1
|
Guan Q, Gao Z, Chen Y, Guo C, Chen Y, Sun H. Structural modification strategies of triazoles in anticancer drug development. Eur J Med Chem 2024; 275:116578. [PMID: 38889607 DOI: 10.1016/j.ejmech.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The triazole functional group plays a pivotal role in the composition of biomolecules with potent anticancer activities, including numerous clinically approved drugs. The strategic utilization of the triazole fragment in the rational modification of lead compounds has demonstrated its ability to improve anticancer activities, enhance selectivity, optimize pharmacokinetic properties, and overcome resistance. There has been significant interest in triazole-containing hybrids in recent years due to their remarkable anticancer potential. However, previous reviews on triazoles in cancer treatment have failed to provide tailored design strategies specific to these compounds. Herein, we present an overview of design strategies encompassing a structure-modification approach for incorporating triazoles into hybrid molecules. This review offers valuable references and briefly introduces the synthesis of triazole derivatives, thereby paving the way for further research and advancements in the field of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ziming Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
2
|
Raum HN, Modig K, Akke M, Weininger U. Proton Transfer Kinetics in Histidine Side Chains Determined by pH-Dependent Multi-Nuclear NMR Relaxation. J Am Chem Soc 2024; 146:22284-22294. [PMID: 39103163 PMCID: PMC11328173 DOI: 10.1021/jacs.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Histidine is a key amino-acid residue in proteins with unique properties engendered by its imidazole side chain that can exist in three different states: two different neutral tautomeric forms and a protonated, positively charged one with a pKa value close to physiological pH. Commonly, two or all three states coexist and interchange rapidly, enabling histidine to act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Understanding the exchange dynamics among the three states is critical for assessing histidine's mechanistic role in catalysis, where the rate of proton exchange and interconversion among tautomers might be rate limiting for turnover. Here, we determine the exchange kinetics of histidine residues with pKa values representative of the accessible range from 5 to 9 by measuring pH-dependent 15N, 13C, and 1H transverse relaxation rate constants for 5 nuclei in each imidazole. Proton exchange between the imidazole and the solvent is mediated by hydronium ions at acidic and neutral pH, whereas hydroxide mediated exchange becomes the dominant mechanism at basic pH. Proton transfer is very fast and reaches the diffusion limit for pKa values near neutral pH. We identify a direct pathway between the two tautomeric forms, likely mediated by a bridging water molecule or, in the case of high pH, hydroxide ion. For histidines with pKa 7, we determine all rate constants (lifetimes) involving protonation over the entire pH range. Our approach should enable critical insights into enzymatic acid/base catalyzed reactions involving histidines in proteins.
Collapse
Affiliation(s)
- Heiner N Raum
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | - Kristofer Modig
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| |
Collapse
|
3
|
Calinsky R, Levy Y. Histidine in Proteins: pH-Dependent Interplay between π-π, Cation-π, and CH-π Interactions. J Chem Theory Comput 2024; 20:6930-6945. [PMID: 39037905 PMCID: PMC11325542 DOI: 10.1021/acs.jctc.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Histidine (His) stands out as the most versatile natural amino acid due to its side chain's facile propensity to protonate at physiological pH, leading to a transition from aromatic to cationic characteristics and thereby enabling diverse biomolecular interactions. In this study, our objective was to quantify the energetics and geometries of pairwise interactions involving His at varying pH levels. Through quantum chemical calculations, we discovered that His exhibits robust participation in both π-π and cation-π interactions, underscoring its ability to adopt a π or cationic nature, akin to other common residues. Of particular note, we found that the affinity of protonated His for aromatic residues (via cation-π interactions) is greater than the affinity of neutral His for either cationic residues (also via cation-π interactions) or aromatic residues (via π-π interactions). Furthermore, His frequently engages in CH-π interactions, and notably, depending on its protonation state, we found that some instances of hydrogen bonding by His exhibit greater stability than is typical for interamino acid hydrogen bonds. The strength of the pH-dependent pairwise energies of His with aromatic residues is supported by the abundance of pairwise interactions with His of low and high predicted pKa values. Overall, our findings illustrate the contribution of His interactions to protein stability and its potential involvement in conformational changes despite its relatively low abundance in proteins.
Collapse
Affiliation(s)
- Rivka Calinsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Abma G, Parkes MA, Horke DA. Preparation of Tautomer-Pure Molecular Beams by Electrostatic Deflection. J Phys Chem Lett 2024; 15:4587-4592. [PMID: 38656191 PMCID: PMC11071072 DOI: 10.1021/acs.jpclett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Tautomers are ubiquitous throughout chemistry and typically considered inseparable in solution. Yet (bio)chemical activity is highly tautomer-specific, with common examples being the amino and nucleic acids. While tautomers exist in an equilibrium in solution, in the cold environment of a molecular beam the barrier to tautomerization is typically much too high for interconversion, and tautomers can be considered separate species. Here we demonstrate the first separation of tautomers within a molecular beam and the production of tautomerically pure gas-phase samples. We show this for the 2-pyridone/2-hydroxypyridine system, an important structural motif in both uracil and cytosine. Spatial separation of the tautomers is achieved via electrostatic deflection in strong inhomogeneous fields. We furthermore collect tautomer-resolved photoelectron spectra using femtosecond multiphoton ionization. This paves the way for studying the structure-function-dynamic relationship on the level of individual tautomers, using approaches that typically lack the resolution to do so, such as ultrafast dynamics experiments.
Collapse
Affiliation(s)
- Grite
L. Abma
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - Michael A. Parkes
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Daniel A. Horke
- Radboud
University, Institute for Molecules
and Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Shi Y, Sun Y, Li C, Wang S, Wang J, Shi H. Edge Substitution Effects of Histidine Tautomerization Behaviors on the Structural Properties and Aggregation Properties of Aβ(1-42) Mature Fibril. ACS Chem Neurosci 2024; 15:1055-1062. [PMID: 38379141 DOI: 10.1021/acschemneuro.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Histidine behaviors play critical roles in folding and misfolding processes due to the changes in net charge and the various N/N-H orientations on imidazole rings. However, the effect of histidine tautomerization (HIE (Nε-H, ε) and HID (Nδ-H, δ) states) behaviors on the edge chain of Aβ mature fibrils remains inadequately understood, which is critical for finding a strategy to disturb fibril elongation and growth. In the current study, eight independent molecular dynamics simulations were conducted to investigate such impacts on the structural and aggregation properties. Our results from three different binding models revealed that the binding contributions of edge substitution effects are primarily located between chains 1 and 2. Histidine states significantly influence the secondary structure of each domain. Further analysis confirmed that the C1_H6//C1_E11 intrachain interaction is essential in maintaining the internal stability of chain 1, while the C1_H13//C2_H13 and C1_H14//C2_H13 interchain interactions are critical in maintaining the interchain stability of the fibril structure. Our subsequent analysis revealed that the current edge substitution leads to the loss of the C1_H13//C1_E11 intrachain and C1_H13//C2_H14 interchain interactions. The N-terminal regularity was significantly directly influenced by histidine states, particularly by the residue of C1_H13. Our study provides valuable insights into the effect of histidine behaviors on the edge chain of Aβ mature fibril, advancing our understanding of the histidine behavior hypothesis in misfolding diseases.
