1
|
Roberto GM, Boutet A, Keil S, Del Guidice E, Duramé E, Tremblay MG, Moss T, Therrien M, Emery G. Tao and Rap2l ensure proper Misshapen activation and levels during Drosophila border cell migration. Dev Cell 2024:S1534-5807(24)00544-6. [PMID: 39393350 DOI: 10.1016/j.devcel.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Collective cell migration is fundamental in development, wound healing, and metastasis. During Drosophila oogenesis, border cells (BCs) migrate collectively inside the egg chamber, controlled by the Ste20-like kinase Misshapen (Msn). Msn coordinates the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that Tao acts as an upstream activator of Msn in BCs. Depleting Tao significantly impedes BC migration, producing a phenotype similar to Msn loss of function. Furthermore, we show that the localization of Msn relies on its citron homology (CNH) domain, which interacts with the small GTPase Rap2l. Rap2l promotes the trafficking of Msn to the endolysosomal pathway. Depleting Rap2l elevates Msn levels by reducing its trafficking into late endosomes and increases overall contractility. These data suggest that Tao promotes Msn activation, while global Msn protein levels are controlled via Rap2l and the endolysosomal degradation pathway. Thus, two mechanisms ensure appropriate Msn levels and activation in BCs.
Collapse
Affiliation(s)
- Gabriela Molinari Roberto
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Alison Boutet
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Emmanuelle Del Guidice
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Michel G Tremblay
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada
| | - Tom Moss
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada; Cancer Research Centre, Laval University, Québec, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
2
|
Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C, Ozerov IV, Zhang M, Witte K, Kruse C, Aladinskiy V, Ivanenkov Y, Polykovskiy D, Fu Y, Babin E, Qiao J, Liang X, Mou Z, Wang H, Pun FW, Torres-Ayuso P, Veviorskiy A, Song D, Liu S, Zhang B, Naumov V, Ding X, Kukharenko A, Izumchenko E, Zhavoronkov A. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 2024:10.1038/s41587-024-02143-0. [PMID: 38459338 DOI: 10.1038/s41587-024-02143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.
Collapse
Affiliation(s)
- Feng Ren
- Insilico Medicine Shanghai Ltd., Shanghai, China
- Insilico Medicine AI Limited, Abu Dhabi, UAE
| | - Alex Aliper
- Insilico Medicine AI Limited, Abu Dhabi, UAE
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jian Chen
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Heng Zhao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Sujata Rao
- Insilico Medicine US Inc., New York, NY, USA
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Nephrology, University Clinic RWTH Aachen, Aachen, Germany
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Klaus Witte
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Chris Kruse
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yan Ivanenkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | | | - Junwen Qiao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Xing Liang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Zhenzhen Mou
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Hui Wang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, PA, USA
| | | | - Dandan Song
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Sang Liu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Bei Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Vladimir Naumov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Andrey Kukharenko
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Evgeny Izumchenko
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Abu Dhabi, UAE.
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China.
- Insilico Medicine US Inc., New York, NY, USA.
- Insilico Medicine Canada Inc, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Cappelletti C, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Pihlstrøm L, Toft M. Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathol 2023; 146:227-244. [PMID: 37347276 PMCID: PMC10329075 DOI: 10.1007/s00401-023-02597-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Cappelletti
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Hanneke Geut
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
van Os BW, Kusters PJH, den Toom M, Beckers L, van Tiel CM, Vos WG, de Jong E, Kieser A, van Roomen C, Binder CJ, Reiche ME, de Winther MP, Bosmans LA, Lutgens E. Deficiency of germinal center kinase TRAF2 and NCK-interacting kinase (TNIK) in B cells does not affect atherosclerosis. Front Cardiovasc Med 2023; 10:1171764. [PMID: 37215541 PMCID: PMC10196212 DOI: 10.3389/fcvm.2023.1171764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Atherosclerosis is the underlying cause of many cardiovascular diseases, such as myocardial infarction or stroke. B cells, and their production of pro- and anti-atherogenic antibodies, play an important role in atherosclerosis. In B cells, TRAF2 and NCK-interacting Kinase (TNIK), a germinal center kinase, was shown to bind to TNF-receptor associated factor 6 (TRAF6), and to be involved in JNK and NF-κB signaling in human B cells, a pathway associated with antibody production. Objective We here investigate the role of TNIK-deficient B cells in atherosclerosis. Results ApoE-/-TNIKfl/fl (TNIKBWT) and ApoE-/-TNIKfl/flCD19-cre (TNIKBKO) mice received a high cholesterol diet for 10 weeks. Atherosclerotic plaque area did not differ between TNIKBKO and TNIKBWT mice, nor was there any difference in plaque necrotic core, macrophage, T cell, α-SMA and collagen content. B1 and B2 cell numbers did not change in TNIKBKO mice, and marginal zone, follicular or germinal center B cells were unaffected. Total IgM and IgG levels, as well as oxidation specific epitope (OSE) IgM and IgG levels, did not change in absence of B cell TNIK. In contrast, plasma IgA levels were decreased in TNIKBKO mice, whereas the number of IgA+ B cells in intestinal Peyer's patches increased. No effects could be detected on T cell or myeloid cell numbers or subsets. Conclusion We here conclude that in hyperlipidemic ApoE-/- mice, B cell specific TNIK deficiency does not affect atherosclerosis.
Collapse
Affiliation(s)
- Bram W. van Os
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Pascal J. H. Kusters
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Winnie G. Vos
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Elize de Jong
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Arnd Kieser
- Research Unit Signaling and Translation, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Cindy van Roomen
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Myrthe E. Reiche
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Menno P. de Winther
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Laura A. Bosmans
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, Netherlands
- Amsterdam Immunity and Infection, Amsterdam UMC, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Munich Heart Alliance, Ludwig-Maximilians-Universität München, Germany
- Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Patterson V, Ullah F, Bryant L, Griffin JN, Sidhu A, Saliganan S, Blaile M, Saenz MS, Smith R, Ellingwood S, Grange DK, Hu X, Mireguli M, Luo Y, Shen Y, Mulhern M, Zackai E, Ritter A, Izumi K, Hoefele J, Wagner M, Riedhammer KM, Seitz B, Robin NH, Goodloe D, Mignot C, Keren B, Cox H, Jarvis J, Hempel M, Gibson CF, Tran Mau-Them F, Vitobello A, Bruel AL, Sorlin A, Mehta S, Raymond FL, Gilmore K, Powell BC, Weck K, Li C, Vulto-van Silfhout AT, Giacomini T, Mancardi MM, Accogli A, Salpietro V, Zara F, Vora NL, Davis EE, Burdine R, Bhoj E. Abrogation of MAP4K4 protein function causes congenital anomalies in humans and zebrafish. SCIENCE ADVANCES 2023; 9:eade0631. [PMID: 37126546 PMCID: PMC10132768 DOI: 10.1126/sciadv.ade0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.
