1
|
Jansen MI, Mahmood Y, Lee J, Broome ST, Waschek JA, Castorina A. Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model. J Neurochem 2024; 168:3250-3267. [PMID: 39115025 DOI: 10.1111/jnc.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.
Collapse
Affiliation(s)
- Margo I Jansen
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yasir Mahmood
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jordan Lee
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sarah Thomas Broome
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Liu X, Cui Z, Chen X, Li Y, Qiu J, Huang Y, Wang X, Chen S, Luo Q, Chen P, Zhuang J, Yu K. Ferroptosis in the Lacrimal Gland Is Involved in Dry Eye Syndrome Induced by Corneal Nerve Severing. Invest Ophthalmol Vis Sci 2023; 64:27. [PMID: 37326593 DOI: 10.1167/iovs.64.7.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Purpose Dry eye syndrome (DES) is a prevalent postoperative complication after myopic corneal refractive surgeries and the main cause of postoperative dissatisfaction. Although great efforts have been made in recent decades, the molecular mechanism of postoperative DES remains poorly understood. Here, we used a series of bioinformatics approaches and experimental methods to investigate the potential mechanism involved in postoperative DES. Methods BALB/c mice were randomly divided into sham, unilateral corneal nerve cutting (UCNV) + saline, UCNV + vasoactive intestinal peptide (VIP), and UCNV + ferrostatin-1 (Fer-1, inhibitor of ferroptosis) groups. Corneal lissamine green dye and tear volume were measured before and two weeks after the surgery in all groups. Lacrimal glands were collected for secretory function testing, RNA sequencing, ferroptosis verification, and inflammatory factor detection. Results UCNV significantly induced bilateral decreases in tear secretion. Inhibition of the maturation and release of secretory vesicles was observed in bilateral lacrimal glands. More importantly, UCNV induced ferroptosis in bilateral lacrimal glands. Furthermore, UCNV significantly decreased VIP, a neural transmitter, in bilateral lacrimal glands, which increased Hif1a, the dominant transcription factor of transferrin receptor protein 1 (TfR1). Supplementary VIP inhibited ferroptosis, which decreased the inflammatory reaction and promoted the maturation and release of secretory vesicles. Supplementary VIP and Fer-1 improved tear secretion. Conclusions Our data suggest a novel mechanism by which UCNV induces bilateral ferroptosis through the VIP/Hif1a/TfR1 pathway, which might be a promising therapeutic target for DES-induced by corneal refractive surgeries.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Ravindranathan S, Passang T, Li JM, Wang S, Dhamsania R, Ware MB, Zaidi MY, Zhu J, Cardenas M, Liu Y, Gumber S, Robinson B, Sen-Majumdar A, Zhang H, Chandrakasan S, Kissick H, Frey AB, Thomas SN, El-Rayes BF, Lesinski GB, Waller EK. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun 2022; 13:6418. [PMID: 36302761 PMCID: PMC9613684 DOI: 10.1038/s41467-022-34242-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
A paucity of effector T cells within tumors renders pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint therapies. While several under-development approaches target immune-suppressive cells in the tumor microenvironment, there is less focus on improving T cell function. Here we show that inhibiting vasoactive intestinal peptide receptor (VIP-R) signaling enhances anti-tumor immunity in murine PDAC models. In silico data mining and immunohistochemistry analysis of primary tumors indicate overexpression of the neuropeptide vasoactive intestinal peptide (VIP) in human PDAC tumors. Elevated VIP levels are also present in PDAC patient plasma and supernatants of cultured PDAC cells. Furthermore, T cells up-regulate VIP receptors after activation, identifying the VIP signaling pathway as a potential target to enhance T cell function. In mouse PDAC models, VIP-R antagonist peptides synergize with anti-PD-1 antibody treatment in improving T cell recruitment into the tumors, activation of tumor-antigen-specific T cells, and inhibition of T cell exhaustion. In contrast to the limited single-agent activity of anti-PD1 antibodies or VIP-R antagonist peptides, combining both therapies eliminate tumors in up to 40% of animals. Furthermore, tumor-free mice resist tumor re-challenge, indicating anti-cancer immunological memory generation. VIP-R signaling thus represents a tumor-protective immune-modulatory pathway that is targetable in PDAC.
Collapse
Affiliation(s)
- Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Tenzin Passang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jian-Ming Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Shuhua Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Rohan Dhamsania
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Michael Brandon Ware
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mohammad Y Zaidi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jingru Zhu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Maria Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuan Liu
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Sanjeev Gumber
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Haydn Kissick
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Centre, Emory University, Atlanta, GA, USA
| | | | - Susan N Thomas
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Jansen MI, Thomas Broome S, Castorina A. Exploring the Pro-Phagocytic and Anti-Inflammatory Functions of PACAP and VIP in Microglia: Implications for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23094788. [PMID: 35563181 PMCID: PMC9104531 DOI: 10.3390/ijms23094788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory and demyelinating disease of the central nervous system (CNS), characterised by the infiltration of peripheral immune cells, multifocal white-matter lesions, and neurodegeneration. In recent years, microglia have emerged as key contributors to MS pathology, acting as scavengers of toxic myelin/cell debris and modulating the inflammatory microenvironment to promote myelin repair. In this review, we explore the role of two neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), as important regulators of microglial functioning during demyelination, myelin phagocytosis, and remyelination, emphasising the potential of these neuropeptides as therapeutic targets for the treatment of MS.
Collapse
|
6
|
Yu HB, Yang H, Allaire JM, Ma C, Graef FA, Mortha A, Liang Q, Bosman ES, Reid GS, Waschek JA, Osborne LC, Sokol H, Vallance BA, Jacobson K. Vasoactive intestinal peptide promotes host defense against enteric pathogens by modulating the recruitment of group 3 innate lymphoid cells. Proc Natl Acad Sci U S A 2021; 118:e2106634118. [PMID: 34625492 PMCID: PMC8521691 DOI: 10.1073/pnas.2106634118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.
