1
|
Aguilar EN, Sagar S, Murray BR, Rajesh C, Lei EK, Michaud SA, Goodlett DR, Caffrey TC, Grandgenett PM, Swanson B, Brooks TM, Black AR, van Faassen H, Hussack G, Henry KA, Hollingsworth MA, Brooks CL, Radhakrishnan P. Structural Basis for Multivalent MUC16 Recognition and Robust Anti-Pancreatic Cancer Activity of Humanized Antibody AR9.6. Mol Cancer Ther 2024; 23:836-853. [PMID: 38394685 DOI: 10.1158/1535-7163.mct-23-0868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
Mucin-16 (MUC16) is a target for antibody-mediated immunotherapy in pancreatic ductal adenocarcinoma (PDAC) among other malignancies. The MUC16-specific monoclonal antibody AR9.6 has shown promise for PDAC immunotherapy and imaging. Here, we report the structural and biological characterization of the humanized AR9.6 antibody (huAR9.6). The structure of huAR9.6 was determined in complex with a MUC16 SEA (Sea urchin sperm, Enterokinase, Agrin) domain. Binding of huAR9.6 to recombinant, shed, and cell-surface MUC16 was characterized, and anti-PDAC activity was evaluated in vitro and in vivo. HuAR9.6 bound a discontinuous, SEA domain epitope with an overall affinity of 88 nmol/L. Binding affinity depended on the specific SEA domain(s) present, and glycosylation modestly enhanced affinity driven by favorable entropy and enthalpy and via distinct transition state thermodynamic pathways. Treatment with huAR9.6 reduced the in vitro growth, migration, invasion, and clonogenicity of MUC16-positive PDAC cells and patient-derived organoids (PDO). HuAR9.6 blocked MUC16-mediated ErbB and AKT activation in PDAC cells, PDOs, and patient-derived xenografts and induced antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. More importantly, huAR9.6 treatment caused substantial PDAC regression in subcutaneous and orthotopic tumor models. The mechanism of action of huAR9.6 may depend on dense avid binding to homologous SEA domains on MUC16. The results of this study validate the translational therapeutic potential of huAR9.6 against MUC16-positive PDACs.
Collapse
Affiliation(s)
- Eric N Aguilar
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Brandy R Murray
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California
| | - Christabelle Rajesh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sarah A Michaud
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Benjamin Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Teresa M Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cory L Brooks
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
2
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
3
|
Bhalchandra S, Gevers K, Heimburg-Molinaro J, van Roosmalen M, Coppens I, Cummings RD, Ward HD. Identification of the glycopeptide epitope recognized by a protective Cryptosporidium monoclonal antibody. Infect Immun 2023; 91:e0027523. [PMID: 37725059 PMCID: PMC10580954 DOI: 10.1128/iai.00275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Cryptosporidium species are a leading cause of pediatric diarrheal disease and death in low- and middle-income countries and pose a particular threat to immunocompromised individuals. As a zoonotic pathogen, Cryptosporidium can have devastating effects on the health of neonatal calves. Despite its impact on human and animal health, consistently effective drug treatments for cryptosporidiosis are lacking and no vaccine is available. We previously showed that C. parvum mucin-like glycoproteins, gp40, and gp900 express an epitope identified by a monoclonal antibody 4E9. 4E9 neutralized C. parvum infection in vitro as did glycan-binding proteins specific for the Tn antigen (GalNAc-α1-S/T). Here, we show that 4E9 ameliorates disease in vivo in a calf challenge model. The 4E9 epitope is present on C. hominis in addition to C. parvum gp40 and gp900 and localizes to the plasma membrane and dense granules of invasive and intracellular stages. To characterize the epitope recognized by 4E9, we probed a glycan array containing over 500 defined glycans together with a custom-made glycopeptide microarray containing glycopeptides from native mucins or C. parvum gp40 and gp15. 4E9 exhibited no binding to the glycan array but bound strongly to glycopeptides from native mucins or gp40 on the glycopeptide array, suggesting that the antibody epitope contains both peptide and glycan moieties. 4E9 only recognized glycopeptides with adjacent S or T residues in the motif S*/T*-X-S*/T* where X = 0 or 1. These data define the 4E9 epitope and have implications for the inclusion of the epitope in the development of vaccines or other immune-based therapies.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Honorine D. Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Aasted MK, Groen AC, Keane JT, Dabelsteen S, Tan E, Schnabel J, Liu F, Lewis HGS, Theodoropulos C, Posey AD, Wandall HH. Targeting Solid Cancers with a Cancer-Specific Monoclonal Antibody to Surface Expressed Aberrantly O-glycosylated Proteins. Mol Cancer Ther 2023; 22:1204-1214. [PMID: 37451822 PMCID: PMC10543972 DOI: 10.1158/1535-7163.mct-23-0221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The lack of antibodies with sufficient cancer selectivity is currently limiting the treatment of solid tumors by immunotherapies. Most current immunotherapeutic targets are tumor-associated antigens that are also found in healthy tissues and often do not display sufficient cancer selectivity to be used as targets for potent antibody-based immunotherapeutic treatments, such as chimeric antigen receptor (CAR) T cells. Many solid tumors, however, display aberrant glycosylation that results in expression of tumor-associated carbohydrate antigens that are distinct from healthy tissues. Targeting aberrantly glycosylated glycopeptide epitopes within existing or novel glycoprotein targets may provide the cancer selectivity needed for immunotherapy of solid tumors. However, to date only a few such glycopeptide epitopes have been targeted. Here, we used O-glycoproteomics data from multiple cell lines to identify a glycopeptide epitope in CD44v6, a cancer-associated CD44 isoform, and developed a cancer-specific mAb, 4C8, through a glycopeptide immunization strategy. 4C8 selectively binds to Tn-glycosylated CD44v6 in a site-specific manner with low nanomolar affinity. 4C8 was shown to be highly cancer specific by IHC of sections from multiple healthy and cancerous tissues. 4C8 CAR T cells demonstrated target-specific cytotoxicity in vitro and significant tumor regression and increased survival in vivo. Importantly, 4C8 CAR T cells were able to selectively kill target cells in a mixed organotypic skin cancer model having abundant CD44v6 expression without affecting healthy keratinocytes, indicating tolerability and safety.
Collapse
Affiliation(s)
- Mikkel K.M. Aasted
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - John T. Keane
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sally Dabelsteen
- Department of Oral Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Edwin Tan
- GO-Therapeutics, One Broadway, Cambridge, Massachusetts
| | | | - Fang Liu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyeon-Gyu S. Lewis
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Avery D. Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Hans H. Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
- GO-Therapeutics, One Broadway, Cambridge, Massachusetts
| |
Collapse
|
5
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Yue S, Wang X, Ge W, Li J, Yang C, Zhou Z, Zhang P, Yang X, Xiao W, Yang S. Deciphering Protein O-GalNAcylation: Method Development and Disease Implication. ACS OMEGA 2023; 8:19223-19236. [PMID: 37305274 PMCID: PMC10249083 DOI: 10.1021/acsomega.3c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023]
Abstract
Mucin-type O-glycosylation is an important protein post-translational modification that is abundantly expressed on cell surface proteins. Protein O-glycosylation plays a variety of roles in cellular biological functions including protein structure and signal transduction to the immune response. Cell surface mucins are highly O-glycosylated and are the main substance of the mucosal barrier that protects the gastrointestinal or respiratory tract from infection by pathogens or microorganisms. Dysregulation of mucin O-glycosylation may impair mucosal protection against pathogens that can invade cells to trigger infection or immune evasion. Truncated O-glycosylation, also known as Tn antigen or O-GalNAcylation, is highly upregulated in diseases such cancer, autoimmune disorders, neurodegenerative diseases, and IgA nephropathy. Characterization of O-GalNAcylation helps decipher the role of Tn antigen in physiopathology and therapy. However, the analysis of O-glycosylation, specifically the Tn antigen, remains challenging due to the lack of reliable enrichment and identification assays compared to N-glycosylation. Here, we summarize recent advances in analytical methods for O-GalNAcylation enrichment and identification and highlight the biological role of the Tn antigen in various diseases and the clinical implications of identifying aberrant O-GalNAcylation.
Collapse
Affiliation(s)
- Shuang Yue
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaotong Wang
- Department
of Hepatology and Gastroenterology, The
Affiliated Infectious Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wei Ge
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Jiajia Li
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Chuanlai Yang
- Scientific
Research Department, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zeyang Zhou
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Peng Zhang
- Department
of Orthopedics, The Second Affiliated Hospital
of Soochow University, Suzhou, Jiangsu 215004, China
| | - Xiaodong Yang
- Department
of General Surgery, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Wenjin Xiao
- Department
of Endocrinology, The Second Affiliated
Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis,
College of Pharmaceutical Sciences, Soochow
University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Gupta A, Kao KS, Yamin R, Oren DA, Goldgur Y, Du J, Lollar P, Sundberg EJ, Ravetch JV. Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody. Nat Commun 2023; 14:2853. [PMID: 37202422 PMCID: PMC10195009 DOI: 10.1038/s41467-023-38453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies contain a complex N-glycan embedded in the hydrophobic pocket between its heavy chain protomers. This glycan contributes to the structural organization of the Fc domain and determines its specificity for Fcγ receptors, thereby dictating distinct cellular responses. The variable construction of this glycan structure leads to highly-related, but non-equivalent glycoproteins known as glycoforms. We previously reported synthetic nanobodies that distinguish IgG glycoforms. Here, we present the structure of one such nanobody, X0, in complex with the Fc fragment of afucosylated IgG1. Upon binding, the elongated CDR3 loop of X0 undergoes a conformational shift to access the buried N-glycan and acts as a 'glycan sensor', forming hydrogen bonds with the afucosylated IgG N-glycan that would otherwise be sterically hindered by the presence of a core fucose residue. Based on this structure, we designed X0 fusion constructs that disrupt pathogenic afucosylated IgG1-FcγRIIIa interactions and rescue mice in a model of dengue virus infection.
