1
|
Herrmann A, Gege C, Wangen C, Wagner S, Kögler M, Cordsmeier A, Irrgang P, Ip WH, Weil T, Hunszinger V, Groß R, Heinen N, Pfaender S, Reuter S, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Grunwald T, Hietel B, Cynis H, Münch J, Sparrer KMJ, Ensser A, Tenbusch M, Dobner T, Vitt D, Kohlhof H, Hahn F. Orally bioavailable RORγ/DHODH dual host-targeting small molecules with broad-spectrum antiviral activity. Antiviral Res 2024; 231:106008. [PMID: 39306285 DOI: 10.1016/j.antiviral.2024.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
Host-directed antivirals (HDAs) represent an attractive treatment option and a strategy for pandemic preparedness, especially due to their potential broad-spectrum antiviral activity and high barrier to resistance development. Particularly, dual-targeting HDAs offer a promising approach for antiviral therapy by simultaneously disrupting multiple pathways essential for viral replication. Izumerogant (IMU-935) targets two host proteins, (i) the retinoic acid receptor-related orphan receptor γ isoform 1 (RORγ1), which modulates cellular cholesterol metabolism, and (ii) the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in de novo pyrimidine synthesis. Here, we synthesized optimized derivatives of izumerogant and characterized their antiviral activity in comparison to a recently described structurally distinct RORγ/DHODH dual inhibitor. Cell culture-based infection models for enveloped and non-enveloped DNA and RNA viruses, as well as a retrovirus, demonstrated high potency and broad-spectrum activity against human viral pathogens for RORγ/DHODH dual inhibitors at nanomolar concentrations. Comparative analyses with equipotent single-target inhibitors in metabolite supplementation approaches revealed that the dual-targeting mode represents the mechanistic basis for the potent antiviral activity. For SARS-CoV-2, an optimized dual inhibitor completely blocked viral replication in human airway epithelial cells at 5 nM and displayed a synergistic drug interaction with the nucleoside analog molnupiravir. In a SARS-CoV-2 mouse model, treatment with a dual inhibitor alone, or in combination with molnupiravir, reduced the viral load by 7- and 58-fold, respectively. Considering the clinical safety, oral bioavailability, and tolerability of izumerogant in a recent Phase I study, izumerogant-like drugs represent potent dual-targeting antiviral HDAs with pronounced broad-spectrum activity for further clinical development.
Collapse
Affiliation(s)
| | | | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Melanie Kögler
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Arne Cordsmeier
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Pascal Irrgang
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Wing-Hang Ip
- Leibniz Institute of Virology, Hamburg, Germany.
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Victoria Hunszinger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Natalie Heinen
- Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Stephanie Pfaender
- Leibniz Institute of Virology, Hamburg, Germany; Ruhr-University Bochum, Department of Molecular and Medical Virology, Bochum, Germany; University of Luebeck, Department of Natural Sciences, Institute of Virology and Cell Biology, Lübeck, Germany.
| | - Sebastian Reuter
- University Hospital Essen - Ruhrlandklinik, Department of Pulmonary Medicine, Experimental Pneumology, Essen, Germany.
| | - Robert Klopfleisch
- Institute for Animal Pathology, Freie Universität Berlin, Berlin, Germany.
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology, Preclinical Validation, Leipzig, Germany.
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany.
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany; Junior Research Group "Immunomodulation in Pathophysiological Processes", Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Matthias Tenbusch
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Aida-Ficken V, Kelly JA, Chatterjee P, Jenks MH, McMullan LK, Albariño CG, Montgomery JM, Seley-Radtke KL, Spiropoulou CF, Flint M. Identification of a macrocyclic compound targeting the lassa virus polymerase. Antiviral Res 2024; 228:105923. [PMID: 38844175 DOI: 10.1016/j.antiviral.2024.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC50 against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase.
Collapse
Affiliation(s)
- Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
3
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
4
|
Chilingaryan G, Izmailyan R, Grigoryan R, Shavina A, Arabyan E, Khachatryan H, Abelyan N, Matevosyan M, Harutyunyan V, Manukyan G, Hietel B, Shtro A, Danilenko D, Zakaryan H. Advanced virtual screening enables the discovery of a host-targeting and broad-spectrum antiviral agent. Antiviral Res 2023; 217:105681. [PMID: 37499699 DOI: 10.1016/j.antiviral.2023.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
We employed an advanced virtual screening (AVS) approach to identify potential inhibitors of human dihydroorotate dehydrogenase (DHODH), a validated target for development of broad-spectrum antivirals. We screened a library of 495118 compounds and identified 495 compounds that exhibited better binding scores than the reference ligands involved in the screening. From the top 100 compounds, we selected 28 based on their consensus docking scores and structural novelty. Then, we conducted in vitro experiments to investigate the antiviral activity of selected compounds on HSV-1 infection, which is susceptible to DHODH inhibitors. Among the tested compounds, seven displayed statistically significant antiviral effects, with Comp 19 being the most potent inhibitor. We found that Comp 19 exerted its antiviral effect in a dose-dependent manner (IC50 = 1.1 μM) and exhibited the most significant antiviral effect when added before viral infection. In the biochemical assay, Comp 19 inhibited human DHODH in a dose-dependent manner with the IC50 value of 7.3 μM. Long-timescale molecular dynamics simulations (1000 ns) revealed that Comp 19 formed a very stable complex with human DHODH. Comp 19 also displayed broad-spectrum antiviral activity and suppressed cytokine production in THP-1 cells. Overall, our study provides evidence that AVS could be successfully implemented to discover novel DHODH inhibitors with broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Biocentric.AI, 0051, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Rafayela Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Anastasiya Shavina
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Hamlet Khachatryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia
| | - Narek Abelyan
- Biocentric.AI, 0051, Yerevan, Armenia; Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051, Yerevan, Armenia
| | | | | | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Benjamin Hietel
- Fraunhofer Institute for Cell Therapy and Immunology IZI Department of Drug Design and Target Validation MWT Biocenter, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anna Shtro
- Smorodintsev Research Institute of Influenza, 197376, St. Petersburg, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376, St. Petersburg, Russia
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia; Denovo Sciences Inc., Yerevan, Armenia.
| |
Collapse
|
5
|
Özkan B, Altuntaş E, Ünlü Ü, Doğan HH, Özsoy Y, Çakır Koç R. Development of an Antiviral Ion-Activated In Situ Gel Containing 18β-Glycyrrhetinic Acid: A Promising Alternative against Respiratory Syncytial Virus. Pharmaceutics 2023; 15:2055. [PMID: 37631269 PMCID: PMC10458153 DOI: 10.3390/pharmaceutics15082055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 08/27/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) is a major cause of serious lower respiratory infections and poses a considerable risk to public health globally. Only a few treatments are currently used to treat RSV infections, and there is no RSV vaccination. Therefore, the need for clinically applicable, affordable, and safe RSV prevention and treatment solutions is urgent. In this study, an ion-activated in situ gelling formulation containing the broad-spectrum antiviral 18β-glycyrrhetinic acid (GA) was developed for its antiviral effect on RSV. In this context, pH, mechanical characteristics, ex vivo mucoadhesive strength, in vitro drug release pattern, sprayability, drug content, and stability were all examined. Rheological characteristics were also tested using in vitro gelation capacity and rheological synergism tests. Finally, the cytotoxic and antiviral activities of the optimized in situ gelling formulation on RSV cultured in the human laryngeal epidermoid carcinoma (HEp-2) cell line were evaluated. In conclusion, the optimized formulation prepared with a combination of 0.5% w/w gellan gum and 0.5% w/w sodium carboxymethylcellulose demonstrated good gelation capacity and sprayability (weight deviation between the first day of the experiment (T0) and the last day of the experiment (T14) was 0.34%), desired rheological synergism (mucoadhesive force (Fb): 9.53 Pa), mechanical characteristics (adhesiveness: 0.300 ± 0.05 mJ), ex vivo bioadhesion force (19.67 ± 1.90 g), drug content uniformity (RSD%: 0.494), and sustained drug release over a period of 6 h (24.56% ± 0.49). The optimized formulation demonstrated strong anti-hRSV activity (simultaneous half maximal effective concentration (EC50) = 0.05 µg/mL; selectivity index (SI) = 306; pre-infection EC50 = 0.154 µg/mL; SI = 100), which was significantly higher than that of ribavirin (EC50 = 4.189 µg/mL; SI = 28) used as a positive control against hRSV, according to the results of the antiviral activity test. In conclusion, this study showed that nasal in situ gelling spray can prevent viral infection and replication by directly inhibiting viral entry or modulating viral replication.