Collapse
Affiliation(s)
- Yaru Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Changgui Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Jinping Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
6
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
7
|
Romero AH, Fuentes G, Suescun L, Piro O, Echeverría G, Gotopo L, Pezaroglo H, Álvarez G, Cabrera G, Cerecetto H, Couto M. Tautomerism and Rotamerism of Favipiravir and Halogenated Analogues in Solution and in the Solid State. J Org Chem 2023; 88:10735-10752. [PMID: 37452781 DOI: 10.1021/acs.joc.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Favipiravir is an important selective antiviral against RNA-based viruses, and currently, it is being repurposed as a potential drug for the treatment of COVID-19. This type of chemical system presents different carboxamide-rotameric and hydroxyl-tautomeric states, which could be essential for interpreting its selective antiviral activity. Herein, the tautomeric 3-hydroxypyrazine/3-pyrazinone pair of favipiravir and its 6-substituted analogues, 6-Cl, 6-Br, 6-I, and 6-H, were fully investigated in solution and in the solid state through ultraviolet-visible, 1H nuclear magnetic resonance, infrared spectroscopy, and X-ray diffraction techniques. Also, a study of the gas phase was performed using density functional theory calculations. In general, the keto-enol balance in these 3-hydroxy-2-pyrazinecarboxamides is finely modulated by external and internal electrical variations via changes in solvent polarity or by replacement of substituents at position 6. The enol tautomer was prevalent in an apolar environment, whereas an increase in the level of the keto tautomer was favored by an increase in solvent polarity and, even moreso, with a strong hydrogen-donor solvent. Keto tautomerization was favored either in solution or in the solid state with a decrease in 6-substituent electronegativity as follows: H ≫ I ≈ Br > Cl ≥ F. Specific rotameric states based on carboxamide, "cisoide" and "transoide", were identified for the enol and keto tautomer, respectively; their rotamerism is dependent on the tautomerism and not the aggregation state.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Germán Fuentes
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Leopoldo Suescun
- Cryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Oscar Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Gustavo Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina
| | - Lourdes Gotopo
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, 1040 Caracas, Venezuela
| | - Horacio Pezaroglo
- Laboratorio de Resonancia Magnética Nuclear, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Guzmán Álvarez
- Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, 60000 Paysandú, Uruguay
| | - Gustavo Cabrera
- Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Los Chaguaramos, 1040 Caracas, Venezuela
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Marcos Couto
- Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
8
|
Halim SA, Abdel-Rahman MA. First-principles density functional theoretical study on the structures, reactivity and spectroscopic properties of (NH) and (OH) Tautomer's of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one. Sci Rep 2023; 13:8909. [PMID: 37264069 DOI: 10.1038/s41598-023-35933-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The tautomerizations mechanism of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one were inspected in the gas phase and ethanol using density function theory (DFT) M06-2X and B3LYP methods. Thermo-kinetic features of different conversion processes were estimated in temperature range 273-333 K using the Transition state theory (TST) accompanied with one dimensional Eckert tunneling correction (1D-Eck). Acidity and basicity were computed as well, and the computational results were compared against the experimental ones. Additionally, NMR, global descriptors, Fukui functions, NBO charges, and electrostatic potential (ESP) were discussed. From thermodynamics analysis, the keto form of 4-(methylsulfanyl)-3-[(1Z)-1-(2 phenylhydrazinylidene) quinoline-2(1H)-one is the most stable form in the gas phase and ethanol and the barrier heights required for tautomerization process were found to be high in the gas phase and ethanol ~ 38.80 and 37.35 kcal/mol, respectively. DFT methods were used for UV-Vis electronic spectra simulation and the time-dependent density functional theory solvation model (TDDFT-SMD) in acetonitrile compounds.
Collapse
Affiliation(s)
- Shimaa Abdel Halim
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt.
| | | |
Collapse
|
9
|
Yang C, Su Z, Li Z, Yao R, Liu W, Yin H. Harvest of nisin from fermentation broth using foam separation with the assistance of ultrasonic treatment: foam property evaluation and antimicrobial activity retention. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Sun Y, Yao Z, Shi H. Structural properties of Aβ (1-40) peptide in protonation stage of one, two, and three: New insights from the histidine protonation behaviors. Int J Biol Macromol 2022; 223:1556-1561. [PMID: 36370861 DOI: 10.1016/j.ijbiomac.2022.11.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Structural properties and aggregation tendency can be significantly influenced by histidine behaviors (histidine on Nδ-H state is defined as δ, likewise, Nε-H: ε and both Nδ-H and Nε-H: p). In current study, we investigated structural properties of Aβ(1-40) peptide during protonation evolution stage of one, two, and three by total 19 independent replica exchange molecular dynamics simulations using implicit solvent. Our results show that any kind of protonated state will promote β-sheet structure formation in comparison with deprotonated (εεε). With increase in number of protonation, the lowest β-sheet content increased. The highest averaged β-sheet structure content was detected in (δpδ) (46.0 %), (εpp) (36.8 %), and (ppp) (16.0 %) in each protonation stage. With three β-strand structures, (δpδ) shows more stable features and high hydrophobic properties. Further analysis confirmed that H13 and H14 are more important than H6. Specifically, H13 and H14 have a synergistic effect for structural formations by controlling H-bond networks in H13(p) with V39/V40 and H14(p/δ) with G37/G38. Finally, the Pearson correlation coefficient results confirmed that experimental result (ref. 44) is corresponding to our (εpp) system. Our current study will be conducive to understanding the effects of the histidine behaviors, it provides new insights for exploration protein folding and misfolding processes.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zeshuai Yao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China; Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
11
|
Zhu X, Chen Z, Ai H. Mechanistic insight into the tautomerization of histidine initiated by water-catalyzed N-H and C-H cleavages. J Mol Model 2022; 28:325. [PMID: 36136156 DOI: 10.1007/s00894-022-05222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 10/14/2022]
Abstract
The N-H and C-H activation is of great significance in organic chemistry and chemical industry fields, especially, in the utilization of petroleum raw materials. High NδH (tautomer of natural histidine) content would increase Alzheimer's disease risk. To inhibit this and improve the activation of N-H and C-H bonds, the isomerization mechanism from NδH to NεH of histidine-containing dipeptide catalyzed by water cluster was explored. The results discovered that water cluster assists this reaction by reducing the activation energies from 68.20 to 9.60 kcal mol-1, and its size not only affects the reaction rate but also determines the reaction pathway in a degree. Moreover, water cluster, taken as a potential green catalyst, is more effective on the reactions involving N-H and C-H bond cleavages than reported common toxic organometallic compounds and has different catalytic mechanisms. This work also provides some theoretical guidance for the modulation of Alzheimer's disease induced by histidine isomerization.
Collapse
Affiliation(s)
- Xueying Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Zijiao Chen
- Institute of Science and Technology, Xinjiang University, Aksu, 843100, People's Republic of China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
12
|
Hudecová J, Kapitán J, Dračínský M, Michal P, Profant V, Bouř P. Structure of Zinc and Nickel Histidine Complexes in Solution Revealed by Molecular Dynamics and Raman Optical Activity. Chemistry 2022; 28:e202202045. [DOI: 10.1002/chem.202202045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jana Hudecová
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16000 Prague Czech Republic
- Department of Optics Palacký University 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Josef Kapitán
- Department of Optics Palacký University 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16000 Prague Czech Republic
| | - Pavel Michal
- Department of Optics Palacký University 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Václav Profant
- Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Prague Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry Academy of Sciences Flemingovo náměstí 2 16000 Prague Czech Republic
| |
Collapse
|
13
|
El-Meligy A, El-Demerdash SH, Abdel-Rahman MA, Mahmoud MAM, Taketsugu T, El-Nahas AM. Structures, Energetics, and Spectra of (NH) and (OH) Tautomers of 2-(2-Hydroxyphenyl)-1-azaazulene: A Density Functional Theory/Time-Dependent Density Functional Theory Study. ACS OMEGA 2022; 7:14222-14238. [PMID: 35559155 PMCID: PMC9089341 DOI: 10.1021/acsomega.2c00866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Tautomerization of 2-(2-hydroxyphenyl)-1-azaazulene (2OHPhAZ) in the gas phase and ethanol has been studied using B3LYP, M06-2X, and ωB97XD density functional theory (DFT) with different basis sets. For more accurate data, energies were refined at CCSD(T)/6-311++G(2d,2p) in the gas phase. Nuclear magnetic resonance (NMR), aromaticity, Fukui functions, acidity, and basicity were also calculated and compared with experimental data. Time-dependent density functional theory (TDDFT)-solvation model based on density (TDDFT-SMD) calculations in acetonitrile have been utilized for the simulation of UV-vis electronic spectra. In addition, electronic structures of the investigated system have been discussed. The results reveal that the enol form (2OHPhAZ) is thermodynamically and kinetically stable relative to the keto tautomer (2OPhAZ) and different rotamers (2OHPhAZ-R1:R3) in the gas phase and ethanol. A comparison with the experiment illustrates a good agreement and supports the computational findings.