Collapse
Affiliation(s)
- Aaron Gupta
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Rachel Yamin
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Ranoa DRE, Sharma P, Schane CP, Lewis AN, Valdez E, Marada VVVR, Hager MV, Montgomery W, Wolf SP, Schreiber K, Schreiber H, Bailey K, Fan TM, Hergenrother PJ, Roy EJ, Kranz DM. Single CAR-T cell treatment controls disseminated ovarian cancer in a syngeneic mouse model. J Immunother Cancer 2023; 11:e006509. [PMID: 37258040 PMCID: PMC10255004 DOI: 10.1136/jitc-2022-006509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Treatment of some blood cancers with T cells that express a chimeric antigen receptor (CAR) against CD19 have shown remarkable results. In contrast, CAR-T cell efficacy against solid tumors has been difficult to achieve. METHODS To examine the potential of CAR-T cell treatments against ovarian cancers, we used the mouse ovarian cancer cell line ID8 in an intraperitoneal model that exhibits disseminated solid tumors in female C57BL/6J mice. The CAR contained a single-chain Fv from antibody 237 which recognizes a Tn-glycopeptide-antigen expressed by ID8 due to aberrant O-linked glycosylation in the absence of the transferase-dependent chaperone Cosmc. The efficacy of four Tn-dependent CARs with varying affinity to Tn antigen, and each containing CD28/CD3ζ cytoplasmic domains, were compared in vitro and in vivo in this study. RESULTS In line with many observations about the impact of aberrant O-linked glycosylation, the ID8Cosmc knock-out (ID8Cosmc-KO) exhibited more rapid tumor progression compared with wild-type ID8. Despite the enhanced tumor growth in vivo, 237 CAR and a mutant with 30-fold higher affinity, but not CARs with lower affinity, controlled advanced ID8Cosmc-KO tumors. Tumor regression could be achieved with a single intravenous dose of the CARs, but intraperitoneal administration was even more effective. The CAR-T cells persisted over a period of months, allowing CAR-treated mice to delay tumor growth in a re-challenge setting. The most effective CARs exhibited the highest affinity for antigen. Antitumor effects observed in vivo were associated with increased numbers of T cells and macrophages, and higher levels of cleaved caspase-3, in the tumor microenvironment. Notably, the least therapeutically effective CAR mediated tonic signaling leading to antigen-independent cytokine expression and it had higher levels of the immunosuppressive cytokine interleukin10. CONCLUSION The findings support the development of affinity-optimized CAR-T cells as a potential treatment for established ovarian cancer, with the most effective CARs mediating a distinct pattern of inflammatory cytokine release in vitro. Importantly, the most potent Tn-dependent CAR-T cells showed no evidence of toxicity in tumor-bearing mice in a syngeneic, immunocompetent system.
Collapse
Affiliation(s)
- Diana Rose E Ranoa
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Preeti Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Claire P Schane
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amber N Lewis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Edward Valdez
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Venkata V V R Marada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marlies V Hager
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Will Montgomery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Steven P Wolf
- Department of Pathology and David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Karin Schreiber
- Department of Pathology and David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Hans Schreiber
- Department of Pathology and David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, Illinois, USA
| | - Keith Bailey
- Charles River Laboratories Inc Mattawan, Mattawan, Michigan, USA
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul J Hergenrother
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Edward J Roy
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David M Kranz
- Carl R. Woese Institute for Genomic Biology and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Sanz-Martinez I, Pereira S, Merino P, Corzana F, Hurtado-Guerrero R. Molecular Recognition of GalNAc in Mucin-Type O-Glycosylation. Acc Chem Res 2023; 56:548-560. [PMID: 36815693 PMCID: PMC9996832 DOI: 10.1021/acs.accounts.2c00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
ConspectusN-Acetylgalactosamine (GalNAc)-type O-glycosylation is an essential posttranslational modification (PTM) that plays fundamental roles in biology. Malfunction of this PTM is exemplified by the presence of truncated O-glycans in cancer. For instance, the glycoprotein MUC1 is overexpressed in many tumor tissues and tends to carry simple oligosaccharides that allow for the presentation of different tumor-associated antigens, such as the Tn or sTn antigens (GalNAc-α-1-O-Thr/Ser and Neu5Acα2-6GalNAcα1-O-Ser/Thr, respectively). In other cases, such as tumoral calcinosis associated with O-glycosylation of the fibroblast growth factor 23, O-glycans are absent or less abundant. Significant progress has been made in determining the three-dimensional structures of biomolecules that recognize GalNAc, such as antibodies, lectins, mucinases, GalNAc-transferases, and other glycosyltransferases. Analysis of the complexes between these entities and GalNAc-containing glycopeptides, in most cases derived from crystallographic or NMR analysis, provides an understanding of the key structural elements that control molecular recognition of these glycopeptides. Here, we describe and compare the binding sites of these proteins in detail, focusing on how the GalNAc moieties interact selectively with them. We also summarize the differences and similarities in GalNAc recognition. In general, the recognition of GalNAc-containing glycopeptides is determined by hydrogen bonds between hydroxyl groups and the N-acetyl group of GalNAc with proteins, as well as CH-π contacts in which the hydrophobic α-face of the sugar and the methyl group of NHAc can be involved. The latter interaction usually provides the basis for selectivity. It is worth noting that binding of these glycopeptides depends primarily on recognition of the sugar moiety, with some exceptions such as a few anti-MUC1 antibodies that primarily recognize the peptide backbone and use the sugar to facilitate shape complementarity or to establish a limited number of interactions with the protein. Focusing specifically on the GalNAc moiety, we can observe that there is some degeneracy of interactions within the same protein families, likely due to substrate flexibility. However, when all studied proteins are considered together, despite the commonalities within each protein family, no pattern can be discerned between the different families, apart from the presence of common residues such as Tyr, His, or Asp, which are responsible for hydrogen bonds. The lack of a pattern can be anticipated, given the diverse functions of mucinases, glycosyltransferases, antibodies, and lectins. Finally, it is important to point out that the conformational differences observed in solution in glycopeptides bearing GalNAc-α-1-O-Ser or GalNAc-α-1-O-Thr also can be found in the bound state. This unique characteristic is exploited, for instance, by the enzyme C1GalT1 to broadly glycosylate both acceptor substrates. The findings summarized in this review may contribute to the rational structure-guided development of therapeutic vaccines, novel diagnostic tools for early cancer detection, and new cancer treatments for cancer with tailored anti-Tn or anti-STn antibodies or new drugs to inhibit GalNAc-T isoenzymes.
Collapse
Affiliation(s)
- Ignacio Sanz-Martinez
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Sandra Pereira
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Pedro Merino
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Department of Organic Chemistry, Faculty of Sciences, University of Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Francisco Corzana
- Department of Chemistry, Centro de Investigación en Síntesis Química, University of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Glycobiology Unit, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark.,Fundación ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
10
|
Gupta A, Kao K, Yamin R, Oren DA, Goldgur Y, Du J, Lollar P, Sundberg EJ, Ravetch JV. Mechanism of glycoform specificity and protection against antibody dependent enhancement by an anti-afucosylated IgG nanobody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525277. [PMID: 36747840 PMCID: PMC9900767 DOI: 10.1101/2023.01.23.525277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immunoglobulin G (IgG) antibodies contain a single, complex N -glycan on each IgG heavy chain protomer embedded in the hydrophobic pocket between its Cγ2 domains. The presence of this glycan contributes to the structural organization of the Fc domain and determines its specificity for Fcγ receptors, thereby determining distinct cellular responses. On the Fc, the variable construction of this glycan structure leads to a family of highly-related, but non-equivalent glycoproteins known as glycoforms. We previously reported the development of synthetic nanobodies that distinguish IgG glycoforms without cross-reactivity to off-target glycoproteins or free glycans. Here, we present the X-ray crystal structure of one such nanobody, X0, in complex with its specific binding partner, the Fc fragment of afucosylated IgG1. Two X0 nanobodies bind a single afucosylated Fc homodimer at the upper Cγ2 domain, making both protein-protein and protein-carbohydrate contacts and overlapping the binding site for Fcγ receptors. Upon binding, the elongated CDR3 loop of X0 undergoes a conformational shift to access the buried N -glycan and acts as a 'glycan sensor', forming hydrogen bonds with the afucosylated IgG N -glycan that would otherwise be sterically hindered by the presence of a core fucose residue. Based on this structure, we designed X0 fusion constructs that disrupt pathogenic afucosylated IgG1-FcγRIIIa interactions and rescue mice in a model of dengue virus infection.
