1
|
Boodaghian N, Park H, Cohen SE. Investigating the Roles for Essential Genes in the Regulation of the Circadian Clock in Synechococcus elongatus Using CRISPR Interference. J Biol Rhythms 2024; 39:308-317. [PMID: 38357890 DOI: 10.1177/07487304241228333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Circadian rhythms are found widely throughout nature where cyanobacteria are the simplest organisms, in which the molecular details of the clock have been elucidated. Circadian rhythmicity in cyanobacteria is carried out via the KaiA, KaiB, and KaiC core oscillator proteins that keep ~24 h time. A series of input and output proteins-CikA, SasA, and RpaA-regulate the clock by sensing environmental changes and timing rhythmic activities, including global rhythms of gene expression. Our previous work identified a novel set of KaiC-interacting proteins, some of which are encoded by genes that are essential for viability. To understand the relationship of these essential genes to the clock, we applied CRISPR interference (CRISPRi) which utilizes a deactivated Cas9 protein and single-guide RNA (sgRNA) to reduce the expression of target genes but not fully abolish their expression to allow for survival. Eight candidate genes were targeted, and strains were analyzed by quantitative real-time PCR (qRT-PCR) for reduction of gene expression, and rhythms of gene expression were monitored to analyze circadian phenotypes. Strains with reduced expression of SynPCC7942_0001, dnaN, which encodes for the β-clamp of the replicative DNA polymerase, or SynPCC7942_1081, which likely encodes for a KtrA homolog involved in K+ transport, displayed longer circadian rhythms of gene expression than the wild type. As neither of these proteins have been previously implicated in the circadian clock, these data suggest that diverse cellular processes, DNA replication and K+ transport, can influence the circadian clock and represent new avenues to understand clock function.
Collapse
Affiliation(s)
- Nouneh Boodaghian
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
| | - Hyunsook Park
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
| | - Susan E Cohen
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California
- Center for Circadian Biology, University of California, San Diego, San Diego, California
| |
Collapse
|
2
|
Kawamoto N, Nakanishi S, Shimakawa G. Light Wavelength as a Contributory Factor of Environmental Fitness in the Cyanobacterial Circadian Clock. PLANT & CELL PHYSIOLOGY 2024; 65:798-808. [PMID: 38441328 DOI: 10.1093/pcp/pcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/31/2024]
Abstract
A circadian clock is an essential system that drives the 24-h expression rhythms for adaptation to day-night cycles. The molecular mechanism of the circadian clock has been extensively studied in cyanobacteria harboring the KaiC-based timing system. Nevertheless, our understanding of the physiological significance of the cyanobacterial circadian clock is still limited. In this study, we cultured wild-type Synechococcus elongatus PCC 7942 and circadian clock mutants in day-night cycles at different light qualities and found that the growth of the circadian clock mutants was specifically impaired during 12-h blue light/12-h dark (BD) cycles for the first time. The arrhythmic mutant kaiCAA was further analyzed by photosynthetic measurements. Compared with the wild type, the mutant exhibited decreases in the chlorophyll content, the ratio of photosystem I to II, net O2 evolution rate and efficiency of photosystem II photochemistry during BD cycles. These results indicate that the circadian clock is necessary for the growth and the maintenance of the optimum function of the photosynthetic apparatus in cyanobacteria under blue photoperiodic conditions.
Collapse
Affiliation(s)
- Naohiro Kawamoto
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Wako, Saitama 351-0198, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
3
|
Fang M, LiWang A, Golden SS, Partch CL. The inner workings of an ancient biological clock. Trends Biochem Sci 2024; 49:236-246. [PMID: 38185606 PMCID: PMC10939747 DOI: 10.1016/j.tibs.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.
Collapse
Affiliation(s)
- Mingxu Fang
- Department of Molecular Biology, University of California - San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California - Merced, Merced, CA 95343, USA; Center for Cellular and Biomolecular Machines, University of California - Merced, Merced, CA 95343, USA
| | - Susan S Golden
- Department of Molecular Biology, University of California - San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA
| | - Carrie L Partch
- Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry & Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
4
|
de Barros Dantas LL, Eldridge BM, Dorling J, Dekeya R, Lynch DA, Dodd AN. Circadian regulation of metabolism across photosynthetic organisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:650-668. [PMID: 37531328 PMCID: PMC10953457 DOI: 10.1111/tpj.16405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Circadian regulation produces a biological measure of time within cells. The daily cycle in the availability of light for photosynthesis causes dramatic changes in biochemical processes in photosynthetic organisms, with the circadian clock having crucial roles in adaptation to these fluctuating conditions. Correct alignment between the circadian clock and environmental day-night cycles maximizes plant productivity through its regulation of metabolism. Therefore, the processes that integrate circadian regulation with metabolism are key to understanding how the circadian clock contributes to plant productivity. This forms an important part of exploiting knowledge of circadian regulation to enhance sustainable crop production. Here, we examine the roles of circadian regulation in metabolic processes in source and sink organ structures of Arabidopsis. We also evaluate possible roles for circadian regulation in root exudation processes that deposit carbon into the soil, and the nature of the rhythmic interactions between plants and their associated microbial communities. Finally, we examine shared and differing aspects of the circadian regulation of metabolism between Arabidopsis and other model photosynthetic organisms, and between circadian control of metabolism in photosynthetic and non-photosynthetic organisms. This synthesis identifies a variety of future research topics, including a focus on metabolic processes that underlie biotic interactions within ecosystems.
Collapse
Affiliation(s)
| | - Bethany M. Eldridge
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Jack Dorling
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Richard Dekeya
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Deirdre A. Lynch
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
5
|
McKnight BM, Kang S, Le TH, Fang M, Carbonel G, Rodriguez E, Govindarajan S, Albocher-Kedem N, Tran AL, Duncan NR, Amster-Choder O, Golden SS, Cohen SE. Roles for the Synechococcus elongatus RNA-Binding Protein Rbp2 in Regulating the Circadian Clock. J Biol Rhythms 2023; 38:447-460. [PMID: 37515350 PMCID: PMC10528358 DOI: 10.1177/07487304231188761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night. Here, we report that the CI domain of KaiC, when in a hexameric state, is sufficient to target KaiC to the pole. Moreover, increased ATPase activity of KaiC correlates with enhanced polar localization. We identified proteins associated with KaiC in either a localized or diffuse state. We found that loss of Rbp2, found to be associated with localized KaiC, results in decreased incidence of KaiC localization and long-period circadian phenotypes. Rbp2 is an RNA-binding protein, and it appears that RNA-binding activity of Rbp2 is required to execute clock functions. These findings uncover previously unrecognized roles for Rbp2 in regulating the circadian clock and suggest that the proper localization of KaiC is required for a fully functional clock in vivo.
