1
|
Hsieh FS, Nguyen DPM, Heltberg MS, Wu CC, Lee YC, Jensen MH, Chen SH. Plausible, robust biological oscillations through allelic buffering. Cell Syst 2024; 15:1018-1032.e12. [PMID: 39504970 DOI: 10.1016/j.cels.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Biological oscillators can specify time- and dose-dependent functions via dedicated control of their oscillatory dynamics. However, how biological oscillators, which recurrently activate noisy biochemical processes, achieve robust oscillations remains unclear. Here, we characterize the long-term oscillations of p53 and its negative feedback regulator Mdm2 in single cells after DNA damage. Whereas p53 oscillates regularly, Mdm2 from a single MDM2 allele exhibits random unresponsiveness to ∼9% of p53 pulses. Using allelic-specific imaging of MDM2 activity, we show that MDM2 alleles buffer each other to maintain p53 pulse amplitude. Removal of MDM2 allelic buffering cripples the robustness of p53 amplitude, thereby elevating p21 levels and cell-cycle arrest. In silico simulations support that allelic buffering enhances the robustness of biological oscillators and broadens their plausible biochemical space. Our findings show how allelic buffering ensures robust p53 oscillations, highlighting the potential importance of allelic buffering for the emergence of robust biological oscillators during evolution. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Feng-Shu Hsieh
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Duy P M Nguyen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Mathias S Heltberg
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Chia-Chou Wu
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; National Center for Theoretical Sciences, Physics Division, Complex Systems, Taipei 10617, Taiwan
| | - Yi-Chen Lee
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sheng-Hong Chen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; National Center for Theoretical Sciences, Physics Division, Complex Systems, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Vaidehi Narayanan H, Xiang MY, Chen Y, Huang H, Roy S, Makkar H, Hoffmann A, Roy K. Direct observation correlates NFκB cRel in B cells with activating and terminating their proliferative program. Proc Natl Acad Sci U S A 2024; 121:e2309686121. [PMID: 39024115 PMCID: PMC11287273 DOI: 10.1073/pnas.2309686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.
Collapse
Affiliation(s)
- Haripriya Vaidehi Narayanan
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Mark Y. Xiang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Yijia Chen
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Helen Huang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Sukanya Roy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| | - Himani Makkar
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| |
Collapse
|
3
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Rahman SMT, Singh A, Lowe S, Aqdas M, Jiang K, Vaidehi Narayanan H, Hoffmann A, Sung MH. Co-imaging of RelA and c-Rel reveals features of NF-κB signaling for ligand discrimination. Cell Rep 2024; 43:113940. [PMID: 38483906 PMCID: PMC11015162 DOI: 10.1016/j.celrep.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Apeksha Singh
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarina Lowe
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin Jiang
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Haripriya Vaidehi Narayanan
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Preedy MK, White MRH, Tergaonkar V. Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death Dis 2024; 15:202. [PMID: 38467621 PMCID: PMC10928192 DOI: 10.1038/s41419-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.
Collapse
Affiliation(s)
- Marcus K Preedy
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK
| | - Michael R H White
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore, 117596, Singapore.
| |
Collapse
|
6
|
Mulder EJ, Moser B, Delgado J, Steinhardt RC, Esser-Kahn AP. Evidence of collective influence in innate sensing using fluidic force microscopy. Front Immunol 2024; 15:1340384. [PMID: 38322261 PMCID: PMC10844469 DOI: 10.3389/fimmu.2024.1340384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
The innate immune system initiates early response to infection by sensing molecular patterns of infection through pattern-recognition receptors (PRRs). Previous work on PRR stimulation of macrophages revealed significant heterogeneity in single cell responses, suggesting the importance of individual macrophage stimulation. Current methods either isolate individual macrophages or stimulate a whole culture and measure individual readouts. We probed single cell NF-κB responses to localized stimuli within a naïve culture with Fluidic Force Microscopy (FluidFM). Individual cells stimulated in naïve culture were more sensitive compared to individual cells in uniformly stimulated cultures. In cluster stimulation, NF-κB activation decreased with increased cell density or decreased stimulation time. Our results support the growing body of evidence for cell-to-cell communication in macrophage activation, and limit potential mechanisms. Such a mechanism might be manipulated to tune macrophage sensitivity, and the density-dependent modulation of sensitivity to PRR signals could have relevance to biological situations where macrophage density increases.
Collapse
Affiliation(s)
| | | | | | | | - Aaron P. Esser-Kahn
- Esser-Kahn Lab, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Kizilirmak C, Monteleone E, García-Manteiga JM, Brambilla F, Agresti A, Bianchi ME, Zambrano S. Small transcriptional differences among cell clones lead to distinct NF-κB dynamics. iScience 2023; 26:108573. [PMID: 38144455 PMCID: PMC10746373 DOI: 10.1016/j.isci.2023.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Transcription factor dynamics is fundamental to determine the activation of accurate transcriptional programs and yet is heterogeneous at a single-cell level, even within homogeneous populations. We asked how such heterogeneity emerges for the nuclear factor κB (NF-κB). We found that clonal populations of immortalized fibroblasts derived from a single mouse embryo display robustly distinct NF-κB dynamics upon tumor necrosis factor ɑ (TNF-ɑ) stimulation including persistent, oscillatory, and weak activation, giving rise to differences in the transcription of its targets. By combining transcriptomics and simulations we show how less than two-fold differences in the expression levels of genes coding for key proteins of the signaling cascade and feedback system are predictive of the differences of the NF-κB dynamic response of the clones to TNF-ɑ and IL-1β. We propose that small transcriptional differences in the regulatory circuit of a transcription factor can lead to distinct signaling dynamics in cells within homogeneous cell populations and among different cell types.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuele Monteleone
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Francesca Brambilla
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Agresti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
8
|
Dolatmoradi M, Stopka SA, Corning C, Stacey G, Vertes A. High-Throughput f-LAESI-IMS-MS for Mapping Biological Nitrogen Fixation One Cell at a Time. Anal Chem 2023; 95:17741-17749. [PMID: 37989253 DOI: 10.1021/acs.analchem.3c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
For the characterization of the metabolic heterogeneity of cell populations, high-throughput single-cell analysis platforms are needed. In this study, we utilized mass spectrometry (MS) enhanced with ion mobility separation (IMS) and coupled with an automated sampling platform, fiber-based laser ablation electrospray ionization (f-LAESI), for in situ high-throughput single-cell metabolomics in soybean (Glycine max) root nodules. By fully automating the in situ sampling platform, an overall sampling rate of 804 cells/h was achieved for high numbers (>500) of tissue-embedded plant cells. This is an improvement by a factor of 13 compared to the previous f-LAESI-MS configuration. By introducing IMS, the molecular coverage improved, and structural isomers were separated on a millisecond time scale. The enhanced f-LAESI-IMS-MS platform produced 259 sample-related peaks/cell, almost twice as much as the 131 sample-related peaks/cell produced by f-LAESI-MS without IMS. Using the upgraded system, two types of metabolic heterogeneity characterization methods became possible. For unimodal metabolite abundance distributions, the metabolic noise reported on the metabolite level variations within the cell population. For bimodal distributions, the presence of metabolically distinct subpopulations was established. Discovering these latent cellular phenotypes could be linked to the presence of different cell states, e.g., proliferating bacteria in partially occupied plant cells and quiescent bacteroids in fully occupied cells in biological nitrogen fixation, or spatial heterogeneity due to altered local environments.