Collapse
|
11
|
Kohout VR, Wardzala CL, Kramer JR. Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 2022; 191:114540. [PMID: 36228896 PMCID: PMC10066857 DOI: 10.1016/j.addr.2022.114540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 02/09/2023]
Abstract
Mucin glycoproteins are the major component of mucus and coat epithelial cell surfaces forming the glycocalyx. The glycocalyx and mucus are involved in the transport of nutrients, drugs, gases, and pathogens toward the cell surface. Mucins are also involved in diverse diseases such as cystic fibrosis and cancer. Due to inherent heterogeneity in native mucin structure, many synthetic materials have been designed to probe mucin chemistry, biology, and physics. Such materials include various glycopolymers, low molecular weight glycopeptides, glycopolypeptides, polysaccharides, and polysaccharide-protein conjugates. This review highlights advances in the area of design and synthesis of mucin mimic materials, and their biomedical applications in glycan binding, epithelial models of infection, therapeutic delivery, vaccine formulation, and beyond.
Collapse
Affiliation(s)
- Victoria R Kohout
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Dr., Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Kao KS, Gupta A, Zong G, Li C, Kerschbaumer I, Borghi S, Achkar JM, Bournazos S, Wang LX, Ravetch JV. Synthetic nanobodies as tools to distinguish IgG Fc glycoforms. Proc Natl Acad Sci U S A 2022; 119:e2212658119. [PMID: 36409896 PMCID: PMC9860306 DOI: 10.1073/pnas.2212658119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.
Collapse
Affiliation(s)
- Kevin S. Kao
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Aaron Gupta
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Isabell Kerschbaumer
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY10461
| | - Sara Borghi
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Jacqueline M. Achkar
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY10461
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY10065
| |
Collapse
|
13
|
Kalhor S, Fattahi A. In silico design of novel anticancer drugs with amino acid and carbohydrate building blocks to inhibit PIM kinases. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2030862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sepideh Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Alireza Fattahi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
15
|
Liu J, Wang D. ABO(H) and Lewis blood group substances and disease treatment. Transfus Med 2021; 32:187-192. [PMID: 34569102 DOI: 10.1111/tme.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Since the early 20th century, scientists have determined that blood group antigens can be inherited. With more and more studies have been devoted to finding the relationship between blood groups and diseases, the relationship of ABO(H) and Lewis blood groups and the development of human diseases have been summarised. In addition, many studies have shown that blood group substances, such as blood group antigen or related antibody, play an important role in disease prevention and treatment. This review focuses on the advances of ABO(H), Lewis blood group substances in the treatment of diseases, which has important significance for the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Junting Liu
- Department of Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Deqing Wang
- Department of Transfusion Medicine, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Toumia Y, Miceli R, Domenici F, Heymans SV, Carlier B, Cociorb M, Oddo L, Rossi P, D'Angellilo RM, Sterpin E, D'Agostino E, Van Den Abeele K, D'hooge J, Paradossi G. Ultrasound-assisted investigation of photon triggered vaporization of poly(vinylalcohol) phase-change nanodroplets: A preliminary concept study with dosimetry perspective. Phys Med 2021; 89:232-242. [PMID: 34425514 DOI: 10.1016/j.ejmp.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We investigate the vaporization of phase-change ultrasound contrast agents using photon radiation for dosimetry perspectives in radiotherapy. METHODS We studied superheated perfluorobutane nanodroplets with a crosslinked poly(vinylalcohol) shell. The nanodroplets' physico-chemical properties, and their acoustic transition have been assessed firstly. Then, poly(vinylalcohol)-perfluorobutane nanodroplets were dispersed in poly(acrylamide) hydrogel phantoms and exposed to a photon beam. We addressed the effect of several parameters influencing the nanodroplets radiation sensitivity (energy/delivered dose/dose rate/temperature). The nanodroplets-vaporization post-photon exposure was evaluated using ultrasound imaging at a low mechanical index. RESULTS Poly(vinylalcohol)-perfluorobutane nanodroplets show a good colloidal stability over four weeks and remain highly stable at temperatures up to 78 °C. Nanodroplets acoustically-triggered phase transition leads to microbubbles with diameters <10 μm and an activation threshold of mechanical index = 0.4, at 7.5 MHz. A small number of vaporization events occur post-photon exposure (6MV/15MV), at doses between 2 and 10 Gy, leading to ultrasound contrast increase up to 60% at RT. The nanodroplets become efficiently sensitive to photons when heated to a temperature of 65 °C (while remaining below the superheat limit temperature) during irradiation. CONCLUSIONS Nanodroplets' core is linked to the degree of superheat in the metastable state and plays a critical role in determining nanodroplet' stability and sensitivity to ionizing radiation, requiring higher or lower linear energy transfer vaporization thresholds. While poly(vinylalcohol)-perfluorobutane nanodroplets could be slightly activated by photons at ambient conditions, a good balance between the degree of superheat and stability will aim at optimizing the design of nanodroplets to reach high sensitivity to photons at physiological conditions.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy.
| | - Roberto Miceli
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital Tor Vergata (PTV), University of Rome Tor Vergata, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium; Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Madalina Cociorb
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; DoseVue, Hasselt, Belgium
| | - Letizia Oddo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy
| | - Piero Rossi
- Department of Surgical Sciences, PTV, University of Rome Tor Vergata, Italy
| | - Rolando Maria D'Angellilo
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital Tor Vergata (PTV), University of Rome Tor Vergata, Italy
| | | | | | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy
| |
Collapse
|
17
|
Macías-León J, Bermejo IA, Asín A, García-García A, Compañón I, Jiménez-Moreno E, Coelho H, Mangini V, Albuquerque IS, Marcelo F, Asensio JL, Bernardes GJL, Joshi HJ, Fiammengo R, Blixt O, Hurtado-Guerrero R, Corzana F. Structural characterization of an unprecedented lectin-like antitumoral anti-MUC1 antibody. Chem Commun (Camb) 2021; 56:15137-15140. [PMID: 33211039 DOI: 10.1039/d0cc06349e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular basis of antibody 5E5, which recognizes the entire GalNAc unit as a primary epitope is disclosed. The antibody's contacts with the peptide are mostly limited to two residues, allowing it to show some degree of promiscuity. These findings open the door to the chemical design of peptide-mimetics for developing efficient anti-cancer vaccines and diagnostic tools.
Collapse
Affiliation(s)
- Javier Macías-León
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stone JD, Aggen DH, Schietinger A, Schreiber H, Kranz DM. A sensitivity scale for targeting T cells with chimeric antigen receptors (CARs) and bispecific T-cell Engagers (BiTEs). Oncoimmunology 2021; 1:863-873. [PMID: 23162754 PMCID: PMC3489742 DOI: 10.4161/onci.20592] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although T cells can mediate potent antitumor responses, immune tolerance mechanisms often result in the deletion or inactivation of T cells that express T-cell receptors (TCRs) against potentially effective target epitopes. Various approaches have been devised to circumvent this problem. In one approach, the gene encoding an antibody against a cancer-associated antigen is linked, in the form of a single-chain variable fragment (scFv), to genes that encode transmembrane and signaling domains. This chimeric antigen receptor (CAR) is then introduced into T cells for adoptive T-cell therapy. In another approach, the anti-cancer scFv is fused to a scFv that binds to the CD3ε subunit of the TCR/CD3 complex. This fusion protein serves as a soluble, injectable product that has recently been termed bispecific T-cell engager (BiTE). Both strategies have now been tested in clinical trials with promising results, but the comparative efficacies are not known. Here, we performed a direct comparison of the in vitro sensitivity of each strategy, using the same anti-cancer scFv fragments, directed against a tumor-specific glycopeptide epitope on the sialomucin-like transmembrane glycoprotein OTS8, which results form a cancer-specific mutation of Cosmc. While both approaches showed specific responses to the epitope as revealed by T cell-mediated cytokine release and target cell lysis, CAR-targeted T cells were more sensitive than BiTE-targeted T cells to low numbers of antigens per cell. The sensitivity scale described here provides a guide to the potential use of these two different approaches.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry; University of Illinois at Urbana-Champaign; Urbana, IL USA
| | | | | | | | | |
Collapse
|
19
|
Matsumoto Y, Kudelka MR, Hanes MS, Lehoux S, Dutta S, Jones MB, Stackhouse KA, Cervoni GE, Heimburg-Molinaro J, Smith DF, Ju T, Chaikof EL, Cummings RD. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology 2020; 30:282-300. [PMID: 31742337 DOI: 10.1093/glycob/cwz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
The Tn antigen is a neoantigen abnormally expressed in many human carcinomas and expression correlates with metastasis and poor survival. To explore its biomarker potential, new antibodies are needed that specifically recognize this antigen in tumors. Here we generated two recombinant antibodies to the Tn antigen, Remab6 as a chimeric human IgG1 antibody and ReBaGs6 as a murine IgM antibody and characterized their specificities using multiple biochemical and biological approaches. Both Remab6 and ReBaGs6 recognize clustered Tn structures, but most importantly do not recognize glycoforms of human IgA1 that contain potential cross-reactive Tn antigen structures. In flow cytometry and immunofluorescence analyses, Remab6 recognizes human cancer cell lines expressing the Tn antigen, but not their Tn-negative counterparts. In immunohistochemistry (IHC), Remab6 stains many human cancers in tissue array format but rarely stains normal tissues and then mostly intracellularly. We used these antibodies to identify several unique Tn-containing glycoproteins in Tn-positive Colo205 cells, indicating their utility for glycoproteomics in future biomarker studies. Thus, recombinant Remab6 and ReBaGs6 are useful for biochemical characterization of cancer cells and IHC of tumors and represent promising tools for Tn biomarker discovery independently of recognition of IgA1.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Mark B Jones