Collapse
Affiliation(s)
- Briana M. McKnight
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Shannon Kang
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Tam H. Le
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Genelyn Carbonel
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Esbeydi Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Sutharsan Govindarajan
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
- Department of Biological Sciences, SRM University AP, Amaravati, India
| | - Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Amanda L. Tran
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Nicholas R. Duncan
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Susan S. Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Susan E. Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| |
Collapse
|
6
|
Fang M, Chavan AG, LiWang A, Golden SS. Synchronization of the circadian clock to the environment tracked in real time. Proc Natl Acad Sci U S A 2023; 120:e2221453120. [PMID: 36940340 PMCID: PMC10068778 DOI: 10.1073/pnas.2221453120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 03/22/2023] Open
Abstract
The circadian system of the cyanobacterium Synechococcus elongatus PCC 7942 relies on a three-protein nanomachine (KaiA, KaiB, and KaiC) that undergoes an oscillatory phosphorylation cycle with a period of ~24 h. This core oscillator can be reconstituted in vitro and is used to study the molecular mechanisms of circadian timekeeping and entrainment. Previous studies showed that two key metabolic changes that occur in cells during the transition into darkness, changes in the ATP/ADP ratio and redox status of the quinone pool, are cues that entrain the circadian clock. By changing the ATP/ADP ratio or adding oxidized quinone, one can shift the phase of the phosphorylation cycle of the core oscillator in vitro. However, the in vitro oscillator cannot explain gene expression patterns because the simple mixture lacks the output components that connect the clock to genes. Recently, a high-throughput in vitro system termed the in vitro clock (IVC) that contains both the core oscillator and the output components was developed. Here, we used IVC reactions and performed massively parallel experiments to study entrainment, the synchronization of the clock with the environment, in the presence of output components. Our results indicate that the IVC better explains the in vivo clock-resetting phenotypes of wild-type and mutant strains and that the output components are deeply engaged with the core oscillator, affecting the way input signals entrain the core pacemaker. These findings blur the line between input and output pathways and support our previous demonstration that key output components are fundamental parts of the clock.
Collapse
Affiliation(s)
- Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Archana G. Chavan
- School of Natural Sciences, University of California, Merced, CA95343
| | - Andy LiWang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- School of Natural Sciences, University of California, Merced, CA95343
- Department of Chemistry & Biochemistry, University of California, Merced, CA95343
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Muñoz-Marín MDC, Duhamel S, Björkman KM, Magasin JD, Díez J, Karl DM, García-Fernández JM. Differential Timing for Glucose Assimilation in Prochlorococcus and Coexistent Microbial Populations in the North Pacific Subtropical Gyre. Microbiol Spectr 2022; 10:e0246622. [PMID: 36098532 PMCID: PMC9602893 DOI: 10.1128/spectrum.02466-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The marine cyanobacterium Prochlorococcus can utilize glucose as a source of carbon. However, the relative importance of inorganic and organic carbon assimilation and the timing of glucose assimilation are still poorly understood in these numerically dominant cyanobacteria. Here, we investigated whole microbial community and group-specific primary production and glucose assimilation using incubations with radioisotopes combined with flow cytometry cell sorting. We also studied changes in the microbial community structure in response to glucose enrichments and analyzed the transcription of Prochlorocccus genes involved in carbon metabolism and photosynthesis. Our results showed a diel variation for glucose assimilation in Prochlorococcus, with maximum assimilation at midday and minimum at midnight (~2-fold change), which was different from that of the total microbial community. This suggests that the timing in glucose assimilation in Prochlorococcus is coupled to photosynthetic light reactions producing energy, it being more convenient for Prochlorococcus to show maximum glucose uptake precisely when the rest of microbial populations have their minimum glucose uptake. Many transcriptional responses to glucose enrichment occurred after 12- and 24-h periods, but community composition did not change. High-light Prochlorococcus strains were the most impacted by glucose addition, with transcript-level increases observed for genes in pathways for glucose metabolism, such as the pentose phosphate pathway, the Entner-Doudoroff pathway, glycolysis, respiration, and glucose transport. While Prochlorococcus C assimilation from glucose represented less than 0.1% of the bacterium's photosynthetic C fixation, increased assimilation during the day and glcH gene upregulation upon glucose enrichment indicate an important role of mixotrophic C assimilation by natural populations of Prochlorococcus. IMPORTANCE Several studies have demonstrated that Prochlorococcus, the most abundant photosynthetic organism on Earth, can assimilate organic molecules, such as amino acids, amino sugars, ATP, phosphonates, and dimethylsulfoniopropionate. This autotroph can also assimilate small amounts of glucose, supporting the hypothesis that Prochlorococcus is mixotrophic. Our results show, for the first time, a diel variability in glucose assimilation by natural populations of Prochlorococcus with maximum assimilation during midday. Based on our previous results, this indicates that Prochlorococcus could maximize glucose uptake by using ATP made during the light reactions of photosynthesis. Furthermore, Prochlorococcus showed a different timing of glucose assimilation from the total population, which may offer considerable fitness advantages over competitors "temporal niches." Finally, we observed transcriptional changes in some of the genes involved in carbon metabolism, suggesting that Prochlorococcus can use both pathways previously proposed in cyanobacteria to metabolize glucose.
Collapse
Affiliation(s)
- María del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory of Columbia University, Division of Biology and Paleo Environment, Palisades, New York, USA
| | - Karin M. Björkman
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, C-MORE Hale, Honolulu, Hawaii, USA
| | - Jonathan D. Magasin
- Ocean Sciences Department, University of California, Santa Cruz, California, USA
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - David M. Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii at Manoa, C-MORE Hale, Honolulu, Hawaii, USA
| | - José M. García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
8
|
Quinones: More Than Electron Shuttles. Res Microbiol 2022; 173:103953. [DOI: 10.1016/j.resmic.2022.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022]
|
9
|
Chow GK, Chavan AG, Heisler J, Chang YG, Zhang N, LiWang A, Britt RD. A Night-Time Edge Site Intermediate in the Cyanobacterial Circadian Clock Identified by EPR Spectroscopy. J Am Chem Soc 2022; 144:184-194. [PMID: 34979080 DOI: 10.1021/jacs.1c08103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the only circadian oscillator that can be reconstituted in vitro with its constituent proteins KaiA, KaiB, and KaiC using ATP as an energy source, the cyanobacterial circadian oscillator serves as a model system for detailed mechanistic studies of day-night transitions of circadian clocks in general. The day-to-night transition occurs when KaiB forms a night-time complex with KaiC to sequester KaiA, the latter of which interacts with KaiC during the day to promote KaiC autophosphorylation. However, how KaiB forms the complex with KaiC remains poorly understood, despite the available structures of KaiB bound to hexameric KaiC. It has been postulated that KaiB-KaiC binding is regulated by inter-KaiB cooperativity. Here, using spin labeling continuous-wave electron paramagnetic resonance spectroscopy, we identified and quantified two subpopulations of KaiC-bound KaiB, corresponding to the "bulk" and "edge" KaiBC sites in stoichiometric and substoichiometric KaiBiC6 complexes (i = 1-5). We provide kinetic evidence to support the intermediacy of the "edge" KaiBC sites as bridges and nucleation sites between free KaiB and the "bulk" KaiBC sites. Furthermore, we show that the relative abundance of "edge" and "bulk" sites is dependent on both KaiC phosphostate and KaiA, supporting the notion of phosphorylation-state controlled inter-KaiB cooperativity. Finally, we demonstrate that the interconversion between the two subpopulations of KaiC-bound KaiB is intimately linked to the KaiC phosphorylation cycle. These findings enrich our mechanistic understanding of the cyanobacterial clock and demonstrate the utility of EPR in elucidating circadian clock mechanisms.