Collapse
Affiliation(s)
- Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Hyungjun Yang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Joannie M Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Franziska A Graef
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Else S Bosman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Gregor S Reid
- Division of Oncology, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - James A Waschek
- The Semel Institute and Department of Psychiatry, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lisa C Osborne
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, Sorbonne Université, Paris, F-75012, France
- Institut national de la recherche agronomique, Micalis Institute and AgroParisTech, Jouy en Josas, F-78350, France
- Paris Center for Microbiome Medicine, Fédérations Hospitalo-universitaires, Paris, F-75012, France
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Kevan Jacobson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| |
Collapse
|
7
|
Van C, Condro MC, Ko HH, Hoang AQ, Zhu R, Lov K, Ricaflanca PT, Diep AL, Nguyen NNM, Lipshutz GS, MacKenzie-Graham A, Waschek JA. Targeted deletion of PAC1 receptors in retinal neurons enhances neuron loss and axonopathy in a model of multiple sclerosis and optic neuritis. Neurobiol Dis 2021; 160:105524. [PMID: 34610465 DOI: 10.1016/j.nbd.2021.105524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic inflammation drives synaptic loss in multiple sclerosis (MS) and is also commonly observed in other neurodegenerative diseases. Clinically approved treatments for MS provide symptomatic relief but fail to halt neurodegeneration and neurological decline. Studies in animal disease models have demonstrated that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) exhibits anti-inflammatory, neuroprotective and regenerative properties. Anti-inflammatory actions appear to be mediated primarily by two receptors, VPAC1 and VPAC2, which also bind vasoactive intestinal peptide (VIP). Pharmacological experiments indicate that another receptor, PAC1 (ADCYAP1R1), which is highly selective for PACAP, provides protection to neurons, although genetic evidence and other mechanistic information is lacking. To determine if PAC1 receptors protect neurons in a cell-autonomous manner, we used adeno-associated virus (AAV2) to deliver Cre recombinase to the retina of mice harboring floxed PAC1 alleles. Mice were then subjected to chronic experimental autoimmune encephalomyelitis (EAE), a disease model that recapitulates major clinical and pathological features of MS and associated optic neuritis. Unexpectedly, deletion of PAC1 in naïve mice resulted in a deficit of retinal ganglionic neurons (RGNs) and their dendrites, suggesting a homeostatic role of PAC1. Moreover, deletion of PAC1 resulted in increased EAE-induced loss of a subpopulation of RGNs purported to be vulnerable in animal models of glaucoma. Increased axonal pathology and increased secondary presence of microglia/macrophages was also prominently seen in the optic nerve. These findings demonstrate that neuronal PAC1 receptors play a homeostatic role in protecting RGNs and directly protects neurons and their axons against neuroinflammatory challenge. SIGNIFICANCE STATEMENT: Chronic inflammation is a major component of neurodegenerative diseases and plays a central role in multiple sclerosis (MS). Current treatments for MS do not prevent neurodegeneration and/or neurological decline. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to have anti-inflammatory, neuroprotective and regenerative properties but the cell type- and receptor-specific mechanisms are not clear. To test whether the protective effects of PACAP are direct on the PAC1 receptor subtype on neurons, we delete PAC1 receptors from neurons and investigate neuropathologigical changes in an animal model of MS. The findings demonstrate that PAC1 receptors on neurons play a homeostatic role in maintaining neuron health and can directly protect neurons and their axons during neuroinflammatory disease.
Collapse
Affiliation(s)
- Christina Van
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Molecular Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Henly H Ko
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Anh Q Hoang
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Ruoyan Zhu
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Kenny Lov
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Patrick T Ricaflanca
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Nhat N M Nguyen
- Calabasas High School, Calabasas, CA 91302, United States of America.
| | - Gerald S Lipshutz
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Molecular Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Departments of Surgery, Medical Pharmacology, Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States of America.
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
8
|
Zhang X, He Y. The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front Immunol 2020; 11:1984. [PMID: 33133059 PMCID: PMC7550422 DOI: 10.3389/fimmu.2020.01984] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Emerging evidence shows that neurogenic inflammation, induced by nociceptive neurons and T helper 17 cell (Th17) responses, has a fundamental role in maintaining the changes in the immune system due to psoriasis. Nociceptive neurons, specific primary sensory nerves, have a multi-faceted role in detecting noxious stimuli, maintaining homeostasis, and regulating the immunity responses in the skin. Therefore, it is critical to understand the connections and interplay between the nociceptive neurons and the immune system in psoriasis. Here, we review works on the altered innervation that occurs in psoriasis. We examine how these distinct sensory neurons and their signal transducers participate in regulating inflammation. Numerous clinical studies report the dysfunction of nociceptive neurons in psoriasis. We discuss the mechanism behind the inconsistent activation of nociceptive neurons. Moreover, we review how neuropeptides, involved in regulating Th17 responses and the role of nociceptive neurons, regulate immunity in psoriasis. Understanding how nociceptive neurons regulate immune responses enhances our knowledge of the neuroimmunity involved in the pathogenesis of psoriasis and may form the basis for new approaches to treat it.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
10
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
11
|
Wu H, Shen J, Liu L, Lu X, Xue J. Vasoactive intestinal peptide-induced tolerogenic dendritic cells attenuated arthritis in experimental collagen-induced arthritic mice. Int J Rheum Dis 2019; 22:1255-1262. [PMID: 31062502 DOI: 10.1111/1756-185x.13578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
AIM Cumulative evidence has revealed that tolerogenic dendritic cells (tolDC) could relieve inflammation reactions in various autoimmune diseases. This study investigated the potential therapeutic application of vasoactive intestinal peptide (VIP)-induced tolDC (VIP-DC) on arthritis using collagen-induced arthritis (CIA) mice. METHODS Bone marrow cells were differentiated into dendritic cells (DC) using granulocyte macrophage colony-stimulating factor and interleukin (IL)-4. tolDC were induced by either VIP or Bay 11-7082 in vitro. Immunophenotypes and cytokine production of VIP-DC and Bay-DC were detected by fluorescence-activated cell sorting and enzyme-linked immunosorbent assay, respectively. Bay-DC, VIP-DC and untreated DC were ip administrated to CIA mice on day 40 when arthritis was onset. The treatment effects on arthritic and pathological changes, including synovial hyperplasia, pannus formation, inflammation and bone erosion, were assessed. RESULTS VIP-DC (40 ng/mL) and Bay-DC (0.5 µg/mL) had a lower level of major histocompatibility complex II, CD40 and CD86 expression, reduced γ-interferon and increased IL-4 production (P < 0.05 or 0.01), compared with untreated DC. The administration of VIP-DC and Bay-DC decreased the arthritis score clinically at the end of the therapy. Pathological assessments showed that bone erosion and inflammation were alleviated in the VIP-DC group compared with those in the untreated DC group (P < 0.05 and P < 0.01, respectively). CONCLUSION VIP-DC showed reduced immunogenicity and enhanced anti-inflammatory cytokine production. Both VIP-DC and Bay-DC could ameliorate arthritis in CIA mice clinically. VIP-DC were not inferior to Bay 11-7082-induced tolDC but may exert a better preventive effect on bone destruction.
Collapse
Affiliation(s)
- Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lei Liu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Lu
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Immunomodulatory Roles of PACAP and VIP: Lessons from Knockout Mice. J Mol Neurosci 2018; 66:102-113. [PMID: 30105629 DOI: 10.1007/s12031-018-1150-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
A bidirectional cross-talk is established between the nervous and immune systems through common mediators including neuropeptides, neurotransmitters, and cytokines. Among these, PACAP and VIP are two highly related neuropeptides widely distributed in the organism with purported immunomodulatory actions. Due to their well-known anti-inflammatory properties, administration of these peptides has proven to be beneficial in models of acute and chronic inflammatory diseases. Nevertheless, the relevance of the endogenous source of these peptides in the modulation of immune responses remains to be elucidated. The development of transgenic mice with specific deletions in the genes coding for these neuropeptides (Vip and Adcyap1) or for their G-protein-coupled receptors VPAC1, VPAC2, and PAC1 (Vipr1, Vipr2, Adcyap1r1) has allowed to address this question, underscoring the complexity of the immunoregulatory properties of PACAP and VIP. The goal of this review is to integrate the existing information on the immune phenotypes of mice deficient for PACAP, VIP, or their receptors, to provide a global view on the roles of these endogenous neuropeptides during immunological health and disease.
