1
|
Kollmar M, Welz T, Ravi A, Kaufmann T, Alzahofi N, Hatje K, Alghamdi A, Kim J, Briggs DA, Samol-Wolf A, Pylypenko O, Hume AN, Burkhardt P, Faix J, Kerkhoff E. Actomyosin organelle functions of SPIRE actin nucleators precede animal evolution. Commun Biol 2024; 7:832. [PMID: 38977899 PMCID: PMC11231147 DOI: 10.1038/s42003-024-06458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Aishwarya Ravi
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Biology Department, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Klas Hatje
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Asmahan Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyu Kim
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
- Department of Anatomy, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Annette Samol-Wolf
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Torres AA, Macilwee SL, Rashid A, Cox SE, Albarnaz JD, Bonjardim CA, Smith GL. The actin nucleator Spir-1 is a virus restriction factor that promotes innate immune signalling. PLoS Pathog 2022; 18:e1010277. [PMID: 35148361 PMCID: PMC8870497 DOI: 10.1371/journal.ppat.1010277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/24/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular proteins often have multiple and diverse functions. This is illustrated with protein Spir-1 that is an actin nucleator, but, as shown here, also functions to enhance innate immune signalling downstream of RNA sensing by RIG-I/MDA-5. In human and mouse cells lacking Spir-1, IRF3 and NF-κB-dependent gene activation is impaired, whereas Spir-1 overexpression enhanced IRF3 activation. Furthermore, the infectious virus titres and sizes of plaques formed by two viruses that are sensed by RIG-I, vaccinia virus (VACV) and Zika virus, are increased in Spir-1 KO cells. These observations demonstrate the biological importance of Spir-1 in the response to virus infection. Like cellular proteins, viral proteins also have multiple and diverse functions. Here, we also show that VACV virulence factor K7 binds directly to Spir-1 and that a diphenylalanine motif of Spir-1 is needed for this interaction and for Spir-1-mediated enhancement of IRF3 activation. Thus, Spir-1 is a new virus restriction factor and is targeted directly by an immunomodulatory viral protein that enhances virus virulence and diminishes the host antiviral responses.
Collapse
Affiliation(s)
- Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Amir Rashid
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Cox
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jonas D. Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Claudio A. Bonjardim
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Hoyer M, Crevenna AH, Correia JRC, Quezada AG, Lamb DC. Zero-mode waveguides visualize the first steps during gelsolin-mediated actin filament formation. Biophys J 2022; 121:327-335. [PMID: 34896371 PMCID: PMC8790234 DOI: 10.1016/j.bpj.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023] Open
Abstract
Actin filament dynamics underlie key cellular processes. Although the elongation of actin filaments has been extensively studied, the mechanism of nucleation remains unclear. The micromolar concentrations needed for filament formation have prevented direct observation of nucleation dynamics on the single molecule level. To overcome this limitation, we have used the attoliter excitation volume of zero-mode waveguides to directly monitor the early steps of filament assembly. Immobilizing single gelsolin molecules as a nucleator at the bottom of the zero-mode waveguide, we could visualize the actin filament nucleation process. The process is surprisingly dynamic, and two distinct populations during gelsolin-mediated nucleation are observed. The two populations are defined by the stability of the actin dimers and determine whether elongation occurs. Furthermore, by using an inhibitor to block flattening, a conformational change in actin associated with filament formation, elongation was prevented. These observations indicate that a conformational transition and pathway competition determine the nucleation of gelsolin-mediated actin filament formation.