Collapse
Affiliation(s)
- Victoria Patterson
- Princeton University, Princeton, NJ 08544, USA
- Department of Biology, University of York, York, UK
| | - Farid Ullah
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura Bryant
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John N. Griffin
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alpa Sidhu
- The Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | - Mackenzie Blaile
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Margarita S. Saenz
- University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Rosemarie Smith
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Sara Ellingwood
- Maine Medical Center, 22 Bramhall St, Portland, ME 04102, USA
| | - Dorothy K. Grange
- St. Louis Children’s Hospital, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Genetics and Birth Defects Control Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Maimaiti Mireguli
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yanfei Luo
- First Affiliated Hospital of Xinjiang Medical University, Department of Pediatrics, Xinjiang Uygur Autonomous Region, China
| | - Yiping Shen
- Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Maternal and Child Care Hospital of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, China
| | - Maureen Mulhern
- Columbia University Irving Medical Center, 630 W. 168th St, New York, NY 10032, USA
| | - Elaine Zackai
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alyssa Ritter
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kosaki Izumi
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Korbinian M. Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Nathaniel H. Robin
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Dana Goodloe
- University of Alabama at Birmingham, 1720 University Blvd, Birmingham, AL 35233, USA
| | - Cyril Mignot
- APHP-Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Helen Cox
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Joanna Jarvis
- Clinical Genetics Unit, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Maja Hempel
- University Hospital Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | | | | | - Antonio Vitobello
- UMR1231 GAD, Inserm, Université Bourgogne-Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | | | | | | | | | - Kelly Gilmore
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bradford C. Powell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chumei Li
- McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | | | - Thea Giacomini
- Unit of Child Neuropsychiatry, University of Genova, EpiCARE Network, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Federico Zara
- Department of Biotechnological and Applied Clinical Science, University of L’Aquila, 67100 L’Aquila, Italy
| | - Neeta L. Vora
- Department of Ob/Gyn, Division of Maternal-Fetal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Elizabeth Bhoj
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Tibolone Pre-Treatment Ameliorates the Dysregulation of Protein Translation and Transport Generated by Palmitic Acid-Induced Lipotoxicity in Human Astrocytes: A Label-Free MS-Based Proteomics and Network Analysis. Int J Mol Sci 2022; 23:ijms23126454. [PMID: 35742897 PMCID: PMC9223656 DOI: 10.3390/ijms23126454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Excessive accumulation and release of fatty acids (FAs) in adipose and non-adipose tissue are characteristic of obesity and are associated with the leading causes of death worldwide. Chronic exposure to high concentrations of FAs such as palmitic acid (pal) is a risk factor for developing different neurodegenerative diseases (NDs) through several mechanisms. In the brain, astrocytic dysregulation plays an essential role in detrimental processes like metabolic inflammatory state, oxidative stress, endoplasmic reticulum stress, and autophagy impairment. Evidence shows that tibolone, a synthetic steroid, induces neuroprotective effects, but its molecular mechanisms upon exposure to pal remain largely unknown. Due to the capacity of identifying changes in the whole data-set of proteins and their interaction allowing a deeper understanding, we used a proteomic approach on normal human astrocytes under supraphysiological levels of pal as a model to induce cytotoxicity, finding changes of expression in proteins related to translation, transport, autophagy, and apoptosis. Additionally, tibolone pre-treatment showed protective effects by restoring those same pal-altered processes and increasing the expression of proteins from cell survival processes. Interestingly, ARF3 and IPO7 were identified as relevant proteins, presenting a high weight in the protein-protein interaction network and significant differences in expression levels. These proteins are related to transport and translation processes, and their expression was restored by tibolone. This work suggests that the damage caused by pal in astrocytes simultaneously involves different mechanisms that the tibolone can partially revert, making tibolone interesting for further research to understand how to modulate these damages.
Collapse
|
7
|
Meng Z, Li FL, Fang C, Yeoman B, Qiu Y, Wang Y, Cai X, Lin KC, Yang D, Luo M, Fu V, Ma X, Diao Y, Giancotti FG, Ren B, Engler AJ, Guan KL. The Hippo pathway mediates Semaphorin signaling. SCIENCE ADVANCES 2022; 8:eabl9806. [PMID: 35613278 PMCID: PMC9132450 DOI: 10.1126/sciadv.abl9806] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Fu-Long Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Yang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yarui Diao
- Regeneration Next Initiative, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of GU Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Herbert Irving Comprehensive Cancer Center and Department of Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10033, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Zhu K, Jin X, Chi Z, Chen S, Wu S, Sloan RD, Lin X, Neculai D, Wang D, Hu H, Lu L. Priming of NLRP3 inflammasome activation by Msn kinase MINK1 in macrophages. Cell Mol Immunol 2021; 18:2372-2382. [PMID: 34480147 PMCID: PMC8414466 DOI: 10.1038/s41423-021-00761-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
The nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome is essential in inflammation and inflammatory disorders. Phosphorylation at various sites on NLRP3 differentially regulates inflammasome activation. The Ser725 phosphorylation site on NLRP3 is depicted in multiple inflammasome activation scenarios, but the importance and regulation of this site has not been clarified. The present study revealed that the phosphorylation of Ser725 was an essential step for the priming of the NLRP3 inflammasome in macrophages. We also showed that Ser725 was directly phosphorylated by misshapen (Msn)/NIK-related kinase 1 (MINK1), depending on the direct interaction between MINK1 and the NLRP3 LRR domain. MINK1 deficiency reduced NLRP3 activation and suppressed inflammatory responses in mouse models of acute sepsis and peritonitis. Reactive oxygen species (ROS) upregulated the kinase activity of MINK1 and subsequently promoted inflammasome priming via NLRP3 Ser725 phosphorylation. Eliminating ROS suppressed NLRP3 activation and reduced sepsis and peritonitis symptoms in a MINK1-dependent manner. Altogether, our study reveals a direct regulation of the NLRP3 inflammasome by Msn family kinase MINK1 and suggests that modulation of MINK1 activity is a potential intervention strategy for inflammasome-related diseases.