Collapse
Affiliation(s)
- Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Ümmühan Ünlü
- Elderly Care Program, Ataturk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Hasan Hüseyin Doğan
- Department of Biology, Science Faculty, Alaeddin Keykubat Campus, Selcuk University, Konya 42130, Turkey;
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Rabia Çakır Koç
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
6
|
Respiratory Syncytial Virus Infection: Treatments and Clinical Management. Vaccines (Basel) 2023; 11:vaccines11020491. [PMID: 36851368 PMCID: PMC9962240 DOI: 10.3390/vaccines11020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major healthcare concern, especially for immune-compromised individuals and infants below 5 years of age. Worldwide, it is known to be associated with incidences of morbidity and mortality in infants. Despite the seriousness of the issue and continuous rigorous scientific efforts, no approved vaccine or available drug is fully effective against RSV. The purpose of this review article is to provide insights into the past and ongoing efforts for securing effective vaccines and therapeutics against RSV. The readers will be able to confer the mechanism of existing therapies and the loopholes that need to be overcome for future therapeutic development against RSV. A methodological approach was applied to collect the latest data and updated results regarding therapeutics and vaccine development against RSV. We outline the latest throughput vaccination technologies and prophylactic development efforts linked with RSV. A range of vaccination approaches with the already available vaccine (with limited use) and those undergoing trials are included. Moreover, important drug regimens used alone or in conjugation with adjuvants or vaccines are also briefly discussed. After reading this article, the audience will be able to understand the current standing of clinical management in the form of the vaccine, prophylactic, and therapeutic candidates against RSV. An understanding of the biological behavior acting as a reason behind the lack of effective therapeutics against RSV will also be developed. The literature indicates a need to overcome the limitations attached to RSV clinical management, drugs, and vaccine development that could be explained by dealing with the challenges of current study designs with continuous improvement and further work and approval on novel therapeutic applications.
Collapse
|
7
|
Demarest JF, Kienle M, Boytz R, Ayres M, Kim EJ, Patten JJ, Chung D, Gandhi V, Davey R, Sykes DB, Shohdy N, Pottage JC, Kumar VS. Brequinar and dipyridamole in combination exhibits synergistic antiviral activity against SARS-CoV-2 in vitro: Rationale for a host-acting antiviral treatment strategy for COVID-19. Antiviral Res 2022; 206:105403. [PMID: 36041646 PMCID: PMC9420051 DOI: 10.1016/j.antiviral.2022.105403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and the associated global pandemic resulting in >400 million infections worldwide and several million deaths. The continued evolution of SARS-CoV-2 to potentially evade vaccines and monoclonal antibody (mAb)-based therapies and the limited number of authorized small-molecule antivirals necessitates the need for development of new drug treatments. There remains an unmet medical need for effective and convenient treatment options for SARS-CoV-2 infection. SARS-CoV-2 is an RNA virus that depends on host intracellular ribonucleotide pools for its replication. Dihydroorotate dehydrogenase (DHODH) is a ubiquitous host enzyme that is required for de novo pyrimidine synthesis. The inhibition of DHODH leads to a depletion of intracellular pyrimidines, thereby impacting viral replication in vitro. Brequinar (BRQ) is an orally available, selective, and potent low nanomolar inhibitor of human DHODH that has been shown to exhibit broad spectrum inhibition of RNA virus replication. However, host cell nucleotide salvage pathways can maintain intracellular pyrimidine levels and compensate for BRQ-mediated DHODH inhibition. In this report, we show that the combination of BRQ and the salvage pathway inhibitor dipyridamole (DPY) exhibits strong synergistic antiviral activity in vitro against SARS-CoV-2 by enhanced depletion of the cellular pyrimidine nucleotide pool. The combination of BRQ and DPY showed antiviral activity against the prototype SARS-CoV-2 as well as the Beta (B.1.351) and Delta (B.1.617.2) variants. These data support the continued evaluation of the combination of BRQ and DPY as a broad-spectrum, host-acting antiviral strategy to treat SARS-CoV-2 and potentially other RNA virus infections.
Collapse
Affiliation(s)
| | | | | | - Mary Ayres
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Varsha Gandhi
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yamaoka S, Weisend CM, Swenson VA, Ebihara H. Development of accelerated high-throughput antiviral screening systems for emerging orthomyxoviruses. Antiviral Res 2022; 200:105291. [PMID: 35296419 PMCID: PMC9259280 DOI: 10.1016/j.antiviral.2022.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/19/2022]
Abstract
Bourbon virus (BRBV) is an emerging tick-borne orthomyxovirus that causes severe febrile illness in humans. There are no specific treatments for BRBV disease currently available. Here, we developed a highly accessible and robust, quantitative fluorescence-based BRBV minigenome (MG) system and applied it to high-throughput antiviral drug screening. We demonstrated that human dihydroorotate dehydrogenase (DHODH) inhibitors, hDHODH-IN-4 and brequinar, efficiently reduced BRBV RNA synthesis, and validated these findings using infectious BRBV in vitro. The DHODH inhibitors also exhibited high potency in inhibiting MG activities of other orthomyxoviruses with emerging zoonotic potential, including bat influenza A virus, swine influenza D virus, and Thogoto virus. Our newly developed MG system is a powerful platform for antiviral drug screening across the Orthomyxoviridae family, enabling rapid development and deployment of antivirals against future emerging orthomyxoviruses.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Mayo Clinic, Department of Infectious Diseases, Rochester, MN, 55905, USA
| | - Carla M Weisend
- Mayo Clinic, Department of Infectious Diseases, Rochester, MN, 55905, USA; Mayo Clinic, Department of Molecular Medicine, Rochester, MN, 55905, USA
| | - Vaille A Swenson
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Graduate Program, Rochester, MN, 55905, USA
| | - Hideki Ebihara
- National Institute of Infectious Diseases, Department of Virology I, Tokyo, 162-8640, Japan.
| |
Collapse
|
9
|
Rodriguez-Rodriguez BA, Noval MG, Kaczmarek ME, Jang KK, Thannickal SA, Cifuentes Kottkamp A, Brown RS, Kielian M, Cadwell K, Stapleford KA. Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses 2021; 13:v13122437. [PMID: 34960706 PMCID: PMC8706021 DOI: 10.3390/v13122437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.
Collapse
Affiliation(s)
- Bruno A. Rodriguez-Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria E. Kaczmarek
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | | | - Rebecca S. Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Correspondence:
| |
Collapse
|
10
|
Discovery of a Novel Respiratory Syncytial Virus Replication Inhibitor. Antimicrob Agents Chemother 2021; 65:AAC.02576-20. [PMID: 33782012 PMCID: PMC8316115 DOI: 10.1128/aac.02576-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
A high-throughput screen of a Roche internal chemical library based on inhibition of the respiratory syncytial virus (RSV)-induced cytopathic effect (CPE) on HEp-2 cells was performed to identify RSV inhibitors. Over 2,000 hits were identified and confirmed to be efficacious against RSV infection in vitro Here, we report the discovery of a triazole-oxadiazole derivative, designated triazole-1, as an RSV replication inhibitor, and we characterize its mechanism of action. Triazole-1 inhibited the replication of both RSV A and B subtypes with 50% inhibitory concentration (IC50) values of approximately 1 μM, but it was not effective against other viruses, including influenza virus A, human enterovirus 71 (EV71), and vaccinia virus. Triazole-1 was shown to inhibit RSV replication when added at up to 8 h after viral entry, suggesting that it inhibits RSV after viral entry. In a minigenome reporter assay in which RSV transcription regulatory sequences flanking a luciferase gene were cotransfected with RSV N/P/L/M2-1 genes into HEp-2 cells, triazole-1 demonstrated specific and dose-dependent RSV transcription inhibitory effects. Consistent with these findings, deep sequencing of the genomes of triazole-1-resistant mutants revealed a single point mutation (A to G) at nucleotide 13546 of the RSV genome, leading to a T-to-A change at amino acid position 1684 of the L protein, which is the RSV RNA polymerase for both viral transcription and replication. The effect of triazole-1 on minigenome transcription, which was mediated by the L protein containing the T1684A mutation, was significantly reduced, suggesting that the T1684A mutation alone conferred viral resistance to triazole-1.
