1
|
Syriopoulou S, Kontandreopoulou CN, Diamantopoulos PT, Vlachopoulou D, Stafylidis C, Katsiampoura P, Chatzidavid S, Giannakopoulou N, Pappa V, Kotsianidis I, Hatzimichael E, Dimou M, Symeonidis A, Panayiotidis P, Viniou NA. MicroRΝΑ analysis in patients with myelodysplastic neoplasms. Possible implications in risk stratification. Leuk Lymphoma 2024:1-7. [PMID: 39378224 DOI: 10.1080/10428194.2024.2412291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
MiRNAs have been identified as participants in leukemogenesis by controlling several cellular functions, such as differentiation, proliferation, and apoptosis. Their role in myelodysplastic neoplasms (MDS) pathogenesis is researched due to implementations in early identification, classification, and therapeutical options. IPSS-R, being the most widely used MDS classification, underestimates early biological events that can alter the disease's prognosis. The purpose of this study is to determine whether miRNA levels are aligned to MDS risk stratification groups and can therefore be used as diagnostic biomarkers. To evaluate miRNAs as possible biomarkers, we measured the levels of miR-181a-2-3p, miR-124-3p, miR-550a-3p, miR-155-5p, miR-151a-3p, and miR-125b-5p by a quantitative real-time PCR in bone marrow samples of 41 MDS patients. In conclusion, in myeloid malignancies, genomic characteristics may provide a wider apprehension of its clinical course and prognosis. MiRNAs constitute a possible diagnostic biomarker and therapeutic target, allowing intermediate-risk patients that express high levels of specific miRNAs to be re-classified and receive more advanced therapeutic agents. In our study, an association between high levels of miRNAs and worsening outcomes is established, supporting the need for further incorporation of molecular data into currently used classification systems.
Collapse
Affiliation(s)
- Stavroula Syriopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Vlachopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Stafylidis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Katsiampoura
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sevastianos Chatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Pappa
- Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | | | - Maria Dimou
- 1st Propedeutic Internal Medicine Department, Hematology Unit, National and Kapodistrian University, Athens, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Xie F, Xu J, Yan L, Xiao X, Liu L. The AC010247.2/miR-125b-5p axis triggers the malignant progression of acute myelocytic leukemia by IL-6R. Heliyon 2024; 10:e37715. [PMID: 39315204 PMCID: PMC11417210 DOI: 10.1016/j.heliyon.2024.e37715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
AML is a malignant tumor derived from the hematopoietic system, which has a poor prognosis and its incidence is increasing recent years. LncRNAs bind to miRNAs as competitive endogenous RNAs to regulate the occurrence and progression of AML, with IL-6R playing a crucial role in hematological malignancies. However, the mechanism by which noncoding RNAs regulate IL6R expression in AML remains unclear. This study found that the AC010247.2/miR-125b-5p axis promotes AML progression by regulating IL-6R expression. Specifically, knocking down or inhibiting AC010247.2 and miR-125b-5p affected IL6R and its downstream genes. Mechanistically, AC010247.2 acts as a ceRNA for miR-125b-5p, influencing IL-6R expression. Additionally, AC010247.2's regulation of AML progression partially depends on miR-125b-5p. Notably, the AC010247.2/miR-125b-5p/IL6R axis serves as a better polygenic diagnostic marker for AML. Our study identifies a key ceRNA regulatory axis that modulates IL6R expression in AML, providing a reliable multigene diagnostic method and potential therapeutic target.
Collapse
Affiliation(s)
- Fang Xie
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jialu Xu
- College of Biology, Hunan University, Changsha, China
| | - Lina Yan
- Department of Respiration, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xia Xiao
- Department of Emergency ICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Liang Liu
- Department of Emergency ICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
3
|
Song Z, Tao Y, Liu Y, Li J. Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: a focus on viral vectors and extracellular vesicles. Front Immunol 2024; 15:1444437. [PMID: 39281673 PMCID: PMC11392784 DOI: 10.3389/fimmu.2024.1444437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024] Open
Abstract
The delivery of CRISPR/Cas systems holds immense potential for revolutionizing cancer treatment, with recent advancements focusing on extracellular vesicles (EVs) and viral vectors. EVs, particularly exosomes, offer promising opportunities for targeted therapy due to their natural cargo transport capabilities. Engineered EVs have shown efficacy in delivering CRISPR/Cas components to tumor cells, resulting in inhibited cancer cell proliferation and enhanced chemotherapy sensitivity. However, challenges such as off-target effects and immune responses remain significant hurdles. Viral vectors, including adeno-associated viruses (AAVs) and adenoviral vectors (AdVs), represent robust delivery platforms for CRISPR/Cas systems. AAVs, known for their safety profile, have already been employed in clinical trials for gene therapy, demonstrating their potential in cancer treatment. AdVs, capable of infecting both dividing and non-dividing cells, offer versatility in CRISPR/Cas delivery for disease modeling and drug discovery. Despite their efficacy, viral vectors present several challenges, including immune responses and off-target effects. Future directions entail refining delivery systems to enhance specificity and minimize adverse effects, heralding personalized and effective CRISPR/Cas-mediated cancer therapies. This article underscores the importance of optimized delivery mechanisms in realizing the full therapeutic potential of CRISPR/Cas technology in oncology. As the field progresses, addressing these challenges will be pivotal for translating CRISPR/Cas-mediated cancer treatments from bench to bedside.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Liu
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Panahizadeh R, Vatankhah MA, Safari A, Danesh H, Nazmi N, Gholizadeh P, Soozangar N, Jeddi F. The interplay between microRNAs and Nrf2 signaling in human cancers. Cancer Cell Int 2024; 24:234. [PMID: 38970040 PMCID: PMC11225148 DOI: 10.1186/s12935-024-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
MicroRNAs (miRNAs), as a class of nonprotein-coding RNAs, post-transcriptionally regulate the expression of target genes by base pairing to 3'-untranslated regions (3'-UTRs). Nuclear factor E2-related factor 2 (Nrf2) has been identified as a critical component of the antioxidant defense mechanism. Dysregulation is associated with chemoresistance and radioresistance in cancerous cells. MiRNA-mediated regulation of the Nrf2 signaling pathway has been shown to have important implications for the development of various cancers. In this article, we review the roles of miRNAs as regulators of the Nrf2 pathway in different human cancers. Ras-associated binding (Rab) proteins have an essential role regulation of vesicle transport, as well as oncogenic functions in preventing chemotherapy efficacy and cancer development. More importantly, increased evidence indicated that the interaction between miRNAs and Rabs has been determined to play critical roles in cancer therapy. However, the significant limitations in using miRNAs for therapeutic applications include cross-targeting and instability of miRNAs. The detailed aspect of the interaction of miRNAs and Rabs is not clearly understood. In the current review, we highlighted the involvement of these molecules as regulators of the Nrf2 pathway in cancer pathogenesis. Potential methods and several obstacles in developing miRNAs as an anticancer therapy are also mentioned.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hesam Danesh
- Department of Orthopedics, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Nazmi
- School of Medicine, Islamic Azad University, Ardabil, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Karabay AZ, Ozkan T, Karadag Gurel A, Koc A, Hekmatshoar Y, Sunguroglu A, Aktan F, Buyukbingöl Z. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03198-1. [PMID: 38916832 DOI: 10.1007/s00210-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Chemotherapy resistance is a major obstacle in cancer therapy, and identifying novel druggable targets to reverse this phenomenon is essential. The exosome-mediated transmittance of drug resistance has been shown in various cancer models including ovarian and prostate cancer models. In this study, we aimed to investigate the role of exosomal miRNA transfer in chronic myeloid leukemia drug resistance. For this purpose, firstly exosomes were isolated from imatinib sensitive (K562S) and resistant (K562R) chronic myeloid leukemia (CML) cells and named as Sexo and Rexo, respectively. Then, miRNA microarray was used to compare miRNA profiles of K562S, K562R, Sexo, Rexo, and Rexo-treated K562S cells. According to our results, miR-125b-5p and miR-99a-5p exhibited increased expression in resistant cells, their exosomes, and Rexo-treated sensitive cells compared to their sensitive counterparts. On the other hand, miR-210-3p and miR-193b-3p were determined to be the two miRNAs which exhibited decreased expression profile in resistant cells and their exosomes compared to their sensitive counterparts. Gene targets, signaling pathways, and enrichment analysis were performed for these miRNAs by TargetScan, KEGG, and DAVID. Potential interactions between gene candidates at the protein level were analyzed via STRING and Cytoscape software. Our findings revealed CCR5, GRK2, EDN1, ARRB1, P2RY2, LAMC2, PAK3, PAK4, and GIT2 as novel gene targets that may play roles in exosomal imatinib resistance transfer as well as mTOR, STAT3, MCL1, LAMC1, and KRAS which are already linked to imatinib resistance. MDR1 mRNA exhibited higher expression in Rexo compared to Sexo as well as in K562S cells treated with Rexo compared to K562S cells which may suggest exosomal transfer of MDR1 mRNA.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Aynur Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Fugen Aktan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeliha Buyukbingöl
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
7
|
Janani G, Girigoswami A, Girigoswami K. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:415-441. [PMID: 38113194 DOI: 10.1080/09205063.2023.2294541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Leukemia is a cancer of blood cells that mainly affects the white blood cells. In acute myeloid leukemia (AML) sudden growth of cancerous cells occurs in blood and bone marrow, and it disrupts normal blood cell production. Most patients are asymptomatic, but it spreads rapidly and can become fatal if left untreated. AML is the prevalent form of leukemia in children. Risk factors of AML include chemical exposure, radiation, genetics, etc. Conventional diagnostic methods of AML are complete blood count tests and bone marrow aspiration, while conventional treatment methods involve chemotherapy, radiation therapy, and bone marrow transplant. There is a risk of cancer cells spreading progressively to the other organs if left untreated, and hence, early diagnosis is required. The conventional diagnostic methods are time- consuming and have drawbacks like harmful side effects and recurrence of the disease. To overcome these difficulties, nanoparticles are employed in treating and diagnosing AML. These nanoparticles can be surface- modified and can be used against cancer cells. Due to their enhanced permeability effect and high surface-to-volume ratio they will be able to reach the tumour site which cannot be reached by traditional drugs. This review article talks about how nanotechnology is more advantageous over the traditional methods in the treatment and diagnosis of AML.