Collapse
Affiliation(s)
- Asmaa
B. El-Meligy
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin
El-Kom 32512, Egypt
| | | | | | - Mohamed A. M. Mahmoud
- Basic
Sciences Department, Tanta Higher Institute
of Engineering and Technology, Tanta 31511, Egypt
| | - Tetsuya Taketsugu
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- Institute
for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido
University, Sapporo 060-0810, Japan
| | - Ahmed M. El-Nahas
- Chemistry
Department, Faculty of Science, Menoufia
University, Shebin
El-Kom 32512, Egypt
| |
Collapse
|
14
|
Salimi A, Chatterjee S, Lee JY. Mechanistic Insights into the Polymorphic Associations and Cross-Seeding of Aβ and hIAPP in the Presence of Histidine Tautomerism: An All-Atom Molecular Dynamic Study. Int J Mol Sci 2022; 23:1930. [PMID: 35216047 PMCID: PMC8878669 DOI: 10.3390/ijms23041930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Hundreds of millions of people around the world have been affected by Type 2 diabetes (T2D) which is a metabolic disorder. Clinical research has revealed T2D as a possible risk factor for Alzheimer's disease (AD) development (and vice versa). Amyloid-β (Aβ) and human islet amyloid polypeptide are the main pathological species in AD and T2D, respectively. However, the mechanisms by which these two amyloidogenic peptides co-aggregate are largely uninvestigated. Herein, for the first time, we present the cross-seeding between Amylin1-37 and Aβ40 considering the particular effect of the histidine tautomerism at atomic resolution applying the all-atom molecular dynamics (MD) simulations for heterodimeric complexes. The results via random seed MD simulations indicated that the Aβ40(δδδ) isomer in cross-talking with Islet(ε) and Islet(δ) isomers could retain or increase the β-sheet content in its structure that may make it more prone to further aggregation and exhibit higher toxicity. The other tautomeric isomers which initially did not have a β-sheet structure in their monomeric forms did not show any generated β-sheet, except for one seed of the Islet(ε) and Aβ40(εεε) heterodimers complex that displayed a small amount of formed β-sheet. This computational research may provide a different point of view to examine all possible parameters that may contribute to the development of AD and T2D and provide a better understanding of the pathological link between these two severe diseases.
Collapse
Affiliation(s)
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea; (A.S.); (S.C.)
| |
Collapse
|
15
|
Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem 2022; 94:1003-1010. [PMID: 34962759 PMCID: PMC8787799 DOI: 10.1021/acs.analchem.1c03902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, we use diethylpyrocarbonate (DEPC)-based covalent labeling together with LC-MS/MS analysis to distinguish the two sidechain tautomers of histidine residues in peptides and proteins. From labeling experiments on model peptides, we demonstrate that DEPC reacts equally with both tautomeric forms to produce chemically different products with distinct dissociation patterns and LC retention times, allowing the ratios of the two tautomers to be determined in peptides and proteins. Upon measuring the tautomer ratios of several histidine residues in myoglobin, we find good agreement with previous 2D NMR data on this protein. Because our DEPC labeling/MS approach is simpler, faster, and more precise than 2D NMR, our method will be a valuable way to determine how protein structure enforces histidine sidechain tautomerization. Because the tautomeric state of histidine residues is often important for protein structure and function, the ability of DEPC labeling/MS to distinguish histidine tautomers should equip researchers with a tool to understand the histidine residue structure and function more deeply in proteins.
Collapse
|
16
|
Chatterjee S, Salimi A, Lee JY. Unraveling the Histidine Tautomerism Effect on the Initial Stages of Prion Misfolding: New Insights from a Computational Perspective. ACS Chem Neurosci 2021; 12:3203-3213. [PMID: 34382391 DOI: 10.1021/acschemneuro.1c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aggregation and structural conversion of normal prion peptide (PrPC) into the pathogenic scrapie form (PrPSc), which can act as a seed to enhance prion amyloid fiber formation, is believed to be a crucial event in prionopathies. Previous research suggests that the prion monomer may play an important role in oligomer generation during disease pathogenesis. In the present study, extensive replica-exchange molecular dynamics (REMD) simulations were conducted to explore the conformational characteristics of the huPrP (125-160) monomer under the histidine tautomerism effect. Investigating the structural characteristics and fibrilization process is challenging because two histidine tautomers [Nε2-H (ε) and Nδ1-H (δ)] can occur in the open neutral state. Molecular dynamics (MD) simulation outcomes have shown that the toxic εδ and δδ isomer (containing several and broader local minima) had the highest α-helix structures, with contents of 21.11% and 21.01%, respectively, and may have a strong influence on the organizational behavior of a monomeric prion. The amino acids aspartate 20 (D20)-asparagine 29 (N29) and isoleucine 15 (I15)-histidine 16 (H16), D20-arginine 27 (R27) as well as N29 formed α-helix with the highest probabilities in the δδ and εδ isomer, accordingly. On the basis of our findings, we propose the histidine tautomerization hypothesis as a new prion accumulation mechanism, which may exist to induce the formation of prion accumulates. Overall, our tautomerism hypothesis constitutes a promising perspective for enhancing understanding of prion disease pathobiology and may help in the design of a good inhibitor.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
17
|
Salimi A, Chatterjee S, Yong Lee J. Histidine Tautomerism Driving Human Islet Amyloid Polypeptide Aggregation in the Early Stages of Diabetes Mellitus Progression: Insight at the Atomistic Level. Chem Asian J 2021; 16:2453-2462. [PMID: 34231327 DOI: 10.1002/asia.202100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Early oligomerization of human islet amyloid polypeptide (hIAPP), which is accountable for β-cell death, has been implicated in the progression of type 2 diabetes mellitus. Some researches have shown the connection between hIAPP and Alzheimer's disease as well. However, the mechanism of peptide accumulation and associated cytotoxicity remains unclear. Due to the unique properties and significant role of histidine in protein sequences, here for the first time, the tautomeric effect of histidine at the early stages of amylin misfolding was investigated via molecular dynamics simulations. Considering Tau and Pi tautomeric forms of histidine (Tau and Pi tautomers are denoted as ϵ and δ, respectively), simulations were performed on two possible isomers of amylin. Our analysis revealed a higher probability of transient α-helix generation in the δ isomer in monomeric form. In dimeric forms, the δδ and δϵ conformations showed an elevated amount of α-helix and lower coil in comparison to the ϵϵ dimer. Due to the significant role of α-helix in membrane disruption and transition to β-sheet structure, these results may imply a noticeable contribution of the δ isomer and the δδ and δϵ dimers rather than ϵ and ϵϵ conformations in the early stages of diabetes initiation. Our results may aid in elucidating the hIAPP self-association process in the etiology of amyloidosis.