Collapse
|
11
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Mathew S, Taleb S, Eid AH, Althani AA, Yassine HM. In silico virtual screening of lead compounds for major antigenic sites in respiratory syncytial virus fusion protein. EMERGENT MATERIALS 2021; 5:295-305. [PMID: 33969268 PMCID: PMC8090912 DOI: 10.1007/s42247-021-00213-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is a leading ubiquitous respiratory pathogen in newborn infants, young children, and the elderly, with no vaccine available to date. The viral fusion glycoprotein (RSV F) plays an essential role in the infection process, and it is a primary target of neutralizing antibodies, making it an attractive site for vaccine development. With this in view, there is a persistent need to identify selective antiviral drugs against RSV, targeting the major antigenic sites on the F protein. We aimed to conduct a robust in silico high-throughput drug screening of one million compounds to explore potential inhibitors that bind the major antigenic site Ø and site II on RSV F protein, which are the main target of neutralizing antibodies (NAb). We utilized the three-dimensional crystallographic structure of both antigenic site Ø on pre-F and antigenic II on post-F to screen for potential anti-RSV inhibitors. A library of one million small compounds was docked to explore lead binders in the major antigenic sites by using virtual lab bench CLC Drug Discovery. We also performed Quantitative Structure-Activity and Relationship (QSAR) for the lead best binders known for their antiviral activity. Among one million tested ligands, seven ligands (PubChem ID: 3714418, 24787350, 49828911, 24802036, 79824892, 49726463, and 3139884) were identified as the best binders to neutralizing epitopes site Ø and four ligands (PubChem ID: 865999, 17505357, 24802036, and 24285058) to neutralizing epitopes site II, respectively. These binders exhibited significant interactions with neutralizing epitopes on RSV F, with an average of six H bonds, docking energy of - 15.43 Kcal·mol-1, and minimum interaction energy of - 7.45 Kcal·mol-1. Using in silico virtual screening, we identified potential RSV inhibitors that bind two major antigenic sites on the RSV F protein. Using structure-based design and combination-based drug therapy, identified molecules could be modified to generate the next generation anti-RSV drugs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42247-021-00213-6.
Collapse
Affiliation(s)
- Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, 2713 Qatar
| | - Sara Taleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Asmaa A. Althani
- Biomedical Research Center, Qatar University, Doha, 2713 Qatar
- College of Health Sciences, Qatar University, Doha, 2713 Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, 2713 Qatar
- College of Health Sciences, Qatar University, Doha, 2713 Qatar
| |
Collapse
|
13
|
Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chem Biol 2021; 28:371-393. [PMID: 33577749 DOI: 10.1016/j.chembiol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Li Y, Yi L, Cheng S, Wang Y, Wang J, Sun J, Zhang Q, Xu X. Inhibition of canine distemper virus replication by blocking pyrimidine nucleotide synthesis with A77 1726, the active metabolite of the anti-inflammatory drug leflunomide. J Gen Virol 2021; 102. [PMID: 33416466 DOI: 10.1099/jgv.0.001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Canine distemper virus (CDV) is the aetiological agent that causes canine distemper (CD). Currently, no antiviral drugs have been approved for CD treatment. A77 1726 is the active metabolite of the anti-rheumatoid arthritis (RA) drug leflunomide. It inhibits the activity of Janus kinases (JAKs) and dihydroorotate dehydrogenase (DHO-DHase), a rate-limiting enzyme in de novo pyrimidine nucleotide synthesis. A77 1726 also inhibits the activity of p70 S6 kinase (S6K1), a serine/threonine kinase that phosphorylates and activates carbamoyl-phosphate synthetase (CAD), a second rate-limiting enzyme in the de novo pathway of pyrimidine nucleotide synthesis. Our present study focuses on the ability of A77 1726 to inhibit CDV replication and its underlying mechanisms. Here we report that A77 1726 decreased the levels of the N and M proteins of CDV and lowered the virus titres in the conditioned media of CDV-infected Vero cells. CDV replication was not inhibited by Ruxolitinib (Rux), a JAK-specific inhibitor, but by brequinar sodium (BQR), a DHO-DHase-specific inhibitor, and PF-4708671, an S6K1-specific inhibitor. Addition of exogenous uridine, which restores intracellular pyrimidine nucleotide levels, blocked the antiviral activity of A77 1726, BQR and PF-4708671. A77 1726 and PF-4708671 inhibited the activity of S6K1 in CDV-infected Vero cells, as evidenced by the decreased levels of CAD and S6 phosphorylation. S6K1 knockdown suppressed CDV replication and enhanced the antiviral activity of A77 1726. These observations collectively suggest that the antiviral activity of A77 1726 against CDV is mediated by targeting pyrimidine nucleotide synthesis via inhibiting DHO-DHase activity and S6K1-mediated CAD activation.
Collapse
Affiliation(s)
- Yao Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Sipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Yongshan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, PR China
| | - Jiongjiong Wang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Jing Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Quan Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China.,College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China.,Institutes of Agricultural Science and Technology Development, Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
15
|
IMU-838, a Developmental DHODH Inhibitor in Phase II for Autoimmune Disease, Shows Anti-SARS-CoV-2 and Broad-Spectrum Antiviral Efficacy In Vitro. Viruses 2020; 12:v12121394. [PMID: 33291455 PMCID: PMC7762174 DOI: 10.3390/v12121394] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
The ongoing pandemic spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) demands skillful strategies for novel drug development, drug repurposing and cotreatments, in particular focusing on existing candidates of host-directed antivirals (HDAs). The developmental drug IMU-838, currently being investigated in a phase 2b trial in patients suffering from autoimmune diseases, represents an inhibitor of human dihydroorotate dehydrogenase (DHODH) with a recently proven antiviral activity in vitro and in vivo. Here, we established an analysis system for assessing the antiviral potency of IMU-838 and DHODH-directed back-up drugs in cultured cell-based infection models. By the use of SARS-CoV-2-specific immunofluorescence, Western blot, in-cell ELISA, viral yield reduction and RT-qPCR methods, we demonstrated the following: (i) IMU-838 and back-ups show anti-SARS-CoV-2 activity at several levels of viral replication, i.e., protein production, double-strand RNA synthesis, and release of infectious virus; (ii) antiviral efficacy in Vero cells was demonstrated in a micromolar range (IMU-838 half-maximal effective concentration, EC50, of 7.6 ± 5.8 µM); (iii) anti-SARS-CoV-2 activity was distinct from cytotoxic effects (half-cytotoxic concentration, CC50, >100 µM); (iv) the drug in vitro potency was confirmed using several Vero lineages and human cells; (v) combination with remdesivir showed enhanced anti-SARS-CoV-2 activity; (vi) vidofludimus, the active determinant of IMU-838, exerted a broad-spectrum activity against a selection of major human pathogenic viruses. These findings strongly suggest that developmental DHODH inhibitors represent promising candidates for use as anti-SARS-CoV-2 therapeutics.
Collapse
|
16
|
Han YJ, Ren ZG, Li XX, Yan JL, Ma CY, Wu DD, Ji XY. Advances and challenges in the prevention and treatment of COVID-19. Int J Med Sci 2020; 17:1803-1810. [PMID: 32714083 PMCID: PMC7378666 DOI: 10.7150/ijms.47836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Since the end of 2019, a new type of coronavirus pneumonia (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout the world. Previously, there were two outbreaks of severe coronavirus caused by different coronaviruses worldwide, namely Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This article introduced the origin, virological characteristics and epidemiological overview of SARS-CoV-2, reviewed the currently known drugs that may prevent and treat coronavirus, explained the characteristics of the new coronavirus and provided novel information for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Yan-Jie Han
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Zhi-Guang Ren
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Xin Li
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Ji-Liang Yan
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Chun-Yan Ma
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan 475000, China
| | - Dong-Dong Wu
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Science, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
17
|
Wang J, Sun J, Hu J, Wang C, Prinz RA, Peng D, Liu X, Xu X. A77 1726, the active metabolite of the anti-rheumatoid arthritis drug leflunomide, inhibits influenza A virus replication in vitro and in vivo by inhibiting the activity of Janus kinases. FASEB J 2020; 34:10132-10145. [PMID: 32598086 DOI: 10.1096/fj.201902793rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
The newly reassorted IAV subtypes from zoonotic reservoirs respond poorly to current vaccines and antiviral therapy. There is an unmet need in developing novel antiviral drugs for better control of IAV infection. The cellular factors that are crucial for virus replication have been sought as novel molecular targets for antiviral therapy. Recent studies have shown that Janus kinases (JAK), JAK1, and JAK2, play an important role in IAV replication. Leflunomide is an anti-inflammatory drug primarily used for treating rheumatoid arthritis (RA). Prior studies suggest that A77 1726, the active metabolite of leflunomide, inhibits the activity of JAK1 and JAK3. Our current study aims to determine if A77 1726 can function as a JAK inhibitor to control IAV infection. Here, we report that A77 1726 inhibited the replication of three IAV subtypes(H5N1, H1N1, H9N2)in three cell types (chicken embryonic fibroblasts, A549, and MDCK). A77 1726 inhibited JAK1, JAK2, and STAT3 tyrosine phosphorylation. Similar observations were made with Ruxolitinib (Rux), a JAK-specific inhibitor. JAK2 overexpression enhanced H5N1 virus replication and compromised the antiviral activity of A77 1726. Leflunomide inhibited virus replication in the lungs of IAV-infected mice, alleviated their body weight loss, and prolonged their survival. Our study demonstrates for the first time the ability of A77 1726 to inhibit JAK2 activity and suggests that inhibition of JAK activity contributes to its antiviral activity.