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathryn A Stackhouse
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Gabrielle E Cervoni
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bldg 52/72, Room 2120, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087, 3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
20
|
Bose M, Mukherjee P. Potential of Anti-MUC1 Antibodies as a Targeted Therapy for Gastrointestinal Cancers. Vaccines (Basel) 2020; 8:E659. [PMID: 33167508 PMCID: PMC7712407 DOI: 10.3390/vaccines8040659] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancers (GI) account for 26% of cancer incidences globally and 35% of all cancer-related deaths. The main challenge is to target cancer specific antigens. Mucins are heavily O-glycosylated proteins overexpressed in different cancers. The transmembrane glycoprotein MUC1 is the most likeable target for antibodies, owing to its specific overexpression and aberrant glycosylation in many types of cancers. For the past 30 years, MUC1 has remained a possible diagnostic marker and therapeutic target. Despite initiation of numerous clinical trials, a comprehensively effective therapy with clinical benefit is yet to be achieved. However, the interest in MUC1 as a therapeutic target remains unaltered. For all translational studies, it is important to incorporate updated relevant research findings into therapeutic strategies. In this review we present an overview of the antibodies targeting MUC1 in GI cancers, their potential role in immunotherapy (i.e., antibody-drug and radioimmunoconjugates, CAR-T cells), and other novel therapeutic strategies. We also present our perspectives on how the mechanisms of action of different anti-MUC1 antibodies can target specific hallmarks of cancer and therefore be utilized as a combination therapy for better clinical outcomes.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA;
| | | |
Collapse
|
21
|
Barnett CB, Senapathi T, Naidoo KJ. Comparative ligand structural analytics illustrated on variably glycosylated MUC1 antigen-antibody binding. Beilstein J Org Chem 2020; 16:2540-2550. [PMID: 33133286 PMCID: PMC7590620 DOI: 10.3762/bjoc.16.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023] Open
Abstract
When faced with the investigation of the preferential binding of a series of ligands against a known target, the solution is not always evident from single structure analysis. An ensemble of structures generated from computer simulations is valuable; however, visual analysis of the extensive structural data can be overwhelming. Rapid analysis of trajectory data, with tools available in the Galaxy platform, can be used to understand key features and compare differences that inform the preferential ligand structure that favors binding. We illustrate this informatics approach by investigating the in-silico binding of a peptide and glycopeptide epitope of the glycoprotein Mucin 1 (MUC1) binding with the antibody AR20.5. To study the binding, we performed molecular dynamics simulations using OpenMM and then used the Galaxy platform for data analysis. The same analysis tools are applied to each of the simulation trajectories and this process was streamlined by using Galaxy workflows. The conformations of the antigens were analyzed using root-mean-square deviation, end-to-end distance, Ramachandran plots, and hydrogen bonding analysis. Additionally, RMSF and clustering analysis were carried out. These analyses were used to rapidly assess key features of the system, interrogate the dynamic structure of the ligand, and determine the role of glycosylation on the conformational equilibrium. The glycopeptide conformations in solution change relative to the peptide; thus a partially pre-structuring is seen prior to binding. Although the bound conformation of peptide and glycopeptide is similar, the glycopeptide fluctuates less and resides in specific conformers for more extended periods. This structural analysis which gives a high-level view of the features in the system under observation, could be readily applied to other binding problems as part of a general strategy in drug design or mechanistic analysis.
Collapse
Affiliation(s)
- Christopher B Barnett
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Tharindu Senapathi
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kevin J Naidoo
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.,Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
22
|
Sharma P, Marada VVVR, Cai Q, Kizerwetter M, He Y, Wolf SP, Schreiber K, Clausen H, Schreiber H, Kranz DM. Structure-guided engineering of the affinity and specificity of CARs against Tn-glycopeptides. Proc Natl Acad Sci U S A 2020; 117:15148-15159. [PMID: 32541028 PMCID: PMC7334454 DOI: 10.1073/pnas.1920662117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The potency of adoptive T cell therapies targeting the cell surface antigen CD19 has been demonstrated in hematopoietic cancers. It has been difficult to identify appropriate targets in nonhematopoietic tumors, but one class of antigens that have shown promise is aberrant O-glycoprotein epitopes. It has long been known that dysregulated synthesis of O-linked (threonine or serine) sugars occurs in many cancers, and that this can lead to the expression of cell surface proteins containing O-glycans comprised of a single N-acetylgalactosamine (GalNAc, known as Tn antigen) rather than the normally extended carbohydrate. Previously, we used the scFv fragment of antibody 237 as a chimeric antigen receptor (CAR) to mediate recognition of mouse tumor cells that bear its cognate Tn-glycopeptide epitope in podoplanin, also called OTS8. Guided by the structure of the 237 Fab:Tn-OTS8-glycopeptide complex, here we conducted a deep mutational scan showing that residues flanking the Tn-glycan contributed significant binding energy to the interaction. Design of 237-scFv libraries in the yeast display system allowed us to isolate scFv variants with higher affinity for Tn-OTS8. Selection with a noncognate human antigen, Tn-MUC1, yielded scFv variants that were broadly reactive with multiple Tn-glycoproteins. When configured as CARs, engineered T cells expressing these scFv variants showed improved activity against mouse and human cancer cell lines defective in O-linked glycosylation. This strategy provides CARs with Tn-peptide specificities, all based on a single scFv scaffold, that allows the same CAR to be tested for toxicity in mice and efficacy against mouse and human tumors.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
| | - Venkata V V R Marada
- Department of Biochemistry, Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Qi Cai
- Department of Biochemistry, Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Monika Kizerwetter
- Department of Biochemistry, Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yanran He
- Department of Pathology, Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Steven P Wolf
- Department of Pathology, Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Karin Schreiber
- Department of Pathology, Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Henrik Clausen
- Copenhagen Center for Glycomics, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hans Schreiber
- Department of Pathology, Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - David M Kranz
- Department of Biochemistry, Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
| |
Collapse
|
23
|
Jin D, Zhang R, Chen H, Li C. Aberrantly glycosylated integrin α3β1 is a unique urinary biomarker for the diagnosis of bladder cancer. Aging (Albany NY) 2020; 12:10844-10862. [PMID: 32534450 PMCID: PMC7346044 DOI: 10.18632/aging.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/03/2022]
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary tract. We developed a new and ELISA kit for detecting aberrantly glycosylated integrin α3β1 (AG31) in human urine. We analysed urine samples (n=408) of patients with BC, renal cell carcinoma (RCC), prostate cancer (PC), cystitis, nephritis, and prostatitis from two centres in China. The subjects in the validation groups (n=2317) were recruited from other centres in China between July 2012 and September 2013. Receiver operating characteristic (ROC) curves were used to determine diagnostic accuracy. AG31 levels in urine samples were significantly higher in patients with BC than in any of the control subjects. Moreover, elevated levels of AG31 in urine could distinguish BC from benign inflammatory diseases. Finally, the urinary AG31 test was much more sensitive and specific than the NMP22 test. Therefore, the urinary AG31 test will provide an ideal and assay for the detection of BCs.
Collapse
Affiliation(s)
- Di Jin
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ruiyun Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haige Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Jianlan Institute of Medicine, Beijing 100190, China
| |
Collapse
|
24
|
Wakui H, Tanaka Y, Ose T, Matsumoto I, Kato K, Min Y, Tachibana T, Sato M, Naruchi K, Martin FG, Hinou H, Nishimura SI. A straightforward approach to antibodies recognising cancer specific glycopeptidic neoepitopes. Chem Sci 2020; 11:4999-5006. [PMID: 34122956 PMCID: PMC8159228 DOI: 10.1039/d0sc00317d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 11/18/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrantly truncated immature O-glycosylation in proteins occurs in essentially all types of epithelial cancer cells, which was demonstrated to be a common feature of most adenocarcinomas and strongly associated with cancer proliferation and metastasis. Although extensive efforts have been made toward the development of anticancer antibodies targeting MUC1, one of the most studied mucins having cancer-relevant immature O-glycans, no anti-MUC1 antibody recognises carbohydrates and the proximal MUC1 peptide region, concurrently. Here we present a general strategy that allows for the creation of antibodies interacting specifically with glycopeptidic neoepitopes by using homogeneous synthetic MUC1 glycopeptides designed for the streamlined process of immunization, antibody screening, three-dimensional structure analysis, epitope mapping and biochemical analysis. The X-ray crystal structure of the anti-MUC1 monoclonal antibody SN-101 complexed with the antigenic glycopeptide provides for the first time evidence that SN-101 recognises specifically the essential epitope by forming multiple hydrogen bonds both with the proximal peptide and GalNAc linked to the threonine residue, concurrently. Remarkably, the structure of the MUC1 glycopeptide in complex with SN-101 is identical to its solution NMR structure, an extended conformation induced by site-specific glycosylation. We demonstrate that this method accelerates dramatically the development of a new class of designated antibodies targeting a variety of "dynamic neoepitopes" elaborated by disease-specific O-glycosylation in the immunodominant mucin domains and mucin-like sequences found in intrinsically disordered regions of many proteins.