Collapse
Affiliation(s)
- Gopalarethinam Janani
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Bahmei A, Namdari S, Yaghoubzad-Maleki M, Emami A, Ranjbaran R, Tamaddon G. Bioinformatics-Guided Discovery of miRNAs Involved in Apoptosis Modulated by Parthenolide Combined with Vincristine in The NALM6 Cell Line. CELL JOURNAL 2024; 26:139-149. [PMID: 38459731 PMCID: PMC10924840 DOI: 10.22074/cellj.2024.2013673.1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Acute lymphoblastic leukemia (ALL) is a highly heterogeneous leukemia. Despite the current improvement in conventional chemotherapy and high survival rates, the outcomes remain challenging. Sesquiterpen extracted from the Tanacetum parthenium, parthenolide, is a potential anticancer agent that can modulate the expression of miRNAs and induce apoptosis. The objective of this study was to investigate the effect of parthenolide in combination with vincristine and alone on the apoptosis rate and expression of miR-125b-5p, miR-181b-5p, and miR-17-5p in the NALM6 cell line. MATERIALS AND METHODS In this experimental study, cell viability and metabolic activity were determined through MTT assay and PI staining. Flow cytometry was applied to evaluate the rate of apoptosis. The expression of miRNAs was assessed using real-time polymerase chain reaction. Bioinformatic analyses, including Cytoscape, RNAhybrid, and signaling pathway analysis were employed to investigate the association of miR-17-5p, miR-181b-5p and miR-125b- 5p with apoptosis. Further, molecular docking served to validate the modulation of these miRNAs by parthenolide and vincristine treatment. RESULTS The MTT assay indicated that 7.7 μM of parthenolide decreased the metabolic activity to 50% after 48 hours. PI staining analysis indicated that at concentrations below the half maximal inhibitory concentration, parthenolide caused 50% cell death. Flow cytometric analysis indicated that parthenolide (1.925 μM) in combination with vincristine (1.2 nM) induced apoptosis in 83.2% of the cells. Real-time quantitative reverse transcription polymerase chain reaction (qRTPCR) analysis showed significant changes in the expression levels of miR-17-5p, miR-125b-5p, and miR-181b-5p. Moreover, the combination therapy downregulated the expression of miRNAs significantly. This was consistent with our bioinformatic analysis demonstrating that the studied miRNAs are regulators of apoptosis. Finally, molecular docking validated the modulation of the miRNAs by parthenolide and vincristine. CONCLUSION Parthenolide in combination with vincristine triggers apoptosis at a high rate in the NALM6 cell line. Moreover, this combination therapy can decrease the expression of miR-17-5p, miR-181b-5p, and miR-125b-5p.
Collapse
Affiliation(s)
- Atefeh Bahmei
- Division of Hematology and Blood bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Namdari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Iran
| | - Ali Emami
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Tamaddon
- Division of Hematology and Blood bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
11
|
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L, Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines 2024; 12:121. [PMID: 38255226 PMCID: PMC10813737 DOI: 10.3390/biomedicines12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding ribonucleic acids (RNAs) associated with gene expression regulation. Since the discovery of the first miRNA in 1993, thousands of miRNAs have been studied and they have been associated not only with physiological processes, but also with various diseases such as cancer and inflammatory conditions. MiRNAs have proven to be not only significant biomarkers but also an interesting therapeutic target in various diseases, including cancer. In acute myeloid leukemia (AML), miRNAs have been regarded as a welcome addition to the limited therapeutic armamentarium, and there is a vast amount of data on miRNAs and their dysregulation. Macrophages are innate immune cells, present in various tissues involved in both tissue repair and phagocytosis. Based on their polarization, macrophages can be classified into two groups: M1 macrophages with pro-inflammatory functions and M2 macrophages with an anti-inflammatory action. In cancer, M2 macrophages are associated with tumor evasion, metastasis, and a poor outcome. Several miRNAs have been associated with a poor prognosis in AML and with either the M1 or M2 macrophage phenotype. In the present paper, we review miRNAs with a reported negative prognostic significance in cancer with a focus on AML and analyze their potential impact on macrophage polarization.
Collapse
Affiliation(s)
- Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
| | - Laura Zaharie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania; (O.M.); (C.J.); (A.N.); (L.Z.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:428. [PMID: 36672378 PMCID: PMC9856444 DOI: 10.3390/cancers15020428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a frequent type of childhood hematological malignancy. The disease is classified into several subtypes according to genetic abnormalities. MicroRNAs (miRNAs) are involved in pathological processes (e.g., proliferation, apoptosis, differentiation). A miRNA is a group of short non-coding RNAs with relevant regulatory effects on gene expression achieved by suppression of the translation or degradation of messenger RNA (mRNA). These molecules act as tumor suppressors and/or oncogenes in the pathogenesis of pediatric leukemias. The characteristic features of miRNAs are their stable form and the possibility of secretion to the circulatory system. The role of miRNA in BCP-ALL pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. The dysregulation of some miRNAs involved in childhood acute lymphoid leukemia, such as miR-155, miR-200c, miR-100, miR-181a, miR125b, and miR146a is discussed, showing their possible employment as therapeutic targets. In the current review, the capabilities of miRNAs in non-invasive diagnostics and their prognostic potential as biomarkers are presented.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Lejman
- Independent Public Health Care Facility of The Ministry of Internal Affairs and Administration in Lublin, 20-331 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
13
|
New Therapeutics for Extracellular Vesicles: Delivering CRISPR for Cancer Treatment. Int J Mol Sci 2022; 23:ijms232415758. [PMID: 36555398 PMCID: PMC9779094 DOI: 10.3390/ijms232415758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers are defined by genetic defects, which underlines the prospect of using gene therapy in patient care. During the past decade, CRISPR technology has rapidly evolved into a powerful gene editing tool with high fidelity and precision. However, one of the impediments slowing down the clinical translation of CRISPR-based gene therapy concerns the lack of ideal delivery vectors. Extracellular vesicles (EVs) are nano-sized membrane sacs naturally released from nearly all types of cells. Although EVs are secreted for bio-information conveyance among cells or tissues, they have been recognized as superior vectors for drug or gene delivery. Recently, emerging evidence has spotlighted EVs in CRISPR delivery towards cancer treatment. In this review, we briefly introduce the biology and function of the CRISPR system and follow this with a summary of current delivery methods for CRISPR applications. We emphasize the recent progress in EV-mediated CRISPR editing for various cancer types and target genes. The reported strategies for constructing EV-CRISPR vectors, as well as their limitations, are discussed in detail. The review aims to throw light on the clinical potential of engineered EVs and encourage the expansion of our available toolkit to defeat cancer.
Collapse
|
14
|
Duroux-Richard I, Gagez AL, Alaterre E, Letestu R, Khalifa O, Jorgensen C, Leprêtre S, Tchernonog E, Moreaux J, Cartron G, Apparailly F. miRNA profile at diagnosis predicts treatment outcome in patients with B-chronic lymphocytic leukemia: A FILO study. Front Immunol 2022; 13:983771. [PMID: 36325355 PMCID: PMC9618812 DOI: 10.3389/fimmu.2022.983771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
During many years, chemo-immunotherapy fludarabine-cyclophosphamide-rituximab (FCR) was the gold standard for first line treatment of medically fit patients with symptomatic B-chronic lymphocytic leukemia (CLL). Over the last decade, targeted biotherapies have revolutionized the treatment of B-CLL patients and almost entirely supplanted FCR. However, no biomarker still exists to predict the complete remission (CR) with undetectable minimal residual disease (uMRD) in bone marrow (BM), which remains the best predictive factor for survival. MicroRNAs represent a class of molecular biomarkers which expression is altered in B-CLL. Our study aimed at identifying before treatment blood miRNAs that predict treatment outcome in previously untreated B-CLL patients (NCT 01370772, https://clinicaltrials.gov/ct2/show/NCT01370772). Using hierarchical clustering of miRNA expression profiles discriminating 8 patients who achieved CR with BM uMRD from 8 patients who did not achieve CR and displayed detectable BM MRD, we identified 25 miRNAs differentially expressed before treatment. The expression of 11 miRNAs was further validated on a larger cohort (n=123). Based on the dosage of 5 miRNAs at diagnosis, a decision tree was constructed to predict treatment outcome. We identified 6 groups of patients with a distinct probability of being CR with BM uMRD to FCR treatment, ranging from 72% (miR-125b, miR-15b and miR-181c high) to 4% (miR-125b and miR-193b low). None of the patients displaying high expression levels of miR-125b, miR-15b and miR-181c relapsed during study follow-up. In contrast, patients with low miR-15b and high miR-412, or with low miR-125b and miR-193b, demonstrated significant low PFS. RNA sequencing of blood at diagnosis identified that patients relapsing after treatment are characterized by significant enrichment of gene signatures related to cell cycle, MYC target genes, metabolism and translation regulation. Conversely, patients achieving CR with BM uMRD displayed significant enrichment in genes related to communication between CLL cells and the microenvironment, immune system activation and upregulation of polycomb PRC2 complex target genes. Our results suggest that blood miRNAs are potent predictive biomarkers for FCR treatment efficacy and might be implicated in the FCR efficacy in B-CLL patients, providing new insight into unmet need for the treatment of B-CLL patients and identifying pathways predictive of patients’ remission.