Collapse
Affiliation(s)
- Maria Hoyer
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany
| | - Alvaro H. Crevenna
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal,Corresponding author
| | - Jose Rafael Cabral Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Andrea G. Quezada
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Don C. Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany,Corresponding author
| |
Collapse
|
4
|
Horan BG, Hall AR, Vavylonis D. Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophys J 2020; 119:553-566. [PMID: 32668234 DOI: 10.1016/j.bpj.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
We studied actin filament polymerization and nucleation with molecular dynamics simulations and a previously established coarse-grained model having each residue represented by a single interaction site located at the Cα atom. We approximate each actin protein as a fully or partially rigid unit to identify the equilibrium structural ensemble of interprotein complexes. Monomers in the F-actin configuration bound to both barbed and pointed ends of a short F-actin filament at the anticipated locations for polymerization. Binding at both ends occurred with similar affinity. Contacts between residues of the incoming subunit and the short filament were consistent with expectation from models based on crystallography, x-ray diffraction, and cryo-electron microscopy. Binding at the barbed and pointed end also occurred at an angle with respect to the polymerizable bound structure, and the angle range depended on the flexibility of the D-loop. Additional barbed end bound states were seen when the incoming subunit was in the G-actin form. Consistent with an activation barrier for pointed end polymerization, G-actin did not bind at an F-actin pointed end. In all cases, binding at the barbed end also occurred in a configuration similar to the antiparallel (lower) dimer. Individual monomers bound each other in a short-pitch helix complex in addition to other configurations, with several of them apparently nonproductive for polymerization. Simulations with multiple monomers in the F-actin form show assembly into filaments as well as transient aggregates at the barbed end. We discuss the implications of these observations on the kinetic pathway of actin filament nucleation and polymerization and possibilities for future improvements of the coarse-grained model.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
5
|
Havanapan PO, Mangkalanan S, Phungthanom N, Krittanai C. Proteomic analysis and white spot syndrome virus interaction of mud crab (Scylla olivacea) revealed responsive roles of the hemocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 89:458-467. [PMID: 30954523 DOI: 10.1016/j.fsi.2019.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
White spot disease (WSD) is a highly virulent viral disease in shrimps. Clinical signs and high mortality of WSD is generally observed after a few days of infection by White Spot Syndrome virus (WSSV). Mud crabs are the major carrier and persistent host for the WSSV. However, an elucidation of viral interaction and persistent mode of WSSV infection in mud crab is still limited. We investigated the defensive role of mud crab (Scylla olivacea) hemocytes against WSSV infection by using comparative proteomic analysis coupled with electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC/MS/MS). The proteomic maps of expressed proteins obtained from WSSV infected hemocytes revealed differential proteins related to various biological functions, including immune response, anti-apoptosis, endocytosis, phosphorylation signaling, stress response, oxygen transport, molting, metabolism, and biosynthesis. Four distinctive cell types of crab hemocytes: hyaline cells (HC), small granular cells (SGC), large granular cells (LGC) and mixed granular cells (MGC) were found susceptible to WSSV. However, immunohistochemistry analysis demonstrated a complete replication of WSSV only in SGC and LGC. WSSV induced apoptosis was also observed in HC, SGC and MGC except for LGC. These results suggested that HC and MGC may undergo apoptosis prior to a complete assembly of virion, while SGC is more susceptible showing higher amplification and releasing of virion. In contrast, WSSV may inhibit apoptosis in infected LGC to stay in latency. This present finding provides an insight for the responsive roles of crustacean hemocyte cells involved in molecular interaction and defense mechanism against WSSV.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | - Seksan Mangkalanan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand; Department of Applied Biology, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Nuanwan Phungthanom
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | - Chartchai Krittanai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand.
| |
Collapse
|
6
|
Deville C, Girard-Blanc C, Assrir N, Nhiri N, Jacquet E, Bontems F, Renault L, Petres S, van Heijenoort C. Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction. FEBS Lett 2016; 590:3690-3699. [PMID: 27680677 DOI: 10.1002/1873-3468.12423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022]
Abstract
Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains.