Collapse
Affiliation(s)
- Marjan Dolatmoradi
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chloe Corning
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
9
|
Biondo M, Singh A, Caselle M, Osella M. Out-of-equilibrium gene expression fluctuations in the presence of extrinsic noise. Phys Biol 2023; 20:10.1088/1478-3975/acea4e. [PMID: 37489881 PMCID: PMC10680095 DOI: 10.1088/1478-3975/acea4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Cell-to-cell variability in protein concentrations is strongly affected by extrinsic noise, especially for highly expressed genes. Extrinsic noise can be due to fluctuations of several possible cellular factors connected to cell physiology and to the level of key enzymes in the expression process. However, how to identify the predominant sources of extrinsic noise in a biological system is still an open question. This work considers a general stochastic model of gene expression with extrinsic noise represented as fluctuations of the different model rates, and focuses on the out-of-equilibrium expression dynamics. Combining analytical calculations with stochastic simulations, we characterize how extrinsic noise shapes the protein variability during gene activation or inactivation, depending on the prevailing source of extrinsic variability, on its intensity and timescale. In particular, we show that qualitatively different noise profiles can be identified depending on which are the fluctuating parameters. This indicates an experimentally accessible way to pinpoint the dominant sources of extrinsic noise using time-coarse experiments.
Collapse
Affiliation(s)
- Marta Biondo
- Department of Physics, University of Turin and INFN, via P. Giuria 1, I-10125 Turin, Italy
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Department of Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, United States of America
| | - Michele Caselle
- Department of Physics, University of Turin and INFN, via P. Giuria 1, I-10125 Turin, Italy
| | - Matteo Osella
- Department of Physics, University of Turin and INFN, via P. Giuria 1, I-10125 Turin, Italy
| |
Collapse
|
10
|
Westfall AK, Gopalan SS, Perry BW, Adams RH, Saviola AJ, Mackessy SP, Castoe TA. Single-Cell Heterogeneity in Snake Venom Expression Is Hardwired by Co-Option of Regulators from Progressively Activated Pathways. Genome Biol Evol 2023; 15:evad109. [PMID: 37311204 PMCID: PMC10289209 DOI: 10.1093/gbe/evad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
The ubiquitous cellular heterogeneity underlying many organism-level phenotypes raises questions about what factors drive this heterogeneity and how these complex heterogeneous systems evolve. Here, we use single-cell expression data from a Prairie rattlesnake (Crotalus viridis) venom gland to evaluate hypotheses for signaling networks underlying snake venom regulation and the degree to which different venom gene families have evolutionarily recruited distinct regulatory architectures. Our findings suggest that snake venom regulatory systems have evolutionarily co-opted trans-regulatory factors from extracellular signal-regulated kinase and unfolded protein response pathways that specifically coordinate expression of distinct venom toxins in a phased sequence across a single population of secretory cells. This pattern of co-option results in extensive cell-to-cell variation in venom gene expression, even between tandemly duplicated paralogs, suggesting this regulatory architecture has evolved to circumvent cellular constraints. While the exact nature of such constraints remains an open question, we propose that such regulatory heterogeneity may circumvent steric constraints on chromatin, cellular physiological constraints (e.g., endoplasmic reticulum stress or negative protein-protein interactions), or a combination of these. Regardless of the precise nature of these constraints, this example suggests that, in some cases, dynamic cellular constraints may impose previously unappreciated secondary constraints on the evolution of gene regulatory networks that favors heterogeneous expression.
Collapse
Affiliation(s)
| | | | - Blair W Perry
- Department of Biology, The University of Texas Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, USA
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| |
Collapse
|
11
|
Downton P, Bagnall JS, England H, Spiller DG, Humphreys NE, Jackson DA, Paszek P, White MRH, Adamson AD. Overexpression of IκB⍺ modulates NF-κB activation of inflammatory target gene expression. Front Mol Biosci 2023; 10:1187187. [PMID: 37228587 PMCID: PMC10203502 DOI: 10.3389/fmolb.2023.1187187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Cells respond to inflammatory stimuli such as cytokines by activation of the nuclear factor-κB (NF-κB) signalling pathway, resulting in oscillatory translocation of the transcription factor p65 between nucleus and cytoplasm in some cell types. We investigate the relationship between p65 and inhibitor-κB⍺ (IκBα) protein levels and dynamic properties of the system, and how this interaction impacts on the expression of key inflammatory genes. Using bacterial artificial chromosomes, we developed new cell models of IκB⍺-eGFP protein overexpression in a pseudo-native genomic context. We find that cells with high levels of the negative regulator IκBα remain responsive to inflammatory stimuli and maintain dynamics for both p65 and IκBα. In contrast, canonical target gene expression is dramatically reduced by overexpression of IκBα, but can be partially rescued by overexpression of p65. Treatment with leptomycin B to promote nuclear accumulation of IκB⍺ also suppresses canonical target gene expression, suggesting a mechanism in which nuclear IκB⍺ accumulation prevents productive p65 interaction with promoter binding sites. This causes reduced target promoter binding and gene transcription, which we validate by chromatin immunoprecipitation and in primary cells. Overall, we show how inflammatory gene transcription is modulated by the expression levels of both IκB⍺ and p65. This results in an anti-inflammatory effect on transcription, demonstrating a broad mechanism to modulate the strength of inflammatory response.
Collapse
Affiliation(s)
- Polly Downton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - James S. Bagnall
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Neil E. Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dean A. Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Michael R. H. White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antony D. Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
13
|
Arginine-vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo. Proc Natl Acad Sci U S A 2023; 120:e2209329120. [PMID: 36656857 PMCID: PMC9942887 DOI: 10.1073/pnas.2209329120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.
Collapse
|
14
|
Zamir A, Li G, Chase K, Moskovitch R, Sun B, Zaritsky A. Emergence of synchronized multicellular mechanosensing from spatiotemporal integration of heterogeneous single-cell information transfer. Cell Syst 2022; 13:711-723.e7. [PMID: 35921844 PMCID: PMC9509451 DOI: 10.1016/j.cels.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 07/07/2022] [Indexed: 01/26/2023]
Abstract
Multicellular synchronization is a ubiquitous phenomenon in living systems. However, how noisy and heterogeneous behaviors of individual cells are integrated across a population toward multicellular synchronization is unclear. Here, we study the process of multicellular calcium synchronization of the endothelial cell monolayer in response to mechanical stimuli. We applied information theory to quantify the asymmetric information transfer between pairs of cells and defined quantitative measures to how single cells receive or transmit information within a multicellular network. Our analysis revealed that multicellular synchronization was established by gradual enhancement of information spread from the single cell to the multicellular scale. Synchronization was associated with heterogeneity in the cells' communication properties, reinforcement of the cells' state, and information flow. Altogether, we suggest a phenomenological model where cells gradually learn their local environment, adjust, and reinforce their internal state to stabilize the multicellular network architecture to support information flow from local to global scales toward multicellular synchronization.
Collapse
Affiliation(s)
- Amos Zamir
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Guanyu Li
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Katelyn Chase
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Robert Moskovitch
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
15
|
Kizilirmak C, Bianchi ME, Zambrano S. Insights on the NF-κB System Using Live Cell Imaging: Recent Developments and Future Perspectives. Front Immunol 2022; 13:886127. [PMID: 35844496 PMCID: PMC9277462 DOI: 10.3389/fimmu.2022.886127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The transcription factor family of nuclear factor kappa B (NF-κB) proteins is widely recognized as a key player in inflammation and the immune responses, where it plays a fundamental role in translating external inflammatory cues into precise transcriptional programs, including the timely expression of a wide variety of cytokines/chemokines. Live cell imaging in single cells showed approximately 15 years ago that the canonical activation of NF-κB upon stimulus is very dynamic, including oscillations of its nuclear localization with a period close to 1.5 hours. This observation has triggered a fruitful interdisciplinary research line that has provided novel insights on the NF-κB system: how its heterogeneous response differs between cell types but also within homogeneous populations; how NF-κB dynamics translate external cues into intracellular signals and how NF-κB dynamics affects gene expression. Here we review the main features of this live cell imaging approach to the study of NF-κB, highlighting the key findings, the existing gaps of knowledge and hinting towards some of the potential future steps of this thriving research field.