Collapse
|
13
|
Van C, Condro MC, Lov K, Zhu R, Ricaflanca PT, Ko HH, Diep AL, Hoang AQ, Pisegna J, Rohrer H, Waschek JA. PACAP/PAC1 Regulation of Inflammation via Catecholaminergic Neurons in a Model of Multiple Sclerosis. J Mol Neurosci 2018; 68:439-451. [PMID: 30058008 DOI: 10.1007/s12031-018-1137-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022]
Abstract
The sympathetic nervous system (SNS) serves to maintain homeostasis of vital organ systems throughout the body, and its dysfunction plays a major role in human disease. The SNS also links the central nervous system to the immune system during different types of stress via innervation of the lymph nodes, spleen, thymus, and bone marrow. Previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP, gene name adcyap1) exhibits anti-inflammatory properties in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Because PACAP is known to regulate SNS function, we hypothesized that part of the immunoprotective action of PACAP is due to its neuromodulatory effects on sympathetic neurons. To examine this, we used an inducible, targeted approach to conditionally disrupt not only the PACAP-preferring PAC1 receptor gene (adcyap1r1) in dopamine β-hydroxylase-expressing cells, which includes postganglionic sympathetic neurons, but also catecholaminergic neurons in the brain and adrenomedullary chromaffin cells. In contrast to our previous EAE studies using PACAP global knockout mice which developed severe and prolonged EAE, we found that mice with conditional loss of PAC1 receptors in catecholaminergic cells developed a delayed time course of EAE with reduced helper T cell type 1 (Th1) and Th17 and enhanced Th2 cell polarization. At later time points, similar to mice with global PACAP loss, mice with conditional loss of PAC1 exhibited more severe clinical disease than controls. The latter was associated with a reduction in the abundance of thymic regulatory T cells (Tregs). These studies indicate that PAC1 receptor signaling acts in catecholaminergic cells in a time-dependent manner. At early stages of disease development, it enhances the ability of the SNS to polarize the Th response towards a more inflammatory state. Then, after disease is established, it enhances the ability of the SNS to dampen the inflammatory response via Tregs. The lack of concordance in results between global PACAP KO mice and mice with the PAC1 deletion targeted to catecholaminergic cells during early EAE may be explained by the fact that PACAP acts to regulate inflammation via multiple receptor subtypes and multiple targets, including inflammatory cells.
Collapse
Affiliation(s)
- Christina Van
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenny Lov
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruoyan Zhu
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick T Ricaflanca
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Henly H Ko
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anh Q Hoang
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Pisegna
- Center for Ulcer Research and Education (CURE): Digestive Diseases Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hermann Rohrer
- Max Planck Institute for Brain Research, Frankfurt, Germany.,Institute for Clinical Neuroanatomy, Goethe University, Frankfurt, Germany
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Li JM, Petersen CT, Li JX, Panjwani R, Chandra DJ, Giver CR, Blazar BR, Waller EK. Modulation of Immune Checkpoints and Graft-versus-Leukemia in Allogeneic Transplants by Antagonizing Vasoactive Intestinal Peptide Signaling. Cancer Res 2016; 76:6802-6815. [PMID: 27671676 DOI: 10.1158/0008-5472.can-16-0427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/16/2016] [Accepted: 09/11/2016] [Indexed: 12/23/2022]
Abstract
The goal of allogeneic bone marrow transplantation (allo-BMT) is elimination of leukemia cells through the graft-versus-leukemia (GvL) activity of donor cells, while limiting graft-versus-host disease (GvHD). Immune checkpoint pathways regulate GvL and GvHD activities, but blocking antibodies or genetic inactivation of these pathways can cause lethal GVHD. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide that regulates coinhibitory pathways; its role in allo-BMT has not been studied. We found VIP transiently expressed in donor NK, NK-T, dendritic cells, and T cells after allo transplant, as well as host leukocytes. A peptide antagonist of VIP signaling (VIPhyb) increased T-cell proliferation in vitro and reduced IL10 expression in donor T cells. Treatment of allo-BMT recipients with VIPhyb, or transplanting donor grafts lacking VIP (VIP-KO), activated donor T-cells in lymphoid organs, reduced T-cell homing to GvHD target organs, and enhanced GvL without increasing GvHD in multiple allo-BMT models. Genetic or ex vivo depletion of donor NK cells or CD8+ T cells from allografts abrogated the VIPhyb-enhanced GvL activity. VIPhyb treatment led to downregulation of PD-1 and PD-L1 expression on donor immune cells, increased effector molecule expression, and expanded oligoclonal CD8+ T cells that protected secondary allo transplant recipients from leukemia. Blocking VIP signaling thus represents a novel pharmacologic approach to separate GvL from GvHD and enhance adaptive T-cell responses to leukemia-associated antigens in allo-BMT. Cancer Res; 76(23); 6802-15. ©2016 AACR.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | | | - Jing-Xia Li
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Reema Panjwani
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Daniel J Chandra
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Cynthia R Giver
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Edmund K Waller
- Department of Hematology/Oncology, Emory University, Atlanta, Georgia.
| |
Collapse
|
15
|
Abad C, Jayaram B, Becquet L, Wang Y, O’Dorisio MS, Waschek JA, Tan YV. VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage. J Neuroinflammation 2016; 13:169. [PMID: 27357191 PMCID: PMC4928347 DOI: 10.1186/s12974-016-0626-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide (PACAP) are two highly homologous neuropeptides. In vitro and ex vivo experiments repeatedly demonstrate that these peptides exert pronounced immunomodulatory (primarily anti-inflammatory) actions which are mediated by common VPAC1 and VPAC2 G protein-coupled receptors. In agreement, we have shown that mice deficient in PACAP ligand or VPAC2 receptors exhibit exacerbated experimental autoimmune encephalomyelitis (EAE). However, we observed that VIP-deficient mice are unexpectedly resistant to EAE, suggesting a requirement for this peptide at some stage of disease development. Here, we investigated the involvement of VPAC1 in the development of EAE using a VPAC1-deficient mouse model. METHODS EAE was induced in wild-type (WT) and VPAC1 knockout (KO) mice using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), and clinical scores were assessed continuously over 30 days. Immune responses in the spinal cords were determined by histology, real-time PCR and immunofluorescence, and in the draining lymph nodes by antigen-recall assays. The contribution of VPAC1 expression in the immune system to the development of EAE was evaluated by means of adoptive transfer and bone marrow chimera experiments. In other experiments, VPAC1 receptor analogs were given to WT mice. RESULTS MOG35-55-induced EAE was ameliorated in VPAC1 KO mice compared to WT mice. The EAE-resistant phenotype of VPAC1 KO mice correlated with reduced central nervous system (CNS) histopathology and cytokine expression in the spinal cord. The immunization phase of EAE appeared to be unimpaired because lymph node cells from EAE-induced VPAC1 KO mice stimulated in vitro with MOG exhibited robust proliferative and Th1/Th17 responses. Moreover, lymph node and spleen cells from KO mice were fully capable of inducing EAE upon transfer to WT recipients. In contrast, WT cells from MOG-immunized mice did not transfer the disease when administered to VPAC1 KO recipients, implicating a defect in the effector phase of the disease. Bone marrow chimera studies suggested that the resistance of VPAC1-deficient mice was only minimally dependent on the expression of this receptor in the immunogenic/hematopoietic compartment. Consistent with this, impaired spinal cord inductions of several chemokine mRNAs were observed in VPAC1 KO mice. Finally, treatment of WT mice with the VPAC1 receptor antagonist PG97-269 before, but not after, EAE induction mimicked the clinical phenotype of VPAC1 KO mice. CONCLUSIONS VPAC1 gene loss impairs the development of EAE in part by preventing an upregulation of CNS chemokines and invasion of inflammatory cells into the CNS. Use of VPAC1 antagonists in WT mice prior to EAE induction also support a critical role for VPAC1 signaling for the development of EAE.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Female
- Freund's Adjuvant/toxicity
- Laminin/metabolism
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- RNA, Messenger/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/deficiency
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Th17 Cells/metabolism
- Th17 Cells/pathology
- Time Factors
Collapse
Affiliation(s)
- Catalina Abad
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
- />Inserm U905, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Normandy, France
| | - Bhavaani Jayaram
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Laurine Becquet
- />Inserm U905, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Normandy, France
| | - Yuki Wang
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - M Sue O’Dorisio
- />Department of Pediatrics and Holden Comprehensive Cancer Center, RJ and LA Carver College of Medicine, University of Iowa, Iowa City, 52242 IA USA
| | - James A. Waschek
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Yossan-Var Tan
- />Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, USA
- />Inserm U905, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Normandy, France
| |
Collapse
|
16
|
Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice. J Neurosci 2016; 35:16463-78. [PMID: 26674871 DOI: 10.1523/jneurosci.2131-15.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4(+) T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating microglial activation and by slowing degradation of neuronal cell bodies and termini in MPTP-intoxicated mice. The protective mechanism arises from altering a Th1/Th2 immune cytokine response into an anti-inflammatory and neuronal sparing profile. These results are directly applicable for the development of novel PD therapies.