Collapse
Affiliation(s)
- Célia Deville
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Nadine Assrir
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eric Jacquet
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Bontems
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Carine van Heijenoort
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Tóth MÁ, Majoros AK, Vig AT, Migh E, Nyitrai M, Mihály J, Bugyi B. Biochemical Activities of the Wiskott-Aldrich Syndrome Homology Region 2 Domains of Sarcomere Length Short (SALS) Protein. J Biol Chem 2016; 291:667-80. [PMID: 26578512 PMCID: PMC4705388 DOI: 10.1074/jbc.m115.683904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Drosophila melanogaster sarcomere length short (SALS) is a recently identified Wiskott-Aldrich syndrome protein homology 2 (WH2) domain protein involved in skeletal muscle thin filament regulation. SALS was shown to be important for the establishment of the proper length and organization of sarcomeric actin filaments. Here, we present the first detailed characterization of the biochemical activities of the tandem WH2 domains of SALS (SALS-WH2). Our results revealed that SALS-WH2 binds both monomeric and filamentous actin and shifts the monomer-filament equilibrium toward the monomeric actin. In addition, SALS-WH2 can bind to but fails to depolymerize phalloidin- or jasplakinolide-bound actin filaments. These interactions endow SALS-WH2 with the following two major activities in the regulation of actin dynamics: SALS-WH2 sequesters actin monomers into non-polymerizable complexes and enhances actin filament disassembly by severing, which is modulated by tropomyosin. We also show that profilin does not influence the activities of the WH2 domains of SALS in actin dynamics. In conclusion, the tandem WH2 domains of SALS are multifunctional regulators of actin dynamics. Our findings suggest that the activities of the WH2 domains do not reconstitute the presumed biological function of the full-length protein. Consequently, the interactions of the WH2 domains of SALS with actin must be tuned in the cellular context by other modules of the protein and/or sarcomeric components for its proper functioning.
Collapse
Affiliation(s)
- Mónika Ágnes Tóth
- From the Department of Biophysics, University of Pécs Medical School, Szigeti Str. 12, Pécs H-7624
| | - Andrea Kinga Majoros
- From the Department of Biophysics, University of Pécs Medical School, Szigeti Str. 12, Pécs H-7624
| | - Andrea Teréz Vig
- From the Department of Biophysics, University of Pécs Medical School, Szigeti Str. 12, Pécs H-7624
| | - Ede Migh
- the Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726
| | - Miklós Nyitrai
- From the Department of Biophysics, University of Pécs Medical School, Szigeti Str. 12, Pécs H-7624, the Szentágothai Research Center, Ifjúság Str. 34, H-7624 Pécs, and the Nuclear-Mitochondrial Interactions Research Group and the Office for Subsidized Research Units
| | - József Mihály
- the Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungarian Academy of Sciences-University of Pécs, Nádor u. 7, H-1051 Budapest, Hungary
| | - Beáta Bugyi
- From the Department of Biophysics, University of Pécs Medical School, Szigeti Str. 12, Pécs H-7624, the Szentágothai Research Center, Ifjúság Str. 34, H-7624 Pécs, and
| |
Collapse
|
8
|
Park E, Graziano BR, Zheng W, Garabedian M, Goode BL, Eck MJ. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin Monomer Recruitment Motif. Structure 2015; 23:1492-1499. [PMID: 26118535 DOI: 10.1016/j.str.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/22/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, SM1036, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Brian R Graziano
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Wei Zheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, SM1036, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Mikael Garabedian
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, SM1036, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Dimeric WH2 repeats of VopF sequester actin monomers into non-nucleating linear string conformations: An X-ray scattering study. J Struct Biol 2015; 190:192-9. [PMID: 25818509 DOI: 10.1016/j.jsb.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/23/2022]
Abstract
VopF and VopL are highly similar virulence-factors of Vibrio cholerae and Vibrio parahaemolyticus respectively that disrupt the host's actin cytoskeleton, using a unique organization in dimerized WH2 repeats. Association of dimerized WH2 domains with the barbed face of actin confers multifunctional activities to VopF in vitro, including G-actin sequestration and filament nucleation, barbed end tracking and uncapping. Here, small angle X-ray scattering (SAXS) measurements of complexes of VopF with actin and structural modeling reveal that VopF stabilizes linear actin-strings that differ from canonical actin filament architectures but represent non-polymerizable sequestered forms of actin. The results exclude that VopL binds the pointed end of actin filaments in the template filament nucleation mechanism derived from crystallographic studies.
Collapse
|
10
|
Muñoz-Gómez A, Corredor M, Benítez-Páez A, Peláez C. Development of quantitative proteomics using iTRAQ based on the immunological response of Galleria mellonella larvae challenged with Fusarium oxysporum microconidia. PLoS One 2014; 9:e112179. [PMID: 25379782 PMCID: PMC4224417 DOI: 10.1371/journal.pone.0112179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/13/2014] [Indexed: 11/23/2022] Open
Abstract
Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at 37°C over expressed many more proteins than other treatments.
