1
|
Oyabu M, Ohira Y, Fujita M, Yoshioka K, Kawaguchi R, Kubo A, Hatazawa Y, Yukitoshi H, Ortuste Quiroga HP, Horii N, Miura F, Araki H, Okano M, Hatada I, Gotoh H, Yoshizawa T, Fukada SI, Ogawa Y, Ito T, Ishihara K, Ono Y, Kamei Y. Dnmt3a overexpression disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces metabolic elasticity. iScience 2025; 28:112144. [PMID: 40151644 PMCID: PMC11937683 DOI: 10.1016/j.isci.2025.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/10/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Mammalian aging is reportedly driven by the loss of epigenetic information; however, its impact on skeletal muscle aging remains unclear. This study shows that aging mouse skeletal muscle exhibits increased DNA methylation, and overexpression of DNA methyltransferase 3a (Dnmt3a) induces an aging-like phenotype. Muscle-specific Dnmt3a overexpression leads to an increase in central nucleus-positive myofibers, predominantly in fast-twitch fibers, a shift toward slow-twitch fibers, elevated inflammatory and senescence markers, mitochondrial OXPHOS complex I reduction, and decreased basal autophagy. Dnmt3a overexpression resulted in reduced muscle mass and strength and impaired endurance exercise capacity with age, accompanied by an enhanced inflammatory signature. In addition, Dnmt3a overexpression reduced not only sensitivity to starvation-induced muscle atrophy but also the restorability from muscle atrophy. These findings suggest that increased DNA methylation disrupts skeletal muscle homeostasis, promotes an aging-like phenotype, and reduces muscle metabolic elasticity.
Collapse
Affiliation(s)
- Mamoru Oyabu
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yuto Ohira
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Mariko Fujita
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kiyoshi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan
| | - Runa Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Atsushi Kubo
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukino Hatazawa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Hinako Yukitoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Huascar Pedro Ortuste Quiroga
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Masaki Okano
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hitoshi Gotoh
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tatsuya Yoshizawa
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - So-ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
2
|
Tan X, Zhao R, Chen J, Yan Z, Sui X, Li H, Li Q, Du X, Liu Y, Yao S, Yang Y, Irwin DM, Li B, Zhang S. Integrative transcriptomic, proteomic and metabolomic analyses yields insights into muscle fiber type in cattle. Food Chem 2025; 468:142479. [PMID: 39706111 DOI: 10.1016/j.foodchem.2024.142479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Muscle fiber is an important factor in beef quality. Here, we compared fast-type longissimus dorsi muscle and slow-type psoas major muscle from cattle using transcriptomic, proteomic and metabolomic analyses. A total of 1717 differentially expressed genes (DEGs), 297 differentially abundant proteins (DAPs) and 193 differentially abundant metabolites (DAMs) were identified between LD and PM tissue, respectively. For verification, we selected 10 DEGs for qRT-PCR and 6 DAPs for western blotting, and showed they were consistent between the two approaches. GO and KEGG enrichment analyses revealed that some DEGs, DAPs and DAMs were enriched in muscle fiber type-associated GO terms and pathways. Many of them are involved in glycolysis, TCA and fatty acid metabolism. Integrated multi-omics analysis showed a correlation coefficient of 0.6244 between the transcriptome and proteome. This study provides a new understanding of molecular mechanisms involved in the determination of bovine muscle fiber type and meat quality.