Collapse
|
17
|
Gonzalez-Rey E, Pedreño M, Delgado-Maroto V, Souza-Moreira L, Delgado M. Lulling immunity, pain, and stress to sleep with cortistatin. Ann N Y Acad Sci 2015; 1351:89-98. [PMID: 25951888 DOI: 10.1111/nyas.12789] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cortistatin is a neuropeptide isolated from cortical brain regions, showing high structural homology and sharing many functions with somatostatin. However, cortistatin exerts unique functions in the central nervous and immune systems, including decreasing locomotor activity, inducing sleep-promoting effects, and deactivating inflammatory and T helper (TH )1/TH 17-driven responses in preclinical models of sepsis, arthritis, multiple sclerosis, and colitis. Besides its release by cortical and hippocampal interneurons, cortistatin is produced by macrophages, lymphocytes, and peripheral nociceptive neurons in response to inflammatory stimuli, supporting a physiological role of cortistatin in the immune and nociceptive systems. Cortistatin-deficient mice have been shown to have exacerbated nociceptive responses to neuropathic and inflammatory pain sensitization. However, a paradoxical effect has been observed in studies of immune disorders, in which, despite showing competent inflammatory/autoreactive responses, cortistatin-deficient mice were partially resistant to systemic autoimmunity and inflammation. This unexpected phenotype was associated with elevated circulating glucocorticoids and anxiety-like behavior. These findings support cortistatin as a novel multimodal therapeutic approach to treat autoimmunity and clinical pain and identify it as a key endogenous component of the neuroimmune system related to stress responses.
Collapse
Affiliation(s)
- Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Marta Pedreño
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | - Virginia Delgado-Maroto
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
18
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
19
|
Tan YV, Abad C, Wang Y, Lopez R, Waschek J. VPAC2 (vasoactive intestinal peptide receptor type 2) receptor deficient mice develop exacerbated experimental autoimmune encephalomyelitis with increased Th1/Th17 and reduced Th2/Treg responses. Brain Behav Immun 2015; 44:167-175. [PMID: 25305591 PMCID: PMC4275378 DOI: 10.1016/j.bbi.2014.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 01/01/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide (PACAP) are two structurally-related neuropeptides with widespread expression in the central and peripheral nervous systems. Although these peptides have been repeatedly shown to exert potent anti-inflammatory actions when administered in animal models of inflammatory disease, mice deficient in VIP and PACAP were recently shown to exhibit different phenotypes (ameliorated and exacerbated, respectively) in response to experimental autoimmune encephalomyelitis (EAE). Therefore, elucidating what are the specific immunoregulatory roles played by each of their receptor subtypes (VPAC1, VPAC2, and PAC1) is critical. In this study, we found that mice with a genetic deletion of VIPR2, encoding the VPAC2 receptor, exhibited exacerbated (MOG35-55)-induced EAE compared to wild type mice, characterized by enhanced clinical and histopathological features, increased proinflammatory cytokines (TNF-α, IL-6, IFN-γ (Th1), and IL-17 (Th17)) and reduced anti-inflammatory cytokines (IL-10, TGFβ, and IL-4 (Th2)) in the CNS and lymph nodes. Moreover, the abundance and proliferative index of lymph node, thymus and CNS CD4(+)CD25(+)FoxP3(+) Tregs were strikingly reduced in VPAC2-deficient mice with EAE. Finally, the in vitro suppressive activity of lymph node and splenic Tregs from VPAC2-deficient mice was impaired. Overall, our results demonstrate critical protective roles for PACAP and the VPAC2 receptor against autoimmunity, promoting the expansion and maintenance of the Treg pool.
Collapse
Affiliation(s)
| | | | | | | | - James Waschek
- Corresponding author: James A. Waschek, Ph.D. 635 Charles E Young Drive South Los Angeles CA 90095 Phone number (310)-825-0179 FAX (310)-206-5061
| |
Collapse
|
20
|
Ganea D, Hooper KM, Kong W. The neuropeptide vasoactive intestinal peptide: direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol (Oxf) 2015; 213:442-52. [PMID: 25422088 DOI: 10.1111/apha.12427] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/13/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
Neuropeptides represent an important category of endogenous contributors to the establishment and maintenance of immune deviation in the immune-privileged organs such as the CNS and in the control of acute inflammation in the peripheral immune organs. Vasoactive intestinal peptide (VIP) is a major immunoregulatory neuropeptide widely distributed in the central and peripheral nervous system. In addition to neurones, VIP is synthesized by immune cells which also express VIP receptors. Here, we review the current information on VIP production and VIP-receptor-mediated effects in the immune system, the role of endogenous and exogenous VIP in inflammatory and autoimmune disorders and the present and future VIP therapeutic approaches.