Collapse
Affiliation(s)
- Amalia Muñoz-Gómez
- Grupo Interdisciplinario de Estudios Moleculares (GIEM), Instituto de Química, Universidad de Antioquia, Medellín, Antioquia, Colombia
- Genetic and Biochemistry of Microorganisms group (GEBIOMIC), Instituto de Biología, Universidad de Antioquia, Medellín, Antioquia, Colombia
- Bioinformatic Analysis Group (GABi), Centro de Investigación y Desarrollo en Biotecnología, CIDBIO, Bogotá, Distrito Capital, Colombia
| | - Mauricio Corredor
- Genetic and Biochemistry of Microorganisms group (GEBIOMIC), Instituto de Biología, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Alfonso Benítez-Páez
- Bioinformatic Analysis Group (GABi), Centro de Investigación y Desarrollo en Biotecnología, CIDBIO, Bogotá, Distrito Capital, Colombia
| | - Carlos Peláez
- Grupo Interdisciplinario de Estudios Moleculares (GIEM), Instituto de Química, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
11
|
Rasson AS, Bois JS, Pham DSL, Yoo H, Quinlan ME. Filament assembly by Spire: key residues and concerted actin binding. J Mol Biol 2014; 427:824-839. [PMID: 25234086 DOI: 10.1016/j.jmb.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
Abstract
The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.
Collapse
Affiliation(s)
- Amy S Rasson
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Justin S Bois
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Duy Stephen L Pham
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Haneul Yoo
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Paul D. Boyer Hall, 611 Charles E. Young Drive East, Box 951570, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|
12
|
Renault L, Deville C, van Heijenoort C. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics. Cytoskeleton (Hoboken) 2013; 70:686-705. [DOI: 10.1002/cm.21140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Louis Renault
- Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Célia Deville
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Carine van Heijenoort
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| |
Collapse
|
13
|
Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32. [DOI: 10.1016/j.ejcb.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
|
14
|
Alanine-scanning mutagenesis of WH2 domains of VopF reveals residues important for conferring lethality in a Saccharomyces cerevisiae model. Gene 2013; 525:116-23. [DOI: 10.1016/j.gene.2013.04.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 03/22/2013] [Accepted: 04/19/2013] [Indexed: 12/25/2022]
|
15
|
Chen X, Ni F, Tian X, Kondrashkina E, Wang Q, Ma J. Structural basis of actin filament nucleation by tandem W domains. Cell Rep 2013; 3:1910-20. [PMID: 23727244 DOI: 10.1016/j.celrep.2013.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/23/2013] [Accepted: 04/26/2013] [Indexed: 11/17/2022] Open
Abstract
Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization.
Collapse
Affiliation(s)
- Xiaorui Chen
- Graduate Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Peche VS, Holak TA, Burgute BD, Kosmas K, Kale SP, Wunderlich FT, Elhamine F, Stehle R, Pfitzer G, Nohroudi K, Addicks K, Stöckigt F, Schrickel JW, Gallinger J, Schleicher M, Noegel AA. Ablation of cyclase-associated protein 2 (CAP2) leads to cardiomyopathy. Cell Mol Life Sci 2013; 70:527-43. [PMID: 22945801 PMCID: PMC11113306 DOI: 10.1007/s00018-012-1142-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/01/2012] [Accepted: 08/14/2012] [Indexed: 12/24/2022]
Abstract
Cyclase-associated proteins are highly conserved proteins that have a role in the regulation of actin dynamics. Higher eukaryotes have two isoforms, CAP1 and CAP2. To study the in vivo function of CAP2, we generated mice in which the CAP2 gene was inactivated by a gene-trap approach. Mutant mice showed a decrease in body weight and had a decreased survival rate. Further, they developed a severe cardiac defect marked by dilated cardiomyopathy (DCM) associated with drastic reduction in basal heart rate and prolongations in atrial and ventricular conduction times. Moreover, CAP2-deficient myofibrils exhibited reduced cooperativity of calcium-regulated force development. At the microscopic level, we observed disarrayed sarcomeres with development of fibrosis. We analyzed CAP2's role in actin assembly and found that it sequesters G-actin and efficiently fragments filaments. This activity resides completely in its WASP homology domain. Thus CAP2 is an essential component of the myocardial sarcomere and is essential for physiological functioning of the cardiac system, and a deficiency leads to DCM and various cardiac defects.