Collapse
Affiliation(s)
- Hajime Wakui
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Toyoyuki Ose
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Isamu Matsumoto
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University 3-1-1, Tsushima-naka, Kita-ku Okayama 700-8530 Japan
| | - Yao Min
- Field of X-ray Structural Biology, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N10 W8, Kita-ku Sapporo 060-0810 Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Masaharu Sato
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Kentaro Naruchi
- Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9 W15, Chuo-ku Sapporo 060-0009 Japan
| | - Fayna Garcia Martin
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University N21 W11, Kita-ku Sapporo 001-0021 Japan
| |
Collapse
|
25
|
Singh J, Her C, Supekar N, Boons G, Krishnan VV, Brooks CL. Role of glycosylation on the ensemble of conformations in the MUC1 immunodominant epitope. J Pept Sci 2019; 26:e3229. [DOI: 10.1002/psc.3229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Jaideep Singh
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
| | - Cheenou Her
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
| | - Nitin Supekar
- Department of ChemistryThe University of Georgia 140 Cedar Street Athens GA 30602 USA
- Complex Carbohydrate Research CenterThe University of Georgia 315 Riverbend Road Athens GA 3062 USA
| | - Geert‐Jan Boons
- Department of ChemistryThe University of Georgia 140 Cedar Street Athens GA 30602 USA
- Complex Carbohydrate Research CenterThe University of Georgia 315 Riverbend Road Athens GA 3062 USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular ResearchUtrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Viswanathan V. Krishnan
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
- Department of Pathology & Laboratory MedicineUniversity of California Davis School of Medicine 95616 Davis CA
| | - Cory L. Brooks
- Department of ChemistryCalifornia State University 2555 E San Ramon Avenue Fresno CA 93740 USA
| |
Collapse
|
26
|
He Y, Schreiber K, Wolf SP, Wen F, Steentoft C, Zerweck J, Steiner M, Sharma P, Shepard HM, Posey A, June CH, Mandel U, Clausen H, Leisegang M, Meredith SC, Kranz DM, Schreiber H. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4:130416. [PMID: 31672936 PMCID: PMC6948763 DOI: 10.1172/jci.insight.130416] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Human cancer cells were eradicated by adoptive transfer of T cells transduced with a chimeric antigen receptor (CAR) made from an antibody (237Ab) that is highly specific for the murine Tn-glycosylated podoplanin (Tn-PDPN). The objectives were to determine the specificity of these CAR-transduced T (CART) cells and the mechanism for the absence of relapse. We show that although the 237Ab bound only to cell lines expressing murine Tn-PDPN, the 237Ab-derived 237CART cells lysed multiple different human and murine cancers not predicted by the 237Ab binding. Nevertheless, the 237CART cell reactivities remained cancer specific because all recognitions were dependent on the Tn glycosylation that resulted from COSMC mutations that were not present in normal tissues. While Tn was required for the recognition by 237CART, Tn alone was not sufficient for 237CART cell activation. Activation of 237CART cells required peptide backbone recognition but tolerated substitutions of up to 5 of the 7 amino acid residues in the motif recognized by 237Ab. Together, these findings demonstrate what we believe is a new principle whereby simultaneous recognition of multiple independent Tn-glycopeptide antigens on a cancer cell makes tumor escape due to antigen loss unlikely.
Collapse
Affiliation(s)
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Steven P. Wolf
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Frank Wen
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Zerweck
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Madeline Steiner
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | | | - Avery Posey
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Cellular Therapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H. June
- Center for Cellular Therapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ulla Mandel
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Leisegang
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Campus Buch, Berlin, Germany
| | | | - David M. Kranz
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Hans Schreiber
- Committee on Cancer Biology, and
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
- Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Bartels L, de Jong G, Gillissen MA, Yasuda E, Kattler V, Bru C, Fatmawati C, van Hal-van Veen SE, Cercel MG, Moiset G, Bakker AQ, van Helden PM, Villaudy J, Hazenberg MD, Spits H, Wagner K. A Chemo-enzymatically Linked Bispecific Antibody Retargets T Cells to a Sialylated Epitope on CD43 in Acute Myeloid Leukemia. Cancer Res 2019; 79:3372-3382. [PMID: 31064847 DOI: 10.1158/0008-5472.can-18-0189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is a high-risk disease with a poor prognosis, particularly in elderly patients. Because current AML treatment relies primarily on untargeted therapies with severe side effects that limit patient eligibility, identification of novel therapeutic AML targets is highly desired. We recently described AT1413, an antibody produced by donor B cells of a patient with AML cured after allogeneic hematopoietic stem cell transplantation. AT1413 binds CD43s, a unique sialylated epitope on CD43, which is weakly expressed on normal myeloid cells and overexpressed on AML cells. Because of its selectivity for AML cells, we considered CD43s as a target for a bispecific T-cell-engaging antibody (bTCE) and generated a bTCE by coupling AT1413 to two T-cell-targeting fragments using chemo-enzymatic linkage. In vitro, AT1413 bTCE efficiently induced T-cell-mediated cytotoxicity toward different AML cell lines and patient-derived AML blasts, whereas endothelial cells with low binding capacity for AT1413 remained unaffected. In the presence of AML cells, AT1413 bTCE induced upregulation of T-cell activation markers, cytokine release, and T-cell proliferation. AT1413 bTCE was also effective in vivo. Mice either coinjected with human peripheral blood mononuclear cells or engrafted with human hematopoietic stem cells [human immune system (HIS) mice] were inoculated with an AML cell line or patient-derived primary AML blasts. AT1413 bTCE treatment strongly inhibited tumor growth and, in HIS mice, had minimal effects on normal human hematopoietic cells. Taken together, our results indicate that CD43s is a promising target for T-cell-engaging antibodies and that AT1413 holds therapeutic potential in a bTCE-format. SIGNIFICANCE: These findings offer preclinical evidence for the therapeutic potential of a bTCE antibody that targets a sialylated epitope on CD43 in AML.
Collapse
Affiliation(s)
- Lina Bartels
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Greta de Jong
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Marijn A Gillissen
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | | | | | - Camille Bru
- AIMM Therapeutics, Amsterdam, the Netherlands
| | | | | | | | - Gemma Moiset
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | | | | | | | - Mette D Hazenberg
- Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam University Medical Center, Location AMC, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Koen Wagner
- AIMM Therapeutics, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. Curr Cancer Drug Targets 2019; 19:349-359. [DOI: 10.2174/1568009618666180628101059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/12/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022]
Abstract
The use of photodynamic therapy in cancer still remains limited, partly because of the lack of photosensitizer (PS) specificity for the cancerous tissues. Various molecular tools are available to increase PS efficiency by targeting the cancer cell molecular alterations. Most strategies use the protein-protein interactions, e.g. monoclonal antibodies directed toward tumor antigens, such as HER2 or EGFR. An alternative could be the targeting of the tumor glycosylation aberrations, e.g. T/Tn antigens that are truncated O-glycans over-expressed in numerous tumors. Thus, to achieve an effective targeting, PS can be conjugated to molecules that specifically recognize the Oglycosylation aberrations at the cancer cell surface.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Universite de Toulouse, CRCT, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France
| | - Annick Barre
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Pierre Rougé
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| | - Hervé Benoist
- Universite de Toulouse, Pharma-Dev, Institut de Recherche pour le Developpement (IRD) UMR 152, Faculte des Sciences Pharmaceutiques, F-31062 Toulouse, Cedex 09, France
| |
Collapse
|
29
|
Steentoft C, Fuhrmann M, Battisti F, Van Coillie J, Madsen TD, Campos D, Halim A, Vakhrushev SY, Joshi HJ, Schreiber H, Mandel U, Narimatsu Y. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29:307-319. [PMID: 30726901 PMCID: PMC6430981 DOI: 10.1093/glycob/cwz004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Successful application of potent antibody-based T-cell engaging immunotherapeutic strategies is currently limited mainly to hematological cancers. One major reason is the lack of well-characterized antigens on solid tumors with sufficient cancer specific expression. Aberrantly O-glycosylated proteins contain promising cancer-specific O-glycopeptide epitopes suitable for immunotherapeutic applications, but currently only few examples of such antibody epitopes have been identified. We previously showed that chimeric antigen receptor T-cells directed towards aberrantly O-glycosylated MUC1 can control malignant growth in a mouse model. Here, we present a discovery platform for the generation of cancer-specific monoclonal antibodies targeting aberrant O-glycoproteins. The strategy is based on cancer cell lines engineered to homogeneously express the truncated Tn O-glycoform, the so-called SimpleCells. We used SimpleCells of different cancer origin to elicit monoclonal antibodies with selectivity for aberrant O-glycoproteins. For validation we selected and characterized one monoclonal antibody (6C5) directed to a Tn-glycopeptide in dysadherin (FXYD5), known to be upregulated in cancer and promote metastasis. While dysadherin is widely expressed also in normal cells, we demonstrated that the 6C5 epitope is specifically expressed in cancer.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Max Fuhrmann
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324 Rome, Italy
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Diana Campos
- Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hans Schreiber
- Department of Pathology, Committee on Immunology, Committee on Cancer Biology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, USA
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| |
Collapse
|
30
|
Steentoft C, Migliorini D, King TR, Mandel U, June CH, Posey AD. Glycan-directed CAR-T cells. Glycobiology 2018; 28:656-669. [PMID: 29370379 DOI: 10.1093/glycob/cwy008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Denis Migliorini
- Center of Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tiffany R King
- Center of Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carl H June
- Center of Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Avery D Posey
- Center of Cellular Immunotherapies, Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Marcelo F, Supekar N, Corzana F, van der Horst JC, Vuist IM, Live D, Boons GJPH, Smith DF, van Vliet SJ. Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: Implications for the molecular recognition of its ligands. J Biol Chem 2018; 294:1300-1311. [PMID: 30504228 DOI: 10.1074/jbc.ra118.004957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
The human macrophage galactose-type lectin (MGL) is a C-type lectin characterized by a unique specificity for terminal GalNAc residues present in the tumor-associated Tn antigen (αGalNAc-Ser/Thr) and its sialylated form, the sialyl-Tn antigen. However, human MGL has multiple splice variants, and whether these variants have distinct ligand-binding properties is unknown. Here, using glycan microarrays, we compared the binding properties of the short MGL 6C (MGLshort) and the long MGL 6B (MGLlong) splice variants, as well as of a histidine-to-threonine mutant (MGLshort H259T). Although the MGLshort and MGLlong variants displayed similar binding properties on the glycan array, the MGLshort H259T mutant failed to interact with the sialyl-Tn epitope. As the MGLshort H259T variant could still bind a single GalNAc monosaccharide on this array, we next investigated its binding characteristics to Tn-containing glycopeptides derived from the MGL ligands mucin 1 (MUC1), MUC2, and CD45. Strikingly, in the glycopeptide microarray, the MGLshort H259T variant lost high-affinity binding toward Tn-containing glycopeptides, especially at low probing concentrations. Moreover, MGLshort H259T was unable to recognize cancer-associated Tn epitopes on tumor cell lines. Molecular dynamics simulations indicated that in WT MGLshort, His259 mediates H bonds directly or engages the Tn-glycopeptide backbone through water molecules. These bonds were lost in MGLshort H259T, thus explaining its lower binding affinity. Together, our results suggest that MGL not only connects to the Tn carbohydrate epitope, but also engages the underlying peptide via a secondary binding pocket within the MGL carbohydrate recognition domain containing the His259 residue.
