), and these granules. The present article offers a comprehensive review on the complex and paradoxical relationship between HCV, P-bodies and SGs from a translational perspective. Despite the fact that components of P-bodies and SGs have assiduously controlled mRNA expression, either by sequestration or degradation, for thousands of years, HCV has learned how to dangerously exploit certain of them for its own benefit in an endless biological war. Thus, HCV has gained the ability to hack ancient host machineries inherited from prokaryotic times. While P-bodies and SGs are crucial to the HCV cycle, in the interferon-free era we still lack detailed knowledge of the mechanisms involved, processes that may underlie the long-term complications of HCV infection.
Collapse
Affiliation(s)
| | - Gemma Pérez-Vilaró
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juana Díez
- Department of Experimental and Health Sciences, Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
26
|
Ono C, Fukuhara T, Motooka D, Nakamura S, Okuzaki D, Yamamoto S, Tamura T, Mori H, Sato A, Uemura K, Fauzyah Y, Kurihara T, Suda T, Nishio A, Hmwe SS, Okamoto T, Tatsumi T, Takehara T, Chayama K, Wakita T, Koike K, Matsuura Y. Characterization of miR-122-independent propagation of HCV. PLoS Pathog 2017; 13:e1006374. [PMID: 28494029 PMCID: PMC5441651 DOI: 10.1371/journal.ppat.1006374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/23/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
miR-122, a liver-specific microRNA, is one of the determinants for liver tropism of hepatitis C virus (HCV) infection. Although miR-122 is required for efficient propagation of HCV, we have previously shown that HCV replicates at a low rate in miR-122-deficient cells, suggesting that HCV-RNA is capable of propagating in an miR-122-independent manner. We herein investigated the roles of miR-122 in both the replication of HCV-RNA and the production of infectious particles by using miR-122-knockout Huh7 (Huh7-122KO) cells. A slight increase of intracellular HCV-RNA levels and infectious titers in the culture supernatants was observed in Huh7-122KO cells upon infection with HCV. Moreover, after serial passages of HCV in miR-122-knockout Huh7.5.1 cells, we obtained an adaptive mutant, HCV122KO, possessing G28A substitution in the 5’UTR of the HCV genotype 2a JFH1 genome, and this mutant may help to enhance replication complex formation, a possibility supported by polysome analysis. We also found the introduction of adaptive mutation around miR-122 binding site in the genotype 1b/2a chimeric virus, which originally had an adenine at the nucleotide position 29. HCV122KO exhibited efficient RNA replication in miR-122-knockout cells and non-hepatic cells without exogenous expression of miR-122. Competition assay revealed that the G28A mutant was dominant in the absence of miR-122, but its effects were equivalent to those of the wild type in the presence of miR-122, suggesting that the G28A mutation does not confer an advantage for propagation in miR-122-rich hepatocytes. These observations may explain the clinical finding that the positive rate of G28A mutation was higher in miR-122-deficient PBMCs than in the patient serum, which mainly included the hepatocyte-derived virus from HCV-genotype-2a patients. These results suggest that the emergence of HCV mutants that can propagate in non-hepatic cells in an miR-122-independent manner may participate in the induction of extrahepatic manifestations in chronic hepatitis C patients. A liver-specific microRNA, miR-122, is one of the key determinants of hepatitis C virus (HCV) hepatotropism and is required for efficient propagation of HCV. On the other hand, chronic infection with HCV is often associated with extrahepatic manifestations (EHMs), and a low level of HCV-RNA replication has been detected in some non-hepatic cells. Nonetheless, the detailed mechanisms underlying these phenomena remain unknown. Here, we show that miR-122 is dispensable for low-level replication or infectious particle formation, and a mutant virus adapted to miR-122-knockout cells exhibited efficient but miR-122-independent propagation. The adaptive virus of HCV genotype 2a possessed a G28A substitution in the 5’UTR and facilitated efficient replication complex formation under an miR-122-deficient condition, while it propagated at a level comparable to the wild type HCV in the presence of miR-122. Moreover, various adaptive mutations including C30U were introduced into genotype 1b, which originally had an adenine at the nucleotide position 29. These observations suggest that substitutions that yield miR-122-independent propagation are not induced during propagation in hepatocytes; however, treatment with an miR-122 inhibitor or persistent infection of HCV in non-hepatic cells may induce the emergence of mutant viruses, as evidenced by clinical samples.