Collapse
Affiliation(s)
- Kaixiang Zhu
- grid.13402.340000 0004 1759 700XInstitute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China ,grid.13402.340000 0004 1759 700XZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400 P. R. China ,grid.13402.340000 0004 1759 700XDepartment of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Xuexiao Jin
- grid.13402.340000 0004 1759 700XInstitute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Zhexu Chi
- grid.13402.340000 0004 1759 700XDepartment of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Sheng Chen
- grid.13402.340000 0004 1759 700XDepartment of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China ,grid.412465.0Department of Colorectal Surgery, The Second Affiliated Hospital, Hangzhou, 310058 P. R. China
| | - Songquan Wu
- grid.440824.e0000 0004 1757 6428Medical College, Lishui University, Lishui, 323000 P. R. China
| | - Richard D. Sloan
- grid.13402.340000 0004 1759 700XZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400 P. R. China ,grid.4305.20000 0004 1936 7988Infection Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, EH16 4SB Scotland, UK
| | - Xuai Lin
- grid.13402.340000 0004 1759 700XDepartment of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Dante Neculai
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Di Wang
- grid.13402.340000 0004 1759 700XDepartment of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Hu Hu
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| | - Linrong Lu
- grid.13402.340000 0004 1759 700XInstitute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China ,grid.13402.340000 0004 1759 700XZhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400 P. R. China ,grid.13402.340000 0004 1759 700XDr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058 P. R. China
| |
Collapse
|
9
|
Stark K, Crowe O, Lewellyn L. Precise levels of the Drosophila adaptor protein Dreadlocks maintain the size and stability of germline ring canals. J Cell Sci 2021; 134:238107. [PMID: 33912915 PMCID: PMC8106954 DOI: 10.1242/jcs.254730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper. Summary:Drosophila Dock likely functions downstream of WASp and the Arp2/3 complex to regulate the size and stability of the germline ring canals in the developing egg chamber.
Collapse
Affiliation(s)
- Kara Stark
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Olivia Crowe
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
10
|
Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, Kashimoto S, Uno Y, Moriyama H, Sawa M, Nagakawa Y, Tsuchida A, Seike M, Gemma A, Yamada T. Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer 2020; 124:228-236. [PMID: 33244122 PMCID: PMC7782820 DOI: 10.1038/s41416-020-01162-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metastasis is the primary cause of death in cancer patients, and its management is still a major challenge. Epithelial to mesenchymal transition (EMT) has been implicated in the process of cancer metastasis, and its pharmacological interference holds therapeutic promise. METHODS Traf2- and Nck-interacting kinase (TNIK) functions as a transcriptional coregulator of Wnt target genes. Given the convergence of Wnt and transforming growth factor-β (TGFβ) signalling, we examined the effects of a small-molecule TNIK inhibitor (named NCB-0846) on the TGFβ1-induced EMT of lung cancer cells. RESULTS NCB-0846 inhibited the TGFβ1-induced EMT of A549 cells. This inhibition was associated with inhibition of Sma- and Mad-Related Protein-2/3 (SMAD2/3) phosphorylation and nuclear translocation. NCB-0846 abolished the lung metastasis of TGFβ1-treated A549 cells injected into the tail veins of immunodeficient mice. The inhibition of EMT was mediated by suppression of the TGFβ receptor type-I (TGFBR1) gene, at least partly through the induction of microRNAs targeting the TGFBR1 transcript [miR-320 (a, b and d) and miR-186]. CONCLUSIONS NCB-0846 pharmacologically blocks the TGFβ/SMAD signalling and EMT induction of lung cancer cells by transcriptionally downregulating TGFBRI expression, representing a potentially promising approach for prevention of metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Teppei Sugano
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.,Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Fumitaka Takeshita
- Department of Functional Analysis, Fundamental Innovative Oncology Core Center (FIOC), National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Toru Hirozane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Naoko Goto
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | | | - Yuko Uno
- Carna Biosciences, Inc, Kobe, 650-0047, Japan
| | | | | | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, 104-0045, Japan. .,Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, 160-0023, Japan.
| |
Collapse
|
11
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Mapping effector genes at lupus GWAS loci using promoter Capture-C in follicular helper T cells. Nat Commun 2020; 11:3294. [PMID: 32620744 PMCID: PMC7335045 DOI: 10.1038/s41467-020-17089-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/02/2020] [Indexed: 01/14/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is mediated by autoreactive antibodies that damage multiple tissues. Genome-wide association studies (GWAS) link >60 loci with SLE risk, but the causal variants and effector genes are largely unknown. We generated high-resolution spatial maps of SLE variant accessibility and gene connectivity in human follicular helper T cells (TFH), a cell type required for anti-nuclear antibodies characteristic of SLE. Of the ~400 potential regulatory variants identified, 90% exhibit spatial proximity to genes distant in the 1D genome sequence, including variants that loop to regulate the canonical TFH genes BCL6 and CXCR5 as confirmed by genome editing. SLE ‘variant-to-gene’ maps also implicate genes with no known role in TFH/SLE disease biology, including the kinases HIPK1 and MINK1. Targeting these kinases in TFH inhibits production of IL-21, a cytokine crucial for class-switched B cell antibodies. These studies offer mechanistic insight into the SLE-associated regulatory architecture of the human genome. T cells are a major cell type involved in systemic lupus erythematosus (SLE). Here, the authors use promoter capture-C and ATAC-seq in human follicular T helper cells to identify SLE genes distant from GWAS loci (via 3D interaction) and validate the function of key regulatory elements and genes in vitro.
Collapse
|
13
|
Kanasaki K. N-acetyl-seryl-aspartyl-lysyl-proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: An update and translational aspects. J Diabetes Investig 2020; 11:516-526. [PMID: 31997585 PMCID: PMC7232267 DOI: 10.1111/jdi.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous peptide that has been confirmed to show excellent organ-protective effects. Even though originally discovered as a modulator of hemotopoietic stem cells, during the recent two decades, AcSDKP has been recognized as valuable antifibrotic peptide. The antifibrotic mechanism of AcSDKP is not yet clear; we have established that AcSDKP could target endothelial-mesenchymal transition program through the induction of the endothelial fibroblast growth factor receptor signaling pathway. Also, recent reports suggested the clinical significance of AcSDKP. The aim of this review was to update recent advances of the mechanistic action of AcSDKP and discuss translational research aspects.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Internal Medicine 1Faculty of MedicineShimane UniversityIzumoJapan
- Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaJapan
- Division of Anticipatory Molecular Food Science and TechnologyKanazawa Medical UniversityUchinadaJapan
| |
Collapse
|
14
|
Yu D, Hu J, Sheng Z, Fu G, Wang Y, Chen Y, Pan Z, Zhang X, Wu Y, Sun H, Dai J, Lu L, Ouyang H. Dual roles of misshapen/NIK-related kinase (MINK1) in osteoarthritis subtypes through the activation of TGFβ signaling. Osteoarthritis Cartilage 2020; 28:112-121. [PMID: 31647983 DOI: 10.1016/j.joca.2019.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the role of misshapen/NIK-related kinase (MINK1) in age-related Osteoarthritis (OA) and injury-induced OA, and the effects of enhanced TGFβ signaling in these progresses. DESIGN The effect of MINK1 was analyzed with MINK1 knock out (Mink1-/-) mice and C57BL/6J mice. OA progress was studied in age-related OA and instability-associated OA (destabilization of the medial meniscus, DMM) models. The murine knee joint was evaluated through histological staining, Osteoarthritis Research Society International (OARSI) scores, immunohistochemistry, and μCT analysis. Primary chondrocytes were isolated from wild type and Mink1-/- mice and subjected to osteogenic induction and Western blot analysis. RESULTS MINK1 is highly expressed during cartilage development and in normal cartilage. Mink1-/- mice displayed markedly lower OARSI scores, aggrecan degradation neoepitope positive cells and increased Safranin O and pSMAD2 staining in aging-related OA model. However, in injury-induced OA, loss of MINK1 accelerates extracellular matrix (ECM) destruction, osteophyte formation, and subchondral bone sclerosis. Accelerated subchondral bone remodeling in Mink1-/- mice was accompanied with increased numbers of nestin-positive mesenchymal stem cells (MSCs) and osterix-positive osteoprogenitors. pSMAD2 staining was increased in the subchondral bone marrow of Mink1-/- mice and overexpression of MINK1 inhibited SMAD2 phosphorylation in vitro. CONCLUSIONS This study shows for the first time that activation of TGFβ/SMAD2 by MINK1 deficiency plays opposite roles in aging-related and injury-induced OA. MINK1 deficiency protects cartilage from degeneration in aging joints through increased SMAD2 activation in chondrocytes, while accelerating OA progress in injury-induced model through enhanced osteogenesis of MSCs in the subchondral bone. These findings provide insights for developing precision OA therapeutics targeting TGFβ/SMAD2 signaling.