Collapse
Affiliation(s)
- D. Ganea
- Department of Microbiology and Immunology; Temple University School of Medicine; Philadelphia PA USA
| | - K. M. Hooper
- Department of Microbiology and Immunology; Temple University School of Medicine; Philadelphia PA USA
| | - W. Kong
- Department of Microbiology and Immunology; Temple University School of Medicine; Philadelphia PA USA
| |
Collapse
|
21
|
Abad C, Cheung-Lau G, Coute-Monvoisin AC, Waschek JA. Vasoactive intestinal peptide-deficient mice exhibit reduced pathology in trinitrobenzene sulfonic acid-induced colitis. Neuroimmunomodulation 2015; 22:203-12. [PMID: 25301381 PMCID: PMC4297532 DOI: 10.1159/000364912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/28/2014] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Vasoactive intestinal peptide (VIP) is an immunomodulatory neuropeptide with therapeutic properties in multiple murine models of inflammatory disease including the trinitrobenzene-sulfonic acid (TNBS)-colitis model of Crohn's disease. Understanding the spectrum of biological actions of endogenously produced VIP may help us dissect the complex and multifactorial pathogenesis of such inflammatory diseases. Our goal was to determine the contribution of endogenously produced VIP to TNBS-colitis by using VIP knockout (KO) mice. METHODS TNBS was intracolonically administered to wild-type (WT) and VIP KO mice, and weight loss and colitis were assessed over time. Colon histopathological changes and myeloperoxidase activities were analyzed and the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in colon and serum quantified. The proliferative response in vitro of splenocytes from TNBS WT and VIP KO administered mice to anti-CD3 and anti-CD28 was determined. RESULTS VIP KO mice did not exhibit the predicted exacerbated response to TNBS. Instead, they developed a milder clinical profile than WT mice, with lower TNF-α and IL-6 levels. Such potential defects seem selective, because other parameters such as the histopathological scores and the cytokine levels in the colon did not differ between the two strains of mice. Moreover, splenocytes from TNBS-treated VIP KO mice exhibited an enhanced proliferative response to anti-CD3/CD28 stimulation in vitro. CONCLUSION Chronic loss of VIP in mice leads to a disruption of certain but not all immunological compartments, corroborating recent findings that VIP KO mice exhibit reduced mortality in the lipopolysaccharide-induced endotoxemia model and attenuated clinical development of experimental autoimmune encephalomyelitis while developing robust T-cell responses.
Collapse
Affiliation(s)
| | | | | | - James A. Waschek
- Corresponding author: James A. Waschek, Ph.D., 635 Charles E
Young Drive South, Los Angeles CA 90095, Phone number (310)-825-0179, FAX (310)-206-5061,
| |
Collapse
|
22
|
Hauk V, Fraccaroli L, Grasso E, Eimon A, Ramhorst R, Hubscher O, Pérez Leirós C. Monocytes from Sjögren's syndrome patients display increased vasoactive intestinal peptide receptor 2 expression and impaired apoptotic cell phagocytosis. Clin Exp Immunol 2014; 177:662-70. [PMID: 24827637 DOI: 10.1111/cei.12378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2014] [Indexed: 11/29/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by salivary and lacrimal gland dysfunction. Clinical observations and results from animal models of SS support the role of aberrant epithelial cell apoptosis and immune homeostasis loss in the glands as triggering factors for the autoimmune response. Vasoactive intestinal peptide (VIP) promotes potent anti-inflammatory effects in several inflammatory and autoimmune disease models, including the non-obese diabetic (NOD) mouse model of SS. With the knowledge that VIP modulates monocyte function through vasoactive intestinal peptide receptors (VPAC) and that immune homeostasis maintenance depends strongly upon a rapid and immunosuppressant apoptotic cell clearance by monocytes/macrophages, in this study we explored VPAC expression on monocytes from primary SS (pSS) patients and the ability of VIP to modulate apoptotic cell phagocytic function and cytokine profile. Monocytes isolated from individual pSS patients showed an increased expression of VPAC2 subtype of VIP receptors, absent in monocytes from control subjects, with no changes in VPAC1 expression. VPAC2 receptor expression could be induced further with lipopolysaccharide (LPS) in pSS monocytes and VIP inhibited the effect. Moreover, monocytes from pSS patients showed an impaired phagocytosis of apoptotic epithelial cells, as evidenced by reduced engulfment ability and the failure to promote an immunosuppressant cytokine profile. However, VIP neither modulated monocyte/macrophage phagocytic function nor did it reverse their inflammatory profile. We conclude that monocytes from pSS patients express high levels of VPAC2 and display a deficient clearance of apoptotic cells that is not modulated by VIP.
Collapse
Affiliation(s)
- V Hauk
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires - IQUIBICEN-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
23
|
Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2014; 169:512-23. [PMID: 23517078 DOI: 10.1111/bph.12181] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/26/2013] [Accepted: 03/08/2013] [Indexed: 01/14/2023] Open
Abstract
Inflammatory processes play both regenerative and destructive roles in multiple sclerosis, stroke, CNS trauma, amyotrophic lateral sclerosis and aging-related neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's. Endogenous defence mechanisms against these pathologies include those that are directly neuroprotective, and those that modulate the expression of inflammatory mediators in microglia, astrocytes, and invading inflammatory cells. While a number of mechanisms and molecules have been identified that can directly promote neuronal survival, less is known about how the brain protects itself from harmful inflammation, and further, how it co-opts the healing function of the immune system to promote CNS repair. The two closely related neuroprotective peptides, vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP), which are up-regulated in neurons and immune cells after injury and/or inflammation, are known to protect neurons, but also exert powerful in vivo immunomodulatory actions, which are primarily anti-inflammatory. These peptide actions are mediated by high-affinity receptors expressed not only on neurons, but also astrocytes, microglia and peripheral inflammatory cells. Well-established immunomodulatory actions of these peptides are to inhibit macrophage and microglia production and release of inflammatory mediators such as TNF-α and IFN-γ, and polarization of T-cell responses away from Th1 and Th17, and towards a Th2 phenotype. More recent studies have revealed that these peptides can also promote the production of both natural and inducible subsets of regulatory T-cells. The neuroprotective and immunomodulatory actions of VIP and PACAP suggest that receptors for these peptides may be therapeutic targets for neurodegenerative and neuroinflammatory diseases and other forms of CNS injury.
Collapse
Affiliation(s)
- J A Waschek
- Department of Psychiatry and Semel Institute, University of California at Los Angeles, Los Angeles, CA 90095-7332, USA.
| |
Collapse
|
24
|
Vu JP, Million M, Larauche M, Luong L, Norris J, Waschek JA, Pothoulakis C, Pisegna JR, Germano PM. Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice. J Mol Neurosci 2014; 52:37-47. [PMID: 24395090 DOI: 10.1007/s12031-013-0205-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 12/31/2022]
Abstract
VIP is highly expressed in the colon and regulates motility, vasodilatation, and sphincter relaxation. However, its role in the development and progress of colitis is still controversial. Our aim was to determine the participation of VIP on dextran sodium sulfate (DSS)-induced colonic mucosal inflammation using VIP(-/-) and WT mice treated with VIP antagonists. Colitis was induced in 32 adult VIP(-/-) and 14 age-matched WT litter-mates by giving 2.5 % DSS in the drinking water. DSS-treated WT mice were injected daily with VIP antagonists, VIPHyb (n = 22), PG 97-269 (n = 9), or vehicle (n = 31). After euthanasia, colons were examined; colonic cytokines mRNA were quantified. VIP(-/-) mice were remarkably resistant to DSS-induced colitis compared to WT. Similarly, DSS-treated WT mice injected with VIPHyb (1 μM) or PG 97-269 (1 nM) had significantly reduced clinical signs of colitis. Furthermore, colonic expression of IL-1ϐ, TNF-α, and IL-6 was significantly lower in VIP(-/-) and VIPHyb or PG 97-269 compared to vehicle-treated WT. Genetic deletion of VIP or pharmacological inhibition of VIP receptors resulted in resistance to colitis. These data demonstrate a pro-inflammatory role for VIP in murine colitis and suggest that VIP antagonists may be an effective clinical treatment for human inflammatory bowel diseases.