Collapse
MESH Headings
- Humans
- Antineoplastic Combined Chemotherapy Protocols
- Cyclophosphamide
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- Neoplasm, Residual/genetics
- Rituximab
- Treatment Outcome
- Tumor Microenvironment
- Clinical Studies as Topic
Collapse
Affiliation(s)
- Isabelle Duroux-Richard
- Institute of Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France
| | - Anne-Laure Gagez
- Department of Clinical Hematology, University Hospital Montpellier, Montpellier, France
| | - Elina Alaterre
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France
| | - Rémi Letestu
- Department of Biological Hematology, APHP, Groupe hospitalier hôpitaux universitaires Paris Seine Saint Denis (GH HUPSSD), Hospital Avicenne, Bobigny, France
| | - Olfa Khalifa
- Institute of Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France
- Clinical Department for osteoarticular diseases, University hospital Lapeyronie, Montpellier, France
| | - Stéphane Leprêtre
- Department of Hematology, INSERM, U1245, Centre Henri Becquerel, Normandie Univ UNIROUEN, Rouen, France
| | - Emmanuelle Tchernonog
- Department of Clinical Hematology, University Hospital Montpellier, Montpellier, France
| | - Jérôme Moreaux
- Institute of Human Genetics (IGH), CNRS, University of Montpellier, Montpellier, France
- Department of Biological Hematology, Laboratory for Monitoring Innovative Therapies, University Hospital Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Guillaume Cartron
- Department of Clinical Hematology, University Hospital Montpellier, Montpellier, France
- CNRS UMR 5535, University of Montpellier, Montpellier, France
| | - Florence Apparailly
- Institute of Regenerative Medicine and Biotherapy, INSERM, U1183, University of Montpellier, Montpellier, France
- Clinical Department for osteoarticular diseases, University hospital Lapeyronie, Montpellier, France
- *Correspondence: Florence Apparailly,
| |
Collapse
|
15
|
Chang YH, Jou ST, Yen CT, Lin CY, Yu CH, Chang SK, Lu MY, Chang HH, Pai CH, Hu CY, Lin KH, Lin SR, Lin DT, Chen HY, Yang YL, Lin SW, Yu SL. A microRNA signature for clinical outcomes of pediatric ALL patients treated with TPOG protocols. Am J Cancer Res 2022; 12:4764-4774. [PMID: 36381326 PMCID: PMC9641388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
MicroRNA (miRNA) expression is reportedly associated with clinical outcomes in childhood acute lymphoblastic leukemia (ALL). Here, we aimed at investigating whether miRNA expression is associated with clinical outcomes in pediatric ALL patients treated with the Taiwan Pediatric Oncology Group (TPOG) protocols. The expression of 397 miRNAs was measured using stem-loop quantitative real-time polymerase chain reaction miRNA arrays in 60 pediatric ALL patients treated with TPOG-ALL-93 or TPOG-ALL-97 VHR (very high-risk) protocols. In order to identify prognosis-related miRNAs, original cohort was randomly split into the training and testing cohort in a 2:1 ratio, and univariate Cox proportional hazards regression was applied to identify associations between event-free survival (EFS) and expressions of miRNAs. Four prognosis-related miRNAs were selected and validated in another independent cohort composed of 103 patients treated with the TPOG-ALL-2002 protocol. Risk score, including the impact of four prognosis-related miRNAs, was calculated for each patients, followed by grouping patients into the high or low risk-score groups. Irrespective of the training, testing, or validation cohort, risk-score group was significantly associated with EFS and overall survival (OS). Risk-score group combining with clinical characteristics including the age onset (≥10 years), white blood cell counts (≥100 × 109/L), cell type (T- or B-cell), sex, and risk groups of the treatment protocols were used as predictors of EFS using the multivariate Cox proportional hazards regression. Results showed that the risk-score group was the strongest predictor. In the validation cohort, hazard ratios (HRs) of the risk-score group were 7.06 (95% CI=1.93-25.84, p-value =0.003) and 14.03 (95% CI=3.34-59.04, p-value =0.003) for EFS and OS, respectively. High risk-score group had higher risk of having poor prognosis and risk of death than that in the low risk group. Accuracy of the prediction model for 5-year EFS could reach 0.76. For the prediction of 5-year OS, accuracy was 0.75. In conclusion, a miRNA signature was associated with clinical outcomes in childhood ALL patients treated with TPOG protocols and might be a suitable prognostic biomarker.
Collapse
Affiliation(s)
- Ya-Hsuan Chang
- Institute of Statistical Science Academia SinicaTaipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ching-Tzu Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science Academia SinicaTaipei, Taiwan
| | - Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Sheng-Kai Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chen-Hsueh Pai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Chung-Yi Hu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian UniversityTaoyuan, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science Academia SinicaTaipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University HospitalTaipei, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan UniversityTaipei, Taiwan
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
16
|
Elamir A, Shaker O, Kamal M, Khalefa A, Abdelwahed M, Abd El Reheem F, Ahmed T, Hassan E, Ayoub S. Expression profile of serum LncRNA THRIL and MiR-125b in inflammatory bowel disease. PLoS One 2022; 17:e0275267. [PMID: 36206229 PMCID: PMC9543963 DOI: 10.1371/journal.pone.0275267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract. We aimed to investigate, for the first time, the expression profile of serum level of LncRNA THRIL and MiR-125b in IBD patients and their relations with patient’s clinical and biochemical investigations. Methods Our study included 210 subjects divided into 70 healthy subjects considered as control group (male and female), 70 patients with ulcerative colitis (UC), and 70 patients with Crohn’s disease (CD). Blood samples were obtained from all subjects. Expression of LncRNA THRIL and MiR-125b in serum was detected by Quantitative real time PCR (qRT-PCR). Results Our results showed a significant increase in the fold change of LncRNA THRIL in UC patients (Median = 11.11, IQR; 10.21–12.45, P<0.001) and CD patients (Median = 5.87, IQR; 4.57–7.88, P<0.001) compared to controls. Meanwhile there was a significant decrease in the fold change of MiR-125b in UC patients (Median = 0.36, IQR; 0.19–0.61, P<0.001) and CD patients (Median = 0.69, IQR; 0.3–0.83, P<0.001) compared to controls. Furthermore, there was a negative significant correlation between LncRNA THRIL and MiR-125b in UC patients (r = -0.28, P = 0.016) and in CD patients (r = -0.772, P<0.001). ROC curve analysis was done showing the diagnostic value of these markers as predictors in differentiating between cases of UC, CD, and control. Conclusion Serum LncRNA THRIL and MiR-125b could be used as potential biomarkers for diagnosis and prognosis of ulcerative colitis and Crohn’s disease.
Collapse
Affiliation(s)
- Azza Elamir
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Kamal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Abeer Khalefa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mostafa Abdelwahed
- Department of Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Fadwa Abd El Reheem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Essam Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Shymaa Ayoub
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- * E-mail: ,
| |
Collapse
|
17
|
Fletcher D, Brown E, Javadala J, Uysal‐Onganer P, Guinn B. microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHAEM 2022; 3:596-608. [PMID: 36051053 PMCID: PMC9421970 DOI: 10.1002/jha2.441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Recent studies have shown that short non-coding RNAs, known as microRNAs (miRNAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future.
Collapse
Affiliation(s)
| | - Elliott Brown
- Department of Biomedical SciencesUniversity of HullHull, UK
| | | | - Pinar Uysal‐Onganer
- Cancer Research GroupSchool of Life SciencesUniversity of WestminsterLondonUK
| | | |
Collapse
|
18
|
Cui X, Fu Q, Wang X, Xia P, Cui X, Bai X, Lu Z. Molecular mechanisms and clinical applications of exosomes in prostate cancer. Biomark Res 2022; 10:56. [PMID: 35906674 PMCID: PMC9338661 DOI: 10.1186/s40364-022-00398-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PC) is a common tumor in men, and the incidence rate is high worldwide. Exosomes are nanosized vesicles released by all types of cells into multiple biological fluid types. These vesicles contribute to intercellular communication by delivering both nucleic acids and proteins to recipient cells. In recent years, many studies have explored the mechanisms by which exosomes mediate the epithelial-mesenchymal transition, angiogenesis, tumor microenvironment establishment, and drug resistance acquisition in PC, and the mechanisms that have been identified and the molecules involved have provided new perspectives for the possible discovery of novel diagnostic markers in PC. Furthermore, the excellent biophysical properties of exosomes, such as their high stability, high biocompatibility and ability to cross biological barriers, have made exosomes promising candidates for use in novel targeted drug delivery system development. In this review, we summarize the roles of exosomes in the growth and signal transmission in PC and show the promising future of exosome contributions to PC diagnostics and treatment.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xianglun Cui
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaohui Bai
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Amin AH, Sharifi LMA, Kakhharov AJ, Opulencia MJC, Alsaikhan F, Bokov DO, Majdi HS, Jawad MA, Hammid AT, Shalaby MN, Mustafa YF, Siahmansouri H. Role of Acute Myeloid Leukemia (AML)-Derived exosomes in tumor progression and survival. Biomed Pharmacother 2022; 150:113009. [PMID: 35486974 DOI: 10.1016/j.biopha.2022.113009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a quickly aggressive hematopoietic disorder that progress due to the accumulation and clonal expansion of immature myeloid cells. Despite the latest developments in AML treatment, repeated relapses and drug resistance remain one of the major challenges in treatment of leukemia. Currently, it is well known that the components of the tumor microenvironment such as cellular and non-cellular elements play a critical function in treatment failures of AML, also they are most common cause of complications including suppression of hematopoiesis. Exosomes are membrane-bound extracellular vesicles (EVs) that transfer signaling molecules and have attracted a large amount of attention due to their important role in inter-cellular communication in health and disease. Exosomes participate in the survival and chemoresistance of many leukemia through transferring their rich cargos of molecules including miRNAs, growth factors, and cytokines. The key producers of exosomes that mainly participate to AML pathogenesis are bone marrow mesenchymal stem cell (BMSCs) and AML cell themselves. These cells release an enormous number of exosomes that affect several target cells such as natural killer (NK) and hematopoietic stem cells to the development of leukemia proliferation and progression. In the present study, a comprehensive review of the literature has been done to briefly discuss the biology of exosomes and highlight the role of exosomes derived from AML in the progress of acute myeloid leukemia.