Collapse
Affiliation(s)
- Filipa Marcelo
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO, REQUIMTE, 2829-516 Caparica, Portugal
| | - Nitin Supekar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Joost C van der Horst
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ilona M Vuist
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - David Live
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan P H Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - David F Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Bermejo IA, Usabiaga I, Compañón I, Castro-López J, Insausti A, Fernández JA, Avenoza A, Busto JH, Jiménez-Barbero J, Asensio JL, Peregrina JM, Jiménez-Osés G, Hurtado-Guerrero R, Cocinero EJ, Corzana F. Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J Am Chem Soc 2018; 140:9952-9960. [PMID: 30004703 DOI: 10.1021/jacs.8b04801] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tumor-associated carbohydrate Tn antigens include two variants, αGalNAc- O-Thr and αGalNAc- O-Ser. In solution, they exhibit dissimilar shapes and dynamics and bind differently to the same protein receptor. Here, we demonstrate experimentally and theoretically that their conformational preferences in the gas phase are highly similar, revealing the essential role of water. We propose that water molecules prompt the rotation around the glycosidic linkage in the threonine derivative, shielding its hydrophobic methyl group and allowing an optimal solvation of the polar region of the antigen. The unusual arrangement of αGalNAc- O-Thr features a water molecule bound into a "pocket" between the sugar and the threonine. This mechanism is supported by trapping, for the first time, such localized water in the crystal structures of an antibody bound to two glycopeptides that comprise fluorinated Tn antigens in their structure. According to several reported X-ray structures, installing oxygenated amino acids in specific regions of the receptor capable of displacing the bridging water molecule to the bulk-solvent may facilitate the molecular recognition of the Tn antigen with threonine. Overall, our data also explain how water fine-tunes the 3D structure features of similar molecules, which in turn are behind their distinct biological activities.
Collapse
Affiliation(s)
- Iris A Bermejo
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Imanol Usabiaga
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , BIFI-IQFR (CSIC), 50018 Zaragoza , Spain
| | - Aran Insausti
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain.,Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940 Leioa , Spain
| | - José A Fernández
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 801A , 48170 Derio , Spain.,Ikerbasque , Basque Foundation for Science , Maria Diaz de Haro 13 , 48009 Bilbao , Spain.,Department of Organic Chemistry II, Faculty of Science & Technology , University of the Basque Country , 48940 Leioa , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC. 28006 Madrid , Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , BIFI-IQFR (CSIC), 50018 Zaragoza , Spain.,Fundación ARAID , 50018 Zaragoza , Spain
| | - Emilio J Cocinero
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain.,Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940 Leioa , Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| |
Collapse
|
33
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
34
|
Movahedin M, Brooks TM, Supekar NT, Gokanapudi N, Boons GJ, Brooks CL. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology 2018; 27:677-687. [PMID: 28025250 DOI: 10.1093/glycob/cww131] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
In cancer cells, the glycoprotein Mucin 1 (MUC1) undergoes abnormal, truncated glycosylation. The truncated glycosylation exposes cryptic peptide epitopes that can be recognized by antibodies. Since these immunogenic regions are cancer specific, they represent ideal targets for therapeutic antibodies. We investigated the role of tumor-specific glycosylation on antigen recognition by the therapeutic antibody AR20.5. We explored the affinity of AR20.5 to a synthetic cancer-specific MUC1 glycopeptide and peptide. The antibody bound to the glycopeptide with an order of magnitude stronger affinity than the naked peptide. Given these results, we postulated that AR20.5 must specifically bind the carbohydrate as well as the peptide. Using X-ray crystallography, we examined this hypothesis by determining the structure of AR20.5 in complex with both peptide and glycopeptide. Surprisingly, the structure revealed that the carbohydrate did not form any specific polar contacts with the antibody. The high affinity of AR20.5 for the glycopeptide and the lack of specific binding contacts support a hypothesis that glycosylation of MUC1 stabilizes an extended bioactive conformation of the peptide recognized by the antibody. Since high affinity binding of AR20.5 to the MUC1 glycopeptide may not driven by specific antibody-antigen contacts, but rather evidence suggests that glycosylation alters the conformational equilibrium of the antigen, which allows the antibody to select the correct conformation. This study suggests a novel mechanism of antibody-antigen interaction and also suggests that glycosylation of MUC1 is important for the generation of high affinity therapeutic antibodies.
Collapse
Affiliation(s)
- Mohammadreza Movahedin
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Teresa M Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Nitin T Supekar
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, University of Georgia, 140 Cedar street, Athens, GA 30602, USA
| | - Naveen Gokanapudi
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, GA 30602, USA.,Department of Chemistry, University of Georgia, 140 Cedar street, Athens, GA 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Cory L Brooks
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA 93740, USA
| |
Collapse
|
35
|
Martínez-Sáez N, Peregrina JM, Corzana F. Principles of mucin structure: implications for the rational design of cancer vaccines derived from MUC1-glycopeptides. Chem Soc Rev 2018; 46:7154-7175. [PMID: 29022615 DOI: 10.1039/c6cs00858e] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer is currently one of the world's most serious public health problems. Significant efforts are being made to develop new strategies that can eradicate tumours selectively without detrimental effects to healthy cells. One promising approach is focused on the design of vaccines that contain partially glycosylated mucins in their formulation. Although some of these vaccines are in clinical trials, a lack of knowledge about the molecular basis that governs the antigen presentation, and the interactions between antigens and the elicited antibodies has limited their success thus far. This review focuses on the most significant milestones achieved to date in the conformational analysis of tumour-associated MUC1 derivatives both in solution and bound to antibodies. The effect that the carbohydrate scaffold has on the peptide backbone structure and the role of the sugar in molecular recognition by antibodies are emphasised. The outcomes summarised in this review may be a useful guide to develop new antigens for the design of cancer vaccines in the near future.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain.
| | | | | |
Collapse
|
36
|
Chen Y, Wang H, Zuo Y, Li N, Ding M, Li C. A novel monoclonal antibody KMP1 has potential antitumor activity of bladder cancer by blocking CD44 in vivo and in vitro. Cancer Med 2018; 7:2064-2077. [PMID: 29577645 PMCID: PMC5943472 DOI: 10.1002/cam4.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Bladder cancer becomes a serious medical and social concern due to its high recurrence and mortality rates. Thus, it is urgent to search a novel prognostic biomarker and targeted therapy with high sensitivity and specificity. In this study, we used the human bladder cancer cell line EJ as an immunogen to generate a novel mouse monoclonal antibody KMP1 that specifically bound to bladder cancer, and then, the antitumor effect of KMP1 against bladder cancer was investigated both in vivo and in vitro. The results showed that expression of the KMP1 epitope is consistent with clinical severity and prognosis of bladder cancer. Furthermore, KMP1 not only significantly inhibited the proliferation, migration, and adhesion of EJ cells in vivo, but also suppressed the xenograft tumor growth in nude mice compared with the control group treated with mIgG. Subsequently, the underlying mechanism of KMP1 against bladder cancer was explored via antigen affinity chromatography and mass spectrometry. CD44 located on the cytomembrane was found as the antigen of KMP1. Using RNA interference technology to knock down CD44 expression, we further identified that KMP1 has the antitumor activity by binding to CD44 and blocking its functions. In conclusion, KMP1 might be valuable for development as a promising specific diagnostic biomarker or targeted agent for bladder cancer.