Collapse
Affiliation(s)
- Cise Kizilirmak
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco E. Bianchi
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuel Zambrano
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers. PLoS Genet 2022; 18:e1010235. [PMID: 35648786 PMCID: PMC9191726 DOI: 10.1371/journal.pgen.1010235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
The transcription factor NF-κB, which plays an important role in cell fate determination, is involved in the activation of super-enhancers (SEs). However, the biological functions of the NF-κB SEs in gene control are not fully elucidated. We investigated the characteristics of NF-κB-mediated SE activity using fluorescence imaging of RelA, single-cell transcriptome and chromatin accessibility analyses in anti-IgM-stimulated B cells. The formation of cell stimulation-induced nuclear RelA foci was abolished in the presence of hexanediol, suggesting an underlying process of liquid-liquid phase separation. The gained SEs induced a switch-like expression and enhanced cell-to-cell variability in transcriptional response. These properties were correlated with the number of gained cis-regulatory interactions, while switch-like gene induction was associated with the number of NF-κB binding sites in SE. Our study suggests that NF-κB SEs have an important role in the transcriptional regulation of B cells possibly through liquid condensate formation consisting of macromolecular interactions. NF-κB produces an all-or-none activation response upon the activation of B cell receptors. These dynamics modulate the amplitude and frequency of target mRNA induction in cell populations. In this research, we performed single-cell assessment of chromatin accessibility and RNA expression, coupled with fluorescence imaging to characterize the nuclear dynamics of NF-κB proteins in B cell upon receptor stimulation. We found that upon cellular activation, NF-κB-mediated long-range activation of enhancers cooperatively evoked RNA production. In addition, predicted DNA contacts brought by open chromatin led to the high heterogeneity of RNA levels in cell populations. Stimuli-dependent NF-κB foci formation was further inhibited by 1,6-hexanediol (liquid-liquid phase separation inhibitor) and JQ1 (coactivator protein BRD4 inhibitor). We thus propose that nuclear NF-κB plays an important role in the transcriptional regulation of B cell development possibly through the formation of liquid condensates.
Collapse
|
17
|
Abstract
A substantial portion of molecules in an organism are involved in regulation of a wide spectrum of biological processes. Several models have been presented for various forms of biological regulation, including gene expression regulation and physiological regulation; however, a generic model is missing. Recently a new unifying theory in biology, poikilosis, was presented. Poikilosis indicates that all systems display intrinsic heterogeneity, which is a normal state. The concept of poikilosis allowed development of a model for biological regulation applicable to all types of regulated systems. The perturbation-lagom-TATAR countermeasures-regulator (PLTR) model combines the effects of perturbation and lagom (allowed and sufficient extent of heterogeneity) in a system with tolerance, avoidance, repair, attenuation and resistance (TARAR) countermeasures, and possible regulators. There are three modes of regulation, two of which are lagom-related. In the first scenario, lagom is maintained, both intrinsic (passive) and active TARAR countermeasures can be involved. In the second mode, there is a shift from one lagom to another. In the third mode, reguland regulation, the regulated entity is the target of a regulatory shift, which is often irreversible or requires action of another regulator to return to original state. After the shift, the system enters to lagom maintenance mode, but at new lagom extent. The model is described and elaborated with examples and applications, including medicine and systems biology. Consequences of non-lagom extent of heterogeneity are introduced, along with a novel idea for therapy by reconstituting biological processes to lagom extent, even when the primary effect cannot be treated.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, Lund, SE-221 84, Sweden
| |
Collapse
|
18
|
Abstract
A substantial portion of molecules in an organism are involved in regulation of a wide spectrum of biological processes. Several models have been presented for various forms of biological regulation, including gene expression regulation and physiological regulation; however, a generic model is missing. Recently a new unifying theory in biology, poikilosis, was presented. Poikilosis indicates that all systems display intrinsic heterogeneity. The concept of poikilosis allowed development of a model for biological regulation applicable to all types of regulated systems. The perturbation-lagom-TATAR countermeasures-regulator (PLTR) model combines the effects of perturbation and lagom (allowed and sufficient extent of heterogeneity) in a system with tolerance, avoidance, repair, attenuation and resistance (TARAR) countermeasures, and possible regulators. There are three modes of regulation, two of which are lagom-related. In the first scenario, lagom is maintained, both intrinsic (passive) and active TARAR countermeasures can be involved. In the second mode, there is a shift from one lagom to another. In the third mode, reguland regulation, the regulated entity is the target of a regulatory shift, which is often irreversible or requires action of another regulator to return to original state. After the shift, the system enters to lagom maintenance mode, but at new lagom extent. The model is described and elaborated with examples and applications, including medicine and systems biology. Consequences of non-lagom extent of heterogeneity are introduced, along with a novel idea for therapy by reconstituting biological processes to lagom extent, even when the primary effect cannot be treated.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, Lund, SE-221 84, Sweden
| |
Collapse
|
19
|
Liu J, Yang M, Zhao W, Zhou X. CCPE: cell cycle pseudotime estimation for single cell RNA-seq data. Nucleic Acids Res 2022; 50:704-716. [PMID: 34931240 PMCID: PMC8789092 DOI: 10.1093/nar/gkab1236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Pseudotime analysis from scRNA-seq data enables to characterize the continuous progression of various biological processes, such as the cell cycle. Cell cycle plays an important role in cell fate decisions and differentiation and is often regarded as a confounder in scRNA-seq data analysis when analyzing the role of other factors. Therefore, accurate prediction of cell cycle pseudotime and identification of cell cycle stages are important steps for characterizing the development-related biological processes. Here, we develop CCPE, a novel cell cycle pseudotime estimation method to characterize cell cycle timing and identify cell cycle phases from scRNA-seq data. CCPE uses a discriminative helix to characterize the circular process of the cell cycle and estimates each cell's pseudotime along the cell cycle. We evaluated the performance of CCPE based on a variety of simulated and real scRNA-seq datasets. Our results indicate that CCPE is an effective method for cell cycle estimation and competitive in various applications compared with other existing methods. CCPE successfully identified cell cycle marker genes and is robust to dropout events in scRNA-seq data. Accurate prediction of the cell cycle using CCPE can also effectively facilitate the removal of cell cycle effects across cell types or conditions.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Electronic and Information Engineering, Tongji University, Shanghai, Shanghai 201804, China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mengyuan Yang
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
20
|
Adlung L, Stapor P, Tönsing C, Schmiester L, Schwarzmüller LE, Postawa L, Wang D, Timmer J, Klingmüller U, Hasenauer J, Schilling M. Cell-to-cell variability in JAK2/STAT5 pathway components and cytoplasmic volumes defines survival threshold in erythroid progenitor cells. Cell Rep 2021; 36:109507. [PMID: 34380040 DOI: 10.1016/j.celrep.2021.109507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Survival or apoptosis is a binary decision in individual cells. However, at the cell-population level, a graded increase in survival of colony-forming unit-erythroid (CFU-E) cells is observed upon stimulation with erythropoietin (Epo). To identify components of Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5) signal transduction that contribute to the graded population response, we extended a cell-population-level model calibrated with experimental data to study the behavior in single cells. The single-cell model shows that the high cell-to-cell variability in nuclear phosphorylated STAT5 is caused by variability in the amount of Epo receptor (EpoR):JAK2 complexes and of SHP1, as well as the extent of nuclear import because of the large variance in the cytoplasmic volume of CFU-E cells. 24-118 pSTAT5 molecules in the nucleus for 120 min are sufficient to ensure cell survival. Thus, variability in membrane-associated processes is sufficient to convert a switch-like behavior at the single-cell level to a graded population-level response.
Collapse
Affiliation(s)
- Lorenz Adlung
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Paul Stapor
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany
| | - Christian Tönsing
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Leonard Schmiester
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany
| | - Luisa E Schwarzmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lena Postawa
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dantong Wang
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany
| | - Jens Timmer
- Institute of Physics and Freiburg Center for Data Analysis and Modelling (FDM), University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany.
| | - Jan Hasenauer
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany; Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany; Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany.