Collapse
Affiliation(s)
- Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Alisher Jamoliddinovich Kakhharov
- Department of Oncology and Medical Radiology, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Oncology and Medical Radiology, Samarkand State Dental Institute, Samarkand, Uzbekistan.
| | | | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | | | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Sbirkov Y, Vergov B, Mehterov N, Sarafian V. miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance. Int J Mol Sci 2022; 23:ijms23094657. [PMID: 35563051 PMCID: PMC9103677 DOI: 10.3390/ijms23094657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs' impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients' responses and survival rates.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| | - Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| |
Collapse
|
21
|
MicroRNAs in Leukemias: A Clinically Annotated Compendium. Int J Mol Sci 2022; 23:ijms23073469. [PMID: 35408829 PMCID: PMC8998245 DOI: 10.3390/ijms23073469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Leukemias are a group of malignancies of the blood and bone marrow. Multiple types of leukemia are known, however reliable treatments have not been developed for most leukemia types. Furthermore, even relatively reliable treatments can result in relapses. MicroRNAs (miRNAs) are a class of short, noncoding RNAs responsible for epigenetic regulation of gene expression and have been proposed as a source of potential novel therapeutic targets for leukemias. In order to identify central miRNAs for leukemia, we conducted data synthesis using two databases: miRTarBase and DISNOR. A total of 137 unique miRNAs associated with 16 types of leukemia were retrieved from miRTarBase and 86 protein-coding genes associated with leukemia were retrieved from the DISNOR database. Based on these data, we formed a visual network of 248 miRNA-target interactions (MTI) between leukemia-associated genes and miRNAs associated with ≥4 leukemia types. We then manually reviewed the literature describing these 248 MTIs for interactions identified in leukemia studies. This manually curated data was then used to visualize a network of 64 MTIs identified in leukemia patients, cell lines and animal models. We also formed a visual network of miRNA-leukemia associations. Finally, we compiled leukemia clinical trials from the ClinicalTrials database. miRNAs with the highest number of MTIs were miR-125b-5p, miR-155-5p, miR-181a-5p and miR-19a-3p, while target genes with the highest number of MTIs were TP53, BCL2, KIT, ATM, RUNX1 and ABL1. The analysis of 248 MTIs revealed a large, highly interconnected network. Additionally, a large MTI subnetwork was present in the network visualized from manually reviewed data. The interconnectedness of the MTI subnetwork suggests that certain miRNAs represent central disease molecules for multiple leukemia types. Additional studies on miRNAs, their target genes and associated biological pathways are required to elucidate the therapeutic potential of miRNAs in leukemia.
Collapse
|
22
|
Alejo-Valle O, Weigert K, Bhayadia R, Ng M, Issa H, Beyer C, Emmrich S, Schuschel K, Ihling C, Sinz A, Zimmermann M, Wickenhauser C, Flasinski M, Regenyi E, Labuhn M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis. Blood 2022; 139:651-665. [PMID: 34570885 PMCID: PMC9632760 DOI: 10.1182/blood.2021012231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor ARID3A by miR-125b is a key event in the pathogenesis of acute megakaryoblastic leukemia (AMKL). AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing the disease. The results of our study showed that chromosome 21-encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncovered Arid3a as the main miR-125b target behind this synergy. We demonstrated that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. Although Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a blockade of dual megakaryocytic/erythroid differentiation and subsequently of AMKL. Inversely, restoring ARID3A expression relieves the arrest of megakaryocytic differentiation in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of posttranscriptional gene regulation can interact to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease.
Collapse
Affiliation(s)
- Oriol Alejo-Valle
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Karoline Weigert
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Raj Bhayadia
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Michelle Ng
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hasan Issa
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christoph Beyer
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester NY
| | - Konstantin Schuschel
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Marius Flasinski
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Hospital Tauberbischofsheim, Tauberbischofsheim, Germany
| | - Eniko Regenyi
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maurice Labuhn
- Institute for Experimental Virology, Twincore, Center for Experimental and Clinical Infection Research, Hannover, Germany; and
| | - Dirk Reinhardt
- Pediatric Hematology and Oncology, Pediatrics III, University Hospital Essen, Essen, Germany
| | | | - Dirk Heckl
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jan-Henning Klusmann
- Pediatric Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt (Main), Germany
| |
Collapse
|
23
|
Ganesan S, Mathews V, Vyas N. Microenvironment and drug resistance in acute myeloid leukemia: Do we know enough? Int J Cancer 2021; 150:1401-1411. [PMID: 34921734 DOI: 10.1002/ijc.33908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AMLs), as the name suggests, often develop suddenly and are very progressive forms of cancer. Unlike in acute promyelocytic leukemia, a subtype of AML, the outcomes in most other AMLs remain poor. This is mainly attributed to the acquired drug resistance and lack of targeted therapy. Different studies across laboratories suggest that the cellular mechanisms to impart therapy resistance are often very dynamic and should be identified in a context-specific manner. Our review highlights the progress made so far in identifying the different cellular mechanisms of mutation-independent therapy resistance in AML. It reiterates that for more effective outcomes cancer therapies should acquire a more tailored approach where the protective interactions between the cancer cells and their niches are identified and targeted.
Collapse
Affiliation(s)
- Saravanan Ganesan
- Department of Haematology, Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Neha Vyas
- Division of Molecular Medicine, St. John's Research Institute, SJNAHS, Bengaluru, India
| |
Collapse
|
24
|
Hyperleukocytic Acute Leukemia Circulating Exosomes Regulate HSCs and BM-MSCs. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9457070. [PMID: 34840706 PMCID: PMC8626181 DOI: 10.1155/2021/9457070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
Hyperleukocytic acute leukemia (HLAL) circulating exosomes are delivered to hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BM-MSCs), thereby inhibiting the normal hematopoietic process. In this paper, we have evaluated and explored the effects of miR-125b, which is carried by HLAL-derived exosomes, on the hematopoietic function of HSCs and BM-MSCs. For this purpose, we have isolated exosomes from the peripheral blood of HLAL patients and healthy volunteers. Then, we measured the level of miR-125b in exosomes cocultured exosomes with HSCs and BM-MSCs. Moreover, we have used miR-125b inhibitors/mimic for intervention and then measured miR-125b expression and colony forming unit (CFU). Apart from it, HSC and BM-MSC hematopoietic-related factors α-globulin, γ-globulin, CSF2, CRTX4 and CXCL12, SCF, IGF1, and DKK1 expression were measured. Evaluation of the miR-125b and BAK1 targeting relationship, level of miR-125b, and expression of hematopoietic-related genes was performed after patients are treated with miR-125b mimic and si-BAK1. We have observed that miR-125b was upregulated in HLAL-derived exosomes. After HLAL-exosome acts on HSCs, the level of miR-125b is upregulated, reducing CFU and affecting the expression of α-globulin, γ-globulin, CSF2, and CRCX4. For BM-MSCs, after the action of HLAL-exo, the level of miR-125b is upregulated and affected the expression of CXCL12, SCF, IGF1, and DKK1. Exosomes derived from HLAL carry miR-125b to target and regulate BAK1. Further study confirmed that miR-125b and BAK1mimic reduced the expression of miR-125b and reversed the effect of miR-125b mimic on hematopoietic-related genes. These results demonstrated that HLAL-derived exosomes carrying miR-125b inhibit the hematopoietic differentiation of HSC and hematopoietic support function of BM-MSC through BAK1.
Collapse
|
25
|
Singh VK, Thakral D, Gupta R. Regulatory noncoding RNAs: potential biomarkers and therapeutic targets in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:504-519. [PMID: 34824883 PMCID: PMC8610797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The noncoding RNAs (ncRNA) comprise a substantial segment of the human transcriptome and have emerged as key elements of cellular homeostasis and disease pathogenesis. Dysregulation of these ncRNAs by alterations in the primary RNA motifs and/or aberrant expression levels is relevant in various diseases, especially cancer. The recent research advances indicate that ncRNAs regulate vital oncogenic processes, including hematopoietic cell differentiation, proliferation, apoptosis, migration, and angiogenesis. The ever-expanding role of ncRNAs in cancer progression and metastasis has sparked interest as potential diagnostic and prognostic biomarkers in acute myeloid leukemia. Moreover, advances in antisense oligonucleotide technologies and pharmacologic discoveries of small molecule inhibitors in targeting RNA structures and RNA-protein complexes have opened newer avenues that may help develop the next generation anti-cancer therapeutics. In this review, we have discussed the role of ncRNA in acute myeloid leukemia and their utility as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Deepshi Thakral
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| |
Collapse
|
26
|
Izadirad M, Huang Z, Jafari F, Hamidieh AA, Gharehbaghian A, Li YD, Jafari L, Chen ZS. Extracellular Vesicles in Acute Leukemia: A Mesmerizing Journey With a Focus on Transferred microRNAs. Front Cell Dev Biol 2021; 9:766371. [PMID: 34692712 PMCID: PMC8527035 DOI: 10.3389/fcell.2021.766371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Despite their small size, the membrane-bound particles named extracellular vesicles (EVs) seem to play an enormous role in the pathogenesis of acute leukemia. From oncogenic hematopoietic stem cells (HSCs) to become leukemic cells to alter the architecture of bone marrow (BM) microenvironment, EVs are critical components of leukemia development. As a carrier of essential molecules, especially a group of small non-coding RNAs known as miRNA, recently, EVs have attracted tremendous attention as a prognostic factor. Given the importance of miRNAs in the early stages of leukemogenesis and also their critical parts in the development of drug-resistant phenotype, it seems that the importance of EVs in the development of leukemia is more than what is expected. To be familiar with the clinical value of leukemia-derived EVs, this review aimed to briefly shed light on the biology of EVs and to discuss the role of EV-derived miRNAs in the development of acute myeloid leukemia and acute lymphoblastic leukemia. By elaborating the advances and challenges concerning the isolation of EVs, we discuss whether EVs could have a prognostic value in the clinical setting for leukemia.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Farideh Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Queens, NY, United States
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Queens, NY, United States
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|
27
|
Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, Zhang L, Wu J, Liu J. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol 2021; 59:81. [PMID: 34476495 PMCID: PMC8448547 DOI: 10.3892/ijo.2021.5260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is associated with a poor prognosis in elderly adults and currently lacks optimal treatment strategies. MicroRNAs (miRNAs or miRs) have increasingly been reported to be associated with AML progression; however, the mechanisms of action of miR-93 in AML with the involvement of disabled 2 (DAB2) are currently unknown. In the present study, miR-93 expression was assessed in patients with AML and in AML cell lines. The association between miR-93 expression and the pathological characteristics of patients with AML was analyzed. AML cells were then transfected to knockdown or overexpress miR-93 in order to elucidate its function in AML progression. The target gene of miR-93 was assessed using a dual-luciferase reporter gene assay. The expression levels of miR-93, DAB2 and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins were measured and in vivo experiments were conducted to confirm the results. It was observed that miR-93 was highly expressed in patients with AML and in AML cells. The knockdown of miR-93 in HL-60 cells inhibited AML cell proliferation and resistance to apoptosis, while the overexpression of miR-93 in THP-1 cells led to contrasting results. Moreover, miR-93 targeted DAB2 to inactivate the PI3K/AKT pathway, and the overexpression of DAB2 reversed the effects of miR-93 on THP-1 cell growth. Tumor volume, tumor weight, and the positive expression of Ki67, survivin and p53 were increased in THP-1 cells overexpressing miR-93. On the whole, the present study demonstrates that miR-93 is highly expressed in AML cells, and that the suppression of miR-93 inhibits AML cell growth by targeting DAB2 and inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jiwei Huang
- Department of Pharmacology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ruozhi Xiao
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaozhen Wang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bijay Khadka
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhigang Fang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mingxue Yu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ling Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jieying Wu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiajun Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
28
|
Malczewska A, Frampton AE, Mato Prado M, Ameri S, Dabrowska AF, Zagorac S, Clift AK, Kos-Kudła B, Faiz O, Stebbing J, Castellano L, Frilling A. Circulating MicroRNAs in Small-bowel Neuroendocrine Tumors: A Potential Tool for Diagnosis and Assessment of Effectiveness of Surgical Resection. Ann Surg 2021; 274:e1-e9. [PMID: 31373926 DOI: 10.1097/sla.0000000000003502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To discover serum-based microRNA (miRNA) biomarkers for small-bowel neuroendocrine tumors (SBNET) to help guide clinical decisions. BACKGROUND MiRNAs are small noncoding RNA molecules implicated in the initiation and progression of many cancers. MiRNAs are remarkably stable in bodily fluids, and can potentially be translated into clinically useful biomarkers. Novel biomarkers are needed in SBNET to determine disease aggressiveness, select patients for treatment, detect early recurrence, and monitor response. METHODS This study was performed in 3 stages (discovery, validation, and a prospective, longitudinal assessment). Discovery comprised of global profiling of 376 miRNA in sera from SBNET patients (n = 11) versus healthy controls (HCs; n = 3). Up-regulated miRNAs were subsequently validated in additional SBNET (n = 33) and HC sera (n = 14); and then longitudinally after SBNET resection (n = 12), with serial serum sampling (preoperatively day 0; postoperatively at 1 week, 1 month, and 12 months). RESULTS Four serum miRNAs (miR-125b-5p, -362-5p, -425-5p and -500a-5p) were significantly up-regulated in SBNET (P < 0.05; fold-change >2) based on multiple normalization strategies, and were validated by RT-qPCR. This combination was able to differentiate SBNET from HC with an area under the curve of 0.951. Longitudinal assessment revealed that miR-125b-5p returned towards HC levels at 1 month postoperatively in patients without disease, whereas remaining up-regulated in those with residual disease (RSD). This was also true at 12 months postoperatively. In addition, miR-362-5p appeared up-regulated at 12 months in RSD and recurrent disease (RCD). CONCLUSIONS Our study represents the largest global profiling of serum miRNAs in SBNET patients, and the first to evaluate ongoing serum miRNA expression changes after surgical resection. Serum miR-125b-5p and miR-362-5p have potential to be used to detect RSD/RCD.
Collapse
Affiliation(s)
- Anna Malczewska
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Mireia Mato Prado
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Shima Ameri
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Aleksandra F Dabrowska
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Sladjana Zagorac
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Ashley K Clift
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Omar Faiz
- St. Mark's Hospital, Harrow, Middlesex, UK
| | - Justin Stebbing
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| | - Leandro Castellano
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
- University of Sussex, School of Life Sciences, John Maynard Smith Building, Falmer, Brighton, UK
| | - Andrea Frilling
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, UK
| |
Collapse
|
29
|
Sheinboim D, Parikh S, Parikh R, Menuchin A, Shapira G, Kapitansky O, Elkoshi N, Ruppo S, Shaham L, Golan T, Elgavish S, Nevo Y, Bell RE, Malcov H, Shomron N, Taub JW, Izraeli S, Levy C. Slow transcription of the 99a/let-7c/125b-2 cluster results in differential miRNA expression and promotes melanoma phenotypic plasticity. J Invest Dermatol 2021; 141:2944-2956.e6. [PMID: 34186058 DOI: 10.1016/j.jid.2021.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Almost half of human miRNAs are encoded in clusters. Although transcribed as a single unit, the levels of individual mature miRNAs often differ. The mechanisms underlying differential biogenesis of clustered miRNAs and the resulting physiological implications are mostly unknown. Here, we report that the melanoma master transcription regulator MITF regulates the differential expression of the 99a/let-7c/125b-2 cluster by altering the distribution of RNA polymerase II (Pol-II) along the cluster. We discovered that MITF interacts with TRIM28, a known inhibitor of Pol-II transcription elongation, at the let-7c region resulting in Pol-II pausing and causing its elevated expression, whereas low levels of Pol-II occupation over miR-99a and miR-125b-2 regions decreases their biogenesis. Furthermore, we showed that this differential expression affects the phenotypic state of melanoma cells. RNA-seq analysis of proliferative melanoma cells that express miR-99a and miR-125b mimics revealed a transcriptomic shift toward an invasive phenotype. Conversely, expression of a let-7c mimic in invasive melanoma cells induced a shift to a more proliferative state. We confirmed direct target genes of these miRNAs: FGFR3, BAP1, Bcl2, TGFBR1, and CDKN1A. Our study demonstrates a MITF-governed biogenesis mechanism that results in differential expression of clustered 99a/let-7c/125b-2 miRNAs that control melanoma progression.
Collapse
Affiliation(s)
- Danna Sheinboim
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roma Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amitai Menuchin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Shapira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oxana Kapitansky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Elkoshi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shmuel Ruppo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Lital Shaham
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Division of Pediatric Hematology-Oncology Department, Schneider Children's Medical Center, Petah Tikva 49202, Israel
| | - Tamar Golan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Rachel E Bell
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Edmond J. Safra Center of Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jeffrey W Taub
- Wayne State University School of Medicine, Detroit, MI 48201, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Shai Izraeli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
30
|
Lv M, Zhu S, Peng H, Cheng Z, Zhang G, Wang Z. B-cell acute lymphoblastic leukemia-related microRNAs: uncovering their diverse and special roles. Am J Cancer Res 2021; 11:1104-1120. [PMID: 33948348 PMCID: PMC8085864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a common type of hematologic malignancy characterized by the uncontrolled growth of immature B lymphocytes. Genomics, transcriptomics, and proteomics at different levels contribute to early diagnosis and can thereby provide better treatment for cancer. MicroRNAs (miRNAs) are conducive to the diagnosis and treatment of patients with B-ALL. Moreover, evidence suggests that runaway miRNAs and exosomes containing miRNA may be involved in the occurrence of B-ALL, which can then be used as potential biomarkers. This review summarizes the role of miRNAs in the pathogenesis, diagnosis, prognosis, and treatment of B-ALL.
Collapse
Affiliation(s)
- Mengqi Lv
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South UniversityChangsha, Hunan, China
- Institute of Molecular Hematology, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
31
|
Rodriguez PD, Paculova H, Kogut S, Heath J, Schjerven H, Frietze S. Non-Coding RNA Signatures of B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:ijms22052683. [PMID: 33799946 PMCID: PMC7961854 DOI: 10.3390/ijms22052683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.
Collapse
Affiliation(s)
- Princess D. Rodriguez
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
| | - Jessica Heath
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Department of Pediatrics, University of Vermont, Burlington, VT 05405, USA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA;
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (P.D.R.); (H.P.); (S.K.)
- The University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA;
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
32
|
Zeng Z, Lu J, Wang Y, Sheng H, Wang Y, Chen Z, Wu Q, Zheng J, Chen Y, Yang D, Yu K, Mo H, Hu J, Hu P, Liu Z, Ju H, Xu R. The lncRNA XIST/miR-125b-2-3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer. Cancer Med 2021; 10:2423-2441. [PMID: 33666372 PMCID: PMC7982616 DOI: 10.1002/cam4.3777] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Background Numerous reports on microRNAs have illustrated their role in tumor growth and metastasis. Recently, a new prognostic factor, miR‐125b‐2‐3p, has been identified for predicting chemotherapeutic sensitivity in advanced colorectal cancer (CRC). However, the specific mechanisms and biological functions of miR‐125b‐2‐3p in advanced CRC under chemotherapy have yet to be elucidated. Methods MiR‐125b‐2‐3p expression was detected by real‐time PCR (RT‐PCR) in CRC tissues. The effects of miR‐125b‐2‐3p on the growth, metastasis, and drug sensitivity of CRC cells were tested in vitro and in vivo. Based on multiple databases, the upstream competitive endogenous RNAs (ceRNAs) and the downstream genes for miR‐125b‐2‐3p were predicted by bioinformatic analysis, followed by the experiments including luciferase reporter assays, western blot assays, and so on. Results MiR‐125b‐2‐3p was significantly lowly expressed in the tissues and cell lines of CRC. Higher expression of miR‐125b‐2‐3p was associated with relatively lower proliferation rates and fewer metastases. Moreover, overexpressed miR‐125b‐2‐3p remarkably improved chemotherapeutic sensitivity of CRC in vivo and in vitro. Mechanistically, miR‐125b‐2‐3p was absorbed by long noncoding RNA (lncRNA) XIST regulating WEE1 G2 checkpoint kinase (WEE1) expression. The upregulation of miR‐125b‐2‐3p inhibited the proliferation and epithelial‐mesenchymal transition (EMT) of CRC induced by lncRNA XIST. Conclusions Lower miR‐125b‐2‐3p expression resulted in lower sensitivity of CRC to chemotherapy and was correlated with poorer survival of CRC patients. LncRNA XIST promoted CRC metastasis acting as a ceRNA for miR‐125b‐2‐3p to mediate WEE1 expression. LncRNA XIST‐miR‐125b‐2‐3p‐WEE1 axis not only regulated CRC growth and metastasis but also contributed to chemotherapeutic resistance to CRC.