Collapse
Affiliation(s)
- Jiongjiong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, USA
| | - Daxin Peng
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Liu Q, Gupta A, Okesli-Armlovich A, Qiao W, Fischer CR, Smith M, Carette JE, Bassik MC, Khosla C. Enhancing the Antiviral Efficacy of RNA-Dependent RNA Polymerase Inhibition by Combination with Modulators of Pyrimidine Metabolism. Cell Chem Biol 2020; 27:668-677.e9. [PMID: 32442424 PMCID: PMC7241336 DOI: 10.1016/j.chembiol.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Genome-wide analysis of the mode of action of GSK983, a potent antiviral agent, led to the identification of dihydroorotate dehydrogenase as its target along with the discovery that genetic knockdown of pyrimidine salvage sensitized cells to GSK983. Because GSK983 is an ineffective antiviral in the presence of physiological uridine concentrations, we explored combining GSK983 with pyrimidine salvage inhibitors. We synthesized and evaluated analogs of cyclopentenyl uracil (CPU), an inhibitor of uridine salvage. We found that CPU was converted into its triphosphate in cells. When combined with GSK983, CPU resulted in large drops in cellular UTP and CTP pools. Consequently, CPU-GSK983 suppressed dengue virus replication in the presence of physiological concentrations of uridine. In addition, the CPU-GSK983 combination markedly enhanced the effect of RNA-dependent RNA polymerase (RdRp) inhibition on viral infection. Our findings highlight a new host-targeting strategy for potentiating the antiviral activity of RdRp inhibitors.
Collapse
Affiliation(s)
- Qi Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Amita Gupta
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ayse Okesli-Armlovich
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Li X, Sun J, Prinz RA, Liu X, Xu X. Inhibition of porcine epidemic diarrhea virus (PEDV) replication by A77 1726 through targeting JAK and Src tyrosine kinases. Virology 2020; 551:75-83. [PMID: 32829915 PMCID: PMC7301827 DOI: 10.1016/j.virol.2020.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is a coronavirus that primarily infects porcine intestinal epithelial cells and causes severe diarrhea and high fatality in piglets. A77 1726 is the active metabolite of leflunomide, a clinically approved anti-rheumatoid arthritis (RA) drug. A77 1726 inhibits the activity of protein tyrosine kinases (PTKs), p70 S6 kinase (S6K1), and dihydroorotate dehydrogenase (DHO-DHase). Whether A77 1726 can control coronavirus infections has not been investigated. Here we report that A77 1726 effectively restricted PEDV replication by inhibiting Janus kinases (JAKs) and Src kinase activities but not by inhibiting DHO-DHase and S6K1 activities. Overexpression of Src, JAK2 or its substrate STAT3 enhanced PEDV replication and attenuated the antiviral activity of A77 1726. Our study demonstrates for the first time the ability of A77 1726 to control coronavirus replication by inhibiting PTK activities. Leflunomide has potential therapeutic value for the control of PEDV and other coronavirus infections.
Collapse
Affiliation(s)
- Xiaomei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL60201, USA
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
20
|
Abt ER, Rosser EW, Durst MA, Lok V, Poddar S, Le TM, Cho A, Kim W, Wei L, Song J, Capri JR, Xu S, Wu N, Slavik R, Jung ME, Damoiseaux R, Czernin J, Donahue TR, Lavie A, Radu CG. Metabolic Modifier Screen Reveals Secondary Targets of Protein Kinase Inhibitors within Nucleotide Metabolism. Cell Chem Biol 2020; 27:197-205.e6. [PMID: 31734178 PMCID: PMC7035983 DOI: 10.1016/j.chembiol.2019.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 10/25/2019] [Indexed: 01/02/2023]
Abstract
Biosynthesis of the pyrimidine nucleotide uridine monophosphate (UMP) is essential for cell proliferation and is achieved by the activity of convergent de novo and salvage metabolic pathways. Here we report the development and application of a cell-based metabolic modifier screening platform that leverages the redundancy in pyrimidine metabolism for the discovery of selective UMP biosynthesis modulators. In evaluating a library of protein kinase inhibitors, we identified multiple compounds that possess nucleotide metabolism modifying activity. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside transport and engage ENT1. The PDK1 inhibitor OSU-03012 (also known as AR-12) and the RAF inhibitor TAK-632 were shown to inhibit the therapeutically relevant de novo pathway enzyme DHODH and their affinities were unambiguously confirmed through in vitro assays and co-crystallization with human DHODH.
Collapse
Affiliation(s)
- Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ethan W Rosser
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew A Durst
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; The Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Janet Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Capri
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Shili Xu
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanping Wu
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; The Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Hayek S, Pietrancosta N, Hovhannisyan AA, Alves de Sousa R, Bekaddour N, Ermellino L, Tramontano E, Arnould S, Sardet C, Dairou J, Diaz O, Lotteau V, Nisole S, Melikyan G, Herbeuval JP, Vidalain PO. Cerpegin-derived furo[3,4-c]pyridine-3,4(1H,5H)-diones enhance cellular response to interferons by de novo pyrimidine biosynthesis inhibition. Eur J Med Chem 2019; 186:111855. [PMID: 31740051 DOI: 10.1016/j.ejmech.2019.111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
There is an increasing interest in the field of cancer therapy for small compounds targeting pyrimidine biosynthesis, and in particular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this metabolic pathway. Three available DHODH structures, featuring three different known inhibitors, were used as templates to screen in silico an original chemical library from Erevan University. This process led to the identification of P1788, a compound chemically related to the alkaloid cerpegin, as a new class of pyrimidine biosynthesis inhibitors. In line with previous reports, we investigated the effect of P1788 on the cellular innate immune response. Here we show that pyrimidine depletion by P1788 amplifies cellular response to both type-I and type II interferons, but also induces DNA damage as assessed by γH2AX staining. Moreover, the addition of inhibitors of the DNA damage response led to the suppression of the P1788 stimulatory effects on the interferon pathway. This demonstrates that components of the DNA damage response are bridging the inhibition of pyrimidine biosynthesis by P1788 to the interferon signaling pathway. Altogether, these results provide new insights on the mode of action of novel pyrimidine biosynthesis inhibitors and their development for cancer therapies.
Collapse
Affiliation(s)
- Simon Hayek
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Nicolas Pietrancosta
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | | | - Rodolphe Alves de Sousa
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Nassima Bekaddour
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Laura Ermellino
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France; Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Julien Dairou
- Chimie Bio-inorganique des Dérivés Soufrés et Pharmacochimie (CBDSP), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Olivier Diaz
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Gagik Melikyan
- Department of Organic Chemistry, Yerevan State University, Yerevan, Armenia.
| | - Jean-Philippe Herbeuval
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France.
| |
Collapse
|
22
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
23
|
Fu YH, Xu ZX, Jiang N, Zheng YP, Rameix-Welti MA, Jiao YY, Peng XL, Wang Y, Eleouet JF, Cen S, He JS. High-throughput screening of active compounds against human respiratory syncytial virus. Virology 2019; 535:171-178. [DOI: 10.1016/j.virol.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
|
24
|
Okesli-Armlovich A, Gupta A, Jimenez M, Auld D, Liu Q, Bassik MC, Khosla C. Discovery of small molecule inhibitors of human uridine-cytidine kinase 2 by high-throughput screening. Bioorg Med Chem Lett 2019; 29:2559-2564. [PMID: 31420268 DOI: 10.1016/j.bmcl.2019.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Clinically relevant inhibitors of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in mammalian de novo pyrimidine synthesis, have strong antiviral and anticancer activity in vitro. However, they are ineffective in vivo due to efficient uridine salvage by infected or rapidly dividing cells. The pyrimidine salvage enzyme uridine-cytidine kinase 2 (UCK2), a ∼29 kDa protein that forms a tetramer in its active state, is necessary for uridine salvage. Notwithstanding the pharmacological potential of this target, no medicinally tractable inhibitors of the human enzyme have been reported to date. We therefore established and miniaturized an in vitro assay for UCK2 activity and undertook a high-throughput screen against a ∼40,000-compound library to generate drug-like leads. The structures, activities, and modes of inhibition of the most promising hits are described. Notably, our screen yielded non-competitive UCK2 inhibitors which were able to suppress nucleoside salvage in cells both in the presence and absence of DHODH inhibitors.