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Bass VL, Wong VC, Bullock ME, Gaudet S, Miller‐Jensen K. TNF stimulation primarily modulates transcriptional burst size of NF-κB-regulated genes. Mol Syst Biol 2021; 17:e10127. [PMID: 34288498 PMCID: PMC8290835 DOI: 10.15252/msb.202010127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-to-cell heterogeneity is a feature of the tumor necrosis factor (TNF)-stimulated inflammatory response mediated by the transcription factor NF-κB, motivating an exploration of the underlying sources of this noise. Here, we combined single-transcript measurements with computational models to study transcriptional noise at six NF-κB-regulated inflammatory genes. In the basal state, NF-κB-target genes displayed an inverse correlation between mean and noise characteristic of transcriptional bursting. By analyzing transcript distributions with a bursting model, we found that TNF primarily activated transcription by increasing burst size while maintaining burst frequency for gene promoters with relatively high basal histone 3 acetylation (AcH3) that marks open chromatin environments. For promoters with lower basal AcH3 or when AcH3 was decreased with a small molecule drug, the contribution of burst frequency to TNF activation increased. Finally, we used a mathematical model to show that TNF positive feedback amplified gene expression noise resulting from burst size-mediated transcription, leading to a subset of cells with high TNF protein expression. Our results reveal potential sources of noise underlying intercellular heterogeneity in the TNF-mediated inflammatory response.
Collapse
Affiliation(s)
- Victor L Bass
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenCTUSA
- Present address:
Neuro‐Immune Regulome UnitNational Eye InstituteNational Institutes of HealthBethesdaMDUSA
| | - Victor C Wong
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenCTUSA
- Present address:
Janelia Research CampusHoward Hughes Medical InstituteAshburnVAUSA
| | - M Elise Bullock
- Department of Biomedical EngineeringYale UniversityNew HavenCTUSA
| | - Suzanne Gaudet
- Department of Cancer Biology and Center for Cancer Systems BiologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of GeneticsHarvard Medical SchoolBostonMAUSA
- Present address:
Novartis Institute for BioMedical ResearchCambridgeMAUSA
| | - Kathryn Miller‐Jensen
- Department of Molecular, Cellular, and Developmental BiologyYale UniversityNew HavenCTUSA
- Department of Biomedical EngineeringYale UniversityNew HavenCTUSA
| |
Collapse
|
22
|
Cytokine combinations for human blood stem cell expansion induce cell type- and cytokine-specific signaling dynamics. Blood 2021; 138:847-857. [PMID: 33988686 DOI: 10.1182/blood.2020008386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/23/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular signal-regulated kinase (ERK) pathway over time (i.e. dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by SCF and FLT3L in HSCs, but by SCF, IL3 and GCSF in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. E.g. CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous, cytokine- and cell type- specific ERK signaling dynamics, illustrating their relevance in regulating HSPC fates.
Collapse
|
23
|
Muñoz-Rojas AR, Kelsey I, Pappalardo JL, Chen M, Miller-Jensen K. Co-stimulation with opposing macrophage polarization cues leads to orthogonal secretion programs in individual cells. Nat Commun 2021; 12:301. [PMID: 33436596 PMCID: PMC7804107 DOI: 10.1038/s41467-020-20540-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages are innate immune cells that contribute to fighting infections, tissue repair, and maintaining tissue homeostasis. To enable such functional diversity, macrophages resolve potentially conflicting cues in the microenvironment via mechanisms that are unclear. Here, we use single-cell RNA sequencing to explore how individual macrophages respond when co-stimulated with inflammatory stimuli LPS and IFN-γ and the resolving cytokine IL-4. These co-stimulated macrophages display a distinct global transcriptional program. However, variable negative cross-regulation between some LPS + IFN-γ-specific and IL-4-specific genes results in cell-to-cell heterogeneity in transcription. Interestingly, negative cross-regulation leads to mutually exclusive expression of the T-cell-polarizing cytokine genes Il6 and Il12b versus the IL-4-associated factors Arg1 and Chil3 in single co-stimulated macrophages, and single-cell secretion measurements show that these specialized functions are maintained for at least 48 h. This study suggests that increasing functional diversity in the population is one strategy macrophages use to respond to conflicting environmental cues.
Collapse
Affiliation(s)
- Andrés R Muñoz-Rojas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ilana Kelsey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jenna L Pappalardo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Meibin Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
24
|
Guillemin A, Stumpf MPH. Noise and the molecular processes underlying cell fate decision-making. Phys Biol 2021; 18:011002. [PMID: 33181489 DOI: 10.1088/1478-3975/abc9d1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell fate decision-making events involve the interplay of many molecular processes, ranging from signal transduction to genetic regulation, as well as a set of molecular and physiological feedback loops. Each aspect offers a rich field of investigation in its own right, but to understand the whole process, even in simple terms, we need to consider them together. Here we attempt to characterise this process by focussing on the roles of noise during cell fate decisions. We use a range of recent results to develop a view of the sequence of events by which a cell progresses from a pluripotent or multipotent to a differentiated state: chromatin organisation, transcription factor stoichiometry, and cellular signalling all change during this progression, and all shape cellular variability, which becomes maximal at the transition state.
Collapse
Affiliation(s)
- Anissa Guillemin
- School of BioSciences, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
25
|
Harper CV, McNamara AV, Spiller DG, Charnock JC, White MRH, Davis JRE. Calcium dynamics and chromatin remodelling underlie heterogeneity in prolactin transcription. J Mol Endocrinol 2021; 66:59-69. [PMID: 33112804 PMCID: PMC7774774 DOI: 10.1530/jme-20-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022]
Abstract
Pituitary cells have been reported to show spontaneous calcium oscillations and dynamic transcription cycles. To study both processes in the same living cell in real time, we used rat pituitary GH3 cells stably expressing human prolactin-luciferase or prolactin-EGFP reporter gene constructs loaded with a fluorescent calcium indicator and measured activity using single-cell time-lapse microscopy. We observed heterogeneity between clonal cells in the calcium activity and prolactin transcription in unstimulated conditions. There was a significant correlation between cells displaying spontaneous calcium spikes and cells showing spontaneous bursts in prolactin expression. Notably, cells showing no basal calcium activity showed low prolactin expression but elicited a significantly greater transcriptional response to BayK8644 compared to cells showing basal calcium activity. This suggested the presence of two subsets of cells within the population at any one time. Fluorescence-activated cell sorting was used to sort cells into two populations based on the expression level of prolactin-EGFP however, the bimodal pattern of expression was restored within 26 h. Chromatin immunoprecipitation showed that these sorted populations were distinct due to the extent of histone acetylation. We suggest that maintenance of a heterogeneous bimodal population is a fundamental characteristic of this cell type and that calcium activation and histone acetylation, at least in part, drive prolactin transcriptional competence.
