1
|
Shilling-Scrivo K, Mittelstadt J, Kanold PO. Altered Response Dynamics and Increased Population Correlation to Tonal Stimuli Embedded in Noise in Aging Auditory Cortex. J Neurosci 2021; 41:9650-9668. [PMID: 34611028 PMCID: PMC8612470 DOI: 10.1523/jneurosci.0839-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss (presbycusis) is a chronic health condition that affects one-third of the world population. One hallmark of presbycusis is a difficulty hearing in noisy environments. Presbycusis can be separated into two components: alterations of peripheral mechanotransduction of sound in the cochlea and central alterations of auditory processing areas of the brain. Although the effects of the aging cochlea in hearing loss have been well studied, the role of the aging brain in hearing loss is less well understood. Therefore, to examine how age-related central processing changes affect hearing in noisy environments, we used a mouse model (Thy1-GCaMP6s X CBA) that has excellent peripheral hearing in old age. We used in vivo two-photon Ca2+ imaging to measure the responses of neuronal populations in auditory cortex (ACtx) of adult (2-6 months, nine male, six female, 4180 neurons) and aging mice (15-17 months, six male, three female, 1055 neurons) while listening to tones in noisy backgrounds. We found that ACtx neurons in aging mice showed larger responses to tones and have less suppressed responses consistent with reduced inhibition. Aging neurons also showed less sensitivity to temporal changes. Population analysis showed that neurons in aging mice showed higher pairwise activity correlations and showed a reduced diversity in responses to sound stimuli. Using neural decoding techniques, we show a loss of information in neuronal populations in the aging brain. Thus, aging not only affects the responses of single neurons but also affects how these neurons jointly represent stimuli.SIGNIFICANCE STATEMENT Aging results in hearing deficits particularly under challenging listening conditions. We show that auditory cortex contains distinct subpopulations of excitatory neurons that preferentially encode different stimulus features and that aging selectively reduces certain subpopulations. We also show that aging increases correlated activity between neurons and thereby reduces the response diversity in auditory cortex. The loss of population response diversity leads to a decrease of stimulus information and deficits in sound encoding, especially in noisy backgrounds. Future work determining the identities of circuits affected by aging could provide new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Kelson Shilling-Scrivo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21230
| | - Jonah Mittelstadt
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 20215
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
2
|
Deng R, Kao JPY, Kanold PO. Aberrant development of excitatory circuits to inhibitory neurons in the primary visual cortex after neonatal binocular enucleation. Sci Rep 2021; 11:3163. [PMID: 33542365 PMCID: PMC7862622 DOI: 10.1038/s41598-021-82679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/22/2021] [Indexed: 11/09/2022] Open
Abstract
The development of GABAergic interneurons is important for the functional maturation of cortical circuits. After migrating into the cortex, GABAergic interneurons start to receive glutamatergic connections from cortical excitatory neurons and thus gradually become integrated into cortical circuits. These glutamatergic connections are mediated by glutamate receptors including AMPA and NMDA receptors and the ratio of AMPA to NMDA receptors decreases during development. Since previous studies have shown that retinal input can regulate the early development of connections along the visual pathway, we investigated if the maturation of glutamatergic inputs to GABAergic interneurons in the visual cortex requires retinal input. We mapped the spatial pattern of glutamatergic connections to layer 4 (L4) GABAergic interneurons in mouse visual cortex at around postnatal day (P) 16 by laser-scanning photostimulation and investigated the effect of binocular enucleations at P1/P2 on these patterns. Gad2-positive interneurons in enucleated animals showed an increased fraction of AMPAR-mediated input from L2/3 and a decreased fraction of input from L5/6. Parvalbumin-expressing (PV) interneurons showed similar changes in relative connectivity. NMDAR-only input was largely unchanged by enucleation. Our results show that retinal input sculpts the integration of interneurons into V1 circuits and suggest that the development of AMPAR- and NMDAR-only connections might be regulated differently.