Collapse
Affiliation(s)
- D Yu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - J Hu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Sheng
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - G Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Z Pan
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - X Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Y Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - H Sun
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - J Dai
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - L Lu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - H Ouyang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University school of medicine, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
15
|
Li Q, Nirala NK, Chen HJ, Nie Y, Wang W, Zhang B, Czech MP, Wang Q, Xu L, Mao J, Tony Ip Y. The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. J Cell Physiol 2019; 234:21925-21936. [PMID: 31042012 PMCID: PMC6711781 DOI: 10.1002/jcp.28756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Wang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
| | - Biliang Zhang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Read J, Collie IT, Nguyen-McCarty M, Lucaj C, Robinson J, Conway L, Mukherjee J, McCall E, Donohoe G, Flavell E, Peciak K, Warwicker J, Dix C, Van den Hoven BG, Madin A, Brown DG, Moss S, Haggarty SJ, Brandon NJ, Bürli RW. Tool inhibitors and assays to interrogate the biology of the TRAF2 and NCK interacting kinase. Bioorg Med Chem Lett 2019; 29:1962-1967. [PMID: 31153805 DOI: 10.1016/j.bmcl.2019.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/21/2023]
Abstract
The TRAF2 and NCK interacting kinase (TNIK) has been proposed to play a role in cytoskeletal organization and synaptic plasticity and has been linked, among others, to neurological disorders. However, target validation efforts for TNIK have been hampered by the limited kinase selectivity of small molecule probes and possible functional compensation in mouse models. Both issues are at least in part due to its close homology to the kinases MINK1 (or MAP4K6) and MAP4K4 (or HGK). As part of our interest in validating TNIK as a therapeutic target for neurological diseases, we set up a panel of biochemical and cellular assays, which are described herein. We then examined the activity of known amino-pyridine-based TNIK inhibitors (1, 3) and prepared structurally very close analogs that lack the ability to inhibit the target. We also developed a structurally orthogonal, naphthyridine-based TNIK inhibitor (9) and an inactive control molecule of the same chemical series. These validated small-molecule probes will enable dissection of the function of TNIK family in the context of human disease biology.
Collapse
Affiliation(s)
- Jon Read
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Iain T Collie
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Michelle Nguyen-McCarty
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Lucaj
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - James Robinson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Leslie Conway
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Jayanta Mukherjee
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Eileen McCall
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Gerard Donohoe
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Elizabeth Flavell
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Karolina Peciak
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Juli Warwicker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Carly Dix
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Andrew Madin
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Dean G Brown
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Boston, Waltham, MA 02451, USA
| | - Stephen Moss
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Stephen J Haggarty
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicholas J Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca Boston, Waltham, MA 02451, USA.
| | - Roland W Bürli
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, UK.
| |
Collapse
|
17
|
Politano SF, Salemme RR, Ashley J, López-Rivera JA, Bakula TA, Puhalla KA, Quinn JP, Juszczak MJ, Phillip LK, Carrillo RA, Vanderzalm PJ. Tao Negatively Regulates BMP Signaling During Neuromuscular Junction Development in Drosophila. Dev Neurobiol 2019; 79:335-349. [PMID: 31002474 DOI: 10.1002/dneu.22681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
The coordinated growth and development of synapses is critical for all aspects of neural circuit function and mutations that disrupt these processes can result in various neurological defects. Several anterograde and retrograde signaling pathways, including the canonical Bone Morphogenic Protein (BMP) pathway, regulate synaptic development in vertebrates and invertebrates. At the Drosophila larval neuromuscular junction (NMJ), the retrograde BMP pathway is a part of the machinery that controls NMJ expansion concurrent with larval growth. We sought to determine whether the conserved Hippo pathway, critical for proportional growth in other tissues, also functions in NMJ development. We found that neuronal loss of the serine-threonine protein kinase Tao, a regulator of the Hippo signaling pathway, results in supernumerary boutons which contain a normal density of active zones. Tao is also required for proper synaptic function, as reduction of Tao results in NMJs with decreased evoked excitatory junctional potentials. Surprisingly, Tao function in NMJ growth is independent of the Hippo pathway. Instead, our experiments suggest that Tao negatively regulates BMP signaling as reduction of Tao leads to an increase in pMad levels in motor neuron nuclei and an increase in BMP target gene expression. Taken together, these results support a role for Tao as a novel inhibitor of BMP signaling in motor neurons during synaptic development and function.
Collapse
Affiliation(s)
- Stephen F Politano
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Ryan R Salemme
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - James Ashley
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, 60637
| | | | - Toren A Bakula
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Kathryn A Puhalla
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - John P Quinn
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Madison J Juszczak
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Lauren K Phillip
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Robert A Carrillo
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, 60637
| | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| |
Collapse
|
18
|
Abstract
Phosphatase PP2A expression levels are positively correlated to the clinical severity of systemic lupus erythematosus (SLE) and IL17A cytokine overproduction, indicating a potential role of PP2A in controlling TH17 differentiation and inflammation. By generating a mouse strain with ablation of the catalytic subunit α of PP2A in peripheral mature T cells (PP2A cKO), we demonstrate that the PP2A complex is essential for TH17 differentiation. These PP2A cKO mice had reduced TH17 cell numbers and less severe disease in an experimental autoimmune encephalomyelitis (EAE) model. PP2A deficiency also ablated C-terminal phosphorylation of SMAD2 but increased C-terminal phosphorylation of SMAD3. By regulating the activity of RORγt via binding, the changes in the phosphorylation status of these R-SMADs reduced Il17a gene transcription. Finally, PP2A inhibitors showed similar effects on TH17 cells as were observed in PP2A cKO mice, i.e., decreased TH17 differentiation and relative protection of mice from EAE. Taken together, these data demonstrate that phosphatase PP2A is essential for TH17 differentiation and that inhibition of PP2A could be a possible therapeutic approach to controlling TH17-driven autoimmune diseases.