Collapse
Affiliation(s)
- John P Vu
- CURE/Digestive Diseases Research Center, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pérez-García S, Carrión M, Jimeno R, Ortiz AM, González-Álvaro I, Fernández J, Gomariz RP, Juarranz Y. Urokinase plasminogen activator system in synovial fibroblasts from osteoarthritis patients: modulation by inflammatory mediators and neuropeptides. J Mol Neurosci 2013; 52:18-27. [PMID: 24318839 DOI: 10.1007/s12031-013-0189-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/18/2013] [Indexed: 02/08/2023]
Abstract
Plasminogen activators are specific proteolytic enzymes implicated in a variety of basic biological processes. The expression of the urokinase plasminogen activator system components is increased in some human diseases, including osteoarthritis. We sought to study the effect of two components of the inflamed synovial microenvironment on this system, IL-1β and fibronectin fragments, elucidating whether corticotropin-releasing factor (CRF) and vasoactive intestinal peptide (VIP) neuropeptides modulate it, and analyzing the physiological consequences in joint destruction by measuring matrix metalloproteinases-9 and metalloproteinases-13 levels in osteoarthritis fibroblast-like synoviocytes. We showed that IL-1β and fibronectin fragments stimulated urokinase system contributing to the perpetuation of the destructive cascade in joint. VIP modulated, even at constitutive level, this system, also counteracting the effect of both inflammatory stimuli. However, CRF seemed to be ineffective in controlling the production of these proteinases. Moreover, VIP was able to reduce the constitutive expression of matrix metalloproteinase-13 and the levels of both matrix metalloproteinases after stimulation with the pro-inflammatory stimuli. Our results suggest that the presence of early and later inflammatory mediators, such as IL-1β and fibronectin fragments, increases the urokinase system and the matrix metalloproteinases levels. Whereas CRF did not affect this system, VIP counteracts these actions supporting its therapeutic potential for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, José Antonio Novais n°2, Ciudad Universitaria, 28040, Madrid, Spain,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol 2013; 95:357-67. [PMID: 24068730 DOI: 10.1189/jlb.1012531] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the immune system may provide early protection against cancer, tumors may exploit the healing arm of the immune system to enhance their growth and metastasis. For example, myeloid derived suppressor cells (MDSCs) are thought to promote tumor growth by several mechanisms, including the suppression of T cell activity. It has been suggested that STAT3 activation in myeloid cells modulates multiple aspects of MDSC physiology, including their expansion and activity. Whereas most animal studies investigating tumor immunology have used tumor implants, we used transgenic mice (Smo*) that spontaneously develop medulloblastoma brain tumors to investigate the temporal accumulation of MDSCs within tumors and how myeloid STAT3 disruption affects MDSC and other immune cell types. We found distinct populations of MDSC in medulloblastoma tumors, with a high prevalence of CD11b(+)Ly6G(+)Ly6C(low/-) cells, described previously by others as G-MDSCs. These were found early in tumor development, in premalignant lesions located on the surface of the cerebellum of 28-day-old mice. In fully developed tumors, pSTAT3 was found in the majority of these cells. Conditional STAT3 gene disruption in myeloid cells resulted in an enhanced proinflammatory phenotype of macrophages in Smo* mice. Moreover, a significant reduction in the abundance of G-MDSCs and Tregs was observed within tumors along with an increased presence of CD4(+) and CD8(+) cells. Despite these alterations in immune cells induced by myeloid STAT3 disruption, we found no effect on tumor incidence in Smo* mice with this deletion.
Collapse
Affiliation(s)
- Catalina Abad
- 1.David Geffen School of Medicine, UCLA, 635 Charles E. Young Dr., South, NRB 345, Los Angeles, CA 90095-7332, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Souza-Moreira L, Morell M, Delgado-Maroto V, Pedreño M, Martinez-Escudero L, Caro M, O'Valle F, Luque R, Gallo M, de Lecea L, Castaño JP, Gonzalez-Rey E. Paradoxical effect of cortistatin treatment and its deficiency on experimental autoimmune encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2144-54. [PMID: 23918980 DOI: 10.4049/jimmunol.1300384] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cortistatin is a cyclic-neuropeptide produced by brain cortex and immune cells that shows potent anti-inflammatory activity. In this article, we investigated the effect of cortistatin in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short-term systemic treatment with cortistatin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord, and the subsequent demyelination and axonal damage. This effect was associated with a reduction of the two deleterious components of the disease, namely, the autoimmune and inflammatory response. Cortistatin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, and downregulated various inflammatory mediators, whereas it increased the number of regulatory T cells with suppressive effects on the encephalitogenic response. Moreover, cortistatin regulated glial activity and favored an active program of neuroprotection/regeneration. We further used cortistatin-deficient mice to investigate the role of endogenous cortistatin in the control of immune responses. Surprisingly, cortistatin-deficient mice were partially resistant to EAE and other inflammatory disorders, despite showing competent inflammatory/autoreactive responses. This unexpected phenotype was associated with elevated circulating glucocorticoids and an anxiety-like behavior. Our findings provide a powerful rationale for the assessment of the efficacy of cortistatin as a novel multimodal therapeutic approach to treat multiple sclerosis and identify cortistatin as a key endogenous component of neuroimmune system.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Institute of Parasitology and Biomedicine "López-Neyra," Consejo Superior Investigaciones Cientificas, Granada 18016, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baranowska-Bik A, Kochanowski J, Uchman D, Wolinska-Witort E, Kalisz M, Martynska L, Baranowska B, Bik W. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) in humans with multiple sclerosis. J Neuroimmunol 2013; 263:159-61. [PMID: 24041830 DOI: 10.1016/j.jneuroim.2013.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system that leads to demyelination and neurodegeneration. VIP and PACAP are structurally related neuropeptides with neuroprotective and anti-inflammatory activities. To evaluate VIP and PACAP-38 in plasma and CSF in humans in correlation with IL-6, IL-10 and TNFα, we compared 20 MS individuals with 27 healthy controls. In MS, a decrease in PACAP-38 in CSF and a decrease in plasma IL-6 concentration were seen. A positive correlation between plasma VIP and plasma IL-6 was identified. We conclude that VIP and PACAP may influence the course of MS.