Collapse
Affiliation(s)
- Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Developmental Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Asuka Sato
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuzy Fauzyah
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahiro Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Nishio
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Su Su Hmwe
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Hiroshima University School of Medicine, Hiroshima, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
27
|
Abstract
Viruses are powerful tools to uncover cellular processes. Through viral studies we have recently identified a novel translational control mechanism that involves the DEAD-box helicase Dhh1/DDX6 and RNA folding within coding sequences (CDSs). All Dhh1-dependent mRNAs, viral and cellular ones, (i) contain long and highly structured CDSs, (ii) are directly bound by Dhh1 with a specific pattern, (iii) are activated at the translation initiation step and (iv) express proteins associated with the endoplasmic reticulum. The obtained results uncover a novel layer of translation regulation associated with translation at the endoplasmic reticulum conserved from yeast to humans and hijacked by viruses.
Collapse
Affiliation(s)
- Juana Díez
- a Molecular Virology Group, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| | - Jennifer Jungfleisch
- a Molecular Virology Group, Department of Experimental and Health Sciences , Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
28
|
Biegel JM, Henderson E, Cox EM, Bonenfant G, Netzband R, Kahn S, Eager R, Pager CT. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5' untranslated region of hepatitis C virus RNA. Virology 2017; 507:231-241. [PMID: 28456022 DOI: 10.1016/j.virol.2017.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication. Because DDX6 is an effector protein of the microRNA pathway, we also investigated its role in miR-122-directed HCV gene expression. Similar to sequestering miR-122, depletion of DDX6 modulated HCV RNA stability. Interestingly, miR-122-HCV RNA interaction assays with mutant HCV genomes sites and compensatory exogenous miR-122 showed that DDX6 affects the function of miR-122 at one particular binding site. We propose that DDX6 facilitates the miR-122 interaction with HCV 5' UTR, which is necessary for stabilizing the viral genome and the switch between translation and replication.
Collapse
Affiliation(s)
- Jason M Biegel
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric Henderson
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Erica M Cox
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gaston Bonenfant
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Netzband
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Samantha Kahn
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Eager
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T Pager
- Department of Biological Sciences, The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA.
| |
Collapse
|
29
|
Nieder-Röhrmann A, Dünnes N, Gerresheim GK, Shalamova LA, Herchenröther A, Niepmann M. Cooperative enhancement of translation by two adjacent microRNA-122/Argonaute 2 complexes binding to the 5' untranslated region of hepatitis C virus RNA. J Gen Virol 2017; 98:212-224. [PMID: 28008821 DOI: 10.1099/jgv.0.000697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The liver-specific microRNA-122 (miR-122) binds to two conserved binding sites in the 5' UTR of hepatitis C virus (HCV) RNA. This binding was reported to enhance HCV RNA replication, translation and stability. We have analysed binding of miR-122/Argonaute 2 (Ago2) complexes to these sites using anti-Ago2 co-immunoprecipitation of radioactively labelled HCV RNAs along with ectopic miR-122 in HeLa cells. Our results show that the miR-122 target sites can be addressed separately. When both target sites were addressed simultaneously, we observed a synergistic binding of both miR/Ago2 complexes. Consistently, simultaneous binding of both miR-122/Ago2 complexes results in cooperative translation stimulation. In the binding assays as well as in the translation assays, binding site 1 has a stronger effect than binding site 2. We also analysed the overall RNA stability as well as the 5' end integrity of these HCV RNAs in the presence of miR-122. Surprisingly, using short HCV reporter RNAs, we did not find effects of miR-122 binding on overall RNA stability or 5' end integrity over up to 36 h. In contrast, using full-length HCV genomes that are incapable of replication, we found a positive influence of miR-122 on RNA stability, indicating that features of the full-length HCV genome that do not reside in the 5' and 3' UTRs may render HCV RNA genome stability miR-122 dependent.