Collapse
Affiliation(s)
- Rongkang Deng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.,Biological Sciences Graduate Program, University of Maryland, College Park, 20742, MD, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, 379 Miller Res. Bldg, Baltimore, MD, 21205, USA. .,Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Kraft AW, Mitra A, Rosenthal ZP, Dosenbach NUF, Bauer AQ, Snyder AZ, Raichle ME, Culver JP, Lee JM. Electrically coupled inhibitory interneurons constrain long-range connectivity of cortical networks. Neuroimage 2020; 215:116810. [PMID: 32276058 PMCID: PMC7292744 DOI: 10.1016/j.neuroimage.2020.116810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022] Open
Abstract
Spontaneous infra-slow brain activity (ISA) exhibits a high degree of temporal synchrony, or correlation, between distant brain regions. The spatial organization of ISA synchrony is not explained by anatomical connections alone, suggesting that active neural processes coordinate spontaneous activity. Inhibitory interneurons (IINs) form electrically coupled connections via the gap junction protein connexin 36 (Cx36) and networks of interconnected IINs are known to influence neural synchrony over short distances. However, the role of electrically coupled IIN networks in regulating spontaneous correlation over the entire brain is unknown. In this study, we performed OIS imaging on Cx36-/- mice to examine the role of this gap junction in ISA correlation across the entire cortex. We show that Cx36 deletion increased long-distance intra-hemispheric anti-correlation and inter-hemispheric correlation in spontaneous ISA. This suggests that electrically coupled IIN networks modulate ISA synchrony over long cortical distances.
Collapse
Affiliation(s)
- Andrew W Kraft
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anish Mitra
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | | | - Nico U F Dosenbach
- Department of Neurology, Washington University, St. Louis, USA; Department of Radiology, Washington University, St. Louis, USA; Department of Biomedical Engineering, Washington University, St. Louis, USA; Department of Program in Occupational Therapy, Washington University, St. Louis, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University, St. Louis, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University, St. Louis, USA; Department of Radiology, Washington University, St. Louis, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University, St. Louis, USA; Department of Radiology, Washington University, St. Louis, USA
| | - Joseph P Culver
- Department of Radiology, Washington University, St. Louis, USA; Department of Biomedical Engineering, Washington University, St. Louis, USA; Department of Physics, Washington University, St. Louis, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University, St. Louis, USA; Department of Radiology, Washington University, St. Louis, USA; Department of Biomedical Engineering, Washington University, St. Louis, USA.
| |
Collapse
|
4
|
Zhang Y, Liu C, Zhang L, Zhou W, Yu S, Yi R, Luo D, Fu X. Effects of Propofol on Electrical Synaptic Strength in Coupling Reticular Thalamic GABAergic Parvalbumin-Expressing Neurons. Front Neurosci 2020; 14:364. [PMID: 32410945 PMCID: PMC7198707 DOI: 10.3389/fnins.2020.00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Electrical synapses between neurons exhibit a high degree of plasticity, which makes critical contributions to neuronal communication. The GABAergic parvalbumin-expressing (PV+) neurons in the thalamic reticular nucleus (TRN) interact with each other through electrical and chemical synapses. Plasticity of electrical synaptic transmission in TRN plays a key role in regulating thalamocortical and corticothalamic circuits and even the formation of consciousness. We here examined the effects of propofol, a commonly used general anesthetic agent, on the strength of electrical synapses between TRN PV+ neurons by fluorescence-guided patch-clamp recording and pharmacological methods. Results show that 100 μM propofol reduced the electrical synaptic strength between TRN PV+ neurons. Notably, the propofol-induced depression of electrical synaptic strength between TRN PV+ neurons was diminished by saclofen (10 μM, antagonist of GABAB receptors), but not blocked by gabazine (10 μM, antagonist of GABAA receptors). Application of baclofen (10 μM, agonist of GABAB receptors), similar to propofol, also reduced the electrical synaptic strength between TRN PV+ neurons. Moreover, the propofol-induced depression of electrical synaptic strength between TRN PV+ neurons was abolished by 9-CPA (100 μM, specific adenylyl cyclase inhibitor), and by KT5720 (1 μM, selective inhibitor of PKA). Our findings indicate that propofol acts on metabotropic GABAB receptors, resulting in a depression of electrical synaptic transmission of coupled TRN PV+ neurons, which is mediated by the adenylyl cyclase-cAMP-PKA signaling pathway. Our findings also imply that propofol may change the thalamocortical communication via inducing depression of electrical synaptic strength in the TRN.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Chengxi Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Guizhou, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Wenjing Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Guizhou, China