Collapse
Affiliation(s)
- Ayse Okesli-Armlovich
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford, CA 94305, USA
| | - Amita Gupta
- Stanford ChEM-H, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Jimenez
- Facilitated Access to Screening Technologies (FAST) Laboratory, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Douglas Auld
- Facilitated Access to Screening Technologies (FAST) Laboratory, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Qi Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford, CA 94305, USA
| | - Michael C Bassik
- Stanford ChEM-H, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Behzadi MA, Leyva-Grado VH. Overview of Current Therapeutics and Novel Candidates Against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front Microbiol 2019; 10:1327. [PMID: 31275265 PMCID: PMC6594388 DOI: 10.3389/fmicb.2019.01327] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Emergence and re-emergence of respiratory virus infections represent a significant threat to global public health, as they occur seasonally and less frequently (such as in the case of influenza virus) as pandemic infections. Some of these viruses have been in the human population for centuries and others had recently emerged as a public health problem. Influenza viruses have been affecting the human population for a long time now; however, their ability to rapidly evolve through antigenic drift and antigenic shift causes the emergence of new strains. A recent example of these events is the avian-origin H7N9 influenza virus outbreak currently undergoing in China. Human H7N9 influenza viruses are resistant to amantadines and some strains are also resistant to neuraminidase inhibitors greatly limiting the options for treatment. Respiratory syncytial virus (RSV) may cause a lower respiratory tract infection characterized by bronchiolitis and pneumonia mainly in children and the elderly. Infection with RSV can cause severe disease and even death, imposing a severe burden for pediatric and geriatric health systems worldwide. Treatment for RSV is mainly supportive since the only approved therapy, a monoclonal antibody, is recommended for prophylactic use in high-risk patients. The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging respiratory virus. The virus was first recognized in 2012 and it is associated with a lower respiratory tract disease that is more severe in patients with comorbidities. No licensed vaccines or antivirals have been yet approved for the treatment of MERS-CoV in humans. It is clear that the discovery and development of novel antivirals that can be used alone or in combination with existing therapies to treat these important respiratory viral infections are critical. In this review, we will describe some of the novel therapeutics currently under development for the treatment of these infections.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
Yang Y, Cao L, Gao H, Wu Y, Wang Y, Fang F, Lan T, Lou Z, Rao Y. Discovery, Optimization, and Target Identification of Novel Potent Broad-Spectrum Antiviral Inhibitors. J Med Chem 2019; 62:4056-4073. [DOI: 10.1021/acs.jmedchem.9b00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yiqing Yang
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | - Lin Cao
- College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Hongying Gao
- Tsinghua University−Peking University Joint Center for Life Sciences, Beijing 100084, P. R. China
| | | | - Yaxin Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | | | | | | | | |
Collapse
|
27
|
Cheung AK, Hurley B, Kerrigan R, Shu L, Chin DN, Shen Y, O'Brien G, Sung MJ, Hou Y, Axford J, Cody E, Sun R, Fazal A, Fridrich C, Sanchez CC, Tomlinson RC, Jain M, Deng L, Hoffmaster K, Song C, Van Hoosear M, Shin Y, Servais R, Towler C, Hild M, Curtis D, Dietrich WF, Hamann LG, Briner K, Chen KS, Kobayashi D, Sivasankaran R, Dales NA. Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61:11021-11036. [PMID: 30407821 DOI: 10.1021/acs.jmedchem.8b01291] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.
Collapse
Affiliation(s)
- Atwood K Cheung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Brian Hurley
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ryan Kerrigan
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lei Shu
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Donovan N Chin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yiping Shen
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Gary O'Brien
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Moo Je Sung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ying Hou
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jake Axford
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Emma Cody
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Robert Sun
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Aleem Fazal
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cary Fridrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Carina C Sanchez
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ronald C Tomlinson
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Monish Jain
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Keith Hoffmaster
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cheng Song
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mailin Van Hoosear
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Youngah Shin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Rebecca Servais
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Christopher Towler
- Novartis Pharmaceuticals , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Marc Hild
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - William F Dietrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karin Briner
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karen S Chen
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Dione Kobayashi
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Rajeev Sivasankaran
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Natalie A Dales
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
28
|
Drewes G, Knapp S. Chemoproteomics and Chemical Probes for Target Discovery. Trends Biotechnol 2018; 36:1275-1286. [DOI: 10.1016/j.tibtech.2018.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/28/2022]
|
29
|
Novel AR-12 derivatives, P12-23 and P12-34, inhibit flavivirus replication by blocking host de novo pyrimidine biosynthesis. Emerg Microbes Infect 2018; 7:187. [PMID: 30459406 PMCID: PMC6246607 DOI: 10.1038/s41426-018-0191-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022]
Abstract
The genus Flavivirus contains many important pathogens, including dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). AR-12 is a celecoxib-derived anticancer agent that possesses antiviral activity against a broad range of viruses. We pharmacologically exploited this unique activity to develop additional antiviral agents, resulting in the production of the AR-12 derivatives P12-23 and P12-34. At nanomolar concentrations, these compounds were effective in suppressing DENV, ZIKV and JEV replication, exhibiting 10-fold improvements in the efficacy and selectivity indices as compared to AR-12. Regarding the mode of antiviral action, P12-23 and P12-34 inhibited viral RNA replication but had no effect on viral binding, entry or translation. Moreover, these AR-12 derivatives co-localized with mitochondrial markers, and their antiviral activity was lost in mitochondria-depleted cells. Interestingly, exogenous uridine or orotate, the latter being a metabolite of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), abolished the antiviral activity of AR-12 and its derivatives. As DHODH is a key enzyme in the de novo pyrimidine biosynthesis pathway, these AR-12 derivatives may act by targeting pyrimidine biosynthesis in host cells to inhibit viral replication. Importantly, treatment with P12-34 significantly improved the survival of mice that were subcutaneously challenged with DENV. Thus, P12-34 may warrant further evaluation as a therapeutic to control flaviviral outbreaks.
Collapse
|
30
|
Luthra P, Naidoo J, Pietzsch CA, De S, Khadka S, Anantpadma M, Williams CG, Edwards MR, Davey RA, Bukreyev A, Ready JM, Basler CF. Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Res 2018; 158:288-302. [PMID: 30144461 DOI: 10.1016/j.antiviral.2018.08.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/27/2022]
Abstract
Specific host pathways that may be targeted therapeutically to inhibit the replication of Ebola virus (EBOV) and other emerging viruses remain incompletely defined. A screen of 200,000 compounds for inhibition of an EBOV minigenome (MG) assay that measures the function of the viral polymerase complex identified as hits several compounds with an amino-tetrahydrocarbazole scaffold. This scaffold was structurally similar to GSK983, a compound previously described as having broad-spectrum antiviral activity due to its impairing de novo pyrimidine biosynthesis through inhibition of dihydroorotate dehydrogenase (DHODH). We generated compound SW835, the racemic version of GSK983 and demonstrated that SW835 and brequinar, another DHODH inhibitor, potently inhibit the MG assay and the replication of EBOV, vesicular stomatitis virus (VSV) and Zika (ZIKV) in vitro. Nucleoside and deoxynucleoside supplementation studies demonstrated that depletion of pyrimidine pools contributes to antiviral activity of these compounds. As reported for other DHODH inhibitors, SW835 and brequinar also induced expression of interferon stimulated genes (ISGs). ISG induction was demonstrated to occur without production of IFNα/β and independently of the IFNα receptor and was not blocked by EBOV-encoded suppressors of IFN signaling pathways. Furthermore, we demonstrated that transcription factor IRF1 is required for this ISG induction, and that IRF1 induction requires the DNA damage response kinase ATM. Therefore, de novo pyrimidine biosynthesis is critical for the replication of EBOV and other RNA viruses and inhibition of this pathway activates an ATM and IRF1-dependent innate immune response that subverts EBOV immune evasion functions.