Collapse
Affiliation(s)
- Vivek S. Peche
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tad A. Holak
- Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Bhagyashri D. Burgute
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Kosmas Kosmas
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Sushant P. Kale
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL USA
| | - F. Thomas Wunderlich
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max-Planck-Institute of Neurological Research, Cologne, Germany
| | - Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Klaus Nohroudi
- Institute of Anatomy I, University of Cologne, Cologne, Germany
| | - Klaus Addicks
- Institute of Anatomy I, University of Cologne, Cologne, Germany
| | - Florian Stöckigt
- Department of Medicine-Cardiology, University of Bonn, Bonn, Germany
| | - Jan W. Schrickel
- Department of Medicine-Cardiology, University of Bonn, Bonn, Germany
| | - Julia Gallinger
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Michael Schleicher
- Institute for Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Mullins RD, Hansen SD. In vitro studies of actin filament and network dynamics. Curr Opin Cell Biol 2012; 25:6-13. [PMID: 23267766 DOI: 10.1016/j.ceb.2012.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 11/30/2022]
Abstract
Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible.
Collapse
Affiliation(s)
- R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94110, United States.
| | | |
Collapse
|
18
|
Chen CK, Sawaya MR, Phillips ML, Reisler E, Quinlan ME. Multiple forms of Spire-actin complexes and their functional consequences. J Biol Chem 2012; 287:10684-10692. [PMID: 22334675 DOI: 10.1074/jbc.m111.317792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spire is a WH2 domain-containing actin nucleator essential for establishing an actin mesh during oogenesis. In vitro, in addition to nucleating filaments, Spire can sever them and sequester actin monomers. Understanding how Spire is capable of these disparate functions and which are physiologically relevant is an important goal. To study severing, we examined the effect of Drosophila Spire on preformed filaments in bulk and single filament assays. We observed rapid depolymerization of actin filaments by Spire, which we conclude is largely due to its sequestration activity and enhanced by its weak severing activity. We also studied the solution and crystal structures of Spire-actin complexes. We find structural and functional differences between constructs containing four WH2 domains (Spir-ABCD) and two WH2 domains (Spir-CD) that may provide insight into the mechanisms of nucleation and sequestration. Intriguingly, we observed lateral interactions between actin monomers associated with Spir-ABCD, suggesting that the structures built by these four tandem WH2 domains are more complex than originally imagined. Finally, we propose that Spire-actin mixtures contain both nuclei and sequestration structures.
Collapse
Affiliation(s)
- Christine K Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
19
|
Kloc M, Ghobrial RM, Borsuk E, Kubiak JZ. Polarity and asymmetry during mouse oogenesis and oocyte maturation. Results Probl Cell Differ 2012; 55:23-44. [PMID: 22918799 DOI: 10.1007/978-3-642-30406-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity and asymmetry play a fundamental role in embryo development. The unequal segregation of determinants, cues, and activities is the major event in the differentiation of cell fate and function in all multicellular organisms. In oocytes, polarity and asymmetry in the distribution of different molecules are prerequisites for the progression and proper outcome of embryonic development. The mouse oocyte, like the oocytes of other mammals, seems to apply a less stringent strategy of polarization than other vertebrates. The mouse embryo undergoes a regulative type of development, which permits the full rectification of development even if the embryo loses up to half of its cells or its size is experimentally doubled during the early stages of embryogenesis. Such pliability is strongly related to the proper oocyte polarization before fertilization. Thus, the molecular mechanisms leading to the development and maintenance of oocyte polarity must be included in any fundamental understanding of the principles of embryo development. In this chapter, we provide an overview of current knowledge regarding the development and maintenance of polarity and asymmetry in the distribution of organelles and molecules in the mouse oocyte. Curiously, the mouse oocyte becomes polarized at least twice during ontogenesis; the question of how this phenomenon is achieved and what role it might play is addressed in this chapter.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, Department of Surgery, Houston, TX, USA.
| | | | | | | |
Collapse
|
20
|
How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly. EMBO J 2011; 31:1000-13. [PMID: 22193718 DOI: 10.1038/emboj.2011.461] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
β-Thymosin (βT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-β4, or enhance motility by directing polarized filament assembly like Ciboulot βT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-β4, Ciboulot, TetraThymosinβ and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-β4. Functionally different βT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long βT and WH2 domains. The results open perspectives for elucidating the functions of βT/WH2 domains in other modular proteins.