| | - Rulan Yi
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Dan Luo
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
5
|
Kocovic DM, Limaye PV, Colburn LCH, Singh MB, Milosevic MM, Tadic J, Petronijevic M, Vrzic-Petronijevic S, Andjus PR, Antic SD. Cadmium versus Lanthanum Effects on Spontaneous Electrical Activity and Expression of Connexin Isoforms Cx26, Cx36, and Cx45 in the Human Fetal Cortex. Cereb Cortex 2020; 30:1244-1259. [PMID: 31408166 PMCID: PMC7132928 DOI: 10.1093/cercor/bhz163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
Electrical activity is important for brain development. In brain slices, human subplate neurons exhibit spontaneous electrical activity that is highly sensitive to lanthanum. Based on the results of pharmacological experiments in human fetal tissue, we hypothesized that hemichannel-forming connexin (Cx) isoforms 26, 36, and 45 would be expressed on neurons in the subplate (SP) zone. RNA sequencing of dissected human cortical mantles at ages of 17-23 gestational weeks revealed that Cx45 has the highest expression, followed by Cx36 and Cx26. The levels of Cx and pannexin expression between male and female fetal cortices were not significantly different. Immunohistochemical analysis detected Cx45- and Cx26-expressing neurons in the upper segment of the SP zone. Cx45 was present on the cell bodies of human SP neurons, while Cx26 was found on both cell bodies and dendrites. Cx45, Cx36, and Cx26 were strongly expressed in the cortical plate, where newborn migrating neurons line up to form cortical layers. New information about the expression of 3 "neuronal" Cx isoforms in each cortical layer/zone (e.g., SP, cortical plate) and pharmacological data with cadmium and lanthanum may improve our understanding of the cellular mechanisms underlying neuronal development in human fetuses and potential vulnerabilities.
Collapse
Affiliation(s)
- Dusica M Kocovic
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Pallavi V Limaye
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Lauren C H Colburn
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Mandakini B Singh
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Milena M Milosevic
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Jasmina Tadic
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | | | | | - Pavle R Andjus
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Srdjan D Antic
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
6
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
7
|
Ouachikh O, Hafidi A, Boucher Y, Dieb W. Electrical Synapses are Involved in Orofacial Neuropathic Pain. Neuroscience 2018; 382:69-79. [PMID: 29746991 DOI: 10.1016/j.neuroscience.2018.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022]
Abstract
Accumulated evidences suggest important roles of glial GAP-junctions in pain. However, only a few studies have explored the role of neuronal GAP-junctions or electrical synapses in neuropathic pain (NP). Therefore, the present study explores the role of connexin 36 (Cx36) in NP using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model in rat. A significant increase in Cx36 labeling was observed in the medullary dorsal horn (MDH) of CCI-IoN-lesioned compared to sham rats. The expression of Cx36 in CCI-IoN-lesioned rats revealed a rostroventral gradient of punctuate labeling within lamina IIo of the MDH. Cx36-positive somata and processes were also observed in MDH laminae IIi and III-V. These somata were mostly of the Gamma aminobutyric acid (GABA) and occasionally Glycine transporter 2 (GlyT2) cell subtypes. Moreover the GABA cell subtypes are highly coupled in lamina IIo as revealed by the intense Cx36 staining in this lamina. Pharmacological Cx36 blockade by intracisternal administration of mefloquine decreased significantly the mechanical allodynia observed in CCI-IoN-lesioned rats. Altogether, our findings demonstrated that Cx36 play an important role in mechanical allodynia by coupling GABA cells. Increasing cell coupling by enhancing Cx36 expression favors neuropathic pain while disrupting this coupling alleviates it. This mechanism may constitute a novel target for the treatment of orofacial mechanical allodynia.