Collapse
Affiliation(s)
- Anika Nieder-Röhrmann
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Gesche K Gerresheim
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Lyudmila A Shalamova
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Andreas Herchenröther
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
30
|
Garcez PP, Nascimento JM, de Vasconcelos JM, Madeiro da Costa R, Delvecchio R, Trindade P, Loiola EC, Higa LM, Cassoli JS, Vitória G, Sequeira PC, Sochacki J, Aguiar RS, Fuzii HT, de Filippis AMB, da Silva Gonçalves Vianez Júnior JL, Tanuri A, Martins-de-Souza D, Rehen SK. Zika virus disrupts molecular fingerprinting of human neurospheres. Sci Rep 2017; 7:40780. [PMID: 28112162 PMCID: PMC5256095 DOI: 10.1038/srep40780] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
Zika virus (ZIKV) has been associated with microcephaly and other brain abnormalities; however, the molecular consequences of ZIKV to human brain development are still not fully understood. Here we describe alterations in human neurospheres derived from induced pluripotent stem (iPS) cells infected with the strain of Zika virus that is circulating in Brazil. Combining proteomics and mRNA transcriptional profiling, over 500 proteins and genes associated with the Brazilian ZIKV infection were found to be differentially expressed. These genes and proteins provide an interactome map, which indicates that ZIKV controls the expression of RNA processing bodies, miRNA biogenesis and splicing factors required for self-replication. It also suggests that impairments in the molecular pathways underpinning cell cycle and neuronal differentiation are caused by ZIKV. These results point to biological mechanisms implicated in brain malformations, which are important to further the understanding of ZIKV infection and can be exploited as therapeutic potential targets to mitigate it.
Collapse
Affiliation(s)
- Patricia P. Garcez
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Minardi Nascimento
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Rodrigo Delvecchio
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Trindade
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Luiza M. Higa
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana S. Cassoli
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Jaroslaw Sochacki
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Renato S. Aguiar
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Amilcar Tanuri
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Jupatanakul N, Sim S, Angleró-Rodríguez YI, Souza-Neto J, Das S, Poti KE, Rossi SL, Bergren N, Vasilakis N, Dimopoulos G. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Negl Trop Dis 2017; 11:e0005187. [PMID: 28081143 PMCID: PMC5230736 DOI: 10.1371/journal.pntd.0005187] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
We have developed genetically modified Ae. aegypti mosquitoes that activate the conserved antiviral JAK/STAT pathway in the fat body tissue, by overexpressing either the receptor Dome or the Janus kinase Hop by the blood feeding-induced vitellogenin (Vg) promoter. Transgene expression inhibits infection with several dengue virus (DENV) serotypes in the midgut as well as systemically and in the salivary glands. The impact of the transgenes Dome and Hop on mosquito longevity was minimal, but it resulted in a compromised fecundity when compared to wild-type mosquitoes. Overexpression of Dome and Hop resulted in profound transcriptome regulation in the fat body tissue as well as the midgut tissue, pinpointing several expression signatures that reflect mechanisms of DENV restriction. Our transcriptome studies and reverse genetic analyses suggested that enrichment of DENV restriction factor and depletion of DENV host factor transcripts likely accounts for the DENV inhibition, and they allowed us to identify novel factors that modulate infection. Interestingly, the fat body-specific activation of the JAK/STAT pathway did not result in any enhanced resistance to Zika virus (ZIKV) or chikungunya virus (CHIKV) infection, thereby indicating a possible specialization of the pathway’s antiviral role. Dengue has represented a significant public health burden for a number of decades, and given the lack of dengue-specific drugs and limited availability of licensed vaccine, new methods for prevention and control are urgently needed. Here, we investigated whether genetic manipulation of the mosquitoes’ native JAK/STAT pathway-mediated anti-DENV defense system could be used to render mosquitoes more resistant to infection. We generated Ae. aegypti mosquitoes overexpressing the JAK/STAT pathway components Dome and Hop under the control of a bloodmeal-inducible, fat body-specific vitellogenin (Vg) promoter. These genetically modified mosquitoes showed an increased resistance to DENV infection, likely because of higher expression of DENV restriction factors and lower expression of DENV host factors, as indicated by transcriptome analyses. Expression of the transgenes had a minimal impact on mosquito longevity; however, it significantly impaired the mosquitoes’ fecundity. Interestingly, bloodmeal-inducible fat body-specific overexpression of either Hop or Dome did not affect mosquito permissiveness to either ZIKV or CHIKV infection, suggesting a possible specialization of JAK/STAT pathway antiviral defenses. Thus, our study is the first to provide a proof-of-concept that genetic engineering of the mosquitoes’ JAK/STAT immune pathway can be used to render this host more resistant to DENV infection.