Collapse
|
19
|
Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, Shen Y, Ding X, Lin J, Wu Y, Yan Z, Chen J, Li X, Song X, Niu Y, Liu J, Chen W, Ming Y, Du R, Chen C, Long B, Zhang Y, Tong X, Zhang S, Posey JE, Zhang B, Wu Z, Wythe JD, Liu P, Lupski JR, Yang X, Wu N. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 2018; 55:675-684. [PMID: 30120215 PMCID: PMC6161649 DOI: 10.1136/jmedgenet-2017-105224] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) represent a congenital anomaly of the cerebral vessels with a prevalence of 10-18/100 000. BAVM is the leading aetiology of intracranial haemorrhage in children. Our objective was to identify gene variants potentially contributing to disease and to better define the molecular aetiology underlying non-syndromic sporadic BAVM. METHODS We performed whole-exome trio sequencing of 100 unrelated families with a clinically uniform BAVM phenotype. Pathogenic variants were then studied in vivo using a transgenic zebrafish model. RESULTS We identified four pathogenic heterozygous variants in four patients, including one in the established BAVM-related gene, ENG, and three damaging variants in novel candidate genes: PITPNM3, SARS and LEMD3, which we then functionally validated in zebrafish. In addition, eight likely pathogenic heterozygous variants (TIMP3, SCUBE2, MAP4K4, CDH2, IL17RD, PREX2, ZFYVE16 and EGFR) were identified in eight patients, and 16 patients carried one or more variants of uncertain significance. Potential oligogenic inheritance (MAP4K4 with ENG, RASA1 with TIMP3 and SCUBE2 with ENG) was identified in three patients. Regulation of sma- and mad-related proteins (SMADs) (involved in bone morphogenic protein (BMP)/transforming growth factor beta (TGF-β) signalling) and vascular endothelial growth factor (VEGF)/vascular endotheliual growth factor recepter 2 (VEGFR2) binding and activity (affecting the VEGF signalling pathway) were the most significantly affected biological process involved in the pathogenesis of BAVM. CONCLUSIONS Our study highlights the specific role of BMP/TGF-β and VEGF/VEGFR signalling in the aetiology of BAVM and the efficiency of intensive parallel sequencing in the challenging context of genetically heterogeneous paradigm.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqi Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xinghuan Ding
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiachen Lin
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weisheng Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Cong Chen
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joshua D Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Baltussen LL, Rosianu F, Ultanir SK. Kinases in synaptic development and neurological diseases. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:343-352. [PMID: 29241837 DOI: 10.1016/j.pnpbp.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.
Collapse
Affiliation(s)
- Lucas L Baltussen
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Flavia Rosianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
21
|
Li Q, Nirala NK, Nie Y, Chen HJ, Ostroff G, Mao J, Wang Q, Xu L, Ip YT. Ingestion of Food Particles Regulates the Mechanosensing Misshapen-Yorkie Pathway in Drosophila Intestinal Growth. Dev Cell 2018; 45:433-449.e6. [PMID: 29754801 DOI: 10.1016/j.devcel.2018.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/04/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has a high cell turnover rate and is an excellent system to study stem cell-mediated adaptive growth. In the Drosophila midgut, the Ste20 kinase Misshapen, which is distally related to Hippo, has a niche function to restrict intestinal stem cell activity. We show here that, under low growth conditions, Misshapen is localized near the cytoplasmic membrane, is phosphorylated at the threonine 194 by the upstream kinase Tao, and is more active toward Warts, which in turn inhibits Yorkie. Ingestion of yeast particles causes a midgut distention and a reduction of Misshapen membrane association and activity. Moreover, Misshapen phosphorylation is regulated by the stiffness of cell culture substrate, changing of actin cytoskeleton, and ingestion of inert particles. These results together suggest that dynamic membrane association and Tao phosphorylation of Misshapen are steps that link the mechanosensing of intestinal stretching after food particle ingestion to control adaptive growth.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gary Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
22
|
Kline A, Curry T, Lewellyn L. The Misshapen kinase regulates the size and stability of the germline ring canals in the Drosophila egg chamber. Dev Biol 2018; 440:99-112. [PMID: 29753016 DOI: 10.1016/j.ydbio.2018.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
Intercellular bridges are conserved structures that allow neighboring cells to exchange cytoplasmic material; defects in intercellular bridges can lead to infertility in many organisms. Here, we use the Drosophila egg chamber to study the mechanisms that regulate intercellular bridges. Within the developing egg chamber, the germ cells (15 nurse cells and 1 oocyte) are connected to each other through intercellular bridges called ring canals, which expand over the course of oogenesis to support the transfer of materials from the nurse cells to the oocyte. The ring canals are enriched in actin and actin binding proteins, and many proteins have been identified that localize to the germline ring canals and control their expansion and stability. Here, we demonstrate a novel role for the Ste20 family kinase, Misshapen (Msn), in regulation of the size of the germline ring canals. Msn localizes to ring canals throughout most of oogenesis, and depletion of Msn led to the formation of larger ring canals. Over-expression of Msn decreased ring canal diameter, and expression of a membrane tethered form of Msn caused ring canal detachment and nurse cell fusion. Altering the levels or localization of Msn also led to changes in the actin cytoskeleton and altered the localization of E-cadherin, which suggests that Msn could be indirectly limiting ring canal size by altering the structure or dynamics of the actin cytoskeleton and/or adherens junctions.
Collapse
Affiliation(s)
- Ashley Kline
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Travis Curry
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lindsay Lewellyn
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA.