Collapse
Affiliation(s)
- Claire V Harper
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
- Correspondence should be addressed to C V Harper:
| | - Anne V McNamara
- Systems Microscopy Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jayne C Charnock
- Department of Biology, Edge Hill University, Ormskirk, Lancashire, UK
| | - Michael R H White
- Systems Microscopy Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Julian R E Davis
- Endocrine Sciences Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
26
|
Gene-Specific Linear Trends Constrain Transcriptional Variability of the Toll-like Receptor Signaling. Cell Syst 2020; 11:300-314.e8. [PMID: 32918862 PMCID: PMC7521480 DOI: 10.1016/j.cels.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/08/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
Single-cell gene expression is inherently variable, but how this variability is controlled in response to stimulation remains unclear. Here, we use single-cell RNA-seq and single-molecule mRNA counting (smFISH) to study inducible gene expression in the immune toll-like receptor system. We show that mRNA counts of tumor necrosis factor α conform to a standard stochastic switch model, while transcription of interleukin-1β involves an additional regulatory step resulting in increased heterogeneity. Despite different modes of regulation, systematic analysis of single-cell data for a range of genes demonstrates that the variability in transcript count is linearly constrained by the mean response over a range of conditions. Mathematical modeling of smFISH counts and experimental perturbation of chromatin state demonstrates that linear constraints emerge through modulation of transcriptional bursting along with gene-specific relationships. Overall, our analyses demonstrate that the variability of the inducible single-cell mRNA response is constrained by transcriptional bursting. Single-cell TNF-α and IL-1β mRNA responses are differentially controlled Variability of TLR-induced responses scale linearly with mean mRNA counts Gene-specific constraints emerge via modulation of transcriptional bursting Chromatin state regulates transcriptional bursting of IL-1β
Collapse
|
27
|
Abstract
Biological systems are dynamic and display heterogeneity at all levels. Ubiquitous heterogeneity, here called for poikilosis, is an integral and important property of organisms and in molecules, systems and processes within them. Traditionally, heterogeneity in biology and experiments has been considered as unwanted noise, here poikilosis is shown to be the normal state. Acceptable variation ranges are called as lagom. Non-lagom, variations that are too extensive, have negative effects, which influence interconnected levels and once the variation is large enough cause a disease and can lead even to death. Poikilosis has numerous applications and consequences e.g. for how to design, analyze and report experiments, how to develop and apply prediction and modelling methods, and in diagnosis and treatment of diseases. Poikilosis-aware new and practical definitions are provided for life, death, senescence, disease, and lagom. Poikilosis is the first new unifying theory in biology since evolution and should be considered in every scientific study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| |
Collapse
|
28
|
Abstract
Biological systems are dynamic and display heterogeneity at all levels. Ubiquitous heterogeneity, here called for poikilosis, is an integral and important property of organisms and in molecules, systems and processes within them. Traditionally, heterogeneity in biology and experiments has been considered as unwanted noise, here poikilosis is shown to be the normal state. Acceptable variation ranges are called as lagom. Non-lagom, variations that are too extensive, have negative effects, which influence interconnected levels and once the variation is large enough cause a disease and can lead even to death. Poikilosis has numerous applications and consequences e.g. for how to design, analyze and report experiments, how to develop and apply prediction and modelling methods, and in diagnosis and treatment of diseases. Poikilosis-aware new and practical definitions are provided for life, death, senescence, disease, and lagom. Poikilosis is the first new unifying theory in biology since evolution and should be considered in every scientific study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| |
Collapse
|
29
|
Paszek A, Kardyńska M, Bagnall J, Śmieja J, Spiller DG, Widłak P, Kimmel M, Widlak W, Paszek P. Heat shock response regulates stimulus-specificity and sensitivity of the pro-inflammatory NF-κB signalling. Cell Commun Signal 2020; 18:77. [PMID: 32448393 PMCID: PMC7245923 DOI: 10.1186/s12964-020-00583-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ability to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Heat Shock (HS) affects the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor, a critical regulator of proliferation and inflammation, however, our quantitative understanding of how cells sense and adapt to temperature changes is limited. METHODS We used live-cell time-lapse microscopy and mathematical modelling to understand the signalling of the NF-κB system in the human MCF7 breast adenocarcinoma cells in response to pro-inflammatory Interleukin 1β (IL1β) and Tumour Necrosis Factor α (TNFα) cytokines, following exposure to a 37-43 °C range of physiological and clinical temperatures. RESULTS We show that exposure to 43 °C 1 h HS inhibits the immediate NF-κB signalling response to TNFα and IL1β stimulation although uptake of cytokines is not impaired. Within 4 h after HS treatment IL1β-induced NF-κB responses return to normal levels, but the recovery of the TNFα-induced responses is still affected. Using siRNA knock-down of Heat Shock Factor 1 (HSF1) we show that this stimulus-specificity is conferred via the Inhibitory κB kinase (IKK) signalosome where HSF1-dependent feedback regulates TNFα, but not IL1β-mediated IKK recovery post HS. Furthermore, we demonstrate that through the temperature-dependent denaturation and recovery of IKK, TNFα and IL1β-mediated signalling exhibit different temperature sensitivity and adaptation to repeated HS when exposed to a 37-43 °C temperature range. Specifically, IL1β-mediated NF-κB responses are more robust to temperature changes in comparison to those induced by TNFα treatment. CONCLUSIONS We demonstrate that the kinetics of the NF-κB system following temperature stress is cytokine specific and exhibit differential adaptation to temperature changes. We propose that this differential temperature sensitivity is mediated via the IKK signalosome, which acts as a bona fide temperature sensor trough the HSR cross-talk. This novel quantitative understanding of NF-κB and HSR interactions is fundamentally important for the potential optimization of therapeutic hyperthermia protocols. Video Abstract.
Collapse
Affiliation(s)
- Anna Paszek
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Małgorzata Kardyńska
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - James Bagnall
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - David G. Spiller
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Piotr Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
- Departments of Statistics and Bioengineering, Rice University, Houston, TX USA
| | - Wieslawa Widlak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Pawel Paszek
- System Microscopy Centre, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
30
|
Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity. Nat Commun 2020; 11:2117. [PMID: 32355218 PMCID: PMC7192917 DOI: 10.1038/s41467-020-16019-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
White adipose tissue plays an important role in physiological homeostasis and metabolic disease. Different fat depots have distinct metabolic and inflammatory profiles and are differentially associated with disease risk. It is unclear whether these differences are intrinsic to the pre-differentiated stage. Using single-cell RNA sequencing, a unique network methodology and a data integration technique, we predict metabolic phenotypes in differentiating cells. Single-cell RNA-seq profiles of human preadipocytes during adipogenesis in vitro identifies at least two distinct classes of subcutaneous white adipocytes. These differences in gene expression are separate from the process of browning and beiging. Using a systems biology approach, we identify a new network of zinc-finger proteins that are expressed in one class of preadipocytes and is potentially involved in regulating adipogenesis. Our findings gain a deeper understanding of both the heterogeneity of white adipocytes and their link to normal metabolism and disease. The origin of the heterogeneity of metabolic and inflammatory profiles exhibited by white adipocytes is little understood. Here, using scRNA-seq and computational methods, the authors show that differentiating preadipocytes exhibit gene expression differences and suggest underlying regulators.
Collapse
|
31
|
Shahinuzzaman M, Barua D. Dissecting Particle Uptake Heterogeneity in a Cell Population Using Bayesian Analysis. Biophys J 2020; 118:1526-1536. [PMID: 32101713 DOI: 10.1016/j.bpj.2020.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/10/2019] [Accepted: 01/30/2020] [Indexed: 11/18/2022] Open
Abstract
Individual cells in a solution display variable uptake of nanomaterials, peptides, and nutrients. Such variability reflects their heterogeneity in endocytic capacity. In a recent work, we have shown that the endocytic capacity of a cell depends on its size and surface density of endocytic components (transporters). We also demonstrated that in MDA-MB-231 breast cancer cells, the cell-surface transporter density (n) may decay with cell radius (r) following the power rule n ∼ rα, where α ≈ -1. In this work, we investigate how n and r may independently contribute to the endocytic heterogeneity of a cell population. Our analysis indicates that the smaller cells display more heterogeneity because of the higher stochastic variations in n. By contrast, the larger cells display a more uniform uptake, reflecting less-stochastic variations in n. We provide analyses of these dependencies by establishing a stochastic model. Our analysis reveals that the exponent α in the above relationship is not a constant; rather, it is a random variable whose distribution depends on cell size r. Using Bayesian analysis, we characterize the cell-size-dependent distributions of α that accurately capture the particle uptake heterogeneity of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Md Shahinuzzaman
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Dipak Barua
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri.
| |
Collapse
|
32
|
Hiramatsu K, Yamada K, Lindley M, Suzuki K, Goda K. Large-scale label-free single-cell analysis of paramylon in Euglena gracilis by high-throughput broadband Raman flow cytometry. BIOMEDICAL OPTICS EXPRESS 2020; 11:1752-1759. [PMID: 32341845 PMCID: PMC7173913 DOI: 10.1364/boe.382957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Microalga-based biomaterial production has attracted attention as a new source of drugs, foods, and biofuels. For enhancing the production efficiency, it is essential to understand its differences between heterogeneous microalgal subpopulations. However, existing techniques are not adequate to address the need due to the lack of single-cell resolution or the inability to perform large-scale analysis and detect small molecules. Here we demonstrated large-scale single-cell analysis of Euglena gracilis (a unicellular microalgal species that produces paramylon as a potential drug for HIV and colon cancer) with our recently developed high-throughput broadband Raman flow cytometer at a throughput of >1,000 cells/s. Specifically, we characterized the intracellular content of paramylon from single-cell Raman spectra of 10,000 E. gracilis cells cultured under five different conditions and found that paramylon contents in E. gracilis cells cultured in an identical condition is given by a log-normal distribution, which is a good model for describing the number of chemicals in a reaction network. The capability of characterizing distribution functions in a label-free manner is an important basis for isolating specific cell populations for synthetic biology via directed evolution based on the intracellular content of metabolites.