Collapse
Affiliation(s)
- Omar Ouachikh
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Aziz Hafidi
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France.
| | - Yves Boucher
- Faculté d'odontologie (Garançière), Université Paris-Diderot, Paris, France; Hôpital Pitié-Salpétrière, AP-HP, Paris, France
| | - Wisam Dieb
- EA 7280 - Neuro-psycho-pharmacologie des systèmes dopaminergiques sous corticaux, Université Clermont Auvergne, Clermont-Ferrand 63000, France; Faculté d'odontologie (Garançière), Université Paris-Diderot, Paris, France; Hôpital Pitié-Salpétrière, AP-HP, Paris, France
| |
Collapse
|
8
|
Abstract
Major depressive disorder (MDD) is a chronic and debilitating illness that affects over 350 million people worldwide; however, current treatments have failed to cure or prevent the progress of depression. Increasing evidence suggests a crucial role for connexins in MDD. In this review, we have summarised recent accomplishments regarding the role of connexins, gap junctions, and hemichannels in the aetiology of MDD, and discussed the limitations of current research. A blockage of gap junctions or hemichannels induces depressive behaviour. Possible underlying mechanisms include the regulation of neurosecretory functions and synaptic activity by gap junctions and hemichannels. Gap junctions are functionally inhibited under stress conditions. Conversely, hemichannel permeability is increased. Antidepressants inhibit hemichannel permeability; however, they have contrasting effects on the function of gap junctions under normal conditions and can protect them against stress. In conclusion, the blockage of hemichannels concurrent with improvements in gap junction functionality might be potential targets for depression treatment.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tohru Yamakuni
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
9
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
10
|
Connors BW. Synchrony and so much more: Diverse roles for electrical synapses in neural circuits. Dev Neurobiol 2017; 77:610-624. [PMID: 28245529 DOI: 10.1002/dneu.22493] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022]
Abstract
Electrical synapses are neuronal gap junctions that are ubiquitous across brain regions and species. The biophysical properties of most electrical synapses are relatively simple-transcellular channels allow nearly ohmic, bidirectional flow of ionic current. Yet these connections can play remarkably diverse roles in different neural circuit contexts. Recent findings illustrate how electrical synapses may excite or inhibit, synchronize or desynchronize, augment or diminish rhythms, phase-shift, detect coincidences, enhance signals relative to noise, adapt, and interact with nonlinear membrane and transmitter-release mechanisms. Most of these functions are likely to be widespread in central nervous systems. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 610-624, 2017.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
11
|
Beheshti S, Zeinali R, Esmaeili A. Rapid upregulation of the hippocampal connexins 36 and 45 mRNA levels during memory consolidation. Behav Brain Res 2017; 320:85-90. [PMID: 27913256 DOI: 10.1016/j.bbr.2016.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Gap junction channels are implicated in learning and memory process. However, their role on each of the particular stages of memory formation has been studied less. In this study, the time profile of the expression levels of hippocampal connexins 36 and 45 (Cx36 and Cx45) mRNAs was measured during memory consolidation, in a passive avoidance paradigm. Totally 30 adult male rats were distributed into 5 groups of each 6. At different times profiles (30min, 3, 6 and 24h) following training, rats were decapitated and their hippocampi were immediately removed and frozen in liquid nitrogen. Total RNA was extracted and cDNA was synthesized, using oligo-dt primers. A quantitative real-time PCR was used to measure the levels of each of Cx36 and Cx45 mRNAs. Both connexins showed a rapid upregulation (30min) at the transcriptional level, which declined in later times and reached to the control level at 24h. The rapid up-regulation of Cx36 and Cx45 mRNAs might be accompanied with increasing intercellular coupling via gap junction channels and neuronal oscillatory activities required for memory consolidation. The results highlight the role of gap junctional coupling between hippocampal neurons during memory consolidation in the physiological conditions.
Collapse
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Reyhaneh Zeinali
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abolghasem Esmaeili
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
12
|
Siu RCF, Smirnova E, Brown CA, Zoidl C, Spray DC, Donaldson LW, Zoidl G. Structural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin. Front Mol Neurosci 2016; 9:120. [PMID: 27917108 PMCID: PMC5114276 DOI: 10.3389/fnmol.2016.00120] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/26/2016] [Indexed: 11/26/2022] Open
Abstract
Functional plasticity of neuronal gap junctions involves the interaction of the neuronal connexin36 with calcium/calmodulin-dependent kinase II (CaMKII). The important relationship between Cx36 and CaMKII must also be considered in the context of another protein partner, Ca2+ loaded calmodulin, binding an overlapping site in the carboxy-terminus of Cx36. We demonstrate that CaM and CaMKII binding to Cx36 is calcium-dependent, with Cx36 able to engage with CaM outside of the gap junction plaque. Furthermore, Ca2+ loaded calmodulin activates Cx36 channels, which is different to other connexins. The NMR solution structure demonstrates that CaM binds Cx36 in its characteristic compact state with major hydrophobic contributions arising from W277 at anchor position 1 and V284 at position 8 of Cx36. Our results establish Cx36 as a hub binding Ca2+ loaded CaM and they identify this interaction as a critical step with implications for functions preceding the initiation of CaMKII mediated plasticity at electrical synapses.