Collapse
Affiliation(s)
- Agnieszka Baranowska-Bik
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, Ceglowska 80, 01-809 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2013; 54:32-42. [PMID: 23466699 DOI: 10.1016/j.nbd.2013.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with autocrine neuroprotective and paracrine anti-inflammatory properties in various models of acute neuronal damage and neurodegenerative diseases. Therefore, we examined a possible beneficial role of endogenous PACAP in the superoxide dismutase 1, SOD1(G93A), mouse model of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease particularly affecting somatomotor neurons. In wild-type mice, somatomotor and visceromotor neurons in brain stem and spinal cord were found to express the PACAP specific receptor PAC1, but only visceromotor neurons expressed PACAP as a potential autocrine source of regulation of these receptors. In SOD1(G93A) mice, only a small subset of the surviving somatomotor neurons showed induction of PACAP mRNA, and somatomotor neuron degeneration was unchanged in PACAP-deficient SOD1(G93A) mice. Pre-ganglionic sympathetic visceromotor neurons were found to be resistant in SOD1(G93A) mice, while pre-ganglionic parasympathetic neurons degenerated during ALS disease progression in this mouse model. PACAP-deficient SOD1(G93A) mice showed even greater pre-ganglionic parasympathetic neuron loss compared to SOD1(G93A) mice, and additional degeneration of pre-ganglionic sympathetic neurons. Thus, constitutive expression of PACAP and PAC1 may confer neuroprotection to central visceromotor neurons in SOD1(G93A) mice via autocrine pathways. Regarding the progression of neuroinflammation, the switch from amoeboid to hypertrophic microglial phenotype observed in SOD1(G93A) mice was absent in PACAP-deficient SOD1(G93A) mice. Thus, endogenous PACAP may promote microglial cytodestructive functions thought to drive ALS disease progression. This hypothesis was consistent with prolongation of life expectancy and preserved tongue motor function in PACAP-deficient SOD1(G93A) mice, compared to SOD1(G93A) mice. Given the protective role of PACAP expression in visceromotor neurons and the opposing effect on microglial function in SOD1(G93A) mice, both PACAP agonism and antagonism may be promising therapeutic tools for ALS treatment, if stage of disease progression and targeting the specific auto- and paracrine signaling pathways are carefully considered.
Collapse
|
30
|
Delgado M. Immunoregulatory Neuropeptides. HANDBOOK OF BIOLOGICALLY ACTIVE PEPTIDES 2013:640-648. [DOI: 10.1016/b978-0-12-385095-9.00087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 2012; 166:4-17. [PMID: 22289055 DOI: 10.1111/j.1476-5381.2012.01871.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs - PAC(1) , VPAC(1) and VPAC(2) - belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC(1) receptors are selective for PACAP, whereas VPAC(1) and VPAC(2) respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC(2) receptor in susceptibility to schizophrenia and the PAC(1) receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).
Collapse
|
32
|
Yusta B, Holland D, Waschek JA, Drucker DJ. Intestinotrophic glucagon-like peptide-2 (GLP-2) activates intestinal gene expression and growth factor-dependent pathways independent of the vasoactive intestinal peptide gene in mice. Endocrinology 2012; 153:2623-32. [PMID: 22535770 PMCID: PMC3359603 DOI: 10.1210/en.2012-1069] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The enteroendocrine and enteric nervous systems convey signals through an overlapping network of regulatory peptides that act either as circulating hormones or as localized neurotransmitters within the gastrointestinal tract. Because recent studies invoke an important role for vasoactive intestinal peptide (VIP) as a downstream mediator of glucagon-like peptide-2 (GLP-2) action in the gut, we examined the importance of the VIP-GLP-2 interaction through analysis of Vip(-/-) mice. Unexpectedly, we detected abnormal villous architecture, expansion of the crypt compartment, increased crypt cell proliferation, enhanced Igf1 and Kgf gene expression, and reduced expression of Paneth cell products in the Vip(-/-) small bowel. These abnormalities were not reproduced by antagonizing VIP action in wild-type mice, and VIP administration did not reverse the intestinal phenotype of Vip(-/-) mice. Exogenous administration of GLP-2 induced the expression of ErbB ligands and immediate-early genes to similar levels in Vip(+/+) vs. Vip(-/-) mice. Moreover, GLP-2 significantly increased crypt cell proliferation and small bowel growth to comparable levels in Vip(+/+) vs. Vip(-/-) mice. Unexpectedly, exogenous GLP-2 administration had no therapeutic effect in mice with dextran sulfate-induced colitis; the severity of colonic injury and weight loss was modestly reduced in female but not male Vip(-/-) mice. Taken together, these findings extend our understanding of the complex intestinal phenotype arising from loss of the Vip gene. Furthermore, although VIP action may be important for the antiinflammatory actions of GLP-2, the Vip gene is not required for induction of a gene expression program linked to small bowel growth after enhancement of GLP-2 receptor signaling.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
33
|
VIP deficient mice exhibit resistance to lipopolysaccharide induced endotoxemia with an intrinsic defect in proinflammatory cellular responses. PLoS One 2012; 7:e36922. [PMID: 22615845 PMCID: PMC3355097 DOI: 10.1371/journal.pone.0036922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide with immunomodulatory properties. The administration of this peptide has been shown to have beneficial effects in murine models of inflammatory diseases including septic shock, rheumatoid arthritis, multiple sclerosis (MS) and Crohn's disease. However, the role of the endogenous peptide in inflammatory disease remains obscure because VIP-deficient mice were recently found to exhibit profound resistance in a model of MS. In the present study, we analyzed the response of female VIP deficient (KO) mice to intraperitoneal lipopolysaccharide (LPS) administration. We observed significant resistance to LPS in VIP KO mice, as evidenced by lower mortality and reduced tissue damage. The increased survival was associated with decreased levels of proinflammatory cytokines (TNFα, IL-6 and IL-12) in sera and peritoneal suspensions of these mice. Moreover, the expression of TNFα and IL-6 mRNA was reduced in peritoneal cells, spleens and lungs from LPS-treated VIP KO vs. WT mice, suggesting that the resistance might be mediated by an intrinsic defect in the responsiveness of immune cells to endotoxin. In agreement with this hypothesis, peritoneal cells isolated from VIP KO naive mice produced lower levels of proinflammatory cytokines in response to LPS in vitro. Finally, decreased NF-κB pathway activity in peritoneal cells was observed both in vivo and in vitro, as determined by assay of phosphorylated I-κB. The results demonstrate that female VIP KO mice exhibit resistance to LPS-induced shock, explainable in part by the presence of an intrinsic defect in the responsiveness of inflammatory cells to endotoxin.
Collapse
|
34
|
Couvineau A, Laburthe M. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins. Br J Pharmacol 2012; 166:42-50. [PMID: 21951273 PMCID: PMC3415636 DOI: 10.1111/j.1476-5381.2011.01676.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vasoactive intestinal peptide (VIP) is a neuropeptide with wide distribution in both central and peripheral nervous systems, where it plays important regulatory role in many physiological processes. VIP displays a large biological functions including regulation of exocrine secretions, hormone release, fetal development, immune responses, etc. VIP appears to exert beneficial effect in neuro-degenerative and inflammatory diseases. The mechanism of action of VIP implicates two subtypes of receptors (VPAC1 and VPAC2), which are members of class B receptors belonging to the super-family of GPCR. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC receptors. The structure-function relationship of VPAC1 receptor has been extensively studied, allowing to understand the molecular basis for receptor affinity, specificity, desensitization and coupling to adenylyl cyclase. Those studies have clearly demonstrated the crucial role of the N-terminal ectodomain (N-ted) of VPAC1 receptor in VIP recognition. By using different approaches including directed mutagenesis, photoaffinity labelling, NMR, molecular modelling and molecular dynamic simulation, it has been shown that the VIP molecule interacts with the N-ted of VPAC1 receptor, which is itself structured as a 'Sushi' domain. VPAC1 receptor also interacts with a few accessory proteins that play a role in cell signalling of receptors. Recent advances in the structural characterization of VPAC receptor and more generally of class B GPCRs will lead to the design of new molecules, which could have considerable interest for the treatment of inflammatory and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Alain Couvineau
- Centre de recherche biomédicale Bichat-Beaujon, Faculté de médecine X. Bichat, Paris, France. or
| | | |
Collapse
|
35
|
Ameri P, Ferone D. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new? Neuroendocrinology 2012; 95:267-76. [PMID: 22248635 DOI: 10.1159/000334612] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/23/2011] [Indexed: 12/21/2022]
Abstract
During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment.