Collapse
Affiliation(s)
- Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
18
|
Transition dipole moment change through proton transfer in 2-mercapto-6-phenylpyridine-3-carbonitrile, computational chemistry study. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Abyar F, Novak I. A comprehensive spectroscopic study of urocanic acid: OVGF and EOM-CCSD approaches. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Chatterjee S, Salimi A, Lee JY. Intrinsic Origin of Tau Protein Aggregation: Effects of Histidine Tautomerism on Tau 267-312 Monomer. ACS Chem Neurosci 2020; 11:3814-3822. [PMID: 33147004 DOI: 10.1021/acschemneuro.0c00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Histidine tautomerism is considered a crucial component that affects the constitutional and accumulation characteristics of the tau267-312 monomer in the neutral condition, which are connected with the pathobiology of Alzheimer's disease (AD). Interpreting the organizational characteristics and accumulation procedure is a challenging task because two tautomeric conformations (the Nε-H or Nδ-H tautomer) can occur in the open neutral condition. In the current work, replica-exchange molecular dynamics (REMD) simulations were performed to investigate the structural properties of the tau267-312 monomer considering the histidine tautomeric effect. Based on the simulation outcomes, the histidine 268 (H268) (δ)-H299 (δ) (δδ) isomer had the highest β-sheet content with a value of 26.2%, which acquires a sheet-governing toxic conformer with the first abundant conformational state of 22.6%. In addition, δδ displayed notable antiparallel β-sheets between lysine 8 (K8)-asparagine 13 (N13) and valine 40 (V40)-tyrosine 44 (Y44) as well as between K32-H33 and V40-Y44 (β-meander supersecondary structure), indicating this tautomeric isomer may exist to stimulate tau oligomerization. Furthermore, H299 was found to play an essential role in the structural stabilization of the δδ isomer compared with H268. The present research will aid in obtaining insight into the organizational and accumulation properties of tau protein in the presence of histidine tautomerism to control AD.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
21
|
Deng H, Ma Y, Ren WS, Vuong VQ, Qian P, Guo H. Structure and Dynamics of the Reactive State for the Histidine Methylation Process and Catalytic Mechanism of SETD3: Insights from Quantum Mechanics/Molecular Mechanics Investigation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Deng
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Yue Ma
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Wan-Sheng Ren
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Van Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University, Taian 271018, P. R. China
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
22
|
Sharifian A, Abyar F, Behjatmanesh-Ardakani R. Electronic structure and characterization of the spectra of trans/cis tautomers of urocanic acid isomers: A diagnostic tool. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Nam Y, Kalathingal M, Saito S, Lee JY. Tautomeric Effect of Histidine on β-Sheet Formation of Amyloid Beta 1-40: 2D-IR Simulations. Biophys J 2020; 119:831-842. [PMID: 32730791 DOI: 10.1016/j.bpj.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Histidine state (protonated or δ or ε tautomer) has been considered the origin of abnormal misfolding and aggregation of β-amyloid (Aβ). Our previous studies reported that the δδδ isomer of Aβ (1-40) has a greater propensity for β-sheet conformation compared to other isomers. However, direct proof of the tautomeric effect has not been reported. In this context, we calculated histidine site-specific two-dimensional infrared spectroscopy of the δδδ, εεε, and πππ (all protonated histidine) systems within the framework of classical molecular dynamics simulations aiming at connecting our previous results with the current experimental observations. Our results showed that β-sheet formation is favored for the δδδ and πππ tautomers compared with the εεε tautomer, consistent with our previous studies. This result was further supported by contact map analyses and the strength of dipole coupling between the amide-I bonds of each residue. The two-dimensional infrared diagonal trace for each tautomer included three distinctive spectrally resolvable peaks near 1680, 1686, and 1693 cm-1, as was also observed for histidine dipeptides. However, the peak positions at His6, His13, and His14 did not show a consensus trend with the histidine or protonation state but were instead affected by the presence of surrounding hydrogen bonds. Our study provides a deeper insight into the influence of tautomerism and protonation of histidine residues in Aβ (1-40) on amyloid misfolding and provides a connection between our previous simulations and experimental observations.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea; Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | | | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Japan; The Graduate University for Advanced Studies, Myodaiji, Okazaki, Japan.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
24
|
Microsolvation of Histidine—A Theoretical Study of Intermolecular Interactions Based on AIM and SAPT Approaches. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Histidine is unique among amino acids because of its rich tautomeric properties. It participates in essential enzymatic centers, such as catalytic triads. The main aim of the study is the modeling of the change of molecular properties between the gas phase and solution using microsolvation models. We investigate histidine in its three protonation states, microsolvated with 1:6 water molecules. These clusters are studied computationally, in the gas phase and with water as a solvent (Polarizable Continuum Model, PCM) within the Density Functional Theory (DFT) framework. The structural analysis reveals the presence of intra- and intermolecular hydrogen bonds. The Atoms-in-Molecules (AIM) theory is employed to determine the impact of solvation on the charge flow within the histidine, with emphasis on the similarity of the two imidazole nitrogen atoms—topologically not equivalent, they are revealed as electronically similar due to the heterocyclic ring aromaticity. Finally, the Symmetry-Adapted Perturbation Theory (SAPT) is used to examine the stability of the microsolvation clusters. While electrostatic and exchange terms dominate in magnitude over polarization and dispersion, the sum of electrostatic and exchange term is close to zero. This makes polarization the factor governing the actual interaction energy. The most important finding of this study is that even with microsolvation, the polarization induced by the presence of implicit solvent is still significant. Therefore, we recommend combined approaches, mixing explicit water molecules with implicit models.
Collapse
|
25
|
Cai T, Hatano A, Kanatsu K, Tomita T. Histidine 131 in presenilin 1 is the pH-sensitive residue that causes the increase in Aβ42 level in acidic pH. J Biochem 2019; 167:463-471. [DOI: 10.1093/jb/mvz110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022] Open
Abstract
AbstractAlzheimer disease (AD) is the most common neurodegenerative disease worldwide. The pathological hallmark of AD is the presence of senile plaques in the brain, which are accumulations of amyloid-β peptide (Aβ) ending at the 42nd residue (i.e. Aβ42), which is produced through multistep cleavage by γ-secretase. Thus, methods to regulate γ-secretase activity to attenuate the production of Aβ42 are in urgent demand towards the development of treatments for AD. We and others have demonstrated that γ-secretase activity is affected by its localization and ambient environment. In particular, an increase in Aβ42 production is correlated with the intracellular transport of γ-secretase and endosomal maturation-dependent luminal acidification. In this study, we focused on the mechanism by which γ-secretase affects Aβ42 production together with alterations in pH. Histidine is known to function as a pH sensor in many proteins, to regulate their activities through the protonation state of the imidazole side chain. Among the histidines facing the luminal side of presenilin (PS) 1, which is the catalytic subunit of γ-secretase, point mutations at H131 had no effect on the Aβ42 production ratio in an acidic environment. We also observed an increase in Aβ42 ratio when histidine was introduced into N137 of PS2, which is the corresponding residue of H131 in PS1. These results indicated that H131 serves as the pH sensor in PS1, which contains γ-secretase, to regulate Aβ42 production depending on the luminal pH. Our findings provide new insights into therapeutic strategies for AD targeting endosomes or the intracellular transport of γ-secretase.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Aki Hatano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunihiko Kanatsu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Martin OA, Vorobjev Y, Scheraga HA, Vila JA. Outline of an experimental design aimed to detect a protein A mirror image in solution. PEERJ PHYSICAL CHEMISTRY 2019; 1. [PMID: 34079958 DOI: 10.7717/peerj-pchem.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is abundant theoretical evidence indicating that a mirror image of Protein A may occur during the protein folding process. However, as to whether such mirror image exists in solution is an unsolved issue. Here we provide outline of an experimental design aimed to detect the mirror image of Protein A in solution. The proposal is based on computational simulations indicating that the use of a mutant of protein A, namely Q10H, could be used to detect the mirror image conformation in solution. Our results indicate that the native conformation of the protein A should have a pKa, for the Q10H mutant, at ≈6.2, while the mirror-image conformation should have a pKa close to ≈7.3. Naturally, if all the population is in the native state for the Q10H mutant, the pKa should be ≈6.2, while, if all are in the mirror-image state, it would be ≈7.3, and, if it is a mixture, the pKa should be largerthan 6.2, presumably in proportion to the mirror population. In addition, evidence is provided indicating the tautomeric distribution of H10 must also change between the native and mirror conformations. Although this may not be completely relevant for the purpose of determining whether the protein A mirror image exists in solution, it could provide valuable information to validate the pKa findings. We hope this proposal will foster experimental work on this problem either by direct application of our proposed experimental design or serving as inspiration and motivation for other experiments.