Collapse
Affiliation(s)
- Gary K Chow
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Archana G Chavan
- School of Natural Sciences, University of California, Merced, California 95343, United States
| | - Joel Heisler
- Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, California 95343, United States
| | - Ning Zhang
- School of Natural Sciences, University of California, Merced, California 95343, United States
| | - Andy LiWang
- School of Natural Sciences, Chemistry and Biochemistry, Health Sciences Research Institute, and Center for Cellular and Biomolecular Machines, University of California, Merced, California 95343, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
10
|
Dvornyk V, Mei Q. Evolution of kaiA, a key circadian gene of cyanobacteria. Sci Rep 2021; 11:9995. [PMID: 33976298 PMCID: PMC8113500 DOI: 10.1038/s41598-021-89345-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
The circadian system of cyanobacteria is built upon a central oscillator consisting of three genes, kaiA, kaiB, and kaiC. The KaiA protein plays a key role in phosphorylation/dephosphorylation cycles of KaiC, which occur over the 24-h period. We conducted a comprehensive evolutionary analysis of the kaiA genes across cyanobacteria. The results show that, in contrast to the previous reports, kaiA has an ancient origin and is as old as cyanobacteria. The kaiA homologs are present in nearly all analyzed cyanobacteria, except Gloeobacter, and have varying domain architecture. Some Prochlorococcales, which were previously reported to lack the kaiA gene, possess a drastically truncated homolog. The existence of the diverse kaiA homologs suggests significant variation of the circadian mechanism, which was described for the model cyanobacterium, Synechococcus elongatus PCC7942. The major structural modifications in the kaiA genes (duplications, acquisition and loss of domains) have apparently been induced by global environmental changes in the different geological periods.
Collapse
Affiliation(s)
- Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.
| | - Qiming Mei
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China.,Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
The upcycled roles of pseudoenzymes in two-component signal transduction. Curr Opin Microbiol 2021; 61:82-90. [PMID: 33872991 DOI: 10.1016/j.mib.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022]
Abstract
Upon first glance at a bacterial genome, pseudoenzymes appear unremarkable due to their lack of critical motifs that facilitate catalysis. These pseudoenzymes exist within signal transduction enzymes including histidine kinases, response regulators, diguanylate cyclases, and phosphodiesterases. Here, we summarize recent studies of bacterial pseudo-histidine kinases and pseudo-response regulators that regulate cell division, capsule formation, and the circadian rhythm. These examples illuminate the mechanistic potential of catalytically dead signaling enzymes and their impact upon bacterial signal transduction. Moreover, proteins lacking characteristic catalytic features of two-component systems reveal the sophisticated underlying potential of canonical two-component systems.
Collapse
|
12
|
Kim P, Kaur M, Jang HI, Kim YI. The Circadian Clock-A Molecular Tool for Survival in Cyanobacteria. Life (Basel) 2020; 10:life10120365. [PMID: 33419320 PMCID: PMC7766417 DOI: 10.3390/life10120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the “ticking” of the oscillator can be reconstituted inside a test tube just by mixing the three recombinant proteins with ATP and Mg2+. Along with its biochemical resilience, the post-translational rhythm of the oscillation can be reset through sensing oxidized quinone, a metabolite that becomes abundant at the onset of darkness. In addition, the output components pick up the information from the central oscillator, tuning the physiological and behavioral patterns and enabling the organism to better cope with the cyclic environmental conditions. In this review, we highlight our understanding of the cyanobacterial circadian clock and discuss how it functions as a molecular chronometer that readies the host for predictable changes in its surroundings.
Collapse
Affiliation(s)
- Pyonghwa Kim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
| | - Manpreet Kaur
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
| | - Hye-In Jang
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea
- Correspondence: (H.-I.J.); (Y.-I.K.)
| | - Yong-Ick Kim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: (H.-I.J.); (Y.-I.K.)
| |
Collapse
|
13
|
The circadian clock and darkness control natural competence in cyanobacteria. Nat Commun 2020; 11:1688. [PMID: 32245943 PMCID: PMC7125226 DOI: 10.1038/s41467-020-15384-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/05/2020] [Indexed: 11/15/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms. It is naturally competent for transformation—that is, it takes up DNA from the environment, but the underlying mechanisms are unclear. Here, we use a genome-wide screen to identify genes required for natural transformation in S. elongatus, including genes encoding a conserved Type IV pilus, genes known to be associated with competence in other bacteria, and others. Pilus biogenesis occurs daily in the morning, while natural transformation is maximal when the onset of darkness coincides with the dusk circadian peak. Thus, the competence state in cyanobacteria is regulated by the circadian clock and can adapt to seasonal changes of day length. The cyanobacterium Synechococcus elongatus is a model organism for the study of circadian rhythms, and is naturally competent for transformation. Here, Taton et al. identify genes required for natural transformation in this organism, and show that the coincidence of circadian dusk and darkness regulates the competence state in different day lengths.