Collapse
Affiliation(s)
- Zhao‐lei Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐huan Lu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yun Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hui Sheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying‐nan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhan‐hong Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Diseasethe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Qi‐nian Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐Bo Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐xing Chen
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dong‐dong Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Kai Yu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hai‐yu Mo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐jia Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Pei‐shan Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ze‐xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Huai‐qiang Ju
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rui‐Hua Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
33
|
Gourvest M, De Clara E, Wu HC, Touriol C, Meggetto F, De Thé H, Pyronnet S, Brousset P, Bousquet M. A novel leukemic route of mutant NPM1 through nuclear import of the overexpressed long noncoding RNA LONA. Leukemia 2021; 35:2784-2798. [PMID: 34131282 PMCID: PMC8205207 DOI: 10.1038/s41375-021-01307-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
The most frequent genetic alteration in acute myeloid leukemia (AML) is the mutation of nucleophosmin 1 (NPM1). Yet, its downstream oncogenic routes are not fully understood. Here, we report the identification of one long noncoding RNA (lncRNA) overexpressed in NPM1-mutated AML patients (named LONA) whose intracellular localization inversely reflects that of NPM1. While NPM1 is nuclear and LONA cytoplasmic in wild-type NPM1 AML cells, LONA becomes nuclear as mutant NPM1 moves toward the cytoplasm. Gain or loss of function combined with a genome-wide RNA-seq search identified a set of LONA mRNA targets encoding proteins involved in myeloid cell differentiation (including THSB1, MAFB, and ASB2) and interaction with its microenvironment. Consistently, LONA overexpression in mutant NPM1 established cell lines and primary AML cells exerts an anti-myeloid differentiation effect, whilst it exerts an opposite pro-myeloid differentiation effect in a wild type NPM1 setting. In vivo, LONA overexpression acts as an oncogenic lncRNA reducing the survival of mice transplanted with AML cells and rendering AML tumors more resistant to AraC chemotherapy.These data indicate that mutation-dependent nuclear export of NPM1 leads to nuclear retention and consequent oncogenic functions of the overexpressed lncRNA LONA, thus uncovering a novel NPM1 mutation-dependent pathway in AML pathogenesis.
Collapse
Affiliation(s)
- Morgane Gourvest
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Etienne De Clara
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Hsin-Chieh Wu
- grid.410533.00000 0001 2179 2236INSERM U944 and 1050, IRSL, University of Paris and PSL, Hôpital St. Louis and Collège de France, Paris, France
| | - Christian Touriol
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Fabienne Meggetto
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Hugues De Thé
- grid.410533.00000 0001 2179 2236INSERM U944 and 1050, IRSL, University of Paris and PSL, Hôpital St. Louis and Collège de France, Paris, France
| | - Stéphane Pyronnet
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Pierre Brousset
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Marina Bousquet
- grid.468186.5Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III Paul Sabatier, ERL5294 CNRS, Laboratoire d’excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
34
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
35
|
Heyn GS, Corrêa LH, Magalhães KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne) 2020; 11:563816. [PMID: 33123088 PMCID: PMC7573351 DOI: 10.3389/fendo.2020.563816] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a multifactorial and complex condition that is characterized by abnormal and excessive white adipose tissue accumulation, which can lead to the development of metabolic diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, cardiovascular diseases, and several types of cancer. Obesity is characterized by excessive adipose tissue accumulation and associated with alterations in immunity, displaying a chronic low-grade inflammation profile. Adipose tissue is a dynamic and complex endocrine organ composed not only by adipocytes, but several immunological cells, which can secrete hormones, cytokines and many other factors capable of regulating metabolic homeostasis and several critical biological pathways. Remarkably, adipose tissue is a major source of circulating microRNAs (miRNAs), recently described as a novel form of adipokines. Several adipose tissue-derived miRNAs are deeply associated with adipocytes differentiation and have been identified with an essential role in obesity-associated inflammation, insulin resistance, and tumor microenvironment. During obesity, adipose tissue can completely change the profile of the secreted miRNAs, influencing circulating miRNAs and impacting the development of different pathological conditions, such as obesity, metabolic syndrome, and cancer. In this review, we discuss how miRNAs can act as epigenetic regulators affecting adipogenesis, adipocyte differentiation, lipid metabolism, browning of the white adipose tissue, glucose homeostasis, and insulin resistance, impacting deeply obesity and metabolic diseases. Moreover, we characterize how miRNAs can often act as oncogenic and tumor suppressor molecules, significantly modulating cancer establishment and progression. Furthermore, we highlight in this manuscript how adipose tissue-derived miRNAs can function as important new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
36
|
Hajimaqsoudi E, Darbeheshti F, Kalantar SM, Javaheri A, Mirabutalebi SH, Sheikhha MH. Investigating the expressions of miRNA-125b and TP53 in endometriosis. Does it underlie cancer-like features of endometriosis? A case-control study. Int J Reprod Biomed 2020; 18:825-836. [PMID: 33134795 PMCID: PMC7569716 DOI: 10.18502/ijrm.v13i10.7767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Endometriosis is generally considered as a benign condition; however, there is a possibility for it to become cancerous. miR-125b is upregulated in both endometriotic tissues and serum samples of women with endometriosis but its potential targets in endometriosis are still not fully understood. OBJECTIVE The role of miR-125b in the regulation of TP53 expression in endometriosis was tested with a bioinformatics approach. In addition, the expression of miR-125b and TP53 in both eutopic (Eu-p) and ectopic endometrium (Ec-p) in the endometrium tissues of women with endometriosis was compared to those in the normal endometrium tissues of controls (Normal). MATERIALS AND METHODS In this case-control study, the Eu-p and Ec-p samples were collected from 20 women who underwent laparoscopic surgery, and the normal endometrium tissues were collected from 20 controls with no evidence of endometriosis. For bioinformatics approach, a protein-protein interaction network was constructed based on co-expressed potential targets of miR-125b. Quantitative polymerase chain reaction technique was used for the measurement of miR125b and TP53 expression. RESULTS Our results showed that miR-125b was significantly overexpressed in Ec-p (p-value: 0.021). In addition, there was a significant TP53 under expression in both the Ec-p and Eu-p samples compared with the Normal tissues (p-value: 0.003). CONCLUSION The negative correlation between miR-125b and TP53 as well as a noticeable decreased expression of TP53 in both Ec-p and Eu-p samples may be interpreted as the roles of miR-125b/TP53 axis in the pathogenesis of endometriosis. In addition, these findings and bioinformatic analyses imply a possible role of miR-125b in cancer-like features of endometriosis.
Collapse
Affiliation(s)
- Elnaz Hajimaqsoudi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Atiyeh Javaheri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohammad Hasan Sheikhha
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
37
|
Wuxiao Z, Wang H, Su Q, Zhou H, Hu M, Tao S, Xu L, Chen Y, Hao X. MicroRNA‑145 promotes the apoptosis of leukemic stem cells and enhances drug‑resistant K562/ADM cell sensitivity to adriamycin via the regulation of ABCE1. Int J Mol Med 2020; 46:1289-1300. [PMID: 32945355 PMCID: PMC7447303 DOI: 10.3892/ijmm.2020.4675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/06/2020] [Indexed: 12/24/2022] Open
Abstract
Leukemia is a type of cancer which originates in blood-forming tissues. MicroRNAs (miRNAs or miRs) have been shown to be involved leukemogenesis. In the present study, following the gain- and loss-function of miR-145 and ATP-binding cassette sub-family E member 1 (ABCE1) in K562 cells and K562 adriamycin-resistant cells (K562/ADM cells), the levels of multidrug resistance protein 1 (MRP1) and P-glycoprotein (P-gp) were measured. The viability of the K562 cells and K562/ADM cells treated with various concentrations of ADM, and cell sensitivity to ADM were measured. The apoptosis of stem cells was detected. K562/ADM cells were transfected with miR-145 mimic or with miR-145 mimic together with ABCE1 overexpression plasmid to examine the effects of ABCE1 on the sensitivity of K562/ADM cells to ADM. The association between miR-145 and ABCE1/MRP1 was then verified. The dose- and time-dependent effects of ADM on the K562 cells and K562/ADM cells were examined. The K562/ADM cells exhibited a greater resistance to ADM, higher levels of MRP1 and P-gp, and a lower miR-145 expression. The K562/ADM cells and stem cells in which miR-145 was overexpressed exhibited a suppressed cell proliferation, decreased MRP1 and P-gp levels, and an increased apoptotic rate. However, K562 cells with a low expression of miR-145 exhibited an increased cell proliferation, increased levels of MRP1 and P-gp, and a suppressed apoptotic rate. Compared with the overexpression of miR-145, the combination of miR-145 and ABCE1 decreased the sensitivity of drug-resistant K562/ADM cells to ADM. The above-mentioned effects of miR-145 were achieved by targeting ABCE1. Taken together, the findings of the present study demonstrate that the overexpression of miR-145 promotes leukemic stem cell apoptosis and enhances the sensitivity of K562/ADM cells to ADM by inhibiting ABCE1.