Collapse
Affiliation(s)
- Xiaofan Tan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruixue Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Yan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Heling Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiao Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuehai Du
- Liaoning Agricultural Development Service Center, Shenyang 110032, China
| | - Yangzhi Liu
- Wellhope Foods Company Limited, Shenyang 110164, China
| | - Siming Yao
- Liaoning Agricultural Development Service Center, Shenyang 110032, China
| | - Ying Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Shan Y, Liu Y, Zhang M, Pang L, Ji G, Ju X, Tu Y, Shu J. The m6A modification regulates the composition of myofiber types in chicken skeletal muscle. Poult Sci 2025; 104:104811. [PMID: 39919566 PMCID: PMC11848472 DOI: 10.1016/j.psj.2025.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 02/09/2025] Open
Abstract
As a widespread epigenetic RNA modification, N6-methyladenosine (m6A) plays essential regulatory roles in multiple biological processes. However, its function in maintaining and modulating myofiber-type properties remains largely unknown. To investigate the post-transcriptional modification underlying the myofiber type diversity in chicken skeletal muscle, we evaluated the m6A methylation levels of chicken skeletal muscles with different phenotypic traits, and profiled a transcriptome-wide m6A map in the oxidative and glycolytic skeletal muscles by methylated RNA immunoprecipitation sequencing (MeRIP-seq). Our results showed that the levels of m6A methylation in chicken skeletal muscles were closely related to the composition of myofiber types. The m6A methylation level of anterior latissimus dorsi (ALD, typical oxidative skeletal muscle) was the highest among the three muscles and significantly higher than that of the pectoralis major (PM, typical glycolytic skeletal muscle) (P<0.05). We found that about 24.77 % and 33.50 % of genes were modified by m6A methylation in the PM and ALD, respectively, and identified 6,530 and 9,965 m6A peaks, which were mainly located in the coding sequence (CDS) and stop codon. About 3.14 % of m6A modified genes showed significantly differential methylation levels between these two muscles. Intriguingly, the myofiber type-related genes, such as MYOT, TPM3, TPM1, PDK1, MBNL1, and MYH1G, showed differences in m6A methylation and mRNA expression. Further analysis revealed that the m6A methylation was positively correlated with gene expression homeostasis. It is exciting we found that the expression level of ALKBH5 mRNA and protein, was closely related to the composition of myofiber types. ALKBH5 over-expression could regulate the expression levels of genes related to muscle contraction and metabolism, including MYH1E, MYH1G, MYH7B, PDK1, and TPM1, suggesting the effect of ALKBH5 on the formation of myofiber-type properties in chicken skeletal muscle. Our results contribute to a better understanding of epigenetic factors involved in forming chicken myofiber-type properties and provide new targets for further investigation into chicken's growth development and meat quality.
Collapse
Affiliation(s)
- Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Lichuan Pang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China.
| |
Collapse
|
4
|
Li X, Xing SS, Meng SB, Hou ZY, Yu L, Chen MJ, Yuan DD, Xu HF, Cai HF, Li M. SOX6 AU controls myogenesis by cis-modulation of SOX6 in cattle. Epigenetics 2024; 19:2341578. [PMID: 38615330 PMCID: PMC11018032 DOI: 10.1080/15592294.2024.2341578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/06/2024] [Indexed: 04/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.
Collapse
Affiliation(s)
| | | | - Sheng-Bo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhong-Yi Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lei Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Meng-Juan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dong-Dong Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hui-Fen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Han-Fang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Igami K, Kittaka H, Yagi M, Gotoh K, Matsushima Y, Ide T, Ikeda M, Ueda S, Nitta SI, Hayakawa M, Nakayama KI, Matsumoto M, Kang D, Uchiumi T. iMPAQT reveals that adequate mitohormesis from TFAM overexpression leads to life extension in mice. Life Sci Alliance 2024; 7:e202302498. [PMID: 38664021 PMCID: PMC11046090 DOI: 10.26508/lsa.202302498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Mitochondrial transcription factor A, TFAM, is essential for mitochondrial function. We examined the effects of overexpressing the TFAM gene in mice. Two types of transgenic mice were created: TFAM heterozygous (TFAM Tg) and homozygous (TFAM Tg/Tg) mice. TFAM Tg/Tg mice were smaller and leaner notably with longer lifespans. In skeletal muscle, TFAM overexpression changed gene and protein expression in mitochondrial respiratory chain complexes, with down-regulation in complexes 1, 3, and 4 and up-regulation in complexes 2 and 5. The iMPAQT analysis combined with metabolomics was able to clearly separate the metabolomic features of the three types of mice, with increased degradation of fatty acids and branched-chain amino acids and decreased glycolysis in homozygotes. Consistent with these observations, comprehensive gene expression analysis revealed signs of mitochondrial stress, with elevation of genes associated with the integrated and mitochondrial stress responses, including Atf4, Fgf21, and Gdf15. These found that mitohormesis develops and metabolic shifts in skeletal muscle occur as an adaptive strategy.