Collapse
|
14
|
Werner A, Broeckling CD, Prasad A, Peebles CAM. A comprehensive time-course metabolite profiling of the model cyanobacterium Synechocystis sp. PCC 6803 under diurnal light:dark cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:379-388. [PMID: 30889309 DOI: 10.1111/tpj.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 05/07/2023]
Abstract
Cyanobacteria are a model photoautotroph and a chassis for the sustainable production of fuels and chemicals. Knowledge of photoautotrophic metabolism in the natural environment of day/night cycles is lacking, yet has implications for improved yield from plants, algae and cyanobacteria. Here, a thorough approach to characterizing diverse metabolites-including carbohydrates, lipids, amino acids, pigments, cofactors, nucleic acids and polysaccharides-in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) under sinusoidal diurnal light:dark cycles was developed and applied. A custom photobioreactor and multi-platform mass spectrometry workflow enabled metabolite profiling every 30-120 min across a 24-h diurnal sinusoidal LD ('sinLD') cycle peaking at 1600 μmol photons m-2 sec-1 . We report widespread oscillations across the sinLD cycle with 90%, 94% and 40% of the identified polar/semi-polar, non-polar and polymeric metabolites displaying statistically significant oscillations, respectively. Microbial growth displayed distinct lag, biomass accumulation and cell division phases of growth. During the lag phase, amino acids and nucleic acids accumulated to high levels per cell followed by decreased levels during the biomass accumulation phase, presumably due to protein and DNA synthesis. Insoluble carbohydrates displayed sharp oscillations per cell at the day-to-night transition. Potential bottlenecks in central carbon metabolism are highlighted. Together, this report provides a comprehensive view of photosynthetic metabolite behavior with high temporal resolution, offering insight into the impact of growth synchronization to light cycles via circadian rhythms. Incorporation into computational modeling and metabolic engineering efforts promises to improve industrially relevant strain design.
Collapse
Affiliation(s)
- Allison Werner
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ashok Prasad
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Christie A M Peebles
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
15
|
Golden SS. Principles of rhythmicity emerging from cyanobacteria. Eur J Neurosci 2019; 51:13-18. [PMID: 31087440 DOI: 10.1111/ejn.14434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Susan S Golden
- Center for Circadian Biology and Division of Biological Sciences, University of California, San Diego, California
| |
Collapse
|
16
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
17
|
Abstract
Life has adapted to Earth's day-night cycle with the evolution of endogenous biological clocks. Whereas these circadian rhythms typically involve extensive transcription-translation feedback in higher organisms, cyanobacteria have a circadian clock, which functions primarily as a protein-based post-translational oscillator. Known as the Kai system, it consists of three proteins KaiA, KaiB, and KaiC. In this chapter, we provide a detailed structural overview of the Kai components and how they interact to produce circadian rhythms of global gene expression in cyanobacterial cells. We discuss how the circadian oscillation is coupled to gene expression, intertwined with transcription-translation feedback mechanisms, and entrained by input from the environment. We discuss the use of mathematical models and summarize insights into the cyanobacterial circadian clock from theoretical studies. The molecular details of the Kai system are well documented for the model cyanobacterium Synechococcus elongatus, but many less understood varieties of the Kai system exist across the highly diverse phylum of Cyanobacteria. Several species contain multiple kai-gene copies, while others like marine Prochlorococcus strains have a reduced kaiBC-only system, lacking kaiA. We highlight recent findings on the genomic distribution of kai genes in Bacteria and Archaea and finally discuss hypotheses on the evolution of the Kai system.
Collapse
Affiliation(s)
- Joost Snijder
- Snijder Bioscience, Zevenwouden 143, 3524CN, Utrecht, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ilka Maria Axmann
- Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
18
|
Roles for ClpXP in regulating the circadian clock in Synechococcus elongatus. Proc Natl Acad Sci U S A 2018; 115:E7805-E7813. [PMID: 30061418 DOI: 10.1073/pnas.1800828115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria, the KaiABC posttranslational oscillator drives circadian rhythms of gene expression and controls the timing of cell division. The Kai-based oscillator can be reconstituted in vitro, demonstrating that the clock can run without protein synthesis and degradation; however, protein degradation is known to be important for clock function in vivo. Here, we report that strains deficient in the ClpXP1P2 protease have, in addition to known long-period circadian rhythms, an exaggerated ability to synchronize with the external environment (reduced "jetlag") compared with WT strains. Deletion of the ClpX chaperone, but not the protease subunits ClpP1 or ClpP2, results in cell division defects in a manner that is dependent on the expression of a dusk-peaking factor. We propose that chaperone activities of ClpX are required to coordinate clock control of cell division whereas the protease activities of the ClpXP1P2 complex are required to maintain appropriate periodicity of the clock and its synchronization with the external environment.
Collapse
|
19
|
Discovery and characterization of Synechocystis sp. PCC 6803 light-entrained promoters in diurnal light:dark cycles. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Swan JA, Golden SS, LiWang A, Partch CL. Structure, function, and mechanism of the core circadian clock in cyanobacteria. J Biol Chem 2018; 293:5026-5034. [PMID: 29440392 DOI: 10.1074/jbc.tm117.001433] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/09/2018] [Indexed: 01/09/2023] Open
Abstract
Circadian rhythms enable cells and organisms to coordinate their physiology with the cyclic environmental changes that come as a result of Earth's light/dark cycles. Cyanobacteria make use of a post-translational oscillator to maintain circadian rhythms, and this elegant system has become an important model for circadian timekeeping mechanisms. Composed of three proteins, the KaiABC system undergoes an oscillatory biochemical cycle that provides timing cues to achieve a 24-h molecular clock. Together with the input/output proteins SasA, CikA, and RpaA, these six gene products account for the timekeeping, entrainment, and output signaling functions in cyanobacterial circadian rhythms. This Minireview summarizes the current structural, functional and mechanistic insights into the cyanobacterial circadian clock.
Collapse
Affiliation(s)
- Jeffrey A Swan
- From the Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Susan S Golden
- the Department of Molecular Biology and.,Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, and
| | - Andy LiWang
- Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, and.,the Department of Chemistry and Chemical Biology, University of California Merced, Merced, California 95343
| | - Carrie L Partch
- From the Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, .,Center for Circadian Biology and Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, and
| |
Collapse
|
21
|
Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A. Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol 2017; 17:169. [PMID: 28732467 PMCID: PMC5520375 DOI: 10.1186/s12862-017-0999-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacterium Synechococcus elongatus PCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear. RESULTS Using a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous to Synechococcus elongatus PCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs. CONCLUSION Our analysis of 11,264 genomes clearly demonstrates that components of the Synechococcus elongatus PCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems might exist outside of the cyanobacterial phylum, which might be capable of driving diurnal oscillations.