Collapse
Affiliation(s)
- Pietro Ameri
- Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | | |
Collapse
|
36
|
Gozes I. Neuropeptide GPCRs in neuroendocrinology: the case of activity-dependent neuroprotective protein (ADNP). Front Endocrinol (Lausanne) 2012; 3:134. [PMID: 23162535 PMCID: PMC3499767 DOI: 10.3389/fendo.2012.00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/23/2012] [Indexed: 11/13/2022] Open
|
37
|
Couvineau A, Ceraudo E, Tan YV, Nicole P, Laburthe M. The VPAC1 receptor: structure and function of a class B GPCR prototype. Front Endocrinol (Lausanne) 2012; 3:139. [PMID: 23162538 PMCID: PMC3499705 DOI: 10.3389/fendo.2012.00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/26/2012] [Indexed: 02/05/2023] Open
Abstract
The class B G protein-coupled receptors (GPCRs) represents a small sub-family encompassing 15 members, and are very promising targets for the development of drugs to treat many diseases such as chronic inflammation, neurodegeneration, diabetes, stress, and osteoporosis. The VPAC1 receptor which is an archetype of the class B GPCRs binds Vasoactive Intestinal Peptide (VIP), a neuropeptide widely distributed in central and peripheral nervous system modulating many physiological processes including regulation of exocrine secretions, hormone release, foetal development, immune response … VIP appears to exert beneficial effect in neurodegenerative and inflammatory diseases. This article reviews the current knowledge regarding the structure and molecular pharmacology of VPAC1 receptors. Over the past decade, structure-function relationship studies have demonstrated that the N-terminal ectodomain (N-ted) of VPAC1 plays a pivotal role in VIP recognition. The use of different approaches such as directed mutagenesis, photoaffinity labeling, Nuclear Magnetic Resonance (NMR), molecular modeling, and molecular dynamic simulation has led to demonstrate that: (1) the central and C-terminal part of the VIP molecule interacts with the N-ted of VPAC1 receptor which is itself structured as a « Sushi » domain; (2) the N-terminal end of the VIP molecule interacts with the first transmembrane domain of the receptor where three residues (K(143), T(144), and T(147)) play an important role in VPAC1 interaction with the first histidine residue of VIP.
Collapse
Affiliation(s)
- A. Couvineau
- *Correspondence: A. Couvineau and M. Laburthe, Faculté de Médecine X. Bichat, INSERM U773/CRB3, 16 Rue Henri Huchard, 75018 Paris, France. e-mail: ;
| | | | | | | | - M. Laburthe
- *Correspondence: A. Couvineau and M. Laburthe, Faculté de Médecine X. Bichat, INSERM U773/CRB3, 16 Rue Henri Huchard, 75018 Paris, France. e-mail: ;
| |
Collapse
|
38
|
Carson MJ. Molecular Mechanisms and Consequences of Immune and Nervous System Interactions. BASIC NEUROCHEMISTRY 2012. [PMCID: PMC7149717 DOI: 10.1016/b978-0-12-374947-5.00033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This chapter provides an overview on the multiple mechanisms by which the nervous system regulates and directs immune function towards what is needed and tolerated by the nervous system. The immune system plays two essential roles necessary for the survival of complex organisms, including tissue homeostasis and tissue defense against pathogens. These immune functions are essential to maintain the functions of all organs in the body and are studied as a part of the general field of immunology. The immune system is divided into two arms: a rapid “innate” immune response system and a slow “adaptive” immune response system. The receptors for the types of “alarm” signals detected by the innate immune system are preformed and stably encoded in the genome. By contrast, the receptors for the types of signals that trigger the adaptive immune system are in part stochastically generated and in part shaped by the types and frequency of the pathogens encountered.
Collapse
|
39
|
Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids 2011; 45:25-39. [PMID: 22139413 DOI: 10.1007/s00726-011-1184-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/22/2011] [Indexed: 01/07/2023]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide/neurotransmitter, is widely distributed in both the central and peripheral nervous system. VIP is released by both neurons and immune cells. Various cell types, including immune cells, express VIP receptors. VIP has pleiotropic effects as a neurotransmitter, immune regulator, vasodilator and secretagogue. This review is focused on VIP production and effects on immune cells, VIP receptor signaling as related to immune functions, and the involvement of VIP in inflammatory and autoimmune disorders. The review addresses present clinical use of VIP and future therapeutic directions.
Collapse
Affiliation(s)
- Mario Delgado
- Instituto de Parasitologia y Biomedicina, IPBLN-CSIC, Granada, Spain
| | | |
Collapse
|
40
|
Targeting VIP and PACAP receptor signalling: new therapeutic strategies in multiple sclerosis. ASN Neuro 2011; 3:AN20110024. [PMID: 21895607 PMCID: PMC3189630 DOI: 10.1042/an20110024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MS (multiple sclerosis) is a chronic autoimmune and neurodegenerative pathology of the CNS (central nervous system) affecting approx. 2.5 million people worldwide. Current and emerging DMDs (disease-modifying drugs) predominantly target the immune system. These therapeutic agents slow progression and reduce severity at early stages of MS, but show little activity on the neurodegenerative component of the disease. As the latter determines permanent disability, there is a critical need to pursue alternative modalities. VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate cyclase-activating peptide) have potent anti-inflammatory and neuroprotective actions, and have shown significant activity in animal inflammatory disease models including the EAE (experimental autoimmune encephalomyelitis) MS model. Thus, their receptors have become candidate targets for inflammatory diseases. Here, we will discuss the immunomodulatory and neuroprotective actions of VIP and PACAP and their signalling pathways, and then extensively review the structure–activity relationship data and biophysical interaction studies of these peptides with their cognate receptors.
Collapse
|
41
|
Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E. Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology 2011; 94:89-100. [PMID: 21734355 DOI: 10.1159/000328636] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/17/2011] [Indexed: 01/14/2023]
Abstract
Although necessary to eliminate pathogens, inflammation can lead to serious deleterious effects in the host if left unchecked. During the inflammatory response, further damage may arise from potential autoimmune responses occurring when the immune cells and molecules that respond to pathogen-derived antigens also react to self-antigens. In this sense, the identification of endogenous factors that control exacerbated immune responses is a key goal for the development of new therapeutic approaches for inflammatory and autoimmune diseases. Some neuropeptides that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that could collaborate in tuning the balanced steady state of the immune system. These neuropeptides participate in maintaining immune tolerance through two distinct mechanisms: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T cell effectors. Indeed, a functioning neuropeptide system contributes to general health, and alterations in the levels of these neuropeptides and/or their receptors lead to changes in susceptibility to inflammatory and autoimmune diseases. Recently, we found that some neuropeptides also have antimicrobial and antiparasitic actions, suggesting that they could act as primary mediators of innate defense, even in the most primitive organisms. In this review, we use the vasoactive intestinal peptide as example of an immunomodulatory neuropeptide to summarize the most relevant data found for other neuropeptides with similar characteristics, including adrenomedullin, urocortin, cortistatin and ghrelin.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | | | | | | |
Collapse
|