Collapse
Affiliation(s)
- Ko Igami
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Kittaka
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Laboratory Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shin-Ichiro Nitta
- LSI Medience Corporation, Tokyo, Japan
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Manami Hayakawa
- Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Clinical Chemistry, Division of Biochemical Science and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Zhang FM, Wu HF, Wang KF, Yu DY, Zhang XZ, Ren Q, Chen WZ, Lin F, Yu Z, Zhuang CL. Transcriptome profiling of fast/glycolytic and slow/oxidative muscle fibers in aging and obesity. Cell Death Dis 2024; 15:459. [PMID: 38942747 PMCID: PMC11213941 DOI: 10.1038/s41419-024-06851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Aging and obesity pose significant threats to public health and are major contributors to muscle atrophy. The trends in muscle fiber types under these conditions and the transcriptional differences between different muscle fiber types remain unclear. Here, we demonstrate distinct responses of fast/glycolytic fibers and slow/oxidative fibers to aging and obesity. We found that in muscles dominated by oxidative fibers, the proportion of oxidative fibers remains unchanged during aging and obesity. However, in muscles dominated by glycolytic fibers, despite the low content of oxidative fibers, a significant decrease in proportion of oxidative fibers was observed. Consistently, our study uncovered that during aging and obesity, fast/glycolytic fibers specifically increased the expression of genes associated with muscle atrophy and inflammation, including Dkk3, Ccl8, Cxcl10, Cxcl13, Fbxo32, Depp1, and Chac1, while slow/oxidative fibers exhibit elevated expression of antioxidant protein Nqo-1 and downregulation of Tfrc. Additionally, we noted substantial differences in the expression of calcium-related signaling pathways between fast/glycolytic fibers and slow/oxidative fibers in response to aging and obesity. Treatment with a calcium channel inhibitor thapsigargin significantly increased the abundance of oxidative fibers. Our study provides additional evidence to support the transcriptomic differences in muscle fiber types under pathophysiological conditions, thereby establishing a theoretical basis for modulating muscle fiber types in disease treatment.
Collapse
Affiliation(s)
- Feng-Min Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao-Fan Wu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke-Fan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ding-Ye Yu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Xian-Zhong Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Ren
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei-Zhe Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Lin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Cheng-Le Zhuang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
He T, Yuan Z, Chen Q, Luo J, Mao J, Tang Z, Zhao X, Yang Z. Circular RNAs Mediate the Effects of Dietary Tryptophan on the Transformation of Muscle Fiber Types in Weaned Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8595-8605. [PMID: 38591744 DOI: 10.1021/acs.jafc.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The nutritional composition of the diet significantly impacts the overall growth and development of weaned piglets. The current study aimed to explore the effects and underlying mechanisms of dietary tryptophan consumption on muscle fiber type transformation during the weaning period. Thirty weaned piglets with an average body weight of 6.12 ± 0.16 kg were randomly divided into control (CON, 0.14% Trp diet) and high Trp (HT, 0.35% Trp) groups and maintained on the respective diet for 28 days. The HT group of weaned piglets exhibited highly significant improvements in growth performance and an increased proportion of fast muscle fibers. Transcriptome sequencing revealed the potential contribution of differentially expressed circular RNAs toward the transformation of myofiber types in piglets and toward the regulation of expression of related genes by targeting the microRNAs, miR-34c and miR-182, to further regulate myofiber transformation. In addition, 145 DE circRNAs were identified as potentially protein-encoding, with the encoded proteins associated with a myofiber type transformation. In conclusion, the current study greatly advances and refines our current understanding of the regulatory networks associated with piglet muscle development and myofiber type transformation and also contributes to the optimization of piglet diet formulation.