Collapse
Affiliation(s)
- Nicolas M. Schmelling
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, 40225 Germany
| | - Robert Lehmann
- Institute for Theoretical Biology, Humboldt University Berlin, Invalidenstrasse 43, Berlin, 10115 Germany
| | - Paushali Chaudhury
- Molecular Biology of Archaea, Albert-Ludwigs-University Freiburg, Institute of Biology II, Schaenzlestrasse 1, Freiburg, 79104 Germany
| | - Christian Beck
- Institute for Theoretical Biology, Humboldt University Berlin, Invalidenstrasse 43, Berlin, 10115 Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Albert-Ludwigs-University Freiburg, Institute of Biology II, Schaenzlestrasse 1, Freiburg, 79104 Germany
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, 40225 Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, 40225 Germany
| |
Collapse
|
22
|
Paijmans J, Lubensky DK, Ten Wolde PR. Period Robustness and Entrainability of the Kai System to Changing Nucleotide Concentrations. Biophys J 2017; 113:157-173. [PMID: 28700914 PMCID: PMC5510911 DOI: 10.1016/j.bpj.2017.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/01/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022] Open
Abstract
Circadian clocks must be able to entrain to time-varying signals to keep their oscillations in phase with the day-night rhythm. On the other hand, they must also exhibit input compensation: their period must remain approximately one day in different constant environments. The posttranslational oscillator of the Kai system can be entrained by transient or oscillatory changes in the ATP fraction, yet is insensitive to constant changes in this fraction. We study in three different models of this system how these two seemingly conflicting criteria are met. We find that one of these (our recently published Paijmans model) exhibits the best tradeoff between input compensation and entrainability: on the footing of equal phase-response curves, it exhibits the strongest input compensation. Performing stochastic simulations at the level of individual hexamers allows us to identify a new, to our knowledge, mechanism, which is employed by the Paijmans model to achieve input compensation: at lower ATP fraction, the individual hexamers make a shorter cycle in the phosphorylation state space, which compensates for the slower pace at which they traverse the cycle.
Collapse
Affiliation(s)
- Joris Paijmans
- AMOLF, Amsterdam, the Netherlands, University of Michigan, Ann Arbor, Michigan
| | - David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
23
|
Sporer AJ, Kahl LJ, Price-Whelan A, Dietrich LE. Redox-Based Regulation of Bacterial Development and Behavior. Annu Rev Biochem 2017; 86:777-797. [DOI: 10.1146/annurev-biochem-061516-044453] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Abigail J. Sporer
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lisa J. Kahl
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
24
|
Jiang P, Turek FW. Timing of meals: when is as critical as what and how much. Am J Physiol Endocrinol Metab 2017; 312:E369-E380. [PMID: 28143856 PMCID: PMC6105931 DOI: 10.1152/ajpendo.00295.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023]
Abstract
Over the past decade, a large body of literature has demonstrated that disruptions of the endogenous circadian clock, whether environmental or genetic, lead to metabolic dysfunctions that are associated with obesity, diabetes, and other metabolic disorders. The phrase, "It is not only what you eat and how much you eat, but also when you eat" sends a simple message about circadian timing and body weight regulation. Communicating this message to clinicians and patients, while also elucidating the neuroendocrine, molecular, and genetic mechanisms underlying this phrase is essential to embrace the growing knowledge of the circadian impact on metabolism as a part of healthy life style as well as to incorporate it into clinical practice for improvement of overall human health. In this review, we discuss findings from animal models, as well as epidemiological and clinical studies in humans, which collectively promote the awareness of the role of circadian clock in metabolic functions and dysfunctions.
Collapse
Affiliation(s)
- Peng Jiang
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois
| |
Collapse
|
25
|
Westermark S, Steuer R. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach. Front Bioeng Biotechnol 2016; 4:95. [PMID: 28083530 PMCID: PMC5183639 DOI: 10.3389/fbioe.2016.00095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022] Open
Abstract
Oxygenic photosynthesis dominates global primary productivity ever since its evolution more than three billion years ago. While many aspects of phototrophic growth are well understood, it remains a considerable challenge to elucidate the manifold dependencies and interconnections between the diverse cellular processes that together facilitate the synthesis of new cells. Phototrophic growth involves the coordinated action of several layers of cellular functioning, ranging from the photosynthetic light reactions and the electron transport chain, to carbon-concentrating mechanisms and the assimilation of inorganic carbon. It requires the synthesis of new building blocks by cellular metabolism, protection against excessive light, as well as diurnal regulation by a circadian clock and the orchestration of gene expression and cell division. Computational modeling allows us to quantitatively describe these cellular functions and processes relevant for phototrophic growth. As yet, however, computational models are mostly confined to the inner workings of individual cellular processes, rather than describing the manifold interactions between them in the context of a living cell. Using cyanobacteria as model organisms, this contribution seeks to summarize existing computational models that are relevant to describe phototrophic growth and seeks to outline their interactions and dependencies. Our ultimate aim is to understand cellular functioning and growth as the outcome of a coordinated operation of diverse yet interconnected cellular processes.
Collapse
Affiliation(s)
- Stefanie Westermark
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| | - Ralf Steuer
- Fachinstitut für Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin , Berlin , Germany
| |
Collapse
|
26
|
Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A. Minimal Tool Set for a Prokaryotic Circadian Clock.. [DOI: 10.1101/075291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractBackgroundCircadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacteriumSynechococcus elongatusPCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear.ResultsUsing a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous toSynechococcus elongatusPCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs.ConclusionOur analysis of 11,264 genomes clearly demonstrates that components of theSynechococcus elongatusPCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems might exist outside of the cyanobacterial phylum, which might be capable of driving diurnal oscillations.
Collapse
|
27
|
Sun Y, Casella S, Fang Y, Huang F, Faulkner M, Barrett S, Liu LN. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow. PLANT PHYSIOLOGY 2016; 171:530-41. [PMID: 26956667 PMCID: PMC4854705 DOI: 10.1104/pp.16.00107] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 05/08/2023]
Abstract
Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Yi Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Steve Barrett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| |
Collapse
|
28
|
Abstract
Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems.
Collapse
|
29
|
Ray S, Reddy AB. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioessays 2016; 38:394-405. [PMID: 26866932 PMCID: PMC4817226 DOI: 10.1002/bies.201500056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
30
|
Kobayashi T, Obana Y, Kuboi N, Kitayama Y, Hayashi S, Oka M, Wada N, Arita K, Shimizu T, Sato M, Kanaly RA, Kutsuna S. Analysis of the Fine-Tuning of Cyanobacterial Circadian Phase by Monochromatic Light and Long-Day Conditions. PLANT & CELL PHYSIOLOGY 2016; 57:105-114. [PMID: 26578695 DOI: 10.1093/pcp/pcv177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
The cyanobacterial circadian-related protein, Pex, accumulates in the dark period of the diurnal light-dark cycle. After the diurnal cycle, an approximately 3 h advance in the phase of the circadian bioluminescence rhythm is observed in pex-deficient mutants, as compared with the wild type. However, it is unclear what type of photosensing mechanism regulates the accumulation and the phase change. In monochromatic light irradiation experiments, Pex accumulation was strongly repressed under blue light conditions; however, only small reductions in Pex accumulation were observed under red or green light conditions. After the diurnal cycle of 12 h of white fluorescent light and 12 h of blue light, the phase advance was repressed more than that of the cycle of 12 h red (or green) light. The phase advance also occurred after 16 h light/8 h dark cycles (long-day cycles) but did not occur after 8 h light/16 h dark cycles (short-day cycles). While Pex is a unique winged helix transcription factor harboring secondary structures (α0 and α4 helices), the importance of the structures is not understood. In in vivo experiments with site-directed mutations in the α0 helix, the obtained mutants, in which Pex was missing the hydrophobic side chain at the 28th or 32nd amino acid residue, exhibited no phase delay after the light/dark cycle. In in vitro DNA binding assays, the mutant proteins showed no binding to the promoter region of the clock gene kaiA. From these results, we propose a molecular model which describes the phase delay in cyanobacteria.