| |
Collapse
|
23
|
Lin JC, Lee YC, Tan TH, Liang YC, Chuang HC, Fann YC, Johnson KR, Lin YJ. RBM4-SRSF3-MAP4K4 splicing cascade modulates the metastatic signature of colorectal cancer cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:259-272. [DOI: 10.1016/j.bbamcr.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
24
|
Li J, Shi S, Srivastava SP, Kitada M, Nagai T, Nitta K, Kohno M, Kanasaki K, Koya D. FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death Dis 2017; 8:e2965. [PMID: 28771231 PMCID: PMC5596544 DOI: 10.1038/cddis.2017.353] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to organ fibrogenesis, and we have reported that the anti-EndMT effect of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is associated with restoring expression of diabetes-suppressed fibroblast growth factor receptor (FGFR), the key anti-EndMT molecule. FGFR1 is the key inhibitor of EndMT via the suppression of the transforming growth factor β (TGFβ) signaling pathway, and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) inhibits integrin β1, a key factor in activating TGFβ signaling and EndMT. Here, we showed that the close proximity between AcSDKP and FGFR1 was essential for the suppression of TGFβ/smad signaling and EndMT associated with MAP4K4 phosphorylation (P-MAP4K4) in endothelial cells. In cultured human dermal microvascular endothelial cells (HMVECs), the anti-EndMT and anti-TGFβ/smad effects of AcSDKP were lost following treatment with a neutralizing FGFR1 antibody (N-FGFR1) or transfection of FRS2 siRNA. The physical interaction between FGFR1 and P-MAP4K4 in HMVECs was confirmed by proximity ligation analysis and an immunoprecipitation assay. AcSDKP induced P-MAP4K4 in HMVECs, which was significantly inhibited by treatment with either N-FGFR1 or FRS2 siRNA. Furthermore, MAP4K4 knockdown using specific siRNAs induced smad3 phosphorylation and EndMT in HMVECs, which was not suppressed by AcSDKP. Streptozotocin-induced diabetic CD-1 mice exhibited suppression of both FGFR1 and P-MAP4K4 expression levels associated with the induction of TGFβ/smad3 signaling and EndMT in their hearts and kidneys; those were restored by AcSDKP treatment. These data demonstrate that the AcSDKP-FGFR1-MAP4K4 axis has an important role in combating EndMT-associated fibrotic disorders.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | | | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
25
|
Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, Wang J, Ke Y, Hu H, Cao X, Wang D, Cantor H, Gao X, Lu L. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med 2017; 214:1453-1469. [PMID: 28400474 PMCID: PMC5413330 DOI: 10.1084/jem.20161120] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/09/2017] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Abstract
T helper type 17 cells (Th17 cells) are major contributors to many autoimmune diseases. In this study, we demonstrate that the germinal center kinase family member MINK1 (misshapen/NIK-related kinase 1) negatively regulates Th17 cell differentiation. The suppressive effect of MINK1 on induction of Th17 cells is mediated by the inhibition of SMAD2 activation through direct phosphorylation of SMAD2 at the T324 residue. The importance of MINK1 to Th17 cell differentiation was strengthened in the animal model of experimental autoimmune encephalomyelitis (EAE). Moreover, we show that the reactive oxygen species (ROS) scavenger N-acetyl cysteine boosts Th17 cell differentiation in a MINK1-dependent manner and exacerbates the severity of EAE. Thus, we have not only established MINK1 as a critical regulator of Th17 cell differentiation, but also clarified that accumulation of ROS may limit the generation of Th17 cells. The contribution of MINK1 to ROS-regulated Th17 cell differentiation may suggest an important mechanism for the development of autoimmune diseases influenced by antioxidant dietary supplements.
Collapse
Affiliation(s)
- Guotong Fu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qin Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanjun Qiu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuexiao Jin
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ting Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shunli Dong
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuehai Ke
- Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Immunology and National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Harvey Cantor
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115
| | - Xiang Gao
- Key Laboratory of Model Animals for Disease Study of the Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China .,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Innovation Center for Cell Signaling Network, Zhejiang University School of Medicine, Hangzhou 310058, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou 310058, China.,Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
26
|
Urrutia H, Aleman A, Eivers E. Drosophila Dullard functions as a Mad phosphatase to terminate BMP signaling. Sci Rep 2016; 6:32269. [PMID: 27578171 PMCID: PMC5006046 DOI: 10.1038/srep32269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/04/2016] [Indexed: 01/28/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are growth factors that provide essential signals for normal embryonic development and adult tissue homeostasis. A key step in initiating BMP signaling is ligand induced phosphorylation of receptor Smads (R-Smads) by type I receptor kinases, while linker phosphorylation of R-Smads has been shown to cause BMP signal termination. Here we present data demonstrating that the phosphatase Dullard is involved in dephosphorylating the Drosophila R-Smad, Mad, and is integral in controlling BMP signal duration. We show that a hypomorphic Dullard allele or Dullard knockdown leads to increased Mad phosphorylation levels, while Dullard overexpression resulted in reduced Mad phosphorylations. Co-immunoprecipitation binding assays demonstrate phosphorylated Mad and Dullard physically interact, while mutation of Dullard’s phosphatase domain still allowed Mad-Dullard interactions but abolished its ability to regulate Mad phosphorylations. Finally, we demonstrate that linker and C-terminally phosphorylated Mad can be regulated by one of two terminating mechanisms, degradation by proteasomes or dephosphorylation by the phosphatase Dullard.
Collapse
Affiliation(s)
- Hugo Urrutia
- Department of Biological Sciences California State University Los Angeles, 5151 State University Dr. Los Angeles, CA 90032 USA
| | - Abigail Aleman
- Department of Biological Sciences California State University Los Angeles, 5151 State University Dr. Los Angeles, CA 90032 USA
| | - Edward Eivers
- Department of Biological Sciences California State University Los Angeles, 5151 State University Dr. Los Angeles, CA 90032 USA
| |
Collapse
|
27
|
Liu F, Matsuura I. Phosphorylation of Smads by Intracellular Kinases. Methods Mol Biol 2016; 1344:93-109. [PMID: 26520119 DOI: 10.1007/978-1-4939-2966-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Smad proteins transduce the TGF-ß family signal at the cell surface into gene regulation in the nucleus. In addition to being phosphorylated by the TGF-ß family receptors, Smads are phosphorylated by a variety of intracellular kinases. The most studied are by cyclin-dependent kinases, the MAP kinase family members, and GSK-3. Phosphorylation by these kinases regulates Smad activities, leading to various biological effects. This chapter describes the methods for analyzing Smad phosphorylation by these kinases.
Collapse
Affiliation(s)
- Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Isao Matsuura
- Division of Molecular Genomics and Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, 350, Taiwan
| |
Collapse
|
28
|
Wang Q, Amato SP, Rubitski DM, Hayward MM, Kormos BL, Verhoest PR, Xu L, Brandon NJ, Ehlers MD. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK. J Pharmacol Exp Ther 2015; 356:410-23. [PMID: 26645429 DOI: 10.1124/jpet.115.229880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022] Open
Abstract
Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Qi Wang
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Stephen P Amato
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - David M Rubitski
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Matthew M Hayward
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Bethany L Kormos
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Patrick R Verhoest
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Lan Xu
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Nicholas J Brandon
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| | - Michael D Ehlers
- Neuroscience & Pain Research Unit, BioTherapeutics Research and Development, Pfizer Inc. Cambridge, Massachusetts (Q.W., S.P.A., D.M.R., N.J.B., M.D.E.); Center of Chemistry Innovation and Excellence, Pfizer Inc., Groton, Connecticut (M.M.H.); Neuroscience Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts (B.L.K., P.R.V.);and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts (L.X.)
| |
Collapse
|
29
|
Misshapen/NIK-related kinase (MINK1) is involved in platelet function, hemostasis, and thrombus formation. Blood 2015; 127:927-37. [PMID: 26598717 DOI: 10.1182/blood-2015-07-659185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The sterile-20 kinase misshapen/Nck-interacting kinase (NIK)-related kinase 1 (MINK1) is involved in many important cellular processes such as growth, cytoskeletal rearrangement, and motility. Here, with MINK1-deficient (MINK1(-/-)) mice, we showed that MINK1 plays an important role in hemostasis and thrombosis via the regulation of platelet functions. In the tail-bleeding assay, MINK1(-/-) mice exhibited a longer bleeding time than wild-type (WT) mice (575.2 ± 59.7 seconds vs 419.6 ± 66.9 seconds). In a model of ferric chloride-induced mesenteric arteriolar thrombosis, vessel occlusion times were twice as long in MINK1(-/-) mice as in WT mice. In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on a collagen matrix under arterial shear conditions was significantly reduced in MINK1(-/-) platelets. Moreover, MINK1(-/-) platelets demonstrated impaired aggregation and secretion in response to low doses of thrombin and collagen. Furthermore, platelet spreading on fibrinogen was largely hampered in MINK1(-/-) platelets. The functional differences of MINK1(-/-) platelets could be attributed to impaired adenosine 5'-diphosphate secretion. Signaling events associated with MINK1 appeared to involve extracellular signal-regulated kinase, p38, and Akt. Hence, MINK1 may be an important signaling molecule that mediates mitogen-activated protein kinase signaling and participates in platelet activation and thrombus formation.