Collapse
Affiliation(s)
- Tianle He
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhidong Yuan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Qingyun Chen
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Ju Luo
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiani Mao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Li L, Tian X, Woodzell V, Gibbs RA, Yuan B, Venner E. Tracking updates in clinical databases increases efficiency for variant reanalysis. GENETICS IN MEDICINE OPEN 2024; 2:101841. [PMID: 39669589 PMCID: PMC11613846 DOI: 10.1016/j.gimo.2024.101841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/14/2024]
Abstract
Purpose Variant interpretation, guided by American College of Medical Genetics and Genomics guidelines, can inform clinical decision-making. However, interpretations may change over time for a variety of reasons. Periodic reanalysis of previous variant interpretations is important to ensure that reported genetic findings remain accurate according to current knowledge. Methods We performed automated filtering by comparing ClinVar variants available in August 2020 with those from August 2021 to screen for potential reanalysis candidates from 3 projects. These variants were subsequently interpreted based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology variant interpretation guideline or ClinGen revised gene-specific guidelines if applicable. Results Our method annotated 241 unique variants requiring reanalysis, from 3 projects containing 3,832,210 previously interpreted variants, including those filtered automatically. Among these 241 variants, 43 variants changed interpretation, including 55.81% (N = 24) with upgraded and 44.19% (N = 19) with downgraded classifications. An efficiency study showed that our strategy increased the reanalysis efficiency and saved reviewing time. Conclusion We demonstrated an effective high-throughput method, initiating from external data updates, to achieve variant reanalysis in a clinical laboratory. This filtering method reduced the number of variants that need to be reanalyzed, screened potential variants, and saved time and cost for clinical laboratories.
Collapse
Affiliation(s)
- Lele Li
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Xia Tian
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Richard A. Gibbs
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Bo Yuan
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Eric Venner
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Codified Genomics, Houston, TX
| |
Collapse
|
9
|
Tan X, Liu R, Zhao D, He Z, Li W, Zheng M, Li Q, Wang Q, Liu D, Feng F, Zhu D, Zhao G, Wen J. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J Adv Res 2024; 55:1-16. [PMID: 36871617 PMCID: PMC10770282 DOI: 10.1016/j.jare.2023.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION Investigating the genetic markers and genomic signatures related to chicken meat production by combing multi-omics methods could provide new insights into modern chicken breeding technology systems. OBJECT Chicken is one of the most efficient and environmentally friendly livestock, especially the fast-growing white-feathered chicken (broiler), which is well known for high meat yield, but the underlying genetic basis is poorly understood. METHOD We generated whole-genome resequencing of three purebred broilers (n = 748) and six local breeds/lines (n = 114), and sequencing data of twelve chicken breeds (n = 199) were obtained from the NCBI database. Additionally, transcriptome sequencing of six tissues from two chicken breeds (n = 129) at two developmental stages was performed. A genome-wide association study combined with cis-eQTL mapping and the Mendelian randomization was applied. RESULT We identified > 17 million high-quality SNPs, of which 21.74% were newly identified, based on 21 chicken breeds/lines. A total of 163 protein-coding genes underwent positive selection in purebred broilers, and 83 genes were differentially expressed between purebred broilers and local chickens. Notably, muscle development was proven to be the major difference between purebred broilers and local chickens, or ancestors, based on genomic and transcriptomic evidence from multiple tissues and stages. The MYH1 gene family showed the top selection signatures and muscle-specific expression in purebred broilers. Furthermore, we found that the causal gene SOX6 influenced breast muscle yield and also related to myopathy occurrences. A refined haplotype was provided, which had a significant effect on SOX6 expression and phenotypic changes. CONCLUSION Our study provides a comprehensive atlas comprising the typical genomic variants and transcriptional characteristics for muscle development and suggests a new regulatory target (SOX6-MYH1s axis) for breast muscle yield and myopathy, which could aid in the development of genome-scale selective breeding aimed at high meat yield in broiler chickens.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Di Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengxiao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Mo M, Zhang Z, Wang X, Shen W, Zhang L, Lin S. Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry. Front Vet Sci 2023; 10:1284551. [PMID: 38076559 PMCID: PMC10702985 DOI: 10.3389/fvets.2023.1284551] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 06/09/2025] Open