Collapse
Affiliation(s)
- Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jacinth Naidoo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Colette A Pietzsch
- Department of Pathology, Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Sampriti De
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sudip Khadka
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Alexander Bukreyev
- Department of Pathology, Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA; Department of Microbiology & Immunology, Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
31
|
Martin S, Chiramel AI, Schmidt ML, Chen YC, Whitt N, Watt A, Dunham EC, Shifflett K, Traeger S, Leske A, Buehler E, Martellaro C, Brandt J, Wendt L, Müller A, Peitsch S, Best SM, Stech J, Finke S, Römer-Oberdörfer A, Groseth A, Feldmann H, Hoenen T. A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Med 2018; 10:58. [PMID: 30081931 PMCID: PMC6090742 DOI: 10.1186/s13073-018-0570-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background The 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4). Methods In order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory. Results Among others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses. Conclusions This study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses. Electronic supplementary material The online version of this article (10.1186/s13073-018-0570-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA.,Present address: Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Marie Luisa Schmidt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Nadia Whitt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Ari Watt
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Eric C Dunham
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Shelby Traeger
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Anne Leske
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Janine Brandt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Andreas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stephanie Peitsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sonja M Best
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA.,Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA. .,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
32
|
Gemcitabine and Nucleos(t)ide Synthesis Inhibitors Are Broad-Spectrum Antiviral Drugs that Activate Innate Immunity. Viruses 2018; 10:v10040211. [PMID: 29677162 PMCID: PMC5923505 DOI: 10.3390/v10040211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Nucleoside analogs have been frequently identified as antiviral agents. In recent years, gemcitabine, a cytidine analog in clinical use for the treatment of many solid tumors, was also shown to have antiviral activity against a broad range of viruses. Nucleoside analogs generally interfere with cellular nucleos(t)ide synthesis pathways, resulting in the depletion or imbalance of (d)NTP pools. Intriguingly, a few recent reports have shown that some nucleoside analogs, including gemcitabine, activated innate immunity, inducing the expression of interferon-stimulated genes, through nucleos(t)ide synthesis inhibition. The precise crosstalk between these two independent processes remains to be determined. Nonetheless, we summarize the current knowledge of nucleos(t)ide synthesis inhibition-related innate immunity and propose it as a newly emerging antiviral mechanism of nucleoside analogs.
Collapse
|
33
|
Arnould S, Rodier G, Matar G, Vincent C, Pirot N, Delorme Y, Berthet C, Buscail Y, Noël JY, Lachambre S, Jarlier M, Bernex F, Delpech H, Vidalain PO, Janin YL, Theillet C, Sardet C. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition. Oncotarget 2017; 8:95206-95222. [PMID: 29221122 PMCID: PMC5707016 DOI: 10.18632/oncotarget.19199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AX (γH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Gisèle Matar
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoann Delorme
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charlène Berthet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Jean Yohan Noël
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Simon Lachambre
- Montpellier RIO Imaging, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Marta Jarlier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Pierre Olivier Vidalain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Equipe Chimie and Biologie, Modélisation et Immunologie pour la Thérapie, CNRS UMR 8601 CNRS-Université Paris Descartes, Paris, France
| | - Yves L. Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, CNRS UMR3523, Paris, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
34
|
Original Chemical Series of Pyrimidine Biosynthesis Inhibitors That Boost the Antiviral Interferon Response. Antimicrob Agents Chemother 2017; 61:AAC.00383-17. [PMID: 28807907 PMCID: PMC5610480 DOI: 10.1128/aac.00383-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
De novo pyrimidine biosynthesis is a key metabolic pathway involved in multiple biosynthetic processes. Here, we identified an original series of 3-(1H-indol-3-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one derivatives as a new class of pyrimidine biosynthesis inhibitors formed by two edge-fused polycyclic moieties. We show that identified compounds exhibit broad-spectrum antiviral activity and immunostimulatory properties, in line with recent reports linking de novo pyrimidine biosynthesis with innate defense mechanisms against viruses. Most importantly, we establish that pyrimidine deprivation can amplify the production of both type I and type III interferons by cells stimulated with retinoic acid-inducible gene 1 (RIG-I) ligands. Altogether, our results further expand the current panel of pyrimidine biosynthesis inhibitors and illustrate how the production of antiviral interferons is tightly coupled to this metabolic pathway. Functional and structural similarities between this new chemical series and dicoumarol, which was reported before to inhibit pyrimidine biosynthesis at the dihydroorotate dehydrogenase (DHODH) step, are discussed.
Collapse
|
35
|
JC Polyomavirus Attachment and Entry: Potential Sites for PML Therapeutics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:132-141. [PMID: 28989857 DOI: 10.1007/s40588-017-0069-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW JC polyomavirus (JCPyV) is a significant human pathogen that causes an asymptomatic infection in the kidney in the majority of the population. In immunosuppressed individuals, the virus can become reactivated and spread to the brain, causing the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). There are currently limited treatment options for this fatal disease. Attachment to receptors and entry into host cells are the initiating events in JCPyV infection and therefore an attractive target for therapeutics to prevent or treat PML. This review provides the current understanding of JCPyV attachment and entry events and the potential therapeutics to target these areas. RECENT FINDINGS JCPyV attachment and entry to host cells is mediated by α2,6-linked lactoseries tetrasaccharide c (LSTc) and 5-hydroxytryptamine receptors (5-HT2Rs), respectively, and subsequent trafficking to the endoplasmic reticulum is required for infection. Recently, vaccines, monoclonal antibodies, and small molecules have shown promise as anti-viral and PML therapies. SUMMARY This review summarizes our current understanding of JCPyV attachment, entry, and trafficking and the development of potential PML therapeutics that inhibit these critical steps in JCPyV infection.
Collapse
|
36
|
Reis RAG, Calil FA, Feliciano PR, Pinheiro MP, Nonato MC. The dihydroorotate dehydrogenases: Past and present. Arch Biochem Biophys 2017; 632:175-191. [PMID: 28666740 DOI: 10.1016/j.abb.2017.06.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Abstract
The flavoenzyme dihydroorotate dehydrogenase catalyzes the stereoselective oxidation of (S)-dihydroorotate to orotate in the fourth of the six conserved enzymatic reactions involved in the de novo pyrimidine biosynthetic pathway. Inhibition of pyrimidine metabolism by selectively targeting DHODHs has been exploited in the development of new therapies against cancer, immunological disorders, bacterial and viral infections, and parasitic diseases. Through a chronological narrative, this review summarizes the efforts of the scientific community to achieve our current understanding of structural and biochemical properties of DHODHs. It also attempts to describe the latest advances in medicinal chemistry for therapeutic development based on the selective inhibition of DHODH, including an overview of the experimental techniques used for ligand screening during the process of drug discovery.
Collapse
Affiliation(s)
- Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Felipe Antunes Calil
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Patricia Rosa Feliciano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Matheus Pinto Pinheiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, 13083-970, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
37
|
Cheung NN, Lai KK, Dai J, Kok KH, Chen H, Chan KH, Yuen KY, Kao RYT. Broad-spectrum inhibition of common respiratory RNA viruses by a pyrimidine synthesis inhibitor with involvement of the host antiviral response. J Gen Virol 2017; 98:946-954. [PMID: 28555543 DOI: 10.1099/jgv.0.000758] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our previous screening of 50 240 structurally diverse compounds led to the identification of 39 influenza A virus infection inhibitors (Kao R.Y., Yang D., Lau L.S., Tsui W.H., Hu L. et al. Nat Biotechnol 2010;28:600-605). Further screening of these compounds against common respiratory viruses led to the discovery of compound FA-613. This inhibitor exhibited low micromolar antiviral activity against various influenza A and B virus strains, including the highly pathogenic influenza A strains H5N1 and H7N9, enterovirus A71, respiratory syncytial virus, human rhinovirus A, SARS- and MERS-coronavirus. No significant cellular toxicity was observed at the effective concentrations. Animal studies showed an improved survival rate in BALB/c mice that received intranasal FA-613 treatments against a lethal dose infection of A/HK/415742Md/2009 (H1N1). Further cell-based assays indicated that FA-613 interfer with the de novo pyrimidine biosynthesis pathway by targeting the dihydroorotate dehydrogenase. Surprisingly, FA-613 lost its antiviral potency in the interferon-deficient Vero cell line, while maintaining its inhibitory activity in an interferon-competent cell line which showed elevated expression of host antiviral genes when infected in the presence of FA-613. Further investigation of the specific connection between pyrimidine synthesis inhibition and the induction of host innate immunity might aid clinical development of this type of drug in antiviral therapies. Therefore, in acute cases of respiratory tract infections, when rapid diagnostics of the causative agent are not readily available, an antiviral drug with properties like FA-613 could prove to be very valuable.