Collapse
Affiliation(s)
- Takayuki Kobayashi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Yuji Obana
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Naoyuki Kuboi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Yohko Kitayama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 Japan
| | - Shingo Hayashi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Masataka Oka
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Naomichi Wada
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Kyouhei Arita
- Division of Macromolecular Crystallography, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045 Japan
| | - Toshiyuki Shimizu
- Division of Macromolecular Crystallography, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045 Japan Present address: Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo. 113-0033 Japan
| | - Mamoru Sato
- Division of Macromolecular Crystallography, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045 Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| | - Shinsuke Kutsuna
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027 Japan
| |
Collapse
|
31
|
Pattanayak GK, Lambert G, Bernat K, Rust MJ. Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism. Cell Rep 2015; 13:2362-2367. [PMID: 26686627 PMCID: PMC4691564 DOI: 10.1016/j.celrep.2015.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022] Open
Abstract
Circadian clocks are oscillatory systems that allow organisms to anticipate rhythmic changes in the environment. Several studies have shown that circadian clocks are connected to metabolism, but it is not generally clear whether metabolic signaling is one voice among many that influence the clock or whether metabolic cycling is the major clock synchronizer. To address this question in cyanobacteria, we used a synthetic biology approach to make normally autotrophic cells capable of growth on exogenous sugar. This allowed us to manipulate metabolism independently from light and dark. We found that feeding sugar to cultures blocked the clock-resetting effect of a dark pulse. Furthermore, in the absence of light, the clock efficiently synchronizes to metabolic cycles driven by rhythmic feeding. We conclude that metabolic activity, independent of its source, is the primary clock driver in cyanobacteria.
Collapse
Affiliation(s)
- Gopal K Pattanayak
- Department of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, 900 E. 57th Street, KCBD 10124, Chicago, IL 60637, USA
| | - Guillaume Lambert
- Department of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, 900 E. 57th Street, KCBD 10124, Chicago, IL 60637, USA
| | - Kevin Bernat
- Department of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, 900 E. 57th Street, KCBD 10124, Chicago, IL 60637, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, 900 E. 57th Street, KCBD 10124, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Alagesan S, Gaudana SB, Wangikar PP. Rhythmic oscillations in KaiC1 phosphorylation and ATP/ADP ratio in nitrogen-fixing cyanobacteriumCyanothecesp. ATCC 51142. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1116737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
A brief history of circadian time: The emergence of redox oscillations as a novel component of biological rhythms. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.pisc.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Liu LN. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:256-65. [PMID: 26619924 PMCID: PMC4756276 DOI: 10.1016/j.bbabio.2015.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 12/24/2022]
Abstract
The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Cyanobacterial thylakoid membranes carry out both oxygenic photosynthesis and respiration. Electron transport components are located in the thylakoid membrane and functionally coordinate with each other. Distribution and dynamics of electron transport components are physiologically regulated in response to environmental change.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
35
|
Shultzaberger RK, Boyd JS, Diamond S, Greenspan RJ, Golden SS. Giving Time Purpose: The Synechococcus elongatus Clock in a Broader Network Context. Annu Rev Genet 2015; 49:485-505. [PMID: 26442846 DOI: 10.1146/annurev-genet-111212-133227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Early research on the cyanobacterial clock focused on characterizing the genes needed to keep, entrain, and convey time within the cell. As the scope of assays used in molecular genetics has expanded to capture systems-level properties (e.g., RNA-seq, ChIP-seq, metabolomics, high-throughput screening of genetic variants), so has our understanding of how the clock fits within and influences a broader cellular context. Here we review the work that has established a global perspective of the clock, with a focus on (a) an emerging network-centric view of clock architecture, (b) mechanistic insights into how temporal and environmental cues are transmitted and integrated within this network,
Collapse
Affiliation(s)
- Ryan K Shultzaberger
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, USA, 92093
| | - Joseph S Boyd
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Division of Biological Sciences, University of California San Diego, La Jolla, USA, 92093
| | - Spencer Diamond
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Division of Biological Sciences, University of California San Diego, La Jolla, USA, 92093
| | - Ralph J Greenspan
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, USA, 92093
| | - Susan S Golden
- Center for Circadian Biology, University of California San Diego, La Jolla, USA, 92093.,Division of Biological Sciences, University of California San Diego, La Jolla, USA, 92093
| |
Collapse
|
36
|
Takano S, Tomita J, Sonoike K, Iwasaki H. The initiation of nocturnal dormancy in Synechococcus as an active process. BMC Biol 2015; 13:36. [PMID: 26058805 PMCID: PMC4494158 DOI: 10.1186/s12915-015-0144-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most organisms, especially photoautotrophs, alter their behaviours in response to day-night alternations adaptively because of their great reliance on light. Upon light-to-dark transition, dramatic and universal decreases in transcription level of the majority of the genes in the genome of the unicellular cyanobacterium, Synechococcus elongatus PCC 7942 are observed. Because Synechococcus is an obligate photoautotroph, it has been generally assumed that repression of the transcription in the dark (dark repression) would be caused by a nocturnal decrease in photosynthetic activities through the reduced availability of energy (e.g. adenosine triphosphate (ATP)) needed for mRNA synthesis. RESULTS However, against this general assumption, we obtained evidence that the rapid and dynamic dark repression is an active process. Although the addition of photosynthesis inhibitors to cells exposed to light mimicked transcription profiles in the dark, it did not significantly affect the cellular level of ATP. By contrast, when ATP levels were decreased by the inhibition of both photosynthesis and respiration, the transcriptional repression was attenuated through inhibition of RNA degradation. This observation indicates that Synechococcus actively downregulates genome-wide transcription in the dark. Even though the level of total mRNA dramatically decreased in the dark, Synechococcus cells were still viable, and they do not need de novo transcription for their survival in the dark for at least 48 hours. CONCLUSIONS Dark repression appears to enable cells to enter into nocturnal dormancy as a feed-forward process, which would be advantageous for their survival under periodic nocturnal conditions.
Collapse
Affiliation(s)
- Sotaro Takano
- Department of Electrical Engineering and Biological Science, Waseda University, TWIns, Shinjuku, Tokyo, 162-8480, Japan.