Collapse
Affiliation(s)
- Osvaldo A Martin
- Instituto de Matemática Aplicada San Luis, UNSL-CONICET, San Luis, Argentina
| | - Yury Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Harold A Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States
| | - Jorge A Vila
- Instituto de Matemática Aplicada San Luis, UNSL-CONICET, San Luis, Argentina.,Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States
| |
Collapse
|
27
|
Mandal S, Poria DK, Seth DK, Ray PS, Gupta P. Cyclometalated rhodium and iridium complexes with imidazole containing Schiff bases: Synthesis, structure and cellular imaging. Polyhedron 2019; 73:12-21. [PMID: 31274947 PMCID: PMC6606443 DOI: 10.1016/j.poly.2014.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cyclometalated rhodium(III) and iridium(III) complexes (1-4) of two Schiff base ligands L1 and L2 with the general formula [M(ppy)2(Ln)]Cl {M = Rh, Ir; ppy = 2-phenylpyridine; n = 1, 2; L = Schiff base ligand} have been synthesized. The new ligands and the complexes have been characterized with spectroscopic techniques. Electrochemistry of the complexes revealed anodic behavior, corresponding to an M(III) to M(IV) oxidation. The X-ray crystal structures of complexes 2 and 4 have also been determined to interpret the coordination behavior of the complexes. Photophysical study shows that all the complexes display fluorescence at room temperature with quantum yield of about 3 × 10-2 to 5 × 10-2. The electronic absorption spectra of all the complexes fit well with the computational studies. Cellular imaging studies were done with the newly synthesized complexes. To the best of our knowledge, this is the first report of organometallic complexes of rhodium(III) and iridium(III) with Schiff base ligands explored for cellular imaging. Emphasis of this work lies on the structural features, photophysical behavior, cellular uptake and imaging of the fluorescent transition metal complexes.
Collapse
Affiliation(s)
- Soumik Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur campus, Mohanpur, Nadia 741252, West Bengal, India
| | - Dipak K. Poria
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur, Nadia 741252, West Bengal, India
| | - Dipravath K. Seth
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Jadavpur 700032, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur, Nadia 741252, West Bengal, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur campus, Mohanpur, Nadia 741252, West Bengal, India
| |
Collapse
|
28
|
Raum HN, Weininger U. Experimental pK a Value Determination of All Ionizable Groups of a Hyperstable Protein. Chembiochem 2019; 20:922-930. [PMID: 30511779 PMCID: PMC6619245 DOI: 10.1002/cbic.201800628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/18/2022]
Abstract
Electrostatic interactions significantly contribute to the stability and function of proteins. The stabilizing or destabilizing effect of local charge is reflected in the perturbation of the pKa value of an ionizable group from the intrinsic pKa value. Herein, the charge network of a hyperstable dimeric protein (ribbon-helix-helix (rhh) protein from plasmid pRN1 from Sulfolobus islandicus) is studied through experimental determination of the pKa values of all ionizable groups. Transitions were monitored by multiple NMR signals per ionizable group between pH 0 and 12.5, prior to a global analysis, which accounted for the effects of neighboring residues. It is found that for several residues involved in salt bridges (four Asp and one Lys) the pKa values are shifted in favor of the charged state. Furthermore, the pKa values of residues C40 and Y47, both located in the hydrophobic dimer interface, are shifted beyond 13.7. The necessary energy for such a shift is about two-thirds of the total stability of the protein, which confirms the importance of the hydrophobic core to the overall stability of the rhh protein.
Collapse
Affiliation(s)
- Heiner N. Raum
- Institute of PhysicsBiophysicsMartin-Luther-University Halle-Wittenberg06120Halle/SaaleGermany
| | - Ulrich Weininger
- Institute of PhysicsBiophysicsMartin-Luther-University Halle-Wittenberg06120Halle/SaaleGermany
| |
Collapse
|
29
|
Gad SF, El-Demerdash SH, El-Mehasseb IM, El-Nahas AM. Structure, stability and conversions of tautomers and rotamers of azulene-based uracil analogue. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Araya-Sibaja AM, Urgellés M, Vásquez-Castro F, Vargas-Huertas F, Vega-Baudrit JR, Guillén-Girón T, Navarro-Hoyos M, Cuffini SL. The effect of solution environment and the electrostatic factor on the crystallisation of desmotropes of irbesartan. RSC Adv 2019; 9:5244-5250. [PMID: 35514656 PMCID: PMC9060688 DOI: 10.1039/c8ra10146a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
The experimental conditions necessary for stabilising irbesartan (IBS) tautomers in solution and selectively obtaining the desmotropic crystal forms are presented herein. 1H and 2H tautomers were stabilized in specific solution conditions and the 2H-tetrazole⋯imidazole interaction was confirmed by solution-state NMR. The results showed that highly polar and polarisable solvents (higher values of the electrostatic factor (EF)) lead to the crystallisation of IBS form B. Furthermore, the variations of pH in methanol, in turn, determined the crystallisation of desmotropes A and/or B. The experimental conditions necessary for stabilising irbesartan (IBS) tautomers in solution and selectively obtaining the desmotropic crystal forms are presented herein.![]()
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE 1174-1200 Pavas San José Costa Rica.,Centro de Investigación y Extensión en Materiales, Escuela de Ciencia e Ingeniería de los Materiales, Tecnológico de Costa Rica Cartago 159-7050 Costa Rica.,Escuela de Química, Universidad de Costa Rica San Pedro de Montes de Oca 2060 San José Costa Rica
| | - Mariola Urgellés
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE 1174-1200 Pavas San José Costa Rica.,Escuela de Ingeniería Química, Universidad de Costa Rica San Pedro de Montes de Oca 2060 San José Costa Rica
| | - Felipe Vásquez-Castro
- Escuela de Química, Universidad de Costa Rica San Pedro de Montes de Oca 2060 San José Costa Rica
| | - Felipe Vargas-Huertas
- Escuela de Química, Universidad de Costa Rica San Pedro de Montes de Oca 2060 San José Costa Rica
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE 1174-1200 Pavas San José Costa Rica.,Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica Heredia 86-3000 Costa Rica
| | - Teodolito Guillén-Girón
- Centro de Investigación y Extensión en Materiales, Escuela de Ciencia e Ingeniería de los Materiales, Tecnológico de Costa Rica Cartago 159-7050 Costa Rica
| | - Mirtha Navarro-Hoyos
- Escuela de Química, Universidad de Costa Rica San Pedro de Montes de Oca 2060 San José Costa Rica
| | - Silvia L Cuffini
- Instituto de Ciência e Técnica, Universidade Federal de São Paulo São Paulo São José dos Campos Brazil
| |
Collapse
|
31
|
Mei L, Xu K, Zhai Z, He S, Zhu T, Zhong W. Doxorubicin-reinforced supramolecular hydrogels of RGD-derived peptide conjugates for pH-responsive drug delivery. Org Biomol Chem 2019; 17:3853-3860. [DOI: 10.1039/c9ob00046a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Doxorubicin reinforced the self-assembly of RGD-derived peptide conjugates responsive to mild acidity.
Collapse
Affiliation(s)
- Leixia Mei
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Keming Xu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- Key Laboratory of Biomedical Functional Materials
| | - Ziran Zhai
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Suyun He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Tingting Zhu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
32
|
Mei L, He S, Liu Z, Xu K, Zhong W. Co-assembled supramolecular hydrogels of doxorubicin and indomethacin-derived peptide conjugates for synergistic inhibition of cancer cell growth. Chem Commun (Camb) 2019; 55:4411-4414. [DOI: 10.1039/c9cc00590k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-assembly of doxorubicin and a NSAID-based self-assembling peptide conjugate promotes synergistic inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Leixia Mei
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Suyun He
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Ziqi Liu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
| | - Keming Xu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Biomedical Functional Materials
| | - Wenying Zhong
- Department of Chemistry
- China Pharmaceutical University
- Nanjing
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
33
|
Vila JA, Arnautova YA. 13C Chemical Shifts in Proteins: A Rich Source of Encoded Structural Information. SPRINGER SERIES ON BIO- AND NEUROSYSTEMS 2019. [PMCID: PMC7123919 DOI: 10.1007/978-3-319-95843-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the formidable progress in Nuclear Magnetic Resonance (NMR) spectroscopy, quality assessment of NMR-derived structures remains as an important problem. Thus, validation of protein structures is essential for the spectroscopists, since it could enable them to detect structural flaws and potentially guide their efforts in further refinement. Moreover, availability of accurate and efficient validation tools would help molecular biologists and computational chemists to evaluate quality of available experimental structures and to select a protein model which is the most suitable for a given scientific problem. The 13Cα nuclei are ubiquitous in proteins, moreover, their shieldings are easily obtainable from NMR experiments and represent a rich source of encoded structural information that makes 13Cα chemical shifts an attractive candidate for use in computational methods aimed at determination and validation of protein structures. In this chapter, the basis of a novel methodology of computing, at the quantum chemical level of theory, the 13Cα shielding for the amino acid residues in proteins is described. We also identify and examine the main factors affecting the 13Cα-shielding computation. Finally, we illustrate how the information encoded in the 13C chemical shifts can be used for a number of applications, viz., from protein structure prediction of both α-helical and β-sheet conformations, to determination of the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH or to accurate detection of structural flaws, at a residue-level, in NMR-determined protein models.