Collapse
|
30
|
Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster. Exp Cell Res 2015; 339:51-60. [DOI: 10.1016/j.yexcr.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/26/2015] [Accepted: 09/26/2015] [Indexed: 01/15/2023]
|
31
|
Zhang Y, Wang S, Liu S, Li C, Wang J. Role of Smad signaling in kidney disease. Int Urol Nephrol 2015; 47:1965-75. [DOI: 10.1007/s11255-015-1115-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
|
32
|
Vitorino P, Yeung S, Crow A, Bakke J, Smyczek T, West K, McNamara E, Eastham-Anderson J, Gould S, Harris SF, Ndubaku C, Ye W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature 2015; 519:425-30. [PMID: 25799996 DOI: 10.1038/nature14323] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/11/2015] [Indexed: 11/09/2022]
Abstract
Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-β1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration. Loss of MAP4K4 decreased membrane dynamics, slowed endothelial cell migration, and impaired angiogenesis in vitro and in vivo. In migrating endothelial cells, MAP4K4 phosphorylates moesin in retracting membranes at sites of focal adhesion disassembly. Epistasis analyses indicated that moesin functions downstream of MAP4K4 to inactivate integrin by competing with talin for binding to β1-integrin intracellular domain. Consequently, loss of moesin (encoded by the MSN gene) or MAP4K4 reduced adhesion disassembly rate in endothelial cells. Additionally, α5β1-integrin blockade reversed the membrane retraction defects associated with loss of Map4k4 in vitro and in vivo. Our study uncovers a novel aspect of endothelial cell migration. Finally, loss of MAP4K4 function suppressed pathological angiogenesis in disease models, identifying MAP4K4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Philip Vitorino
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Stacey Yeung
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Ailey Crow
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Jesse Bakke
- Chemical Biology and Therapeutics Department, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Tanya Smyczek
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Kristina West
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Erin McNamara
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | - Stephen Gould
- Translational Oncology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Seth F Harris
- Structural Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Chudi Ndubaku
- Discovery Chemistry Department, Genentech, Inc., South San Francisco, California 94080, USA
| | - Weilan Ye
- Molecular Biology Department, Genentech, Inc., South San Francisco, California 94080, USA
| |
Collapse
|
33
|
Fernandes V, McCormack K, Lewellyn L, Verheyen E. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium. Cell Rep 2014; 9:2043-55. [DOI: 10.1016/j.celrep.2014.11.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/01/2014] [Accepted: 11/24/2014] [Indexed: 01/26/2023] Open
|
34
|
Li Q, Li S, Mana-Capelli S, Roth Flach RJ, Danai LV, Amcheslavsky A, Nie Y, Kaneko S, Yao X, Chen X, Cotton JL, Mao J, McCollum D, Jiang J, Czech MP, Xu L, Ip YT. The conserved misshapen-warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila. Dev Cell 2014; 31:291-304. [PMID: 25453828 PMCID: PMC4254555 DOI: 10.1016/j.devcel.2014.09.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/14/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022]
Abstract
Similar to the mammalian intestine, the Drosophila adult midgut has resident stem cells that support growth and regeneration. How the niche regulates intestinal stem cell activity in both mammals and flies is not well understood. Here, we show that the conserved germinal center protein kinase Misshapen restricts intestinal stem cell division by repressing the expression of the JAK-STAT pathway ligand Upd3 in differentiating enteroblasts. Misshapen, a distant relative to the prototypic Warts activating kinase Hippo, interacts with and activates Warts to negatively regulate the activity of Yorkie and the expression of Upd3. The mammalian Misshapen homolog MAP4K4 similarly interacts with LATS (Warts homolog) and promotes inhibition of YAP (Yorkie homolog). Together, this work reveals that the Misshapen-Warts-Yorkie pathway acts in enteroblasts to control niche signaling to intestinal stem cells. These findings also provide a model in which to study requirements for MAP4K4-related kinases in MST1/2-independent regulation of LATS and YAP.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shuangxi Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sebastian Mana-Capelli
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel J Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Satoshi Kaneko
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaohao Yao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xiaochu Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jennifer L Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dannel McCollum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
35
|
Kim J, Moon SH, Kim BT, Chae CH, Lee JY, Kim SH. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells. PLoS One 2014; 9:e110180. [PMID: 25337707 PMCID: PMC4206343 DOI: 10.1371/journal.pone.0110180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Jung-gu, Daejeon, Republic of Korea
- * E-mail: (JK); (SHK)
| | - Seong-Hee Moon
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Bum Tae Kim
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Chong Hak Chae
- Drug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Joo Yun Lee
- Drug Discovery Platform Technology Team, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea
- * E-mail: (JK); (SHK)
| |
Collapse
|
36
|
Yang G, Yuan G, Li X, Liu P, Chen Z, Fan M. BMP-2 Induction of Dlx3 Expression Is Mediated by p38/Smad5 Signaling Pathway in Osteoblastic MC3T3-E1 Cells. J Cell Physiol 2014; 229:943-54. [PMID: 24647893 DOI: 10.1002/jcp.24525] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Pingxian Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
37
|
Lewellyn L, Cetera M, Horne-Badovinac S. Misshapen decreases integrin levels to promote epithelial motility and planar polarity in Drosophila. ACTA ACUST UNITED AC 2013; 200:721-9. [PMID: 23509067 PMCID: PMC3601364 DOI: 10.1083/jcb.201209129] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior-posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ's outer epithelial layer, the follicle cells. Interestingly, this epithelium also undergoes a directed migration that causes the egg chamber to rotate around its anterior-posterior axis. However, the functional relationship between planar polarity and migration in this tissue is unknown. We have previously reported that mutations in the Misshapen kinase disrupt follicle cell planar polarity. Here we show that Misshapen's primary role in this system is to promote individual cell motility. Misshapen decreases integrin levels at the basal surface, which may facilitate detachment of each cell's trailing edge. These data provide mechanistic insight into Misshapen's conserved role in cell migration and suggest that follicle cell planar polarity may be an emergent property of individual cell migratory behaviors within the epithelium.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
38
|