Collapse
Affiliation(s)
- Natapong Jupatanakul
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yesseinia I. Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jayme Souza-Neto
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suchismita Das
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kristin E. Poti
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shannan L. Rossi
- Department of Pathology and Center of Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston TX, United States of America
| | - Nicholas Bergren
- Department of Pathology and Center of Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston TX, United States of America
| | - Nikos Vasilakis
- Department of Pathology and Center of Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston TX, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
32
|
Jungfleisch J, Blasco-Moreno B, Díez J. Use of Cellular Decapping Activators by Positive-Strand RNA Viruses. Viruses 2016; 8:v8120340. [PMID: 28009841 PMCID: PMC5192400 DOI: 10.3390/v8120340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Positive-strand RNA viruses have evolved multiple strategies to not only circumvent the hostile decay machinery but to trick it into being a priceless collaborator supporting viral RNA translation and replication. In this review, we describe the versatile interaction of positive-strand RNA viruses and the 5′-3′ mRNA decay machinery with a focus on the viral subversion of decapping activators. This highly conserved viral trickery is exemplified with the plant Brome mosaic virus, the animal Flock house virus and the human hepatitis C virus.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Bernat Blasco-Moreno
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - Juana Díez
- Molecular Virology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
33
|
Jungfleisch J, Nedialkova DD, Dotu I, Sloan KE, Martinez-Bosch N, Brüning L, Raineri E, Navarro P, Bohnsack MT, Leidel SA, Díez J. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res 2016; 27:95-106. [PMID: 27821408 PMCID: PMC5204348 DOI: 10.1101/gr.209015.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Danny D Nedialkova
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany
| | - Ivan Dotu
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Katherine E Sloan
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Neus Martinez-Bosch
- Program of Cancer Research, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Lukas Brüning
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany
| | - Emanuele Raineri
- Statistical Genomics, Centro Nacional de Analisis Genomica, 08028 Barcelona, Spain
| | - Pilar Navarro
- Program of Cancer Research, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Markus T Bohnsack
- Institute for Molecular Biology, Göttingen University Medical Department, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, 37073 Göttingen, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, 48149 Münster, Germany.,Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Juana Díez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
34
|
The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites. Virology 2016; 500:169-177. [PMID: 27821284 DOI: 10.1016/j.virol.2016.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 01/30/2023]
Abstract
Flaviviruses, including the human pathogen, West Nile virus (WNV), are known to co-opt many host factors for their replication and propagation. To this end, we previously reported that the nucleolar DEAD-box RNA helicase, DDX56, is important for production of infectious WNV virions. In this study, we show that WNV infection results in relocalization of DDX56 from nucleoli to virus assembly sites on the endoplasmic reticululm (ER), an observation that is consistent with a role for DDX56 in WNV virion assembly. Super-resolution microscopy revealed that capsid and DDX56 localized to the same subcompartment of the ER, however, unexpectedly, stable interaction between these two proteins was only detected in the nucleus. Together, these data suggest that DDX56 relocalizes to the site of virus assembly during WNV infection and that its interaction with WNV capsid in the cytoplasm may occur transiently during virion morphogenesis.
Collapse
|
35
|
Sarnow P, Sagan SM. Unraveling the Mysterious Interactions Between Hepatitis C Virus RNA and Liver-Specific MicroRNA-122. Annu Rev Virol 2016; 3:309-332. [PMID: 27578438 DOI: 10.1146/annurev-virology-110615-042409] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many viruses encode or subvert cellular microRNAs (miRNAs) to aid in their gene expression, amplification strategies, or pathogenic signatures. miRNAs typically downregulate gene expression by binding to the 3' untranslated region of their mRNA targets. As a result, target mRNAs are translationally repressed and subsequently deadenylated and degraded. Curiously, hepatitis C virus (HCV), a member of the Flaviviridae family, recruits two molecules of liver-specific microRNA-122 (miR-122) to the 5' end of its genome. In contrast to the canonical activity of miRNAs, the interactions of miR-122 with the viral genome promote viral RNA accumulation in cultured cells and in animal models of HCV infection. Sequestration of miR-122 results in loss of viral RNA both in cell culture and in the livers of chronic HCV-infected patients. This review discusses the mechanisms by which miR-122 is thought to enhance viral RNA abundance and the consequences of miR-122-HCV interactions. We also describe preliminary findings from phase II clinical trials in patients treated with miR-122 antisense oligonucleotides.