Collapse
Affiliation(s)
- Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Centre for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | | | - Matthew Lindley
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., Tokyo 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|
33
|
Muldoon JJ, Chuang Y, Bagheri N, Leonard JN. Macrophages employ quorum licensing to regulate collective activation. Nat Commun 2020; 11:878. [PMID: 32054845 PMCID: PMC7018708 DOI: 10.1038/s41467-020-14547-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Macrophage-initiated inflammation is tightly regulated to eliminate threats such as infections while suppressing harmful immune activation. However, individual cells’ signaling responses to pro-inflammatory cues are heterogeneous, with subpopulations emerging with high or low activation states. Here, we use single-cell tracking and dynamical modeling to develop and validate a revised model for lipopolysaccharide (LPS)-induced macrophage activation that invokes a mechanism we term quorum licensing. The results show that bimodal phenotypic partitioning of macrophages is primed during the resting state, dependent on cumulative history of cell density, predicted by extrinsic noise in transcription factor expression, and independent of canonical LPS-induced intercellular feedback in the tumor necrosis factor (TNF) response. Our analysis shows how this density-dependent coupling produces a nonlinear effect on collective TNF production. We speculate that by linking macrophage density to activation, this mechanism could amplify local responses to threats and prevent false alarms. Macrophage activation is tightly regulated to maintain immune homeostasis, yet activation is also heterogeneous. Here, the authors show that macrophages coordinate activation by partitioning into two phenotypes that can nonlinearly amplify collective inflammatory cytokine production as a function of cell density.
Collapse
Affiliation(s)
- Joseph J Muldoon
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yishan Chuang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neda Bagheri
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA. .,Biology and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Joshua N Leonard
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA. .,Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
34
|
Turgeon PJ, Chan GC, Chen L, Jamal AN, Yan MS, Ho JJD, Yuan L, Ibeh N, Ku KH, Cybulsky MI, Aird WC, Marsden PA. Epigenetic Heterogeneity and Mitotic Heritability Prime Endothelial Cell Gene Induction. THE JOURNAL OF IMMUNOLOGY 2020; 204:1173-1187. [DOI: 10.4049/jimmunol.1900744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
35
|
Pisarchik AN, Maksimenko VA, Andreev AV, Frolov NS, Makarov VV, Zhuravlev MO, Runnova AE, Hramov AE. Coherent resonance in the distributed cortical network during sensory information processing. Sci Rep 2019; 9:18325. [PMID: 31797968 PMCID: PMC6892867 DOI: 10.1038/s41598-019-54577-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Neuronal brain network is a distributed computing system, whose architecture is dynamically adjusted to provide optimal performance of sensory processing. A small amount of visual information needed effortlessly be processed, activates neural activity in occipital and parietal areas. Conversely, a visual task which requires sustained attention to process a large amount of sensory information, involves a set of long-distance connections between parietal and frontal areas coordinating the activity of these distant brain regions. We demonstrate that while neural interactions result in coherence, the strongest connection is achieved through coherence resonance induced by adjusting intrinsic brain noise.
Collapse
Affiliation(s)
- Alexander N Pisarchik
- Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcón, Madrid, Spain
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir A Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Andrey V Andreev
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Nikita S Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir V Makarov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Maxim O Zhuravlev
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Anastasija E Runnova
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia
| | - Alexander E Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Component, Innopolis University, 1 Universitetskaya str., Innopolis, The Republic of Tatarstan, Russia.
| |
Collapse
|
36
|
Fritz G, Walker N, Gerland U. Heterogeneous Timing of Gene Induction as a Regulation Strategy. J Mol Biol 2019; 431:4760-4774. [PMID: 31141707 DOI: 10.1016/j.jmb.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
Abstract
In response to environmental changes, cells often adapt by up-regulating genes to synthesize proteins that generate a benefit in the new environment. Several such cases of gene induction have been reported where the timing was heterogeneous, with some cells responding early and others responding late, although the microbial population was genetically homogeneous and the environment was well mixed. Here, we explore under which conditions heterogeneous timing of gene induction could be advantageous for the population as a whole. We base our study on a mathematical model that accounts for the cost of protein synthesis in terms of resources, which cells must provide immediately, whereas the associated benefit accumulates only slowly over the protein lifetime. Due to this delayed benefit, gene induction can be a risky investment, if resources are scarce and the environment fluctuates rapidly and unpredictably. Unprofitable gene induction then depletes the remaining limiting resource needed for maintenance of cell viability. We show that whenever gene induction is associated with a transient risk but beneficial in the long run, the stochastic timing of gene induction maximizes the reproductive success of a population. In particular, in an environment of stochastic periods of famine and feast, an optimum emerges from a trade-off between short-term growth, favoring rapid and homogeneous responses, and long-term survival, favoring a broadly heterogeneous response. Our analysis suggests that the optimal variability of induction times is just as large as the time required for the amortization of the initial investment into protein synthesis.
Collapse
Affiliation(s)
- Georg Fritz
- LOEWE Center for Synthetic Microbiology & Department of Physics, Marburg, Germany.
| | - Noreen Walker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ulrich Gerland
- Physik Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
37
|
Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution. Biotechnol Adv 2019; 37:107388. [DOI: 10.1016/j.biotechadv.2019.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/09/2023]
|
38
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is remarkable. Despite numbering only about 10,000 neurons on each side of the third ventricle, the SCN is our principal circadian clock, directing the daily cycles of behaviour and physiology that set the tempo of our lives. When this nucleus is isolated in organotypic culture, its autonomous timing mechanism can persist indefinitely, with precision and robustness. The discovery of the cell-autonomous transcriptional and post-translational feedback loops that drive circadian activity in the SCN provided a powerful exemplar of the genetic specification of complex mammalian behaviours. However, the analysis of circadian time-keeping is moving beyond single cells. Technical and conceptual advances, including intersectional genetics, multidimensional imaging and network theory, are beginning to uncover the circuit-level mechanisms and emergent properties that make the SCN a uniquely precise and robust clock. However, much remains unknown about the SCN, not least the intrinsic properties of SCN neurons, its circuit topology and the neuronal computations that these circuits support. Moreover, the convention that the SCN is a neuronal clock has been overturned by the discovery that astrocytes are an integral part of the timepiece. As a test bed for examining the relationships between genes, cells and circuits in sculpting complex behaviours, the SCN continues to offer powerful lessons and opportunities for contemporary neuroscience.