Dokla EM, Mahmoud AH, Elsayed MSA, El-Khatib AH, Linscheid MW, Abouzid KA. Applying ligands profiling using multiple extended electron distribution based field templates and feature trees similarity searching in the discovery of new generation of urea-based antineoplastic kinase inhibitors. PLoS One 2012. [PMID: 23185312 PMCID: PMC3502486 DOI: 10.1371/journal.pone.0049284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study provides a comprehensive computational procedure for the discovery of novel urea-based antineoplastic kinase inhibitors while focusing on diversification of both chemotype and selectivity pattern. It presents a systematic structural analysis of the different binding motifs of urea-based kinase inhibitors and the corresponding configurations of the kinase enzymes. The computational model depends on simultaneous application of two protocols. The first protocol applies multiple consecutive validated virtual screening filters including SMARTS, support vector-machine model (ROC = 0.98), Bayesian model (ROC = 0.86) and structure-based pharmacophore filters based on urea-based kinase inhibitors complexes retrieved from literature. This is followed by hits profiling against different extended electron distribution (XED) based field templates representing different kinase targets. The second protocol enables cancericidal activity verification by using the algorithm of feature trees (Ftrees) similarity searching against NCI database. Being a proof-of-concept study, this combined procedure was experimentally validated by its utilization in developing a novel series of urea-based derivatives of strong anticancer activity. This new series is based on 3-benzylbenzo[d]thiazol-2(3H)-one scaffold which has interesting chemical feasibility and wide diversification capability. Antineoplastic activity of this series was assayed in vitro against NCI 60 tumor-cell lines showing very strong inhibition of GI50 as low as 0.9 uM. Additionally, its mechanism was unleashed using KINEX™ protein kinase microarray-based small molecule inhibitor profiling platform and cell cycle analysis showing a peculiar selectivity pattern against Zap70, c-src, Mink1, csk and MeKK2 kinases. Interestingly, it showed activity on syk kinase confirming the recent studies finding of the high activity of diphenyl urea containing compounds against this kinase. Allover, the new series, which is based on a new kinase scaffold with interesting chemical diversification capabilities, showed that it exhibits its “emergent” properties by perturbing multiple unexplored kinase pathways.
Collapse
Affiliation(s)
- Eman M Dokla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
39
|
Hyodo T, Ito S, Hasegawa H, Asano E, Maeda M, Urano T, Takahashi M, Hamaguchi M, Senga T. Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 2012; 287:25019-29. [PMID: 22665485 DOI: 10.1074/jbc.m112.372342] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis is initiated by constriction of the cleavage furrow and terminated by abscission of the intercellular bridge that connects two separating daughter cells. The complicated processes of cytokinesis are coordinated by phosphorylation and dephosphorylation mediated by protein kinases and phosphatases. Mammalian Misshapen-like kinase 1 (MINK1) is a member of the germinal center kinases and is known to regulate cytoskeletal organization and oncogene-induced cell senescence. To search for novel regulators of cytokinesis, we performed a screen using a library of siRNAs and found that MINK1 was essential for cytokinesis. Time-lapse analysis revealed that MINK1-depleted cells were able to initiate furrowing but that abscission was disrupted. STRN4 (Zinedin) is a regulatory subunit of protein phosphatase 2A (PP2A) and was recently shown to be a component of a novel protein complex called striatin-interacting phosphatase and kinase (STRIPAK). Mass spectrometry analysis showed that MINK1 was a component of STRIPAK and that MINK1 directly interacted with STRN4. Similar to MINK1 depletion, STRN4-knockdown induced multinucleated cells and inhibited the completion of abscission. In addition, STRN4 reduced MINK1 activity in the presence of catalytic and structural subunits of PP2A. Our study identifies a novel regulatory network of protein kinases and phosphatases that regulate the completion of abscission.
Collapse
Affiliation(s)
- Toshinori Hyodo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bruce DL, Sapkota GP. Phosphatases in SMAD regulation. FEBS Lett 2012; 586:1897-905. [PMID: 22576046 DOI: 10.1016/j.febslet.2012.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 11/28/2022]
Abstract
SMAD transcription factors are key mediators of the transforming growth factor-beta (TGFß) family of cytokines. Reversible phosphorylation of SMAD proteins plays a key role in regulating their function. Several phosphatases have been proposed to act on SMAD proteins to influence TGFß/BMP signalling. Here we provide an overview of the SMAD regulation by different protein phosphatases and review the evidence supporting each phosphatase as a candidate SMAD-phosphatase.
Collapse
Affiliation(s)
- David L Bruce
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, Scotland, UK
| | | |
Collapse
|
41
|
Sundqvist A, Ten Dijke P, van Dam H. Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Res 2012; 14:204. [PMID: 22315972 PMCID: PMC3496114 DOI: 10.1186/bcr3066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smad proteins are the key intermediates of transforming growth factor-beta (TGF-β) signaling during development and in tissue homeostasis. Pertubations in TGF-β/Smad signaling have been implicated in cancer and other diseases. In the cell nucleus, Smad complexes trigger cell type- and context-specific transcriptional programs, thereby transmitting and integrating signals from a variety of ligands of the TGF-β superfamily and other stimuli in the cell microenvironment. The actual transcriptional and biological outcome of Smad activation critically depends on the genomic integrity and the modification state of genome and chromatin of the cell. The cytoplasmic and nuclear Smads can also modulate the activity of other signal transducers and enzymes such as microRNA-processing factors. In the case of breast cancer, the role of Smads in epithelial plasticity, tumor-stroma interactions, invasion, and metastasis seems of particular importance.
Collapse
Affiliation(s)
- Anders Sundqvist
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, 75124, Uppsala, Sweden
| | | | | |
Collapse
|
42
|
Raftery LA, Umulis DM. Regulation of BMP activity and range in Drosophila wing development. Curr Opin Cell Biol 2011; 24:158-65. [PMID: 22152945 DOI: 10.1016/j.ceb.2011.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023]
Abstract
Bone morphogenetic protein (BMP) signaling controls development and maintenance of many tissues. Genetic and quantitative approaches in Drosophila reveal that ligand isoforms show distinct function in wing development. Spatiotemporal control of BMP patterning depends on a network of extracellular proteins Pent, Ltl and Dally that regulate BMP signaling strength and morphogen range. BMP-mediated feedback regulation of Pent, Ltl, and Dally expression provides a system where cells actively respond to, and modify, the extracellular morphogen landscape to form a gradient that exhibits remarkable properties, including proportional scaling of BMP patterning with tissue size and the modulation of uniform tissue growth. This system provides valuable insights into mechanisms that mitigate the influence of variability to regulate cell-cell interactions and maintain organ function.
Collapse
Affiliation(s)
- Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA.
| | | |
Collapse
|
43
|
|