Collapse
Affiliation(s)
- Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada;
| |
Collapse
|
36
|
Poblete-Durán N, Prades-Pérez Y, Vera-Otarola J, Soto-Rifo R, Valiente-Echeverría F. Who Regulates Whom? An Overview of RNA Granules and Viral Infections. Viruses 2016; 8:v8070180. [PMID: 27367717 PMCID: PMC4974515 DOI: 10.3390/v8070180] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which are translationally silent sites of RNA triage and processing bodies (PBs), which are involved in mRNA degradation. This review discusses the role of these RNA granules in the evasion of anti-viral stress responses through virus-induced remodeling of cellular ribonucleoproteins (RNPs).
Collapse
Affiliation(s)
- Natalia Poblete-Durán
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Yara Prades-Pérez
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, 8389100, Chile.
| |
Collapse
|
37
|
Abstract
During infection, positive-strand RNA viruses subvert cellular machinery involved in RNA metabolism to translate viral proteins and replicate viral genomes to avoid or disable the host defense mechanisms. Cytoplasmic RNA granules modulate the stabilities of cellular and viral RNAs. Understanding how hepatitis C virus and other flaviviruses interact with the host machinery required for protein synthesis, localization, and degradation of mRNAs is important for elucidating how these processes occur in both virus-infected and uninfected cells.
Collapse
|
38
|
Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc Natl Acad Sci U S A 2016; 113:5388-93. [PMID: 27118832 DOI: 10.1073/pnas.1522987113] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target.
Collapse
|
39
|
Abstract
RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principal types of cytoplasmic RNA granules are stress granules, which contain stalled translation initiation complexes, and processing bodies (P bodies), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts; thus, viruses repress RNA granule functions to favor replication. This article discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently, mechanisms for virus manipulation of RNA granules can be loosely grouped into three nonexclusive categories: (a) cleavage of key RNA granule factors, (b) regulation of PKR activation, and (c) co-opting of RNA granule factors for new roles in viral replication. Viral modulation of RNA granules supports productive infection by inhibiting their gene-silencing functions and counteracting their role in linking stress sensing with innate immune activation.
Collapse
Affiliation(s)
- Wei-Chih Tsai
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030;
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
40
|
Wang Q, Li Q, Liu R, Zheng M, Wen J, Zhao G. Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells. J Proteomics 2016; 136:48-54. [DOI: 10.1016/j.jprot.2016.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
|
41
|
Son M, Choi H, Kim KH. Specific binding of Fusarium graminearum Hex1 protein to untranslated regions of the genomic RNA of Fusarium graminearum virus 1 correlates with increased accumulation of both strands of viral RNA. Virology 2016; 489:202-11. [PMID: 26773381 DOI: 10.1016/j.virol.2015.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022]
Abstract
The HEX1 gene of Fusarium graminearum was previously reported to be required for the efficient accumulation of Fusarium graminearum virus 1 (FgV1) RNA in its host. To investigate the molecular mechanism underlying the production of FgHEX1 and the replication of FgV1 viral RNA, we conducted electrophoretic mobility shift assays (EMSA) with recombinant FgHex1 protein and RNA sequences derived from various regions of FgV1 genomic RNA. These analyses demonstrated that FgHex1 and both the 5'- and 3'-untranslated regions of plus-strand FgV1 RNA formed complexes. To determine whether FgHex1 protein affects FgV1 replication, we quantified accumulation viral RNAs in protoplasts and showed that both (+)- and (-)-strands of FgV1 RNAs were increased in the over-expression mutant and decreased in the deletion mutant. These results indicate that the FgHex1 functions in the synthesis of both strands of FgV1 RNA and therefore in FgV1 replication probably by specifically binding to the FgV1 genomic RNA.