Collapse
Affiliation(s)
- Yujin Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, 650101, China.,Kidney Center, Yunnan Boya Hospital, Kunming, 650228, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, 650101, China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, 650101, China
| | - Ning Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, 650101, China
| | - Mingxia Ding
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, 650101, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing Jianlan Institute of Medicine, Beijing, 100190, China
| |
Collapse
|
37
|
Naito S, Takahashi T, Onoda J, Uemura S, Ohyabu N, Takemoto H, Yamane S, Fujii I, Nishimura SI, Numata Y. Generation of Novel Anti-MUC1 Monoclonal Antibodies with Designed Carbohydrate Specificities Using MUC1 Glycopeptide Library. ACS OMEGA 2017; 2:7493-7505. [PMID: 30023556 PMCID: PMC6044872 DOI: 10.1021/acsomega.7b00708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/09/2017] [Indexed: 06/08/2023]
Abstract
Numerous anti-mucin 1 (anti-MUC1) antibodies that recognize O-glycan core structures have already been developed. However, most of them show low specificities toward O-glycan structures and/or low affinity toward a monovalent epitope. In this study, using an MUC1 glycopeptide library, we established two novel anti-MUC1 monoclonal antibodies (1B2 and 12D10) with designed carbohydrate specificities. Compared with previously reported anti-MUC1 antibodies, 1B2 and 12D10 showed quite different features regarding their specificities, affinities, and reactivity profiles to various cell lines. Both antibodies recognized specific O-glycan structures at the PDT*R motif (the asterisk represents an O-glycosylation site). 1B2 recognized O-glycans with an unsubstituted O-6 position of the GalNAc residue (Tn, T, and 23ST), whereas 12D10 recognized Neu5Ac at the same position (STn, 26ST, and dST). Neither of them bound to glycopeptides with core 2 O-glycans that have GlcNAc at the O-6 position of the GalNAc residue. Furthermore, 1B2 and 12D10 showed a strong binding to not only native MUC1 but also 20-mer glycopeptide with a monovalent epitope. These anti-MUC1 antibodies should thus become powerful tools for biological studies on MUC1 O-glycan structures. Furthermore, the strategy of using glycopeptide libraries should enable the development of novel antibodies with predesigned O-glycan specificities.
Collapse
Affiliation(s)
- Shoichi Naito
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tatsuya Takahashi
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Junji Onoda
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoko Uemura
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Naoki Ohyabu
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroshi Takemoto
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shoji Yamane
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ikuo Fujii
- School
of Science, Osaka Prefecture University, 1-1 Gakuen-cho,
Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shin-Ichiro Nishimura
- Faculty
of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yoshito Numata
- Shionogi
Pharmaceutical Research Center, Shionogi
& Co., Ltd., 3-1-1
Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
38
|
Arend P. Early ovariectomy reveals the germline encoding of natural anti-A- and Tn-cross-reactive immunoglobulin M (IgM) arising from developmental O-GalNAc glycosylations. (Germline-encoded natural anti-A/Tn cross-reactive IgM). Cancer Med 2017; 6:1601-1613. [PMID: 28580709 PMCID: PMC5504323 DOI: 10.1002/cam4.1079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
While native blood group A-like glycans have not been demonstrated in prokaryotic microorganisms as a source of human "natural" anti-A isoagglutinin production, and metazoan eukaryotic N-acetylgalactosamine O-glycosylation of serine or threonine residues (O-GalNAc-Ser/Thr-R) does not occur in bacteria, the O-GalNAc glycan-bearing ovarian glycolipids, discovered in C57BL/10 mice, are complementary to the syngeneic anti-A-reactive immunoglobulin M (IgM), which is not present in animals that have undergone ovariectomy prior to the onset of puberty. These mammalian ovarian glycolipids are complementary also to the anti-A/Tn cross-reactive Helix pomatia agglutinin (HPA), a molluscan defense protein, emerging from the coat proteins of fertilized eggs and reflecting the snail-intrinsic, reversible O-GalNAc glycosylations. The hexameric structure of this primitive invertebrate defense protein gives rise to speculation regarding an evolutionary relationship to the mammalian nonimmune, anti-A-reactive immunoglobulin M (IgM) molecule. Hypothetically, this molecule obtains its complementarity from the first step of protein glycosylations, initiated by GalNAc via reversible O-linkages to peptides displaying Ser/Thr motifs, whereas the subsequent transferase depletion completes germ cell maturation and cell renewal, associated with loss of glycosidic bonds and release of O-glycan-depleted proteins, such as complementary IgM revealing the structure of the volatilely expressed "lost" glycan carrier through germline Ser residues. Consequently, the evolutionary/developmental first glycosylations of proteins appear metabolically related or identical to that of the mucin-type, potentially "aberrant" monosaccharide GalNAcα1-O-Ser/Thr-R, also referred to as the Tn (T "nouvelle") antigen, and explain the anti-Tn cross-reactivity of human innate or "natural" anti-A-specific isoagglutinin and the pronounced occurrence of cross-reactive anti-Tn antibody in plasma from humans with histo-blood group O. In fact, A-allelic, phenotype-specific GalNAc glycosylation of plasma proteins does not occur in human blood group O, affecting anti-Tn antibody levels, which may function as a growth regulator that contributes to a potential survival advantage of this group in the overall risk of developing cancer when compared with non-O blood groups.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University MarburgDepartment of MedicineD‐355 Marburg/Lahn, Germany
- Gastroenterology Research LaboratoryUniversity of Iowa, College of MedicineIowa CityIowa
- Research LaboratoriesChemie Grünenthal GmbHD‐52062AachenGermany
| |
Collapse
|
39
|
Persson N, Stuhr-Hansen N, Risinger C, Mereiter S, Polónia A, Polom K, Kovács A, Roviello F, Reis CA, Welinder C, Danielsson L, Jansson B, Blixt O. Epitope mapping of a new anti-Tn antibody detecting gastric cancer cells. Glycobiology 2017; 27:635-645. [DOI: 10.1093/glycob/cwx033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
|
40
|
Antibody recognition of aberrant glycosylation on the surface of cancer cells. Curr Opin Struct Biol 2016; 44:1-8. [PMID: 27821276 DOI: 10.1016/j.sbi.2016.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 11/23/2022]
Abstract
Carbohydrate-binding antibodies and carbohydrate-based vaccines are being actively pursued as targeted immunotherapies for a broad range of cancers. Recognition of tumor-associated carbohydrates (glycans) by antibodies is predominantly towards terminal epitopes on glycoproteins and glycolipids on the surface of cancer cells. Crystallography along with complementary experimental and computational methods have been extensively used to dissect antibody recognition of glycan epitopes commonly found in cancer. We provide an overview of the structural biology of antibody recognition of tumor-associated glycans and propose potential rearrangements of these targets in the membrane that could dictate the complex biological activities of these antibodies against cancer cells.
Collapse
|
41
|
Ladomersky E, Genet M, Zhai L, Gritsina G, Lauing KL, Lulla RR, Fangusaro J, Lenzen A, Kumthekar P, Raizer JJ, Binder DC, James CD, Wainwright DA. Improving vaccine efficacy against malignant glioma. Oncoimmunology 2016; 5:e1196311. [PMID: 27622066 DOI: 10.1080/2162402x.2016.1196311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/19/2022] Open
Abstract
The effective treatment of adult and pediatric malignant glioma is a significant clinical challenge. In adults, glioblastoma (GBM) accounts for the majority of malignant glioma diagnoses with a median survival of 14.6 mo. In children, malignant glioma accounts for 20% of primary CNS tumors with a median survival of less than 1 y. Here, we discuss vaccine treatment for children diagnosed with malignant glioma, through targeting EphA2, IL-13Rα2 and/or histone H3 K27M, while in adults, treatments with RINTEGA, Prophage Series G-100 and dendritic cells are explored. We conclude by proposing new strategies that are built on current vaccine technologies and improved upon with novel combinatorial approaches.
Collapse
Affiliation(s)
- Erik Ladomersky
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Matthew Genet
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Galina Gritsina
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Kristen L Lauing
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Rishi R Lulla
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern Brain Tumor Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Ann & Robert Lurie Children's Hospital of Northwestern University, Chicago, IL, USA
| | - Jason Fangusaro
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern Brain Tumor Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Ann & Robert Lurie Children's Hospital of Northwestern University, Chicago, IL, USA
| | - Alicia Lenzen
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Ann & Robert Lurie Children's Hospital of Northwestern University, Chicago, IL, USA
| | - Priya Kumthekar
- Northwestern Brain Tumor Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey J Raizer
- Northwestern Brain Tumor Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David C Binder
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA; Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - C David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern Brain Tumor Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern Brain Tumor Institute, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Huang ZQ, Raska M, Stewart TJ, Reily C, King RG, Crossman DK, Crowley MR, Hargett A, Zhang Z, Suzuki H, Hall S, Wyatt RJ, Julian BA, Renfrow MB, Gharavi AG, Novak J. Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy. J Am Soc Nephrol 2016; 27:3278-3284. [PMID: 26966014 DOI: 10.1681/asn.2014101044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies against galactose-deficient IgA1 drive formation of pathogenic immune complexes in IgA nephropathy. IgG autoantibodies against galactose-deficient IgA1 in patients with IgA nephropathy have a specific amino-acid sequence, Y1CS3, in the complementarity-determining region 3 of the heavy chain variable region compared with a Y1CA3 sequence in similar isotype-matched IgG from healthy controls. We previously found that the S3 residue is critical for binding galactose-deficient IgA1. To determine whether this difference is due to a rare germline sequence, we amplified and sequenced the corresponding germline variable region genes from peripheral blood mononuclear cells of seven patients with IgA nephropathy and six healthy controls from whom we had cloned single-cell lines secreting monoclonal IgG specific for galactose-deficient IgA1. Sanger DNA sequencing revealed that complementarity-determining region 3 in the variable region of the germline genes encoded the Y1C(A/V)3 amino-acid sequence. Thus, the A/V>S substitution in the complementarity-determining region 3 of anti-galactose-deficient-IgA1 autoantibodies of the patients with IgA nephropathy is not a rare germline gene variant. Modeling analyses indicated that the S3 hydroxyl group spans the complementarity-determining region 3 loop stem, stabilizing the adjacent β-sheet and stem structure, important features for effective binding to galactose-deficient IgA1. Understanding processes leading to production of the autoantibodies may offer new approaches to treat IgA nephropathy.