Collapse
Affiliation(s)
- Nam Nam Cheung
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kin Kui Lai
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Jun Dai
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kin Hang Kok
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Honglin Chen
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory for Emerging Infectious Disease and the Research Centre of Infection and Immunology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Hung Chan
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Disease and the Research Centre of Infection and Immunology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.,Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Richard Yi Tsun Kao
- Department of Microbiology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.,State Key Laboratory for Emerging Infectious Disease and the Research Centre of Infection and Immunology, HKU Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
38
|
|
39
|
Adcock RS, Chu YK, Golden JE, Chung DH. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res 2016; 138:47-56. [PMID: 27919709 DOI: 10.1016/j.antiviral.2016.11.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/26/2016] [Indexed: 11/27/2022]
Abstract
Recent studies have clearly underscored the association between Zika virus (ZIKV) and severe neurological diseases such as microcephaly and Guillain-Barre syndrome. Given the historical complacency surrounding this virus, however, no significant antiviral screenings have been performed to specifically target ZIKV. As a result, there is an urgent need for a validated screening method and strategy that is focused on highlighting potential anti-ZIKV inhibitors that can be further advanced via rigorous validation and optimization. To address this critical gap, we sought to test whether a cell-based assay that measures protection from the ZIKV-induced cytopathic effect could serve as a high-throughput screen assay for discovering novel anti-ZIKV inhibitors. Employing this approach, we tested the anti-ZIKV activity of previously known broad-spectrum antiviral compounds and discovered several compounds (e.g., NITD008, SaliPhe, and CID 91632869) with anti-ZIKV activity. Interestingly, while GTP synthesis inhibitors (e.g., ribavirin or mycophenolic acid) were too toxic or showed no anti-ZIKV activity (EC50 > 50 μM), ZIKV was highly susceptible to pyrimidine synthesis inhibitors (e.g., brequinar) in the assay. We amended the assay into a high-throughput screen (HTS)-compatible 384-well format and then screened the NIH Clinical Compound Collection library, which includes a total of 727 compounds organized, using an 8-point dose response format with two Zika virus strains (MR766 and PRVABC59, a recent human isolate). The screen discovered 6-azauridine and finasteride as potential anti-ZIKV inhibitors with EC50 levels of 3.18 and 9.85 μM for MR766, respectively. We further characterized the anti-ZIKV activity of 6-azauridine and several pyrimidine synthesis inhibitors such as brequinar in various secondary assays including an antiviral spectrum test within flaviviruses and alphaviruses, Western blot (protein), real-time PCR (RNA), and plaque reduction assays (progeny virus). From these assays, we discovered that brequinar has potent anti-ZIKV activity. Our results show that a broad anti-ZIKV screen of compound libraries with our CPE-based HTS assay will reveal multiple chemotypes that could be pursued as lead compounds for therapies to treat ZIKV-associated diseases or as molecular probes to study the biology of the ZIKV replication mechanism.
Collapse
Affiliation(s)
- Robert S Adcock
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, KY, USA
| | - Yong-Kyu Chu
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, KY, USA
| | - Jennifer E Golden
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dong-Hoon Chung
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, KY, USA; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
40
|
Cele FN, Kumalo H, Soliman MES. Mechanism of Inhibition of Hsp90 Dimerization by Gyrase B Inhibitor Coumermycin A1 (C-A1) Revealed by Molecular Dynamics Simulations and Thermodynamic Calculations. Cell Biochem Biophys 2016; 74:353-63. [PMID: 27376828 PMCID: PMC7090554 DOI: 10.1007/s12013-016-0743-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/09/2016] [Indexed: 12/14/2022]
Abstract
Heat shock protein (Hsp) 90 an emerging and attracting target in the anti-HIV drug discovery process due to the key role it plays in the pathogenicity of HIV-1 virus. In this research study, long-range all-atom molecular dynamics simulations were engaged for the bound and the unbound proteins to enhance the understanding of the molecular mechanisms of the Hsp90 dimerization and inhibition. Results evidently showed that coumermycin A1 (C-A1), a recently discovered Hsp90 inhibitor, binds at the dimer's active site of the Hsp90 protein and leads to a substantial parting between dimeric opposed residues, which include Arg591.B, Lys594.A, Ser663.A, Thr653.B, Ala665.A, Thr649.B, Leu646.B and Asn669.A. Significant differences in magnitudes were observed in radius of gyration, root-mean-square deviation and root-mean-square fluctuation, which confirms a reasonably more flexible state in the apo conformation associated with it dimerization. In contrast, the bound conformer of Hsp90 showed less flexibility. This visibly highpoints the inhibition process resulting from the binding of the ligand. These findings were further validated by principal component analysis. We believe that the detailed dynamic analyses of Hsp90 presented in this study, would give an imperative insight and better understanding to the function and mechanisms of inhibition. Furthermore, information obtained from the binding mode of the inhibitor would be of great assistance in the design of more potent inhibitors against the HIV target Hsp90.
Collapse
Affiliation(s)
- Favourite N Cele
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Hezekiel Kumalo
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.
| |
Collapse
|
41
|
Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State. Antimicrob Agents Chemother 2016; 60:4552-62. [PMID: 27185801 DOI: 10.1128/aac.00282-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons.
Collapse
|
42
|
Li J, Wu D, Xu X, huang J, Shao X, Li Z. Design, synthesis and inhibitory activity against human dihydroorotate dehydrogenase ( h DHODH) of 1,3-benzoazole derivatives bearing amide units. Bioorg Med Chem Lett 2016; 26:3064-3066. [DOI: 10.1016/j.bmcl.2016.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/12/2016] [Accepted: 05/04/2016] [Indexed: 01/26/2023]
|
43
|
Abstract
Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or "aging." Recent studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate immune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several imminent questions concerning the roles of protein deamidation in infection and immunity.
Collapse
|
44
|
Deans RM, Morgens DW, Ökesli A, Pillay S, Horlbeck MA, Kampmann M, Gilbert LA, Li A, Mateo R, Smith M, Glenn JS, Carette JE, Khosla C, Bassik MC. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nat Chem Biol 2016; 12:361-6. [PMID: 27018887 PMCID: PMC4836973 DOI: 10.1038/nchembio.2050] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/27/2016] [Indexed: 01/16/2023]
Abstract
Broad spectrum antiviral drugs targeting host processes could potentially treat a wide range of viruses while reducing the likelihood of emergent resistance. Despite great promise as therapeutics, such drugs remain largely elusive. Here we use parallel genome-wide high-coverage shRNA and CRISPR-Cas9 screens to identify the cellular target and mechanism of action of GSK983, a potent broad spectrum antiviral with unexplained cytotoxicity1–3. We show that GSK983 blocks cell proliferation and dengue virus replication by inhibiting the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights from both genomic screens, we found that exogenous deoxycytidine markedly reduces GSK983 cytotoxicity but not antiviral activity, providing an attractive novel approach to improve the therapeutic window of DHODH inhibitors against RNA viruses. Together, our results highlight the distinct advantages and limitations of each screening method for identifying drug targets and demonstrate the utility of parallel knockdown and knockout screens for comprehensively probing drug activity.
Collapse
Affiliation(s)
- Richard M Deans
- Department of Chemistry, Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Ayşe Ökesli
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Sirika Pillay
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, California, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Roberto Mateo
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Mark Smith
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| | - Jeffrey S Glenn
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.,Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA.,Department of Chemical Engineering, Stanford University, Stanford, California, USA.,Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, California, USA.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California, USA
| |
Collapse
|
45
|
Surekha K, Prabhu D, Richard M, Nachiappan M, Biswal J, Jeyakanthan J. Investigation of vital pathogenic target orotate phosphoribosyltransferases (OPRTase) from Thermus thermophilus HB8: Phylogenetic and molecular modeling approach. Gene 2016; 583:102-111. [PMID: 26861612 DOI: 10.1016/j.gene.2016.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/16/2016] [Accepted: 02/05/2016] [Indexed: 01/28/2023]
Abstract
Biosynthesis pathways of pyrimidine and purine are shown to play an important role in regular cellular activities. The biosynthesis can occur either through de novo or salvage pathways based on the requirement of the cell. The pyrimidine biosynthesis pathway has been linked to several disorders and various autoimmune diseases. Orotate phosphoribosyl transferase (OPRTase) is an important enzyme which catalyzes the conversion of orotate to orotate monophosphate in the fifth step of pyrimidine biosynthesis. Phylogenetic analysis of 228 OPRTase sequences shows the distribution of proteins across different living forms of life. High structural similarities between Thermusthermophilus and other organisms kindled us to concentrate on OPRTase as an anti-pathogenic target. In this study, a homology model of OPRTase was constructed using 2P1Z as a template. About 100 ns molecular dynamics simulation was performed to investigate the conformational stability and dynamic patterns of the protein. The amino acid residues (Met1, Asp2, Glu43, Ala44, Glu47, Lys51, Ala157 and Leu158) lining in the binding site were predicted using SiteMap. Further, structure based virtual screening was performed on the predicted binding site using ChemBridge, Asinex, Binding, NCI, TosLab and Zinc databases. Compounds retrieved from the screening collections were manually clustered. The resultant protein-ligand complexes were subjected to molecular dynamics simulations, which further validates the binding modes of the hits. The study may provide better insight for designing potent anti-pathogenic agent.