Collapse
|
34
|
Vorobjev YN, Scheraga HA, Vila JA. A comprehensive analysis of the computed tautomer fractions of the imidazole ring of histidines in Loligo vulgaris. J Biomol Struct Dyn 2018; 36:3094-3105. [PMID: 28884632 PMCID: PMC6102090 DOI: 10.1080/07391102.2017.1377636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
A recently introduced electrostatic-based method to determine the pKa values of ionizable residues and fractions of ionized and tautomeric forms of histidine (His) and acid residues in proteins, at a given fixed pH, is applied here to the analysis of a His-rich protein, namely Loligo vulgaris (pdb id 1E1A), a 314-residue all-β protein. The average tautomeric fractions for the imidazole ring of each of the six histidines in the sequence were computed using an approach that includes, but is not limited to, molecular dynamic simulations coupled with calculations of the ionization states for all 94 ionizable residues of protein 1E1A in water at pH 6.5 and 300 K. The electrostatic-calculated tautomeric fractions of the imidazole ring of His were compared with predictions obtained from an existent NMR-based methodology. Our results indicate that: (i) the averaged electrostatic-based tautomeric predictions for the imidazole ring of all histidines of Loligo vulgaris are dominated by the Nε2-H rather than the Nδ1-H form, although such preferences from the NMR-based methodology are not so well defined; (ii) the computed average absolute difference between the electrostatic- and the NMR-based tautomeric predictions among all six histidines vary among 0% to 17%; (iii) for the His showing the largest fraction of the neutral form (81%), the absolute difference between the NMR- and electrostatic-based computed tautomeric predictions is only 3%; and (iv) the tautomeric predictions for the imidazole ring of His computed with the NMR-based methodology are stable within a certain, well-defined, range of variations of a tautomer-related parameter.
Collapse
Affiliation(s)
- Yury N Vorobjev
- a Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Science , Lavrentiev Avenue 8, Novosibirsk 630090 , Russia
- b Department of Chemistry , Novosibirsk State University , Novosibirsk 630090 , Russia
- c Baker Laboratory of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853-1301 , USA
| | - Harold A Scheraga
- c Baker Laboratory of Chemistry and Chemical Biology , Cornell University , Ithaca , NY 14853-1301 , USA
| | - Jorge A Vila
- d IMASL-CONICET , Universidad Nacional de San Luis , Ejército de Los Andes 950, 5700 San Luis , Argentina
| |
Collapse
|
35
|
Vorobjev YN, Scheraga HA, Vila JA. Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins. J Biomol Struct Dyn 2018; 36:561-574. [PMID: 28132613 PMCID: PMC6191177 DOI: 10.1080/07391102.2017.1288169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/20/2017] [Indexed: 10/25/2022]
Abstract
A computational method, to predict the pKa values of the ionizable residues Asp, Glu, His, Tyr, and Lys of proteins, is presented here. Calculation of the electrostatic free-energy of the proteins is based on an efficient version of a continuum dielectric electrostatic model. The conformational flexibility of the protein is taken into account by carrying out molecular dynamics simulations of 10 ns in implicit water. The accuracy of the proposed method of calculation of pKa values is estimated from a test set of experimental pKa data for 297 ionizable residues from 34 proteins. The pKa-prediction test shows that, on average, 57, 86, and 95% of all predictions have an error lower than 0.5, 1.0, and 1.5 pKa units, respectively. This work contributes to our general understanding of the importance of protein flexibility for an accurate computation of pKa, providing critical insight about the significance of the multiple neutral states of acid and histidine residues for pKa-prediction, and may spur significant progress in our effort to develop a fast and accurate electrostatic-based method for pKa-predictions of proteins as a function of pH.
Collapse
Affiliation(s)
- Yury N. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 8, Novosibirsk 630090
- Novosibirsk State University, Novosibirsk 630090, Russia
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301
| | - Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
36
|
Xiao J, Melvin RL, Salsbury FR. Mechanistic insights into thrombin's switch between "slow" and "fast" forms. Phys Chem Chem Phys 2017; 19:24522-24533. [PMID: 28849814 PMCID: PMC5719506 DOI: 10.1039/c7cp03671j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thrombin is a multifunctional enzyme that plays an important role in blood coagulation, cell growth, and metastasis. Depending upon the binding of sodium ions, thrombin presents significantly different enzymatic activities. In the environment with sodium ions, thrombin is highly active in cleaving the coagulated substrates and this is referred to as the "fast" form; in the environment without sodium ions, thrombin turns catalytically less active and is in the "slow" form. Although many experimental studies over the last two decades have attempted to reveal the structural and kinetic differences between these two forms, it remains vague and disputed how the functional switch between the "fast" and "slow" forms is mediated by Na+ cations. In this work, we employ microsecond-scale all-atom molecular dynamics simulations to investigate the differences in the structural ensembles in sodium-bound/unbound and potassium-bound/unbound thrombin. Our calculations indicate that the regulatory regions, including the 60s, γ loops, and exosite I and II, are primarily affected by both the bound and unbound cations. Conformational free energy surfaces, estimated from principal component analysis, further reveal the existence of multiple conformational states. The binding of a cation introduces changes in the distribution of these states. Through comparisons with potassium-binding, the binding of sodium ions appears to shift the population toward conformational states that might be catalytically favorable. Our study of thrombin in the presence of sodium/potassium ions suggests Na+-mediated generalized allostery is the mechanism of thrombin's functional switch between the "fast" and "slow" forms.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston Salem, NC, USA.
| | | | | |
Collapse
|
37
|
Weininger U. Site-selective 13C labeling of histidine and tryptophan using ribose. JOURNAL OF BIOMOLECULAR NMR 2017; 69:23-30. [PMID: 28856561 PMCID: PMC5626788 DOI: 10.1007/s10858-017-0130-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Experimental studies on protein dynamics at atomic resolution by NMR-spectroscopy in solution require isolated 1H-X spin pairs. This is the default scenario in standard 1H-15N backbone experiments. Side chain dynamic experiments, which allow to study specific local processes like proton-transfer, or tautomerization, require isolated 1H-13C sites which must be produced by site-selective 13C labeling. In the most general way this is achieved by using site-selectively 13C-enriched glucose as the carbon source in bacterial expression systems. Here we systematically investigate the use of site-selectively 13C-enriched ribose as a suitable precursor for 13C labeled histidines and tryptophans. The 13C incorporation in nearly all sites of all 20 amino acids was quantified and compared to glucose based labeling. In general the ribose approach results in more selective labeling. 1-13C ribose exclusively labels His δ2 and Trp δ1 in aromatic side chains and helps to resolve possible overlap problems. The incorporation yield is however only 37% in total and 72% compared to yields of 2-13C glucose. A combined approach of 1-13C ribose and 2-13C glucose maximizes 13C incorporation to 75% in total and 150% compared to 2-13C glucose only. Further histidine positions β, α and CO become significantly labeled at around 50% in total by 3-, 4- or 5-13C ribose. Interestingly backbone CO of Gly, Ala, Cys, Ser, Val, Phe and Tyr are labeled at 40-50% in total with 3-13C ribose, compared to 5% and below for 1-13C and 2-13C glucose. Using ribose instead of glucose as a source for site-selective 13C labeling enables a very selective labeling of certain positions and thereby expanding the toolbox for customized isotope labeling of amino-acids.