Abstract
In the past, the primary emphasis of livestock and poultry breeding was mainly on improving the growth rate, meat production efficiency and disease resistance. However, the improvement of meat quality has become a major industrial focus due to the ongoing advancements in livestock and poultry breeding. Skeletal muscles consist of multinucleated myofibers formed through the processes of myoblast proliferation, differentiation and fusion. Muscle fibers can be broadly classified into two main types: slow-twitch (Type I) and fast-twitch (Type II). Fast-twitch fibers can be further categorized into Type IIa, Type IIx, and Type IIb. The proportion of Type I and Type IIa muscle fibers is positively associated with meat quality, while the presence of Type IIb muscle fibers in skeletal muscle tissue is inversely related to meat quality. Consequently, muscle fiber composition directly influences meat quality. The distribution of these fiber types within skeletal muscle is governed by a complex network, which encompasses numerous pivotal regulators and intricate signaling pathways. This article aims to succinctly outline the parameters utilized for assessing meat quality, elucidate the relationship between muscle fiber composition and meat quality as well as elaborate on the relevant genetic factors and their molecular mechanisms that regulate muscle fiber types in livestock and poultry. This summary will enrich our comprehension of how to improve meat quality in livestock and poultry, providing valuable insights for future improvements.
Collapse
Affiliation(s)
| | | | | | | | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Kabłak-Ziembicka A, Badacz R, Okarski M, Wawak M, Przewłocki T, Podolec J. Cardiac microRNAs: diagnostic and therapeutic potential. Arch Med Sci 2023; 19:1360-1381. [PMID: 37732050 PMCID: PMC10507763 DOI: 10.5114/aoms/169775] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs are small non-coding post-translational biomolecules which, when expressed, modify their target genes. It is estimated that microRNAs regulate production of approximately 60% of all human proteins and enzymes that are responsible for major physiological processes. In cardiovascular disease pathophysiology, there are several cells that produce microRNAs, including endothelial cells, vascular smooth muscle cells, macrophages, platelets, and cardiomyocytes. There is a constant crosstalk between microRNAs derived from various cell sources. Atherosclerosis initiation and progression are driven by many pro-inflammatory and pro-thrombotic microRNAs. Atherosclerotic plaque rupture is the leading cause of cardiovascular death resulting from acute coronary syndrome (ACS) and leads to cardiac remodeling and fibrosis following ACS. MicroRNAs are powerful modulators of plaque progression and transformation into a vulnerable state, which can eventually lead to plaque rupture. There is a growing body of evidence which demonstrates that following ACS, microRNAs might inhibit fibroblast proliferation and scarring, as well as harmful apoptosis of cardiomyocytes, and stimulate fibroblast reprogramming into induced cardiac progenitor cells. In this review, we focus on the role of cardiomyocyte-derived and cardiac fibroblast-derived microRNAs that are involved in the regulation of genes associated with cardiomyocyte and fibroblast function and in atherosclerosis-related cardiac ischemia. Understanding their mechanisms may lead to the development of microRNA cocktails that can potentially be used in regenerative cardiology.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Michał Okarski
- Student Scientific Group of Modern Cardiac Therapy at the Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Wawak
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Tadeusz Przewłocki
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Podolec
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| |
Collapse
|
12
|
Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, Muratani M, Okada R, Shiba D, Kudo T, Takeda S, Takahashi S. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep 2023; 42:112289. [PMID: 36952339 DOI: 10.1016/j.celrep.2023.112289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.