Collapse
|
39
|
X-Linked IRAK1 Polymorphism is Associated with Sex-Related Differences in Polymorphonuclear Granulocyte and Monocyte Activation and Response Variabilities. Shock 2019; 53:434-441. [PMID: 31306349 DOI: 10.1097/shk.0000000000001404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Common X-linked genetic polymorphisms are expected to alter cellular responses affecting males and females differently through sex-linked inheritance pattern as well as X chromosome (ChrX) mosaicism and associated ChrX skewing, which is unique to females. We tested this hypothesis in ex vivo lipopolysaccharide and phorbol ester-stimulated polymorphonuclear granulocytes (PMNs) and monocytes from healthy volunteers (n = 51). Observations were analyzed after stratification by sex alone or the presence of variant IRAK1 haplotype a common X-linked polymorphism with previously demonstrated major clinical impacts. Upon cell activation, CD11b, CD45, CD66b, CD63, and CD14 expression was markedly and similarly elevated in healthy males and females. By contrast, PMN and monocyte activation measured by CD11b, CD66b, and CD63 was increased in variant-IRAK1 subjects as compared with WT. Stratification by IRAK1 genotype and sex showed similar cell activation effect on variant-IRAK1 subjects and an intermediate degree of cell activation in heterozygous mosaic females. The increased membrane expression of these proteins in variant-IRAK1 subjects was associated with similar or increased intersubject but uniformly decreased intrasubject cell response variabilities as compared with WT. We also tested white blood cell ChrX skewing in the healthy cohort as well as in a sample of female trauma patients (n = 201). ChrX inactivation ratios were similar in IRAK1 WT, variant, and heterozygous healthy subjects. Trauma patients showed a trend of blunted ChrX skewing at admission in homozygous variant-IRAK1 and heterozygous mosaic-IRAK1 female subjects as compared with WT. Trauma-induced de novo ChrX skewing was also depressed in variant-IRAK1 and mosaic-IRAK1 female trauma patients as compared with WT. Our study indicates that augmented PMN and monocyte activation in variant-IRAK1 subjects is accompanied by decreased intrasubject cellular variability and blunted de novo ChrX skewing in response to trauma. A more pronounced cell activation of PMNs and monocytes accompanied by decreased response variabilities in variant-IRAK1 subjects may be a contributing mechanism affecting the course of sepsis and trauma and may also impact sex-based outcome differences due to its X-linked inheritance pattern and high prevalence.
Collapse
|
40
|
Stožer A, Markovič R, Dolenšek J, Perc M, Marhl M, Slak Rupnik M, Gosak M. Heterogeneity and Delayed Activation as Hallmarks of Self-Organization and Criticality in Excitable Tissue. Front Physiol 2019; 10:869. [PMID: 31333504 PMCID: PMC6624746 DOI: 10.3389/fphys.2019.00869] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Self-organized critical dynamics is assumed to be an attractive mode of functioning for several real-life systems and entails an emergent activity in which the extent of observables follows a power-law distribution. The hallmarks of criticality have recently been observed in a plethora of biological systems, including beta cell populations within pancreatic islets of Langerhans. In the present study, we systematically explored the mechanisms that drive the critical and supercritical behavior in networks of coupled beta cells under different circumstances by means of experimental and computational approaches. Experimentally, we employed high-speed functional multicellular calcium imaging of fluorescently labeled acute mouse pancreas tissue slices to record calcium signals in a large number of beta cells simultaneously, and with a high spatiotemporal resolution. Our experimental results revealed that the cellular responses to stimulation with glucose are biphasic and glucose-dependent. Under physiological as well as under supraphysiological levels of stimulation, an initial activation phase was followed by a supercritical plateau phase with a high number of global intercellular calcium waves. However, the activation phase displayed fingerprints of critical behavior under lower stimulation levels, with a progressive recruitment of cells and a power-law distribution of calcium wave sizes. On the other hand, the activation phase provoked by pathophysiologically high glucose concentrations, differed considerably and was more rapid, less continuous, and supercritical. To gain a deeper insight into the experimentally observed complex dynamical patterns, we built up a phenomenological model of coupled excitable cells and explored empirically the model’s necessities that ensured a good overlap between computational and experimental results. It turned out that such a good agreement between experimental and computational findings was attained when both heterogeneous and stimulus-dependent time lags, variability in excitability levels, as well as a heterogeneous cell-cell coupling were included into the model. Most importantly, since our phenomenological approach involved only a few parameters, it naturally lends itself not only for determining key mechanisms of self-organized criticality at the tissue level, but also points out various features for comprehensive and realistic modeling of different excitable systems in nature.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia.,Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia.,Complexity Science Hub Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia.,Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.,Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
41
|
Adelaja A, Hoffmann A. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Front Immunol 2019; 10:433. [PMID: 31312197 PMCID: PMC6614373 DOI: 10.3389/fimmu.2019.00433] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/19/2019] [Indexed: 01/14/2023] Open
Abstract
Precise control of inflammatory gene expression is critical for effective host defense without excessive tissue damage. The principal regulator of inflammatory gene expression is nuclear factor kappa B (NFκB), a transcription factor. Nuclear NFκB activity is controlled by IκB proteins, whose stimulus-responsive degradation and re-synthesis provide for transient or dynamic regulation. The IκB-NFκB signaling module receives input signals from a variety of pathogen sensors, such as toll-like receptors (TLRs). The molecular components and mechanisms of NFκB signaling are well-understood and have been reviewed elsewhere in detail. Here we review the molecular mechanisms that mediate cross-regulation of TLR-IκB-NFκB signal transduction by signaling pathways that do not activate NFκB themselves, such as interferon signaling pathways. We distinguish between potential regulatory crosstalk mechanisms that (i) occur proximal to TLRs and thus may have stimulus-specific effects, (ii) affect the core IκB-NFκB signaling module to modulate NFκB activation in response to several stimuli. We review some well-documented examples of molecular crosstalk mechanisms and indicate other potential mechanisms whose physiological roles require further study.
Collapse
Affiliation(s)
- Adewunmi Adelaja
- UCLA-Caltech Medical Scientist Training Program, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Chatterjee B, Roy P, Sarkar UA, Zhao M, Ratra Y, Singh A, Chawla M, De S, Gomes J, Sen R, Basak S. Immune Differentiation Regulator p100 Tunes NF-κB Responses to TNF. Front Immunol 2019; 10:997. [PMID: 31134075 PMCID: PMC6514058 DOI: 10.3389/fimmu.2019.00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 11/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine whose primary physiological function involves coordinating inflammatory and adaptive immune responses. However, uncontrolled TNF signaling causes aberrant inflammation and has been implicated in several human ailments. Therefore, an understanding of the molecular mechanisms underlying dynamical and gene controls of TNF signaling bear significance for human health. As such, TNF engages the canonical nuclear factor kappa B (NF-κB) pathway to activate RelA:p50 heterodimers, which induce expression of specific immune response genes. Brief and chronic TNF stimulation produces transient and long-lasting NF-κB activities, respectively. Negative feedback regulators of the canonical pathway, including IκBα, are thought to ensure transient RelA:p50 responses to short-lived TNF signals. The non-canonical NF-κB pathway mediates RelB activity during immune differentiation involving p100. We uncovered an unexpected role of p100 in TNF signaling. Brief TNF stimulation of p100-deficient cells triggered an additional late NF-κB activity consisting of RelB:p50 heterodimers, which modified the TNF-induced gene-expression program. In p100-deficient cells subjected to brief TNF stimulation, RelB:p50 not only sustained the expression of a subset of RelA-target immune response genes but also activated additional genes that were not normally induced by TNF in WT mouse embryonic fibroblasts (MEFs) and were related to immune differentiation and metabolic processes. Despite this RelB-mediated distinct gene control, however, RelA and RelB bound to mostly overlapping chromatin sites in p100-deficient cells. Repeated TNF pulses strengthened this RelB:p50 activity, which was supported by NF-κB-driven RelB synthesis. Finally, brief TNF stimulation elicited late-acting expressions of NF-κB target pro-survival genes in p100-deficient myeloma cells. In sum, our study suggests that the immune-differentiation regulator p100 enforces specificity of TNF signaling and that varied p100 levels may provide for modifying TNF responses in diverse physiological and pathological settings.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Yashika Ratra
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - James Gomes
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, United States
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
43
|
Olsman N, Xiao F, Doyle JC. Architectural Principles for Characterizing the Performance of Antithetic Integral Feedback Networks. iScience 2019; 14:277-291. [PMID: 31015073 PMCID: PMC6479019 DOI: 10.1016/j.isci.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
As we begin to design increasingly complex synthetic biomolecular systems, it is essential to develop rational design methodologies that yield predictable circuit performance. Here we apply mathematical tools from the theory of control and dynamical systems to yield practical insights into the architecture and function of a particular class of biological feedback circuit. Specifically, we show that it is possible to analytically characterize both the operating regime and performance tradeoffs of an antithetic integral feedback circuit architecture. Furthermore, we demonstrate how these principles can be applied to inform the design process of a particular synthetic feedback circuit.