Collapse
Affiliation(s)
- Zhijun Wuxiao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Hua Wang
- Department of Hematological Oncology, Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qunhao Su
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Haiyan Zhou
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Min Hu
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Shi Tao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Lu Xu
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yu Chen
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Xinbao Hao
- Department of Hematology, Lymphoma and Myeloma Center, HMC Cancer Institute, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
38
|
Szczepanek J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: A comprehensive review. World J Clin Oncol 2020; 11:348-369. [PMID: 32855905 PMCID: PMC7426929 DOI: 10.5306/wjco.v11.i6.348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of genes by sequence-specific binding to mRNA to either promote or block its translation; they can also act as tumor suppressors (e.g., let-7b, miR-29a, miR-99, mir-100, miR-155, and miR-181) and/or oncogenes (e.g., miR-29a, miR-125b, miR-143-p3, mir-155, miR-181, miR-183, miR-196b, and miR-223) in childhood acute leukemia (AL). Differentially expressed miRNAs are important factors associated with the initiation and progression of AL. As shown in many studies, they can be used as noninvasive diagnostic and prognostic biomarkers, which are useful in monitoring early stages of AL development or during therapy (e.g., miR-125b, miR-146b, miR-181c, and miR-4786), accurate classification of different cellular or molecular AL subgroups (e.g., let-7b, miR-98, miR-100, miR-128b, and miR-223), and identification and development of new therapeutic agents (e.g., mir-10, miR-125b, miR-203, miR-210, miR-335). Specific miRNA patterns have also been described for commonly used AL therapy drugs (e.g., miR-125b and miR-223 for doxorubicin, miR-335 and miR-1208 for prednisolone, and miR-203 for imatinib), uncovering miRNAs that are associated with treatment response. In the current review, the role of miRNAs in the development, progression, and therapy monitoring of pediatric ALs will be presented and discussed.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń 87100, Poland
| |
Collapse
|
39
|
Khoei SG, Sadeghi H, Samadi P, Najafi R, Saidijam M. Relationship between Sphk1/S1P and microRNAs in human cancers. Biotechnol Appl Biochem 2020; 68:279-287. [PMID: 32275078 DOI: 10.1002/bab.1922] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Sphingosine kinases type 1 (SphK1) is a key enzyme in the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). Different abnormalities in SphK1 functions may correspond with poor prognosis in various cancers. Additionally, upregulated SphK1/S1P could promote cancer cell proliferation, angiogenesis, mobility, invasion, and metastasis. MicroRNAs as conserved small noncoding RNAs play major roles in cancer initiation, progression, metastasis, etc. Their posttranscriptionally mechanisms could affect the development of cancer growth or tumorigenesis suppression. The growing number of studies has described that various microRNAs can be regulated by SphK1, and its expression level can also be regulated by microRNAs. In this review, the relationship of SphK1 and microRNA functions and their interaction in human malignancies have been discussed. Based on them novel treatment strategies can be introduced.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Sadeghi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Wang Y, Wei Y, Fan X, Zhang P, Wang P, Cheng S, Zhang J. MicroRNA-125b as a tumor suppressor by targeting MMP11 in breast cancer. Thorac Cancer 2020; 11:1613-1620. [PMID: 32291953 PMCID: PMC7262928 DOI: 10.1111/1759-7714.13441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is a common type of tumor in women worldwide. MicroRNAs have been identified as regulators in many human cancers. The aim of this study was therefore to investigate the functional role of miR‐125b in regulating breast cancer progression. Methods We used the StarBase database to investigate the expression of miRNA‐125b in breast cancer and adjacent normal tissues. MMP11 3′‐UTR construct and luciferase reporter assays was performed for target genes. Cell proliferation was evaluated by CCK‐8 and colony formation assay. The migration and invasion were assessed by transwell assay. Results Luciferase reporter assays showed miRNA‐125b directly targeted MMP11. miRNA‐125b by transfection with its mimic in breast cancer cells significantly suppressed breast cancer cell proliferation and migration. Western blot revealed that overexpression of miRNA‐125b substantially reduced MMP11 protein expression. We used the UALCAN database to investigate the expression of MMP11 in human breast cancer and adjacent normal tissues. In addition, we found that miRNA‐125b spoiled MMP11 induced breast cancer cell proliferation and migration promotion effect. Conclusions miRNA‐125b mimic inhibited proliferation, migration, and invasion of breast cancer cells through targeting MMP11 protein.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yaning Wei
- Department of Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiangyu Fan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Pei Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Pan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shujie Cheng
- Department of Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jinku Zhang
- Department of Pathology, No.1 Central Hospital of Baoding, Baoding, China
| |
Collapse
|
41
|
Xie YJ, Dougan M, Ingram JR, Pishesha N, Fang T, Momin N, Ploegh HL. Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments. Cancer Immunol Res 2020; 8:518-529. [PMID: 32019780 PMCID: PMC7446749 DOI: 10.1158/2326-6066.cir-19-0734] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is effective in the treatment of cancers of hematopoietic origin. In the immunosuppressive solid tumor environment, CAR T cells encounter obstacles that compromise their efficacy. We developed a strategy to address these barriers by having CAR T cells secrete single-domain antibody fragments [variable heavy domain of heavy chain antibodies (VHH) or nanobodies] that can modify the intratumoral immune landscape and thus support CAR T-cell function in immunocompetent animals. VHHs are small in size and able to avoid domain swapping when multiple nanobodies are expressed simultaneously-features that can endow CAR T cells with desirable properties. The secretion of an anti-CD47 VHH by CAR T cells improves engagement of the innate immune system, enables epitope spreading, and can enhance the antitumor response. CAR T cells that secrete anti-PD-L1 or anti-CTLA-4 nanobodies show improved persistence and demonstrate the versatility of this approach. Furthermore, local delivery of secreted anti-CD47 VHH-Fc fusions by CAR T cells at the tumor site limits their systemic toxicity. CAR T cells can be further engineered to simultaneously secrete multiple modalities, allowing for even greater tailoring of the antitumor immune response.
Collapse
Affiliation(s)
- Yushu Joy Xie
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael Dougan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tao Fang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Noor Momin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
42
|
Chakraborty N, Gautam A, Holmes-Hampton GP, Kumar VP, Biswas S, Kumar R, Hamad D, Dimitrov G, Olabisi AO, Hammamieh R, Ghosh SP. microRNA and Metabolite Signatures Linked to Early Consequences of Lethal Radiation. Sci Rep 2020; 10:5424. [PMID: 32214144 PMCID: PMC7096415 DOI: 10.1038/s41598-020-62255-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Lethal total body irradiation (TBI) triggers multifactorial health issues in a potentially short time frame. Hence, early signatures of TBI would be of great clinical value. Our study aimed to interrogate microRNA (miRNA) and metabolites, two biomolecules available in blood serum, in order to comprehend the immediate impacts of TBI. Mice were exposed to a lethal dose (9.75 Gy) of Cobalt-60 gamma radiation and euthanized at four time points, namely, days 1, 3, 7 and 9 post-TBI. Serum miRNA libraries were sequenced using the Illumina small RNA sequencing protocol, and metabolites were screened using a mass spectrometer. The degree of early impacts of irradiation was underscored by the large number of miRNAs and metabolites that became significantly expressed during the Early phase (day 0 and 1 post-TBI). Radiation-induced inflammatory markers for bone marrow aplasia and pro-sepsis markers showed early elevation with longitudinal increment. Functional analysis integrating miRNA-protein-metabolites revealed inflammation as the overarching host response to lethal TBI. Early activation of the network linked to the synthesis of reactive oxygen species was associated with the escalated regulation of the fatty acid metabolism network. In conclusion, we assembled a list of time-informed critical markers and mechanisms of significant translational potential in the context of a radiation exposure event.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- The Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Raina Kumar
- The Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Dana Hamad
- ORISE, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - George Dimitrov
- The Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Ayodele O Olabisi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| |
Collapse
|
43
|
Zheng YY, Fei Y, Wang Z, Chen Y, Qiu C, Li FR. Tissue microRNAs in non-small cell lung cancer detected with a new kind of liquid bead array detection system. J Transl Med 2020; 18:108. [PMID: 32122370 PMCID: PMC7053089 DOI: 10.1186/s12967-020-02280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Commonly used miRNA detection methods cannot be applied for high-throughput analyses. However, this study was aimed to performed a liquid bead array detection system (LBAS) to detect tissue 6 miRNAs in non-small cell lung cancer (NSCLC). Methods In this study, evaluation of LBAS was performed to observe the precision, specificity, limitation and stability. Then, a total of 52 primary NSCLC patients who received resection operation without preoperative radiotherapy and chemotherapy between June 2013 and March 2014 were selected, and then the total RNA of the tissues were extracted. We prepared six NSCLC-related miRNAs for LBAS. After optimization and evaluation, LBAS was verified by detecting the relative expression levels of 6 microRNAs in the pathological tissues and corresponding normal tissues of 52 NSCLC patients. Results The results of evaluation of LBAS showed that the Mean Fluorescence Intensity (MFI) of the reaction only added with chimeric probes and beads showed no significant change after 180 days (P > 0.05). And the intra-assay Coefficient of Variation (CV) was between 1.57 and 3.5%, while the inter-assay CV was between 4.24 and 11.27%, indicating this system was ideal for diagnostic reagents. In addition, only the beads corresponding to the additional miRNAs showed high MFIs from 8426 to 18,769, whereas the fluorescence values of the other beads were under background levels (MFIs = 20 to 55) in each reaction, indicating no cross reactivity among the miRNAs. The limit of detection of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 were 5.27, 1.39, 1.85, 2.01, 1.34, and 2.73 amol/μL, respectively, showing that the lowest detection limit of miRNA by this system was under pM level. Then, the relative expression levels of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 by using this system were significantly correlated with NSCLC (P < 0.05). And the results of AUC method indicated that specific of the LBAS system was 94.2%. Conclusions Our findings suggest that LBAS was simple, high-throughput, and freely combined with absolute quantification. Thus, this system could be applied for tumor miRNAs detection.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Department of Pathophysiology, The Basic Medical School, Jinan University, Guangzhou, China.,Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Yun Fei
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Zheng Wang
- Department of Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Cheng Qiu
- Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China. .,Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.