Collapse
Affiliation(s)
| | | | | | - Christiane Zoidl
- Biology Program, York University, TorontoON, Canada
- Psychology Program, York University, TorontoON, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New YorkNY, USA
| | | | - Georg Zoidl
- Biology Program, York University, TorontoON, Canada
- Psychology Program, York University, TorontoON, Canada
| |
Collapse
|
13
|
Neske GT, Connors BW. Synchronized gamma-frequency inhibition in neocortex depends on excitatory-inhibitory interactions but not electrical synapses. J Neurophysiol 2016; 116:351-68. [PMID: 27121576 PMCID: PMC4969394 DOI: 10.1152/jn.00071.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/23/2016] [Indexed: 11/22/2022] Open
Abstract
Synaptic inhibition plays a crucial role in the precise timing of spiking activity in the cerebral cortex. Synchronized, rhythmic inhibitory activity in the gamma (30-80 Hz) range is thought to be especially important for the active, information-processing neocortex, but the circuit mechanisms that give rise to synchronized inhibition are uncertain. In particular, the relative contributions of reciprocal inhibitory connections, excitatory-inhibitory interactions, and electrical synapses to precise spike synchrony among inhibitory interneurons are not well understood. Here we describe experiments on mouse barrel cortex in vitro as it spontaneously generates slow (<1 Hz) oscillations (Up and Down states). During Up states, inhibitory postsynaptic currents (IPSCs) are generated at gamma frequencies and are more synchronized than excitatory postsynaptic currents (EPSCs) among neighboring pyramidal cells. Furthermore, spikes in homotypic pairs of interneurons are more synchronized than in pairs of pyramidal cells. Comparing connexin36 knockout and wild-type animals, we found that electrical synapses make a minimal contribution to synchronized inhibition during Up states. Estimations of the delays between EPSCs and IPSCs in single pyramidal cells showed that excitation often preceded inhibition by a few milliseconds. Finally, tonic optogenetic activation of different interneuron subtypes in the absence of excitation led to only weak synchrony of IPSCs in pairs of pyramidal neurons. Our results suggest that phasic excitatory inputs are indispensable for synchronized spiking in inhibitory interneurons during Up states and that electrical synapses play a minimal role.
Collapse
Affiliation(s)
- Garrett T Neske
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
14
|
Miao Q, Yao L, Rasch MJ, Ye Q, Li X, Zhang X. Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset. Cell Rep 2016; 16:1677-1689. [PMID: 27477277 DOI: 10.1016/j.celrep.2016.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/10/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.
Collapse
Affiliation(s)
- Qinglong Miao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Institute of Neuroscience, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Ye
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
15
|
Reciprocal regulation of epileptiform neuronal oscillations and electrical synapses in the rat hippocampus. PLoS One 2014; 9:e109149. [PMID: 25299405 PMCID: PMC4192321 DOI: 10.1371/journal.pone.0109149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022] Open
Abstract
Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies.