Collapse
Affiliation(s)
- Moonil Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea; Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea; Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
42
|
Chen L, Li W, Zhang K, Zhang R, Lu T, Hao M, Jia T, Sun Y, Lin G, Wang L, Li J. Hepatitis C Virus RNA Real-Time Quantitative RT-PCR Method Based on a New Primer Design Strategy. J Mol Diagn 2015; 18:84-91. [PMID: 26612712 DOI: 10.1016/j.jmoldx.2015.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/11/2015] [Accepted: 07/24/2015] [Indexed: 12/30/2022] Open
Abstract
Viral nucleic acids are unstable when improperly collected, handled, and stored, resulting in decreased sensitivity of currently available commercial quantitative nucleic acid testing kits. Using known unstable hepatitis C virus RNA, we developed a quantitative RT-PCR method based on a new primer design strategy to reduce the impact of nucleic acid instability on nucleic acid testing. The performance of the method was evaluated for linearity, limit of detection, precision, specificity, and agreement with commercial hepatitis C virus assays. Its clinical application was compared to that of two commercial kits--Cobas AmpliPrep/Cobas TaqMan (CAP/CTM) and Kehua. The quantitative RT-PCR method delivered a good performance, with a linearity of R(2) = 0.99, a total limit of detection (genotypes 1 to 6) of 42.6 IU/mL (95% CI, 32.84 to 67.76 IU/mL), a CV of 1.06% to 3.34%, a specificity of 100%, and a high concordance with the CAP/CTM assay (R(2) = 0.97), with a means ± SD value of -0.06 ± 1.96 log IU/mL (range, -0.38 to 0.25 log IU/mL). The method was superior to commercial assays in detecting unstable hepatitis C virus RNA (P < 0.05). This quantitative RT-PCR method can effectively eliminate the influence of RNA instability on nucleic acid testing. The principle of primer design strategy may be applied to the detection of other RNA or DNA viruses.
Collapse
Affiliation(s)
- Lida Chen
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wenli Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Kuo Zhang
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Rui Zhang
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tian Lu
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Mingju Hao
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Tingting Jia
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yu Sun
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Guigao Lin
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lunan Wang
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Wang Y, Arribas-Layton M, Chen Y, Lykke-Andersen J, Sen GL. DDX6 Orchestrates Mammalian Progenitor Function through the mRNA Degradation and Translation Pathways. Mol Cell 2015; 60:118-30. [PMID: 26412305 DOI: 10.1016/j.molcel.2015.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 06/11/2015] [Accepted: 08/18/2015] [Indexed: 12/26/2022]
Abstract
In adult tissues, stem and progenitor cells must balance proliferation and differentiation to maintain homeostasis. How this is done is unclear. Here, we show that the DEAD box RNA helicase, DDX6 is necessary for maintaining adult progenitor cell function. DDX6 loss results in premature differentiation and decreased proliferation of epidermal progenitor cells. To maintain self-renewal, DDX6 associates with YBX1 to bind the stem loops found in the 3' UTRs of regulators of proliferation/self-renewal (CDK1, EZH2) and recruit them to EIF4E to facilitate their translation. To prevent premature differentiation of progenitor cells, DDX6 regulates the 5' UTR of differentiation inducing transcription factor, KLF4 and degrades its transcripts through association with mRNA degradation proteins. Our results demonstrate that progenitor function is maintained by DDX6 complexes through two distinct pathways that include the degradation of differentiation-inducing transcripts and by promoting the translation of self-renewal and proliferation mRNAs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093-0869, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0869, USA; UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Marc Arribas-Layton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093-0869, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0869, USA; UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jens Lykke-Andersen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093-0869, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0869, USA; UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA.
| |
Collapse
|
44
|
The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat Rev Microbiol 2015; 13:544-58. [PMID: 26256788 DOI: 10.1038/nrmicro3506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an unusual RNA virus that has a striking capacity to persist for the remaining life of the host in the majority of infected individuals. In order to persist, HCV must balance viral RNA synthesis and decay in infected cells. In this Review, we focus on interactions between the positive-sense RNA genome of HCV and the host RNA-binding proteins and microRNAs, and describe how these interactions influence the competing processes of viral RNA synthesis and decay to achieve stable, long-term persistence of the viral genome. Furthermore, we discuss how these processes affect hepatitis C pathogenesis and therapeutic strategies against HCV.