Collapse
|
21
|
Molecular architecture of the Spire-actin nucleus and its implication for actin filament assembly. Proc Natl Acad Sci U S A 2011; 108:19575-80. [PMID: 22106272 DOI: 10.1073/pnas.1115465108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott-Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire-actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire-actin module. In addition, we find that preformed, isolated Spire-actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs--even a single WH2 repeat--sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem.
Collapse
|
22
|
Marat AL, Ioannou MS, McPherson PS. Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton. Mol Biol Cell 2011; 23:163-75. [PMID: 22072793 PMCID: PMC3248895 DOI: 10.1091/mbc.e11-05-0474] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTPase Rab35 regulates endosomal membrane trafficking but also recruits effectors that modulate actin assembly and organization. Differentially expressed in normal and neoplastic cells (DENN)-domain proteins are a newly identified class of Rab guanine-nucleotide exchange factors (GEFs) that are grouped into eight families, each activating a common Rab. The members of one family, connecdenn 1-3/DENND1A-C, are all GEFs for Rab35. Why Rab35 requires multiple GEFs is unknown. We demonstrate that connecdenn 3 uses a unique C-terminal motif, a feature not found in connecdenn 1 or 2, to directly bind actin. This interaction couples Rab35 activation to the actin cytoskeleton, resulting in dramatic changes in cell shape, notably the formation of protrusive membrane extensions. These alterations are specific to Rab35 activated by connecdenn 3 and require both the actin-binding motif and N-terminal DENN domain, which harbors the GEF activity. It was previously demonstrated that activated Rab35 recruits the actin-bundling protein fascin to actin, but the relevant GEF for this activity was unknown. We demonstrate that connecdenn 3 and Rab35 colocalize with fascin and actin filaments, suggesting that connecdenn 3 is the relevant GEF. Thus, whereas connecdenn 1 and 2 activate Rab35 for endosomal trafficking, connecdenn 3 uniquely activates Rab35 for its role in actin regulation.
Collapse
Affiliation(s)
- Andrea L Marat
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
23
|
Xu XP, Rouiller I, Slaughter BD, Egile C, Kim E, Unruh JR, Fan X, Pollard TD, Li R, Hanein D, Volkmann N. Three-dimensional reconstructions of Arp2/3 complex with bound nucleation promoting factors. EMBO J 2011; 31:236-47. [PMID: 21934650 DOI: 10.1038/emboj.2011.343] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/30/2011] [Indexed: 11/09/2022] Open
Abstract
Arp2/3 complex initiates the growth of branched actin-filament networks by inducing actin polymerization from the sides of pre-existing filaments. Nucleation promoting factors (NPFs) are essential for the branching reaction through interactions with the Arp2/3 complex prior to branch formation. The modes by which NPFs bind Arp2/3 complex and associated conformational changes have remained elusive. Here, we used electron microscopy to determine three-dimensional structures at ~2 nm resolution of Arp2/3 complex with three different bound NPFs: N-WASp, Scar-VCA and cortactin. All of these structures adopt a conformation with the two actin-related proteins in an actin-filament-like dimer and the NPF bound to the pointed end. Distance constraints derived by fluorescence resonance energy transfer independently verified the NPF location. Furthermore, all bound NPFs partially occlude the actin-filament binding site, suggesting that additional local structural rearrangements are required in the pathway of Arp2/3 complex activation to allow branch formation.