Collapse
|
16
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
17
|
Posłuszny A. The contribution of electrical synapses to field potential oscillations in the hippocampal formation. Front Neural Circuits 2014; 8:32. [PMID: 24772068 PMCID: PMC3982077 DOI: 10.3389/fncir.2014.00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
Electrical synapses are a type of cellular membrane junction referred to as gap junctions (GJs). They provide a direct way to exchange ions between coupled cells and have been proposed as a structural basis for fast transmission of electrical potentials between neurons in the brain. For this reason GJs have been regarded as an important component within the neuronal networks that underlie synchronous neuronal activity and field potential oscillations. Initially, GJs appeared to play a particularly key role in the generation of high frequency oscillatory patterns in field potentials. In order to assess the scale of neuronal GJs contribution to field potential oscillations in the hippocampal formation, in vivo and in vitro studies are reviewed here. These investigations have shown that blocking the main neuronal GJs, those containing connexin 36 (Cx36-GJs), or knocking out the Cx36 gene affect field potential oscillatory patterns related to awake active behavior (gamma and theta rhythm) but have no effect on high frequency oscillations occurring during silent wake and sleep. Precisely how Cx36-GJs influence population activity of neurons is more complex than previously thought. Analysis of studies on the properties of transmission through GJ channels as well as Cx36-GJs functioning in pairs of coupled neurons provides some explanations of the specific influence of Cx36-GJs on field potential oscillations. It is proposed here that GJ transmission is strongly modulated by the level of neuronal network activity and changing behavioral states. Therefore, contribution of GJs to field potential oscillatory patterns depends on the behavioral state. I propose here a model, based on large body of experimental data gathered in this field by several authors, in which Cx36-GJ transmission especially contributes to oscillations related to active behavior, where it plays a role in filtering and enhancing coherent signals in the network under high-noise conditions. In contrast, oscillations related to silent wake or sleep, especially high frequency oscillations, do not require transmission by neuronal GJs. The reliability of neuronal discharges during those oscillations could be assured by conditions of higher signal-to-noise ratio and some synaptic changes taking place during active behavior.
Collapse
Affiliation(s)
- Anna Posłuszny
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
18
|
Abstract
The presence of direct, cytoplasmatic, communication between neurons in the brain of vertebrates has been demonstrated a long time ago. These gap junctions have been characterized in many brain areas in terms of subunit composition, biophysical properties, neuronal connectivity patterns, and developmental regulation. Although interesting findings emerged, showing that different subunits are specifically regulated during development, or that excitatory and inhibitory neuronal networks exhibit various electrical connectivity patterns, gap junctions did not receive much further interest. Originally, it was believed that gap junctions represent simple passageways for electrical and biochemical coordination early in development. Today, we know that gap junction connectivity is tightly regulated, following independent developmental patterns for excitatory and inhibitory networks. Electrical connections are important for many specific functions of neurons, and are, for example, required for the development of neuronal stimulus tuning in the visual system. Here, we integrate the available data on neuronal connectivity and gap junction properties, as well as the most recent findings concerning the functional implications of electrical connections in the developing thalamus and neocortex.
Collapse
Affiliation(s)
- Dragos Niculescu
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
19
|
Iyer VR, Chin AJ. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:185-97. [PMID: 23824749 DOI: 10.1002/ajmg.c.31368] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a progressive genetic cardiomyopathy characterized by progressive fatty and fibrous replacement of ventricular myocardium. The clinical presentation is marked by ventricular arrhythmias, some fatal. The disease has evolved from a primary electrical/electrophysiological disorder (in the 1980s-1990s) to a diagnostic imaging conundrum (in the 2000s) to the current day understanding of a genetic cardiomyopathy caused by defects in cell-cell adhesion proteins or intracellular signaling components. The pathogenesis, clinical presentation, and the genetics of the disease are discussed in this review.
Collapse
Affiliation(s)
- V Ramesh Iyer
- Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | |
Collapse
|
20
|
Belousov AB, Fontes JD. Neuronal gap junctions: making and breaking connections during development and injury. Trends Neurosci 2013; 36:227-36. [PMID: 23237660 PMCID: PMC3609876 DOI: 10.1016/j.tins.2012.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023]
Abstract
In the mammalian central nervous system (CNS), coupling of neurons by gap junctions (i.e., electrical synapses) and the expression of the neuronal gap junction protein, connexin 36 (Cx36), transiently increase during early postnatal development. The levels of both subsequently decline and remain low in the adult, confined to specific subsets of neurons. However, following neuronal injury [such as ischemia, traumatic brain injury (TBI), and epilepsy], the coupling and expression of Cx36 rise. Here we summarize new findings on the mechanisms of regulation of Cx36-containing gap junctions in the developing and mature CNS and following injury. We also review recent studies suggesting various roles for neuronal gap junctions and in particular their role in glutamate-mediated neuronal death.
Collapse
Affiliation(s)
- Andrei B Belousov
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
21
|
Zainol FD, Thammawongsa N, Mitatha S, Ali J, Yupapin P. Nerve communication model by bio-cells and optical dipole coupling effects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 41:368-75. [DOI: 10.3109/21691401.2012.759124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|