| |
Collapse
|
44
|
Buhagiar A, Borg J, Ayers D. Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Noncoding RNA Res 2020; 5:22-26. [PMID: 32110743 PMCID: PMC7033436 DOI: 10.1016/j.ncrna.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023] Open
Abstract
Haematological malignancies encompass all variations of leukaemia at both the chronic and acute level, together with the specific cell type induced into tumourigenesis. Current diagnostic protocols for leukaemic conditions rely heavily on cytomorphology and other histological examinations from bone marrow aspirates, with the latter being a highly invasive surgical procedure for the patient. The discovery of microRNAs as one of the key gene regulatory networks in the past two decades has enabled researchers to investigate the possibility of exploiting the identification of dysregulated expression profiles for specific microRNAs present in the leukaemic patient's bloodstream as novel liquid biopsy diagnostic tools. This review article serves to consolidate recent global research efforts aiming to achieve such scopes.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, MSD2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
45
|
Craig KKL, Wood GA, Keller SM, Mutsaers AJ, Wood RD. MicroRNA profiling in canine multicentric lymphoma. PLoS One 2019; 14:e0226357. [PMID: 31826004 PMCID: PMC6905567 DOI: 10.1371/journal.pone.0226357] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022] Open
Abstract
Lymphoma is the most common hematopoietic tumour in dogs and is remarkably similar to the human disease. Tumour biomarker discovery is providing new tools for diagnostics and predicting therapeutic response and clinical outcome. MicroRNAs are small non-coding RNAs that participate in post-transcriptional gene regulation and their aberrant expression can impact genes involved in cancer. The aim of this study was to characterize microRNA expression in lymph nodes and plasma from dogs with multicentric B or T cell lymphoma compared to healthy control dogs. We further compared expression between lymph nodes and corresponding plasma samples and assessed changes in expression at relapse compared to time of diagnosis. Lastly, we investigated microRNAs for association with clinical outcome in patients treated with CHOP chemotherapy. A customized PCR array was utilized to profile 38 canine target microRNAs. Quantification was performed using real time RT-qPCR and relative expression was determined by the delta-delta Ct method. In lymph nodes, there were 16 microRNAs with significantly altered expression for B cell lymphoma and 9 for T cell lymphoma. In plasma, there were 15 microRNAs altered for B cell lymphoma and 3 for T cell lymphoma. The majority of microRNAs did not have correlated expression between lymph node and plasma and only 8 microRNAs were significantly different between diagnosis and relapse. For B cell lymphoma, 8 microRNAs had differential expression in the non-remission group compared to dogs that completed CHOP in complete remission. Four of these microRNAs were also altered in patients that died prior to one-year. Kaplan-Meier survival curves for high versus low microRNA expression revealed that 10 microRNAs were correlated with progression-free survival and 3 with overall survival. This study highlights microRNAs of interest for canine multicentric lymphoma. Future goals include development of microRNA panels that may be useful as biomarkers with the intent to provide improved outcome prediction to veterinary cancer patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cyclophosphamide/therapeutic use
- Dog Diseases/diagnosis
- Dog Diseases/drug therapy
- Dog Diseases/genetics
- Dog Diseases/mortality
- Dogs
- Doxorubicin/therapeutic use
- Female
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Kaplan-Meier Estimate
- Lymph Nodes/metabolism
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/drug therapy
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/mortality
- Male
- MicroRNAs/blood
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local
- Prednisone/therapeutic use
- Progression-Free Survival
- Treatment Outcome
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- Karlee K. L. Craig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stefan M. Keller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J. Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - R. Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
46
|
Vietsch EE, Peran I, Suker M, van den Bosch TPP, van der Sijde F, Kros JM, van Eijck CHJ, Wellstein A. Immune-Related Circulating miR-125b-5p and miR-99a-5p Reveal a High Recurrence Risk Group of Pancreatic Cancer Patients after Tumor Resection. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:4784. [PMID: 34484811 PMCID: PMC8415800 DOI: 10.3390/app9224784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic Kras G12D/+; Trp53 R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.
Collapse
Affiliation(s)
- Eveline E. Vietsch
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Mustafa Suker
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | | | - Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Johan M. Kros
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
47
|
Grobbelaar C, Ford AM. The Role of MicroRNA in Paediatric Acute Lymphoblastic Leukaemia: Challenges for Diagnosis and Therapy. JOURNAL OF ONCOLOGY 2019; 2019:8941471. [PMID: 31737072 PMCID: PMC6815594 DOI: 10.1155/2019/8941471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/23/2019] [Accepted: 09/21/2019] [Indexed: 01/20/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Although the overall survival of children with ALL is now more than 90%, leukaemia remains one of the leading causes of death from disease. In developed countries, the overall survival of patients with ALL has increased to more than 80%; however, those children cured from ALL still show a significant risk of short- and long-term complications as a consequence of their treatment. Accordingly, there is a need not only to develop new methods of diagnosis and prognosis but also to provide patients with less toxic therapies. MicroRNAs (miRNAs) are small ribonucleic acids (RNA), usually without coding potential, that regulate gene expression by directing their target messenger RNAs (mRNAs) for degradation or translational suppression. In paediatric ALL, several miRNAs have been observed to be overexpressed or underexpressed in patient cohorts compared to healthy individuals, while numerous studies have identified specific miRNAs that can be used as biomarkers to diagnose ALL, classify it into subgroups, and predict prognosis. Likewise, a variety of miRNAs identify as candidate targets for treatment, although there are numerous obstacles to overcome before their clinical use in patients. Here, we summarise the roles played by different miRNAs in childhood leukaemia, focussing primarily on their use as diagnostic tools and potential therapeutic targets, as well as a role in predicting treatment outcome. Finally, we discuss the potential roles of miRNA in immunotherapy and the novel contributions made by gut miRNAs to regulation of the host microbiome.
Collapse
Affiliation(s)
- Carle Grobbelaar
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Anthony M. Ford
- Centre for Evolution and Cancer, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
48
|
Zheng Y, Cai B, Li X, Li D, Yin G. MiR-125b-5p and miR-181b-5p inhibit keratinocyte proliferation in skin by targeting Akt3. Eur J Pharmacol 2019; 862:172659. [PMID: 31518563 DOI: 10.1016/j.ejphar.2019.172659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/10/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) have been widely accepted to play important roles in the regulation of keratinocyte functions. Here, we aimed to further explore the role and underlying mechanism of miR-125b-5p and miR-181b-5p in psoriasis. The expression levels of miR-125b-5p, miR-181b-5p and Akt3 mRNA were detected by qRT-PCR assay. Cell proliferation ability was determined by MTT assay and BrdU incorporation assay. Dual-luciferase reporter assay and RNA Immunoprecipitation assay were used to confirm the targeted interaction between miR-125b-5p or miR-181b-5p and Akt3 in human epidermal keratinocytes (HEKs). The levels of ki-67, Akt3 protein, Akt, p-Akt, mTOR and p-mTOR were measured by Western blot. Our study indicated that miR-125b-5p and miR-181b-5p were downregulated (about 61.3% with miR-125b-5p and 60.4% with miR-181b-5p) and Akt3 was upregulated (about 2.68-fold) in psoriasis. Upregulation of miR-125b-5p or miR-181b-5p resulted in about a 33% or 40% reduction of HEKs proliferation in vitro, while Akt3 overexpression triggered a 1.3-fold enhancement on HEKs proliferation. Akt3 was a direct target of miR-125b-5p or miR-181b-5p. Moreover, HEKs proliferation ability in cotransfection of miR-125b-5p mimics (or miR-181-5p mimics) and vector-Akt3 group was about 2-fold (or 1.98-fold) that in the miR-125b-5p mimics (or miR-181-5p mimics) alone group. Akt/mTOR signaling was involved in miR-125b-5p mimics- or miR-181b-5p mimics-mediated inhibition effect on HEKs proliferation. Our study suggested that the upregulation of miR-125b-5p or miR-181b-5p inhibited HEKs proliferation at least partly by targeting Akt3, providing novel mechanisms of miRNAs involved in psoriasis.
Collapse
Affiliation(s)
- Yunpeng Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Xuyang Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Dongqin Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, No.1, East Jianshe Rd, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Correia NC, Barata JT. MicroRNAs and their involvement in T-ALL: A brief overview. Adv Biol Regul 2019; 74:100650. [PMID: 31548132 PMCID: PMC6899521 DOI: 10.1016/j.jbior.2019.100650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in which the transformed clone is arrested during T-cell development. Several genetic and epigenetic events have been implicated in this transformation. MicroRNAs (miRNAs) are small, non-coding RNAs that primarily function as endogenous translational repressors of protein-coding genes. The involvement of miRNAs in the regulation of cancer progression is well-established, namely by down-regulating the expression of key oncogenes or tumor suppressors and thereby preventing or promoting tumorigenesis, respectively. Similar to other cancers, several miRNA genes have been identified and implicated in the context of T-ALL. In this review we focused on the most studied microRNAs associated with T-ALL pathogenesis.
Collapse
Affiliation(s)
- Nádia C Correia
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
50
|
Dakir EH, Mollinedo F. Genome-wide miRNA profiling and pivotal roles of miRs 125a-5p and 17-92 cluster in human neutrophil maturation and differentiation of acute myeloid leukemia cells. Oncotarget 2019; 10:5313-5331. [PMID: 31523391 PMCID: PMC6731105 DOI: 10.18632/oncotarget.27123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/29/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short non-coding post-transcriptional regulators of gene expression in normal physiology and disease. Acute myeloid leukemia is characterized by accumulation of malignantly transformed immature myeloid precursors, and differentiation therapy, used to overcome this differentiation blockage, has become a successful therapeutic option. The human HL-60 acute leukemia cell line serves as a cell culture model for granulocytic maturation, and dimethyl sulfoxide (DMSO) incubation leads to its differentiation towards neutrophil-like cells, as assessed by biochemical, functional and morphological parameters. DMSO-induced HL-60 cell differentiation constitutes an excellent model to examine molecular processes that turn a proliferating immortal leukemic cell line into mature non-proliferating and apoptosis-prone neutrophil-like end cells. By performing genome-wide miRNA profiling and functional assays, we have identified a signature of 86 differentially expressed canonical miRNAs (51 upregulated; 35 downregulated) during DMSO-induced granulocytic differentiation of HL-60 cells. Quantitative real-time PCR was used to validate miRNA expression. Among these differentially expressed canonical miRNAs, we found miR-125a-5p upregulation and miR-17-92 cluster downregulation acted as major regulators of granulocytic differentiation in HL-60 cells. Enforced expression of miR-125a-5p promoted granulocytic differentiation in HL-60 cells, whereas miR-17-92 ectopic expression inhibited DMSO-induced HL-60 granulocytic differentiation. Ectopic expression of miR-125a-5p also promoted granulocytic differentiation in human acute promyelocytic leukemia NB4 cells, as well as in naïve human primary CD34+-hematopoietic progenitor/stem cells. These findings provide novel molecular insights into the identification of miRNAs regulating granulocytic differentiation of human leukemia cells and normal CD34+-hematopoietic progenitor/stem cells, and may assist in the development of novel miRNA-targeted therapies for leukemia.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Faculty of Biology, University of Latvia, Riga, Latvia
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|