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuhoku, Nagoya, 467-8603, Japan.
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, TWIns, Shinjuku, Tokyo, 162-8480, Japan.
| | - Hideo Iwasaki
- Department of Electrical Engineering and Biological Science, Waseda University, TWIns, Shinjuku, Tokyo, 162-8480, Japan.
| |
Collapse
|
37
|
Maule AF, Wright DP, Weiner JJ, Han L, Peterson FC, Volkman BF, Silvaggi NR, Ulijasz AT. The aspartate-less receiver (ALR) domains: distribution, structure and function. PLoS Pathog 2015; 11:e1004795. [PMID: 25875291 PMCID: PMC4395418 DOI: 10.1371/journal.ppat.1004795] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/09/2015] [Indexed: 01/07/2023] Open
Abstract
Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains.
Collapse
Affiliation(s)
- Andrew F. Maule
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - David P. Wright
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Joshua J. Weiner
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail: (ATU); (NRS)
| | - Andrew T. Ulijasz
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail: (ATU); (NRS)
| |
Collapse
|
38
|
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A 2015; 112:E1916-25. [PMID: 25825710 DOI: 10.1073/pnas.1504576112] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synechococcus elongatus PCC 7942 is a genetically tractable model cyanobacterium that has been engineered to produce industrially relevant biomolecules and is the best-studied model for a prokaryotic circadian clock. However, the organism is commonly grown in continuous light in the laboratory, and data on metabolic processes under diurnal conditions are lacking. Moreover, the influence of the circadian clock on diurnal metabolism has been investigated only briefly. Here, we demonstrate that the circadian oscillator influences rhythms of metabolism during diurnal growth, even though light-dark cycles can drive metabolic rhythms independently. Moreover, the phenotype associated with loss of the core oscillator protein, KaiC, is distinct from that caused by absence of the circadian output transcriptional regulator, RpaA (regulator of phycobilisome-associated A). Although RpaA activity is important for carbon degradation at night, KaiC is dispensable for those processes. Untargeted metabolomics analysis and glycogen kinetics suggest that functional KaiC is important for metabolite partitioning in the morning. Additionally, output from the oscillator functions to inhibit RpaA activity in the morning, and kaiC-null strains expressing a mutant KaiC phosphomimetic, KaiC-pST, in which the oscillator is locked in the most active output state, phenocopies a ΔrpaA strain. Inhibition of RpaA by the oscillator in the morning suppresses metabolic processes that normally are active at night, and kaiC-null strains show indications of oxidative pentose phosphate pathway activation as well as increased abundance of primary metabolites. Inhibitory clock output may serve to allow secondary metabolite biosynthesis in the morning, and some metabolites resulting from these processes may feed back to reinforce clock timing.
Collapse
|
39
|
Abstract
For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value.
Collapse
|
40
|
Abstract
Structural approaches have provided insight into the mechanisms of circadian clock oscillators. This review focuses upon the myriad structural methods that have been applied to the molecular architecture of cyanobacterial circadian proteins, their interactions with each other, and the mechanism of the KaiABC posttranslational oscillator. X-ray crystallography and solution NMR were deployed to gain an understanding of the three-dimensional structures of the three proteins KaiA, KaiB, and KaiC that make up the inner timer in cyanobacteria. A hybrid structural biology approach including crystallography, electron microscopy, and solution scattering has shed light on the shapes of binary and ternary Kai protein complexes. Structural studies of the cyanobacterial oscillator demonstrate both the strengths and the limitations of the divide-and-conquer strategy. Thus, investigations of complexes involving domains and/or peptides have afforded valuable information into Kai protein interactions. However, high-resolution structural data are still needed at the level of complexes between the 360-kDa KaiC hexamer that forms the heart of the clock and its KaiA and KaiB partners.
Collapse
|
41
|
Rethinking the clockwork: redox cycles and non-transcriptional control of circadian rhythms. Biochem Soc Trans 2014; 42:1-10. [PMID: 24450621 DOI: 10.1042/bst20130169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian rhythms are a hallmark of living organisms, observable in all walks of life from primitive bacteria to highly complex humans. They are believed to have evolved to co-ordinate the timing of biological and behavioural processes to the changing environmental needs brought on by the progression of day and night through the 24-h cycle. Most of the modern study of circadian rhythms has centred on so-called TTFLs (transcription-translation feedback loops), wherein a core group of 'clock' genes, capable of negatively regulating themselves, produce oscillations with a period of approximately 24 h. Recently, however, the prevalence of the TTFL paradigm has been challenged by a series of findings wherein circadian rhythms, in the form of redox reactions, persist in the absence of transcriptional cycles. We have found that circadian cycles of oxidation and reduction are conserved across all domains of life, strongly suggesting that non-TTFL mechanisms work in parallel with the canonical genetic processes of timekeeping to generate the cyclical cellular and behavioural phenotypes that we commonly recognize as circadian rhythms.
Collapse
|
42
|
Dynamic localization of the cyanobacterial circadian clock proteins. Curr Biol 2014; 24:1836-44. [PMID: 25127213 DOI: 10.1016/j.cub.2014.07.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/04/2014] [Accepted: 07/14/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND The cyanobacterial circadian clock system has been extensively studied, and the structures, interactions, and biochemical activities of the central oscillator proteins (KaiA, KaiB, and KaiC) have been well elucidated. Despite this rich repository of information, little is known about the distribution of these proteins within the cell. RESULTS Here we report that KaiA and KaiC localize as discrete foci near a single pole of cells in a clock-dependent fashion, with enhanced polar localization observed at night. KaiA localization is dependent on KaiC; consistent with this notion, KaiA and KaiC colocalize with each other, as well as with CikA, a key input and output factor previously reported to display unipolar localization. The molecular mechanism that localizes KaiC to the poles is conserved in Escherichia coli, another Gram-negative rod-shaped bacterium, suggesting that KaiC localization is not dependent on other clock- or cyanobacterial-specific factors. Moreover, expression of CikA mutant variants that distribute diffusely results in the striking delocalization of KaiC. CONCLUSIONS This work shows that the cyanobacterial circadian system undergoes a circadian orchestration of subcellular organization. We propose that the observed spatiotemporal localization pattern represents a novel layer of regulation that contributes to the robustness of the clock by facilitating protein complex formation and synchronizing the clock with environmental stimuli.