Collapse
|
45
|
Jungfleisch J, Chowdhury A, Alves-Rodrigues I, Tharun S, Díez J. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms. RNA (NEW YORK, N.Y.) 2015; 21:1469-79. [PMID: 26092942 PMCID: PMC4509936 DOI: 10.1261/rna.052209.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
The Lsm1-7-Pat1 complex binds to the 3' end of cellular mRNAs and promotes 3' end protection and 5'-3' decay. Interestingly, this complex also specifically binds to cis-acting regulatory sequences of viral positive-strand RNA genomes promoting their translation and subsequent recruitment from translation to replication. Yet, how the Lsm1-7-Pat1 complex regulates these two processes remains elusive. Here, we show that Lsm1-7-Pat1 complex acts differentially in these processes. By using a collection of well-characterized lsm1 mutant alleles and a system that allows the replication of Brome mosaic virus (BMV) in yeast we show that the Lsm1-7-Pat1 complex integrity is essential for both, translation and recruitment. However, the intrinsic RNA-binding ability of the complex is only required for translation. Consistent with an RNA-binding-independent function of the Lsm1-7-Pat1 complex on BMV RNA recruitment, we show that the BMV 1a protein, the sole viral protein required for recruitment, interacts with this complex in an RNA-independent manner. Together, these results support a model wherein Lsm1-7-Pat1 complex binds consecutively to BMV RNA regulatory sequences and the 1a protein to promote viral RNA translation and later recruitment out of the host translation machinery to the viral replication complexes.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Isabel Alves-Rodrigues
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Juana Díez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
46
|
Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, Vogel C. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins. Biomolecules 2015; 5:1441-66. [PMID: 26184334 PMCID: PMC4598758 DOI: 10.3390/biom5031441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely conserved across eukaryotes.
Collapse
Affiliation(s)
- Rebecca Bish
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Nerea Cuevas-Polo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Zhe Cheng
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | - Dolores Hambardzumyan
- The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Mathias Munschauer
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Markus Landthaler
- RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany.
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
47
|
Regulation of Hepatitis C Virus Genome Replication by Xrn1 and MicroRNA-122 Binding to Individual Sites in the 5' Untranslated Region. J Virol 2015; 89:6294-311. [PMID: 25855736 DOI: 10.1128/jvi.03631-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/27/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED miR-122 is a liver-specific microRNA (miRNA) that binds to two sites (S1 and S2) on the 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome and promotes the viral life cycle. It positively affects viral RNA stability, translation, and replication, but the mechanism is not well understood. To unravel the roles of miR-122 binding at each site alone or in combination, we employed miR-122 binding site mutant viral RNAs, Hep3B cells (which lack detectable miR-122), and complementation with wild-type miR-122, an miR-122 with the matching mutation, or both. We found that miR-122 binding at either site alone increased replication equally, while binding at both sites had a cooperative effect. Xrn1 depletion rescued miR-122-unbound full-length RNA replication to detectable levels but not to miR-122-bound levels, confirming that miR-122 protects HCV RNA from Xrn1, a cytoplasmic 5'-to-3' exoribonuclease, but also has additional functions. In cells depleted of Xrn1, replication levels of S1-bound HCV RNA were slightly higher than S2-bound RNA levels, suggesting that both sites contribute, but their contributions may be unequal when the need for protection from Xrn1 is reduced. miR-122 binding at S1 or S2 also increased translation equally, but the effect was abolished by Xrn1 knockdown, suggesting that the influence of miR-122 on HCV translation reflects protection from Xrn1 degradation. Our results show that occupation of each miR-122 binding site contributes equally and cooperatively to HCV replication but suggest somewhat unequal contributions of each site to Xrn1 protection and additional functions of miR-122. IMPORTANCE The functions of miR-122 in the promotion of the HCV life cycle are not fully understood. Here, we show that binding of miR-122 to each of the two binding sites in the HCV 5' UTR contributes equally to HCV replication and that binding to both sites can function cooperatively. This suggests that active Ago2-miR-122 complexes assemble at each site and can cooperatively promote the association and/or function of adjacent complexes, similar to what has been proposed for translation suppression by adjacent miRNA binding sites. We also confirm a role for miR-122 in protection from Xrn1 and provide evidence that miR-122 has additional functions in the HCV life cycle unrelated to Xrn1. Finally, we show that each binding site may contribute unequally to Xrn1 protection and other miR-122 functions.
Collapse
|
48
|
Dong Y, Yang J, Ye W, Wang Y, Miao Y, Ding T, Xiang C, Lei Y, Xu Z. LSm1 binds to the Dengue virus RNA 3' UTR and is a positive regulator of Dengue virus replication. Int J Mol Med 2015; 35:1683-9. [PMID: 25872476 DOI: 10.3892/ijmm.2015.2169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans. The DENV positive strand RNA genome contains 5' and 3' untranslated regions (UTRs) that have been shown to be required for virus replication and interaction with host cell proteins. In the present study LSm1 was identified as a host cellular protein involved in DENV RNA replication. By using two independent methodologies, we demonstrated a critical interaction between LSm1 and the 3' UTR of DENV. Furthermore, the confocal immunofluorescence analysis showed that the interaction between LSm1 and viral RNA is located in P-body around nucleoli in the cytoplasm. LSm1 knockdown by siRNA specifically reduced the levels of viral RNA in DENV-infected cells and infectious DENV particles in the supernatant. These results provide evidence that LSm1 binding to the DENV RNA 3' UTR positively regulates DENV RNA replication.