Collapse
Affiliation(s)
- Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P. O. Box 124, 22100, Lund, Sweden.
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
38
|
Dahanayake JN, Kasireddy C, Ellis JM, Hildebrandt D, Hull OA, Karnes JP, Morlan D, Mitchell-Koch KR. Evaluating electronic structure methods for accurate calculation of 19 F chemical shifts in fluorinated amino acids. J Comput Chem 2017; 38:2605-2617. [PMID: 28833293 DOI: 10.1002/jcc.24919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/16/2017] [Accepted: 08/03/2017] [Indexed: 01/17/2023]
Abstract
The ability of electronic structure methods (11 density functionals, HF, and MP2 calculations; two basis sets and two solvation models) to accurately calculate the 19 F chemical shifts of 31 structures of fluorinated amino acids and analogues with known experimental 19 F NMR spectra has been evaluated. For this task, BHandHLYP, ωB97X, and Hartree-Fock with scaling factors (provided within) are most accurate. Additionally, the accuracy of methods to calculate relative changes in fluorine shielding across 23 sets of structural variants, such as zwitterionic amino acids versus side chains only, was also determined. This latter criterion may be a better indicator of reliable methods for the ultimate goal of assigning and interpreting chemical shifts of fluorinated amino acids in proteins. It was found that MP2 and M062X calculations most accurately assess changes in shielding among analogues. These results serve as a guide for computational developments to calculate 19 F chemical shifts in biomolecular environments. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jayangika N Dahanayake
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Derek Hildebrandt
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Olivia A Hull
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Joseph P Karnes
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Dylan Morlan
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, Kansas, 67260-0051
| |
Collapse
|
39
|
Vila JA, Scheraga HA. Limiting Values of the one-bond C-H Spin-Spin Coupling Constants of the Imidazole Ring of Histidine at High-pH. J Mol Struct 2017; 1134:576-581. [PMID: 28919647 PMCID: PMC5596661 DOI: 10.1016/j.molstruc.2017.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Assessment of the relative amounts of the forms of the imidazole ring of Histidine (His), namely the protonated (H+) and the tautomeric Nε2-H and Nδ1-H forms, respectively, is a challenging task in NMR spectroscopy. Indeed, their determination by direct observation of the 15N and 13C chemical shifts or the one-bond C-H, 1JCH, Spin-Spin Coupling Constants (SSCC) requires knowledge of the "canonical" limiting values of these forms in which each one is present to the extent of 100%. In particular, at high-pH, an accurate determination of these "canonical" limiting values, at which the tautomeric forms of His coexist, is an elusive problem in NMR spectroscopy. Among different NMR-based approaches to treat this problem, we focus here on the computation, at the DFT level of theory, of the high-pH limiting value for the 1JCH SSCC of the imidazole ring of His. Solvent effects were considered by using the polarizable continuum model approach. The results of this computation suggest, first, that the value of 1JCε1H = 205 ± 1.0 Hz should be adopted as the canonical high-pH limiting value for this SSCC; second, the variation of 1JCε1H SSCC during tautomeric changes is minor, i.e., within ±1Hz; and, finally, the value of 1JCδ2H SSCC upon tautomeric changes is large (15 Hz) indicating that, at high-pH or for non-protonated His at any pH, the tautomeric fractions of the imidazole ring of His can be predicted accurately as a function of the observed value of 1JCδ2H SSCC.
Collapse
Affiliation(s)
- Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700-San Luis, Argentina
| | | |
Collapse
|
40
|
Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. The Biophysical Probes 2-fluorohistidine and 4-fluorohistidine: Spectroscopic Signatures and Molecular Properties. Sci Rep 2017; 7:42651. [PMID: 28198426 PMCID: PMC5309746 DOI: 10.1038/srep42651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Fluorinated amino acids serve as valuable biological probes, by reporting on local protein structure and dynamics through 19F NMR chemical shifts. 2-fluorohistidine and 4-fluorohistidine, studied here with DFT methods, have even more capabilities for biophysical studies, as their altered pKa values, relative to histidine, allow for studies of the role of proton transfer and tautomeric state in enzymatic mechanisms. Considering the two tautomeric forms of histidine, it was found that 2-fluorohistidine primarily forms the common (for histidine) τ-tautomer at neutral pH, while 4-fluorohistidine exclusively forms the less common π-tautomer. This suggests the two isomers of fluorohistidine can also serve as probes of tautomeric form within biomolecules, both by monitoring NMR chemical shifts and by potential perturbation of the tautomeric equilibrium within biomolecules. Fluorine also enables assignment of tautomeric states in crystal structures. The differences in experimental pKa values between the isomers was found to arise from solvation effects, providing insight into the polarization and molecular properties of each isomer. Results also encompass 13C and 19F NMR chemical shifts, from both tautomers of 2-fluorohistidine and 4-fluorohistidine in a number of different environments. This work can serve as a guide for interpretation of spectroscopic results in biophysical studies employing 2-fluorohistidine and 4-fluorohistidine.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, CV4 7AL, United States
| |
Collapse
|
41
|
Sohn WY, Habka S, Gloaguen E, Mons M. Unifying the microscopic picture of His-containing turns: from gas phase model peptides to crystallized proteins. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03058d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence in crystallized proteins of a local anchoring between the side chain of a His residue, located in the central position of a γ- or β-turn, and its local main chain environment, is assessed by the comparison of protein structures with relevant isolated model peptides.
Collapse
Affiliation(s)
- Woon Yong Sohn
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Sana Habka
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Eric Gloaguen
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Michel Mons
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| |
Collapse
|
42
|
Weininger U, Modig K, Geitner AJ, Schmidpeter PAM, Koch JR, Akke M. Dynamics of Aromatic Side Chains in the Active Site of FKBP12. Biochemistry 2016; 56:334-343. [DOI: 10.1021/acs.biochem.6b01157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ulrich Weininger
- Department
of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O.
Box 124, SE-22100 Lund, Sweden
- Institute
of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Department
of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O.
Box 124, SE-22100 Lund, Sweden
| | - Anne-Juliane Geitner
- Laboratorium
für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Philipp A. M. Schmidpeter
- Laboratorium
für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Johanna R. Koch
- Laboratorium
für Biochemie, Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Mikael Akke
- Department
of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, P.O.
Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
43
|
Kasireddy C, Ellis JM, Bann JG, Mitchell-Koch KR. Tautomeric stabilities of 4-fluorohistidine shed new light on mechanistic experiments with labeled ribonuclease A. Chem Phys Lett 2016; 666:58-61. [PMID: 28603294 DOI: 10.1016/j.cplett.2016.10.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ribonuclease A is the oldest model for studying enzymatic mechanisms, yet questions remain about proton transfer within the active site. Seminal work by Jackson et al. (Science, 1994) labeled Ribonuclease A with 4-fluorohistidine, concluding that active-site histidines act as general acids and bases. Calculations of 4-fluorohistidine indicate that the π-tautomer is predominant in all simulated environments (by ~17 kJ/mol), strongly suggesting that fluoro-labeled ribonuclease A functions with His119 in π-tautomer. The tautomeric form of His119 during proton transfer and tautomerism as a putative mechanistic step in wild-type RNase A remain open questions and should be considered in future mechanistic studies.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Jonathan M Ellis
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260-0051, United States
| |
Collapse
|
44
|
Shi H, Kang B, Lee JY. Tautomeric Effect of Histidine on the Monomeric Structure of Amyloid β-Peptide(1–40). J Phys Chem B 2016; 120:11405-11411. [DOI: 10.1021/acs.jpcb.6b08685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hu Shi
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- Department
of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jin Yong Lee
- Department
of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
45
|
Sharma M, Kumar D, Poluri KM. Elucidating the pH-Dependent Structural Transition of T7 Bacteriophage Endolysin. Biochemistry 2016; 55:4614-25. [PMID: 27513288 DOI: 10.1021/acs.biochem.6b00240] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bacteriophages are the most abundant and diverse biological entities on earth. Bacteriophage endolysins are unique peptidoglycan hydrolases and have huge potential as effective enzybiotics in various infectious models. T7 bacteriophage endolysin (T7L), also known as N-acetylmuramoyl-l-alanine amidase or T7 lysozyme, is a 17 kDa protein that lyses a range of Gram-negative bacteria by hydrolyzing the amide bond between N-acetylmuramoyl residues and the l-alanine of the peptidoglycan layer. Although the activity profiles of several of the T7 family members have been known for many years, the molecular basis for their pH-dependent differential activity is not clear. In this study, we explored the pH-induced structural, stability, and activity characteristics of T7L by applying a variety of biophysical techniques and protein nuclear magnetic resonance (NMR) spectroscopy. Our studies established a reversible structural transition of T7L below pH 6 and the formation of a partially denatured conformation at pH 3. This low-pH conformation is thermally stable and exposed its hydrophobic pockets. Further, NMR relaxation measurements and structural analysis unraveled that T7L is highly dynamic in its native state and a network of His residues are responsible for the observed pH-dependent conformational dynamics and transitions. As bacteriophage chimeric and engineered endolysins are being developed as novel therapeutics against multiple drug resistance pathogens, we believe that our results are of great help in designing these entities as broadband antimicrobial and/or antibacterial agents.