Collapse
Affiliation(s)
- Kanagarajan Surekha
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Damodharan Prabhu
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Mariadasse Richard
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Mutharasappan Nachiappan
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Jayashree Biswal
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India
| | - Jeyaraman Jeyakanthan
- Room No. 402, Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Science Campus, Karaikudi 630004, India.
| |
Collapse
|
46
|
Abstract
The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.
Collapse
Affiliation(s)
- Mira A M Behnam
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Veaceslav Boldescu
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.,Laboratory of Organic Synthesis, Institute of Chemistry of the Academy of Sciences of Moldova , Academiei 3, 2028 Chisinau, Moldova
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Li CM, Zheng LL, Yang XX, Wan XY, Wu WB, Zhen SJ, Li YF, Luo LF, Huang CZ. DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding. Biomaterials 2016; 77:216-26. [PMID: 26606447 PMCID: PMC7112435 DOI: 10.1016/j.biomaterials.2015.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022]
Abstract
Viral infections have caused numerous diseases and deaths worldwide. Due to the emergence of new viruses and frequent virus variation, conventional antiviral strategies that directly target viral or cellular proteins are limited because of the specificity, drug resistance and rapid clearance from the human body. Therefore, developing safe and potent antiviral agents with activity against viral infection at multiple points in the viral life cycle remains a major challenge. In this report, we propose a new modality to inhibit viral infection by fabricating DNA conjugated gold nanoparticle (DNA-AuNP) networks on cell membranes as a protective barrier. The DNA-AuNPs networks were found, via a plaque formation assay and viral titers, to have potent antiviral ability and protect host cells from human respiratory syncytial virus (RSV). Confocal immunofluorescence image analysis showed 80 ± 3.8% of viral attachment, 91.1 ± 0.9% of viral entry and 87.9 ± 2.8% of viral budding were inhibited by the DNA-AuNP networks, which were further confirmed by real-time fluorescence imaging of the RSV infection process. The antiviral activity of the networks may be attributed to steric effects, the disruption of membrane glycoproteins and limited fusion of cell membrane bilayers, all of which play important roles in viral infection. Therefore, our results suggest that the DNA-AuNP networks have not only prophylactic effects to inhibit virus attachment and entry, but also therapeutic effects to inhibit viral budding and cell-to-cell spread. More importantly, this proof-of-principle study provides a pathway for the development of a universal, broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lin Ling Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Xi Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiao Yan Wan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Wen Bi Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Shu Jun Zhen
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yuan Fang Li
- Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ling Fei Luo
- College of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
48
|
Chung D. The Establishment of an Antiviral State by Pyrimidine Synthesis Inhibitor is Cell Type-Specific. JOURNAL OF ANTIMICROBIAL AGENTS 2015; 1:101. [PMID: 27398413 PMCID: PMC4936827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Donghoon Chung
- Corresponding author: Donghoon Chung, Ph.D., Assistant Professor, Department of Microbiology and Immunology, Center for Predictive Medicine, School of Medicine, University of Louisville, USA, Tel: 502-852-5522,
| |
Collapse
|
49
|
Grandin C, Hourani ML, Janin YL, Dauzonne D, Munier-Lehmann H, Paturet A, Taborik F, Vabret A, Contamin H, Tangy F, Vidalain PO. Respiratory syncytial virus infection in macaques is not suppressed by intranasal sprays of pyrimidine biosynthesis inhibitors. Antiviral Res 2015; 125:58-62. [PMID: 26593978 DOI: 10.1016/j.antiviral.2015.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/16/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022]
Abstract
There is imperious need for efficient therapies against ubiquitous and life-threatening respiratory viruses, foremost among them being the human respiratory syncytial virus (hRSV). Several research groups who performed functional screens for broad-spectrum antivirals identified compounds targeting the de novo pyrimidine biosynthesis pathway. Despite their strong antiviral activity in vitro, whether such antimetabolites are effective in vivo remains highly controversial. Here, we evaluated two potent pyrimidine biosynthesis inhibitors developed in our laboratory, IPPA17-A04 and GAC50, in a model of mild hRSV-infection in cynomolgus macaques. In this model, hRSV replication is restricted to the epithelium of the upper respiratory tract, and is compatible with a topical treatment by intranasal sprays. The local administration of palivizumab, a neutralizing anti-hRSV antibody used in clinics, significantly reduced virus replication. In contrast, pyrimidine biosynthesis inhibitors did not show any inhibitory effect on hRSV growth when delivered topically as experimented in our model. Our results should help to better define the potential applications of this class of antimetabolites in the treatment of viral infections.
Collapse
Affiliation(s)
- Clément Grandin
- Cynbiose SA, Marcy-l'Etoile, France; Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France; CNRS, UMR3569, Paris, France
| | - Marianne-Lucas Hourani
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France; CNRS, UMR3569, Paris, France
| | - Yves L Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France; CNRS, UMR3523, Paris, France
| | - Daniel Dauzonne
- Institut Curie, Centre de Recherche, Paris, France; CNRS, UMR3666, Paris, France; INSERM, U1143, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France; CNRS, UMR3523, Paris, France
| | | | | | - Astrid Vabret
- Université de Caen-Basse-Normandie, EA 4655-U2RM, Laboratoire de Virologie, CHU de Caen, France
| | | | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France; CNRS, UMR3569, Paris, France.
| | - Pierre-Olivier Vidalain
- Institut Pasteur, Unité de Génomique Virale et Vaccination, Paris, France; CNRS, UMR3569, Paris, France.
| |
Collapse
|
50
|
Pery E, Sheehy A, Miranda Nebane N, Misra V, Mankowski MK, Rasmussen L, Lucile White E, Ptak RG, Gabuzda D. Redoxal, an inhibitor of de novo pyrimidine biosynthesis, augments APOBEC3G antiviral activity against human immunodeficiency virus type 1. Virology 2015; 484:276-287. [PMID: 26141568 DOI: 10.1016/j.virol.2015.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022]
Abstract
APOBEC3G (A3G) is a cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA; deamination-independent mechanisms are also implicated. HIV-1 Vif protein counteracts A3G by inducing its proteasomal degradation. Thus, the Vif-A3G axis is a potential therapeutic target. To identify compounds that inhibit Vif:A3G interaction, a 307,520 compound library was tested in a TR-FRET screen. Two identified compounds, redoxal and lomofungin, inhibited HIV-1 replication in peripheral blood mononuclear cells. Lomofungin activity was linked to A3G, but not pursued further due to cytotoxicity. Redoxal displayed A3G-dependent restriction, inhibiting viral replication by stabilizing A3G protein levels and increasing A3G in virions. A3G-independent activity was also detected. Treatment with uridine or orotate, intermediates of pyrimidine synthesis, diminished redoxal-induced stabilization of A3G and antiviral activity. These results identify redoxal as an inhibitor of HIV-1 replication and suggest its ability to inhibit pyrimidine biosynthesis suppresses viral replication by augmenting A3G antiviral activity.
Collapse
Affiliation(s)
- Erez Pery
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, United States; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States
| | - Ann Sheehy
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - N Miranda Nebane
- Southern Research Institute High Throughput Screening Center, Birmingham, AL 35205, United States
| | - Vikas Misra
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, United States
| | - Marie K Mankowski
- Southern Research Institute, Department of Infectious Disease Research, Frederick, MD 21701, United States
| | - Lynn Rasmussen
- Southern Research Institute High Throughput Screening Center, Birmingham, AL 35205, United States
| | - E Lucile White
- Southern Research Institute High Throughput Screening Center, Birmingham, AL 35205, United States
| | - Roger G Ptak
- Southern Research Institute, Department of Infectious Disease Research, Frederick, MD 21701, United States
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, United States; Department of Neurology (Microbiology), Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|