Collapse
|
43
|
Pattanayak G, Rust MJ. The cyanobacterial clock and metabolism. Curr Opin Microbiol 2014; 18:90-5. [PMID: 24667330 DOI: 10.1016/j.mib.2014.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/26/2022]
Abstract
Cyanobacteria possess the simplest known circadian clock, which presents a unique opportunity to study how rhythms are generated and how input signals from the environment reset the clock time. The kaiABC locus forms the core of the oscillator, and the remarkable ability to reconstitute oscillations using purified KaiABC proteins has allowed researchers to study mechanism using the tools of quantitative biochemistry. Autotrophic cyanobacteria experience major shifts in metabolism following a light-dark transition, and recent work suggests that input mechanisms that couple the day-night cycle to the clock involve energy and redox metabolites acting directly on clock proteins. We offer a summary of the current state of knowledge in this system and present a perspective for future lines of investigation.
Collapse
Affiliation(s)
- Gopal Pattanayak
- Department of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, University of Chicago, 900 E 57th Street, Chicago, IL 60637, United States
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, Institute for Genomics and Systems Biology, University of Chicago, 900 E 57th Street, Chicago, IL 60637, United States.
| |
Collapse
|
44
|
Diversity of KaiC-based timing systems in marine Cyanobacteria. Mar Genomics 2014; 14:3-16. [PMID: 24388874 DOI: 10.1016/j.margen.2013.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/19/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
The coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Most eukaryotes possess an internal clock ticking with a periodicity of about one day to anticipate sunrise and sunset. The 24-hour period of the free-running rhythm is highly robust against many changes in the natural environment. Among prokaryotes, only Cyanobacteria are known to harbor such a circadian clock. Its core oscillator consists of just three proteins, KaiA, KaiB, and KaiC that produce 24-hour oscillations of KaiC phosphorylation, even in vitro. This unique three-protein oscillator is well documented for the freshwater cyanobacterium Synechococcus elongatus PCC 7942. Several physiological studies demonstrate a circadian clock also for other Cyanobacteria including marine species. Genes for the core clock components are present in nearly all marine cyanobacterial species, though there are large differences in the specific composition of these genes. In the first section of this review we summarize data on the model circadian clock from S. elongatus PCC 7942 and compare it to the reduced clock system of the marine cyanobacterium Prochlorococcus marinus MED4. In the second part we discuss the diversity of timing mechanisms in other marine Cyanobacteria with regard to the presence or absence of different components of the clock.
Collapse
|
45
|
Abstract
Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.
Collapse
Affiliation(s)
- Akhilesh B. Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Guillaume Rey
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Center, and Wellcome Trust–Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
46
|
Tseng R, Chang YG, Bravo I, Latham R, Chaudhary A, Kuo NW, Liwang A. Cooperative KaiA-KaiB-KaiC interactions affect KaiB/SasA competition in the circadian clock of cyanobacteria. J Mol Biol 2013; 426:389-402. [PMID: 24112939 DOI: 10.1016/j.jmb.2013.09.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/22/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation. The switch from KaiC phosphorylation to dephosphorylation is initiated by the formation of the KaiB-KaiC complex, which occurs upon phosphorylation of the S431 residues of KaiC. We show here that formation of the KaiB-KaiC complex is promoted by KaiA, suggesting cooperativity in the initiation of the dephosphorylation complex. In the KaiA-KaiB interaction, one monomeric subunit of KaiB likely binds to one face of a KaiA dimer, leaving the other face unoccupied. We also show that the A-loops of KaiC exist in a dynamic equilibrium between KaiA-accessible exposed and KaiA-inaccessible buried positions. Phosphorylation at the S431 residues of KaiC shift the A-loops toward the buried position, thereby weakening the KaiA-KaiC interaction, which is expected to be an additional mechanism promoting formation of the KaiABC complex. We also show that KaiB and the clock-output protein SasA compete for overlapping binding sites, which include the B-loops on the CI ring of KaiC. KaiA strongly shifts the competition in KaiB's favor. Thus, in addition to stimulating KaiC phosphorylation, it is likely that KaiA plays roles in switching KaiC from phosphorylation to dephosphorylation, as well as regulating clock output.
Collapse
Affiliation(s)
- Roger Tseng
- School of Natural Sciences, University of California, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343, USA
| | - Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Ian Bravo
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Robert Latham
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | | | - Nai-Wei Kuo
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Andy Liwang
- School of Natural Sciences, University of California, Merced, CA 95343, USA; Quantitative and Systems Biology Graduate Group, University of California, Merced, CA 95343, USA; Chemistry and Chemical Biology, University of California, Merced, CA 95343, USA; Center for Chronobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Filonova A, Haemsch P, Gebauer C, Weisheit W, Wagner V. Protein disulfide isomerase 2 of Chlamydomonas reinhardtii is involved in circadian rhythm regulation. MOLECULAR PLANT 2013; 6:1503-17. [PMID: 23475997 DOI: 10.1093/mp/sst048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interaction partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis. In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.
Collapse
Affiliation(s)
- Anna Filonova
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | | | | | |
Collapse
|
48
|
Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus. Proc Natl Acad Sci U S A 2013; 110:14486-91. [PMID: 23940358 DOI: 10.1073/pnas.1302243110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Circadian rhythms are endogenous biological timing processes that are ubiquitous in organisms ranging from cyanobacteria to humans. In the photoautotrophic unicellular cyanobacterium Synechococcus elongatus PCC 7942, under continuous light (LL) conditions, the transcription-translation feedback loop (TTFL) of KaiC generates a rhythmic change in the accumulation of KaiC relative to KaiA clock proteins (KaiC/KaiA ratio), which peak and trough at subjective dawn and dusk, respectively. However, the role of TTFL in the cyanobacterial circadian system remains unclear because it is not an essential requirement for the basic oscillation driven by the Kai-based posttranslational oscillator (PTO) and the transcriptional output mechanisms. Here, we show that TTFL is important for the circadian photic resetting property in Synechococcus. The robustness of PTO, which is exemplified by the amplitude of the KaiC phosphorylation cycle, changed depending on the KaiC/KaiA ratio, which was cyclic under LL. After cells were transferred from LL to the dark, the clock protein levels remained constant in the dark. When cells were transferred from LL to continuous dark at subjective dawn, the KaiC phosphorylation cycle was attenuated with a lower KaiC/KaiA ratio, a higher KaiC phosphorylation level, and a lower amplitude than that in cells transferred at subjective dusk. We also found that the greater the degree to which PTO was attenuated in continuous dark, the greater the phase shifts upon the subsequent light exposure. Based on these results, we propose that TTFL enhances resetting of the Kai-based PTO in Synechococcus.
Collapse
|
49
|
Puthiyaveetil S, Ibrahim IM, Allen JF. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120260. [PMID: 23754813 DOI: 10.1098/rstb.2012.0260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary University of London, , Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
50
|
Profile of Susan S. Golden. Proc Natl Acad Sci U S A 2013; 110:8758-60. [DOI: 10.1073/pnas.1305064110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|