Collapse
Affiliation(s)
- Noah Olsman
- Department of Control and Dynamical Systems, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02215, USA.
| | - Fangzhou Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - John C Doyle
- Department of Control and Dynamical Systems, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Lee MD, Wilson C, Saunter CD, Kennedy C, Girkin JM, McCarron JG. Spatially structured cell populations process multiple sensory signals in parallel in intact vascular endothelium. Sci Signal 2018; 11:11/561/eaar4411. [PMID: 30563865 DOI: 10.1126/scisignal.aar4411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow, blood clotting, angiogenesis, vascular permeability, and vascular remodeling are each controlled by a large number of variable, noisy, and interacting chemical inputs to the vascular endothelium. The endothelium processes the entirety of the chemical composition to which the cardiovascular system is exposed, carrying out sophisticated computations that determine physiological output. Processing this enormous quantity of information is a major challenge facing the endothelium. We analyzed the responses of hundreds of endothelial cells to carbachol (CCh) and adenosine triphosphate (ATP) and found that the endothelium segregates the responses to these two distinct components of the chemical environment into separate streams of complementary information that are processed in parallel. Sensitivities to CCh and ATP mapped to different clusters of cells, and each agonist generated distinct signal patterns. The distinct signals were features of agonist activation rather than properties of the cells themselves. When there was more than one stimulus present, the cells communicated and combined inputs to generate new distinct signals that were nonlinear combinations of the inputs. Our results demonstrate that the endothelium is a structured, collaborative sensory network that simplifies the complex environment using separate cell clusters that are sensitive to distinct aspects of the overall biochemical environment and interactively compute signals from diverse but interrelated chemical inputs. These features enable the endothelium to selectively process separate signals and perform multiple computations in an environment that is noisy and variable.
Collapse
Affiliation(s)
- Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christopher D Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John M Girkin
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
45
|
Maywood ES. Synchronization and maintenance of circadian timing in the mammalian clockwork. Eur J Neurosci 2018; 51:229-240. [DOI: 10.1111/ejn.14279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Elizabeth S. Maywood
- Neurobiology DivisionMedical Research Council Laboratory of Molecular Biology Cambridge UK
| |
Collapse
|
46
|
Leng G, MacGregor DJ. Models in neuroendocrinology. Math Biosci 2018; 305:29-41. [DOI: 10.1016/j.mbs.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
|
47
|
Cook D, Achanta S, Hoek JB, Ogunnaike BA, Vadigepalli R. Cellular network modeling and single cell gene expression analysis reveals novel hepatic stellate cell phenotypes controlling liver regeneration dynamics. BMC SYSTEMS BIOLOGY 2018; 12:86. [PMID: 30285726 PMCID: PMC6171157 DOI: 10.1186/s12918-018-0605-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022]
Abstract
Background Recent results from single cell gene and protein regulation studies are starting to uncover the previously underappreciated fact that individual cells within a population exhibit high variability in the expression of mRNA and proteins (i.e., molecular variability). By combining cellular network modeling, and high-throughput gene expression measurements in single cells, we seek to reconcile the high molecular variability in single cells with the relatively low variability in tissue-scale gene and protein expression and the highly coordinated functional responses of tissues to physiological challenges. In this study, we focus on relating the dynamic changes in distributions of hepatic stellate cell (HSC) functional phenotypes to the tightly regulated physiological response of liver regeneration. Results We develop a mathematical model describing contributions of HSC functional phenotype populations to liver regeneration and test model predictions through isolation and transcriptional characterization of single HSCs. We identify and characterize four HSC transcriptional states contributing to liver regeneration, two of which are described for the first time in this work. We show that HSC state populations change in vivo in response to acute challenges (in this case, 70% partial hepatectomy) and chronic challenges (chronic ethanol consumption). Our results indicate that HSCs influence the dynamics of liver regeneration through steady-state tissue preconditioning prior to an acute insult and through dynamic control of cell state balances. Furthermore, our modeling approach provides a framework to understand how balances among cell states influence tissue dynamics. Conclusions Taken together, our combined modeling and experimental studies reveal novel HSC transcriptional states and indicate that baseline differences in HSC phenotypes as well as a dynamic balance of transitions between these phenotypes control liver regeneration responses. Electronic supplementary material The online version of this article (10.1186/s12918-018-0605-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Cook
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.,Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirisha Achanta
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B Hoek
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA. .,Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Bagnall J, Boddington C, England H, Brignall R, Downton P, Alsoufi Z, Boyd J, Rowe W, Bennett A, Walker C, Adamson A, Patel NMX, O’Cualain R, Schmidt L, Spiller DG, Jackson DA, Müller W, Muldoon M, White MRH, Paszek P. Quantitative analysis of competitive cytokine signaling predicts tissue thresholds for the propagation of macrophage activation. Sci Signal 2018; 11:11/540/eaaf3998. [DOI: 10.1126/scisignal.aaf3998] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Temperature regulates NF-κB dynamics and function through timing of A20 transcription. Proc Natl Acad Sci U S A 2018; 115:E5243-E5249. [PMID: 29760065 PMCID: PMC5984538 DOI: 10.1073/pnas.1803609115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
NF-κB signaling plays a pivotal role in control of the inflammatory response. We investigated how the dynamics and function of NF-κB were affected by temperature within the mammalian physiological range (34 °C to 40 °C). An increase in temperature led to an increase in NF-κB nuclear/cytoplasmic oscillation frequency following Tumor Necrosis Factor alpha (TNFα) stimulation. Mathematical modeling suggested that this temperature sensitivity might be due to an A20-dependent mechanism, and A20 silencing removed the sensitivity to increased temperature. The timing of the early response of a key set of NF-κB target genes showed strong temperature dependence. The cytokine-induced expression of many (but not all) later genes was insensitive to temperature change (suggesting that they might be functionally temperature-compensated). Moreover, a set of temperature- and TNFα-regulated genes were implicated in NF-κB cross-talk with key cell-fate-controlling pathways. In conclusion, NF-κB dynamics and target gene expression are modulated by temperature and can accurately transmit multidimensional information to control inflammation.
Collapse
|
50
|
Colombo F, Zambrano S, Agresti A. NF-κB, the Importance of Being Dynamic: Role and Insights in Cancer. Biomedicines 2018; 6:biomedicines6020045. [PMID: 29673148 PMCID: PMC6027537 DOI: 10.3390/biomedicines6020045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
In this review, we aim at describing the results obtained in the past years on dynamics features defining NF-κB regulatory functions, as we believe that these developments might have a transformative effect on the way in which NF-κB involvement in cancer is studied. We will also describe technical aspects of the studies performed in this context, including the use of different cellular models, culture conditions, microscopy approaches and quantification of the imaging data, balancing their strengths and limitations and pointing out to common features and to some open questions. Our emphasis in the methodology will allow a critical overview of literature and will show how these cutting-edge approaches can contribute to shed light on the involvement of NF-κB deregulation in tumour onset and progression. We hypothesize that this “dynamic point of view” can be fruitfully applied to untangle the complex relationship between NF-κB and cancer and to find new targets to restrain cancer growth.
Collapse
Affiliation(s)
- Federica Colombo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
| | - Samuel Zambrano
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita-Salute San Raffaele University, 20132 Milan, Italy.
| | - Alessandra Agresti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|