Collapse
Affiliation(s)
- Yangchao Dong
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Yang
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ye
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuan Wang
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yunbo Miao
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianbing Ding
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Chen Xiang
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yingfeng Lei
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhikai Xu
- Department of Microbiology, Faculty of Preclinical Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
49
|
Sedano CD, Sarnow P. Hepatitis C virus subverts liver-specific miR-122 to protect the viral genome from exoribonuclease Xrn2. Cell Host Microbe 2015; 16:257-264. [PMID: 25121753 DOI: 10.1016/j.chom.2014.07.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/23/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022]
Abstract
The abundant, liver-specific microRNA miR-122 forms extensive base-pairing interactions with the 5' noncoding region of the hepatitis C virus (HCV) RNA genome, protecting the viral RNA from degradation. We discovered that the 5'-3' exoribonuclease Xrn2, which plays a crucial role in the transcription termination of RNA polymerase II, modulates HCV RNA abundance in the cytoplasm, but is counteracted by miR-122-mediated protection. Specifically, Xrn2 depletion results in increased accumulation of viral RNA, while Xrn2 overexpression diminishes viral RNA abundance. Depletion of Xrn2 did not alter translation or replication rates of HCV RNA, but affected viral RNA stability. Importantly, during sequestration of miR-122, Xrn2 depletion restored HCV RNA abundance, arguing that Xrn2 depletion eliminates the miR-122 requirement for viral RNA stability. Thus, Xrn2 has a cytoplasmic, antiviral function against HCV that is counteracted by HCV's subversion of miR-122 to form a protective oligomeric complex at the 5' end of the viral genome.
Collapse
Affiliation(s)
- Cecilia D Sedano
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter Sarnow
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
50
|
Pérez-Vilaró G, Fernández-Carrillo C, Mensa L, Miquel R, Sanjuan X, Forns X, Pérez-del-Pulgar S, Díez J. Hepatitis C virus infection inhibits P-body granule formation in human livers. J Hepatol 2015; 62:785-90. [PMID: 25463546 DOI: 10.1016/j.jhep.2014.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Decoding the myriad of interactions that hepatitis C virus (HCV) establishes with infected cells is mandatory to obtain a complete understanding of HCV biology and its associated pathogenesis. We and others have previously found that HCV infection disrupts the formation of P-bodies in cell culture. These are cytoplasmic RNA granules with key roles in post-transcriptional regulation of gene expression. Therefore, P-body disruption might have consequences beyond viral propagation. However, whether P-body disruption occurs also in vivo is unknown. Aim of this study was to address this important issue. METHODS Formalin-fixed paraffin-embedded liver biopsies from four groups of patients (healthy donors, patients with non-virus related liver inflammation, HCV- and HBV-infected patients) were immunostained to detect DDX6 and Dcp1, two core P-body components. Changes in the localization of these proteins were assessed by confocal microscopy. RESULTS HCV specifically inhibited P-body formation in hepatocytes from human livers regardless of viral genotype, inflammation grade or whether the infection was recent or long established. Importantly, this alteration was reversed once HCV was eliminated by therapy. Furthermore, we observed in vivo an unexpected heterogeneity in P-body composition, which might reflect functional specializations. CONCLUSIONS This is the first comprehensive in vivo P-body analysis that links a pathogenic condition to P-body alterations. Because of their role in gene expression, the alteration of P-bodies should be further studied to understand fully complex HCV-associated pathologies.
Collapse
Affiliation(s)
| | | | - Laura Mensa
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Rosa Miquel
- Pathology Department, Hospital Clínic, Barcelona, Spain
| | - Xavier Sanjuan
- Scientific and Technical Services, Universitat Pompeu Fabra, Barcelona, Spain; Advanced Light Microscopy Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | | | - Juana Díez
- Molecular Virology, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|