Collapse
Affiliation(s)
- Xiao-Ping Xu
- Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnson V, Ayaz P, Huddleston P, Rice LM. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 2011; 50:8636-44. [PMID: 21888381 DOI: 10.1021/bi2005174] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubule dynamics play essential roles in intracellular organization and cell division. They result from structural and biochemical properties of αβ-tubulin heterodimers and how these polymerizing subunits interact with themselves and with regulatory proteins. A broad understanding of the underlying mechanisms has been established, but fundamental questions remain unresolved. The lack of routine access to recombinant αβ-tubulin represents an obstacle to deeper insight into αβ-tubulin structure, biochemistry, and recognition. Indeed, the widespread reliance on animal brain αβ-tubulin means that very few in vitro studies have taken advantage of powerful and ordinarily routine techniques like site-directed mutagenesis. Here we report new methods for purifying wild-type or mutant yeast αβ-tubulin from inducibly overexpressing strains of Saccharomyces cerevisiae. Inducible overexpression is an improvement over existing approaches that rely on constitutive expression: it provides higher yields while also allowing otherwise lethal mutants to be purified. We also designed and purified polymerization-blocked αβ-tubulin mutants. These "blocked" forms of αβ-tubulin give a dominant lethal phenotype when expressed in cells; they cannot form microtubules in vitro and when present in mixtures inhibit the polymerization of wild-type αβ-tubulin. The effects of blocking mutations are very specific, because purified mutants exhibit normal hydrodynamic properties, bind GTP, and interact with a tubulin-binding domain. The ability to overexpress and purify wild-type αβ-tubulin, or mutants like the ones we report here, creates new opportunities for structural studies of αβ-tubulin and its complexes with regulatory proteins, and for biochemical and functional studies of microtubule dynamics and its regulation.
Collapse
Affiliation(s)
- Vinu Johnson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | | | | | | |
Collapse
|
25
|
Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, Schuh M. Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr Biol 2011; 21:955-60. [PMID: 21620703 PMCID: PMC3128265 DOI: 10.1016/j.cub.2011.04.029] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/30/2011] [Accepted: 04/18/2011] [Indexed: 12/24/2022]
Abstract
Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2–6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates.
Collapse
Affiliation(s)
- Sybille Pfender
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Human spire interacts with the barbed end of the actin filament. J Mol Biol 2011; 408:18-25. [PMID: 21315084 DOI: 10.1016/j.jmb.2010.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Spire is an actin nucleator that initiates actin polymerization at a specific place in the cell. Similar to the Arp2/3 complex, spire was initially considered to bind to the pointed end of the actin filament when it generates a new actin filament. Subsequently, spire was reported to be associated with the barbed end (B-end); thus, there is still no consensus regarding the end with which spire interacts. Here, we report direct evidence that spire binds to the B-end of the actin filament, under conditions where spire accelerates actin polymerization. Using electron microscopy, we visualized the location of spire bound to the filament by gold nanoparticle labeling of the histidine-tagged spire, and the polarity of the actin filament was determined by image analysis. In addition, our results suggest that multiple spires, linked through one gold nanoparticle, enhance the acceleration of actin polymerization. The B-end binding of spire provides the basis for understanding its functional mechanism in the cell.
Collapse
|
27
|
Carlier MF, Husson C, Renault L, Didry D. Control of Actin Assembly by the WH2 Domains and Their Multifunctional Tandem Repeats in Spire and Cordon-Bleu. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:55-85. [DOI: 10.1016/b978-0-12-386037-8.00005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Firat-Karalar EN, Welch MD. New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 2010; 23:4-13. [PMID: 21093244 DOI: 10.1016/j.ceb.2010.10.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/16/2010] [Accepted: 10/19/2010] [Indexed: 12/20/2022]
Abstract
In cells the de novo nucleation of actin filaments from monomers requires actin-nucleating proteins. These fall into three main families--the Arp2/3 complex and its nucleation promoting factors (NPFs), formins, and tandem-monomer-binding nucleators. In this review, we highlight recent advances in understanding the molecular mechanism of actin nucleation by both well-characterized and newly identified nucleators, and explore current insights into their cellular functions in membrane trafficking, cell migration and division. The mechanisms and functions of actin nucleators are proving to be more complex than previously considered, with extensive cooperation and overlap in their cellular roles.
Collapse
Affiliation(s)
- Elif Nur Firat-Karalar
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|