Collapse
Affiliation(s)
| | - Milan Raska
- University of Alabama at Birmingham, Birmingham, Alabama.,Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | | | - Colin Reily
- University of Alabama at Birmingham, Birmingham, Alabama
| | - R Glenn King
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Audra Hargett
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhixin Zhang
- University of Nebraska Medical Center, Omaha, Nebraska.,West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, Alabama.,Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert J Wyatt
- University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Bruce A Julian
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
43
|
Structural characterization of a Vatairea macrocarpa lectin in complex with a tumor-associated antigen: A new tool for cancer research. Int J Biochem Cell Biol 2016; 72:27-39. [DOI: 10.1016/j.biocel.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/05/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022]
|
44
|
Binder DC, Davis AA, Wainwright DA. Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology 2016; 5:e1082027. [PMID: 27057463 PMCID: PMC4801467 DOI: 10.1080/2162402x.2015.1082027] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and still remains incurable. Although immunotherapeutic vaccination against GBM has demonstrated immune-stimulating activity with some promising survival benefits, tumor relapse is common, highlighting the need for additional and/or combinatorial approaches. Recently, antibodies targeting immune checkpoints were demonstrated to generate impressive clinical responses against advanced melanoma and other malignancies, in addition to showing potential for enhancing vaccination and radiotherapy (RT). Here, we summarize the current knowledge of central nervous system (CNS) immunosuppression, evaluate past and current immunotherapeutic trials and discuss promising future immunotherapeutic directions to treat CNS-localized malignancies.
Collapse
Affiliation(s)
- David C. Binder
- Commitee on Cancer Biology
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Andrew A. Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
45
|
Rangappa S, Artigas G, Miyoshi R, Yokoi Y, Hayakawa S, Garcia-Martin F, Hinou H, Nishimura SI. Effects of the multiple O-glycosylation states on antibody recognition of the immunodominant motif in MUC1 extracellular tandem repeats. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00100a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The conformational impact of the clusteredO-glycans strongly influences recognition by antibodies of the cancer-relevant epitope in the MUC1 extracellular tandem repeat domain.
Collapse
Affiliation(s)
- Shobith Rangappa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Gerard Artigas
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Risho Miyoshi
- Medicinal Chemistry Pharmaceuticals Co., Ltd
- Sapporo 001-0021
- Japan
| | - Yasuhiro Yokoi
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shun Hayakawa
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Fayna Garcia-Martin
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 001-0021
- Japan
| |
Collapse
|
46
|
Coelho H, Matsushita T, Artigas G, Hinou H, Cañada FJ, Lo-Man R, Leclerc C, Cabrita EJ, Jiménez-Barbero J, Nishimura SI, Garcia-Martín F, Marcelo F. The Quest for Anticancer Vaccines: Deciphering the Fine-Epitope Specificity of Cancer-Related Monoclonal Antibodies by Combining Microarray Screening and Saturation Transfer Difference NMR. J Am Chem Soc 2015; 137:12438-41. [PMID: 26366611 DOI: 10.1021/jacs.5b06787] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of MUC1 tumor-associated Tn antigen (αGalpNAc1-O-Ser/Thr) has boosted the development of anticancer vaccines. Combining microarrays and saturation transfer difference NMR, we have characterized the fine-epitope mapping of a MUC1 chemical library (naked and Tn-glycosylated) toward two families of cancer-related monoclonal antibodies (anti-MUC1 and anti-Tn mAbs). Anti-MUC1 mAbs clone VU-3C6 and VU-11E2 recognize naked MUC1-derived peptides and bind GalNAc in a peptide-sequence-dependent manner. In contrast, anti-Tn mAbs clone 8D4 and 14D6 mostly recognize the GalNAc and do not bind naked MUC1-derived peptides. These anti-Tn mAbs show a clear preference for glycopeptides containing the Tn-Ser antigen rather than the Tn-Thr analogue, stressing the role of the underlying amino acid (serine or threonine) in the binding process. The reported strategy can be employed, in general, to unveil the key minimal structural features that modulate antigen-antibody recognition, with particular relevance for the development of Tn-MUC1-based anticancer vaccines.
Collapse
Affiliation(s)
- Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Takahiko Matsushita
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Gerard Artigas
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - F Javier Cañada
- Centro de Investigaciones Biológicas, CIB-CSIC , 28040 Madrid, Spain
| | - Richard Lo-Man
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, Institut Pasteur , 75724 Paris Cedex 15, France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Claude Leclerc
- Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer, Paris, Institut Pasteur , 75724 Paris Cedex 15, France.,INSERM U1041 , 75724 Paris Cedex 15, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Jesús Jiménez-Barbero
- CIC bioGUNE Bizkaia , 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science , 48005 Bilbao, Spain
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Fayna Garcia-Martín
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , Kita-ku, Sapporo 001-0021, Japan
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| |
Collapse
|
47
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and Threonine O-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015; 54:9830-4. [PMID: 26118689 PMCID: PMC4552995 DOI: 10.1002/anie.201502813] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/06/2015] [Indexed: 11/11/2022]
Abstract
The structural features of MUC1-like glycopeptides bearing the Tn antigen (α-O-GalNAc-Ser/Thr) in complex with an anti MUC-1 antibody are reported at atomic resolution. For the α-O-GalNAc-Ser derivative, the glycosidic linkage adopts a high-energy conformation, barely populated in the free state. This unusual structure (also observed in an α-S-GalNAc-Cys mimic) is stabilized by hydrogen bonds between the peptidic fragment and the sugar. The selection of a particular peptide structure by the antibody is thus propagated to the carbohydrate through carbohydrate/peptide contacts, which force a change in the orientation of the sugar moiety. This seems to be unfeasible in the α-O-GalNAc-Thr glycopeptide owing to the more limited flexibility of the side chain imposed by the methyl group. Our data demonstrate the non-equivalence of Ser and Thr O-glycosylation points in molecular recognition processes. These features provide insight into the occurrence in nature of the APDTRP epitope for anti-MUC1 antibodies.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - Jessika Valero-González
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain).,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain)
| | - David Madariaga
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Víctor J Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK)
| | - Míriam Salvadó
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcellí Domingo s/n, 43007 Tarragona (Spain)
| | - Juan L Asensio
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio (Spain).,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain).,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain)
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain)
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK).,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa (Portugal)
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Edificio I+D, 50018 Zaragoza (Spain). .,Fundación ARAID, Edificio Pignatelli 36, Zaragoza (Spain).
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño (Spain).
| |
Collapse
|
48
|
Martínez-Sáez N, Castro-López J, Valero-González J, Madariaga D, Compañón I, Somovilla VJ, Salvadó M, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Bernardes GJL, Peregrina JM, Hurtado-Guerrero R, Corzana F. Deciphering the Non-Equivalence of Serine and ThreonineO-Glycosylation Points: Implications for Molecular Recognition of the Tn Antigen by an anti-MUC1 Antibody. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. Antibody recognition of carbohydrate epitopes†. Glycobiology 2015; 25:920-52. [PMID: 26033938 DOI: 10.1093/glycob/cwv037] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/24/2015] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| |
Collapse
|
50
|
Bagdonaite I, Nordén R, Joshi HJ, Dabelsteen S, Nyström K, Vakhrushev SY, Olofsson S, Wandall HH. A strategy for O-glycoproteomics of enveloped viruses--the O-glycoproteome of herpes simplex virus type 1. PLoS Pathog 2015; 11:e1004784. [PMID: 25830354 PMCID: PMC4382219 DOI: 10.1371/journal.ppat.1004784] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. Information on site-specific O-glycosylation of viral envelope glycoproteins is generally very limited despite important functions. We present a powerful mass-spectrometry based strategy to globally identify O-glycosylation sites on viral envelope proteins of a given virus in the context of a productive infection. We successfully utilized the strategy to map O-linked glycosylation sites on the complex HSV-1 virus demonstrating that O-glycosylation is widely distributed on most envelope proteins. Moreover, we used genetically engineered keratinocytes lacking O-glycan elongation capacity to demonstrate that O-linked glycans are indeed important for HSV-1 biology as HSV-1 particles produced in these cells had significantly lower titers compared to wild-type keratinocytes. These tools enable wider discovery and detailed analysis of the role of site-specific O-glycosylation in virology.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rickard Nordén
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Institute of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Nyström
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|