Collapse
Affiliation(s)
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS , Lucknow 226014, Uttar Pradesh, India
| | | |
Collapse
|
46
|
Garay PG, Martin OA, Scheraga HA, Vila JA. Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study. PeerJ 2016; 4:e2253. [PMID: 27547559 PMCID: PMC4963218 DOI: 10.7717/peerj.2253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/23/2016] [Indexed: 11/20/2022] Open
Abstract
Post-translational modifications of proteins expand the diversity of the proteome by several orders of magnitude and have a profound effect on several biological processes. Their detection by experimental methods is not free of limitations such as the amount of sample needed or the use of destructive procedures to obtain the sample. Certainly, new approaches are needed and, therefore, we explore here the feasibility of using (13)C chemical shifts of different nuclei to detect methylation, acetylation and glycosylation of protein residues by monitoring the deviation of the (13)C chemical shifts from the expected (mean) experimental value of the non-modified residue. As a proof-of-concept, we used (13)C chemical shifts, computed at the DFT-level of theory, to test this hypothesis. Moreover, as a validation test of this approach, we compare our theoretical computations of the (13)Cε chemical-shift values against existing experimental data, obtained from NMR spectroscopy, for methylated and acetylated lysine residues with good agreement within ∼1 ppm. Then, further use of this approach to select the most suitable (13)C-nucleus, with which to determine other modifications commonly seen, such as methylation of arginine and glycosylation of serine, asparagine and threonine, shows encouraging results.
Collapse
Affiliation(s)
- Pablo G. Garay
- IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Osvaldo A. Martin
- IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | | | - Jorge A. Vila
- IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
47
|
Miguel FB, Dantas JA, Amorim S, Andrade GFS, Costa LAS, Couri MRC. Synthesis, spectroscopic and computational characterization of the tautomerism of pyrazoline derivatives from chalcones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:318-326. [PMID: 26232575 DOI: 10.1016/j.saa.2015.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
In the present study a series of novel pyrazolines derivatives has been synthesized, and their structures assigned on the basis of FT-Raman, (1)H and (13)C NMR spectral data and computational DFT calculations. A joint computational study using B3LYP/6-311G(2d,2p) density functional theory and FT-Raman investigation on the tautomerism of 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carbothioamide and 3-(4-substituted-phenyl)-4,5-dihydro-5-(4-substituted-phenyl)pyrazole-1-carboxamide are presented. The structures were characterized as a minimum in the potential energy surface using DFT. The calculated Raman and NMR spectra were of such remarkable agreement to the experimental results that the equilibrium between tautomeric forms has been discussed in detail. Our study suggests the existence of tautomers, the carboxamide/carbothioamide group may tautomerize, in the solid state or in solution. Thermodynamic data calculated suggests that the R(CS)NH2 and R(CO)NH2 species are more stable than the R(CNH)SH and R(CNH)OH species. Additionally, results found for the (1)H NMR shifting, pointed out to which structure is present.
Collapse
Affiliation(s)
- Fábio Balbino Miguel
- NUPEQ - Núcleo Multifuncional de Pesquisas Químicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Juliana Arantes Dantas
- NUPEQ - Núcleo Multifuncional de Pesquisas Químicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Stefany Amorim
- NEEM - Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Gustavo F S Andrade
- NEEM - Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Luiz Antônio Sodré Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Mara Rubia Costa Couri
- NUPEQ - Núcleo Multifuncional de Pesquisas Químicas, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
48
|
Affiliation(s)
- Mathias A.S. Hass
- Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Frans A.A. Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
49
|
Trujillo C, Sánchez-Sanz G, Alkorta I, Elguero J. Computational Study of Proton Transfer in Tautomers of 3- and 5-Hydroxypyrazole Assisted by Water. Chemphyschem 2015; 16:2140-50. [PMID: 26033797 DOI: 10.1002/cphc.201500317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/12/2022]
Abstract
The tautomerism of 3- and 5-hydroxypyrazole is studied at the B3LYP, CCSD and G3B3 computational levels, including the gas phase, PCM-water effects, and proton transfer assisted by water molecules. To understand the propensity of tautomerization, hydrogen-bond acidity and basicity of neutral species is approached by means of correlations between donor/acceptor ability and H-bond interaction energies. Tautomerism processes are highly dependent on the solvent environment, and a significant reduction of the transition barriers upon solvation is seen. In addition, the inclusion of a single water molecule to assist proton transfer decreases the barriers between tautomers. Although the second water molecule further reduces those barriers, its effect is less appreciable than the first one. Neutral species present more stable minima than anionic and cationic species, but relatively similar transition barriers to anionic tautomers.
Collapse
Affiliation(s)
- Cristina Trujillo
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St. Dublin 2 (Ireland).
| | - Goar Sánchez-Sanz
- School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 (Ireland)
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid (Spain)
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid (Spain)
| |
Collapse
|
50
|
Liao SY, Yang Y, Tietze D, Hong M. The influenza m2 cytoplasmic tail changes the proton-exchange equilibria and the backbone conformation of the transmembrane histidine residue to facilitate proton conduction. J Am Chem Soc 2015; 137:6067-77. [PMID: 25892574 DOI: 10.1021/jacs.5b02510] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The influenza M2 protein forms an acid-activated tetrameric proton channel important for the virus lifecycle. Residue His37 in the transmembrane domain is responsible for channel activation and proton selectivity. While the structure and dynamics of His37 have been well studied in TM peptide constructs, it has not been investigated in the presence of the full cytoplasmic domain, which increases the proton conductivity by 2-fold compared to the TM peptide. We report here (13)C and (15)N chemical shifts of His37 in the cytoplasmic-containing M2(21-97) and show that cationic histidines are already present at neutral pH, in contrast to the TM peptide, indicating that the cytoplasmic domain shifts the protonation equilibria. Quantification of the imidazole (15)N intensities yielded two resolved proton dissociation constants (pKa's) of 7.1 and 5.4, which differ from the TM result but resemble the M2(18-60) result, suggesting cooperative proton binding. The average His37 pKa is higher for M2(21-97) than for the shorter constructs. We attribute this higher pKa to direct and indirect effects of the cytoplasmic domain, which is rich in acidic residues. 2D (13)C-(13)C correlation spectra reveal seven His37 Cα-Cβ cross peaks at different pH, some of which are unique to the cytoplasmic-containing M2 and correspond to more ideal α-helical conformations. Based on the pH at which these chemical shifts appear and their side chain structures, we assign these conformations to His37 in differently charged tetramers. Thus, the cytoplasmic domain facilitates proton conduction through the transmembrane pore by modifying the His37-water proton exchange equilibria and the His37 backbone conformational distribution.
Collapse
Affiliation(s)
- Shu Y Liao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yu Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Tietze
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|