Collapse
Affiliation(s)
- Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
13
|
Zhao X, Ye J, Lin X, Xue H, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. Identification of Key Functional Genes and LncRNAs Influencing Muscle Growth and Development in Leizhou Black Goats. Genes (Basel) 2023; 14:genes14040881. [PMID: 37107639 PMCID: PMC10138011 DOI: 10.3390/genes14040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Meat yield and quality are important economic traits of livestock. Herein, longissimus dorsi (LD) muscles of Leizhou black goats aged 0, 3, and 6 months were used to identify differentially expressed messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) by high-throughput RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to analyze differentially expressed genes. Expression levels of regulator of calcineurin 1 (RCAN1) and olfactory receptor 2AP1 (OR2AP1) were significantly different in LD muscles of goats aged 0, 3, and 6 months, indicating potentially important roles in postnatal muscle development. Differentially expressed lncRNAs and mRNAs were mainly enriched in biological processes and pathways related to cellular energy metabolism, consistent with previous studies. Three lncRNAs, TCONS_00074191, TCONS_00074190, and TCONS_00078361, may play a cis-acting role with methyltransferase-like 11B (METTL11B) genes and participate in the methylation of goat muscle proteins. Some of the identified genes may provide valuable resources for future studies on postnatal meat development in goat muscles.
Collapse
Affiliation(s)
- Xiuhui Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Junning Ye
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Xunkai Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Huiwen Xue
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals (Basel) 2022; 12:ani12223074. [PMID: 36428302 PMCID: PMC9686495 DOI: 10.3390/ani12223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Copy number variation (CNV) is a fundamental type of structural variation of the genome affecting the economic traits of livestock. The SOX6 gene (sex-determining region Y-box 6), as a transcription factor, has multiple functions with regard to sex determination, embryonic growth, the nervous system development, as well as bone, and various organ formation. This study employed quantitative real-time fluorescence quota PCR (qPCR) for detecting the SOX6-CNV of the 311 Ashidan yaks and analyzed the correlation of the SOX6-CNV with four phenotypes (including body weight, withers height, body length, and chest girth) of the yaks aged 6, 12, 18, and 30 months using ANOVA and multiple comparisons. Furthermore, the SOX6 gene expression was identified in seven different tissues of the yaks. The experiment results demonstrated the expression of SOX6 in each tissue, and the kidney and muscle tissue were found to have higher relative expression levels. Based on the processing by IBM SPSS software, SOX6-CNV was significantly correlated with the chest girth of the 6-months old yaks (p < 0.05) and 30-months yaks (p < 0.05), and withers height of 6 months yaks (p < 0.05) and 18-months yaks (p < 0.05), as well as the normal type of CNV, was chosen for yak breeding. In conclusion, SOX6 might be prominently involved in promoting growth and development of yaks, suggesting that the SOX6 gene can be used in breeding yaks by molecular marker-assisted selection (MAS). The study also offered some important insights into the references and clues for the genetic breeding of yaks.
Collapse
|
15
|
Zhang Z, Lin S, Luo W, Ren T, Huang X, Li W, Zhang X. Sox6 Differentially Regulates Inherited Myogenic Abilities and Muscle Fiber Types of Satellite Cells Derived from Fast- and Slow-Type Muscles. Int J Mol Sci 2022; 23:ijms231911327. [PMID: 36232654 PMCID: PMC9569562 DOI: 10.3390/ijms231911327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Adult skeletal muscle is primarily divided into fast and slow-type muscles, which have distinct capacities for regeneration, metabolism and contractibility. Satellite cells plays an important role in adult skeletal muscle. However, the underlying mechanisms of satellite cell myogenesis are poorly understood. We previously found that Sox6 was highly expressed in adult fast-type muscle. Therefore, we aimed to validate the satellite cell myogenesis from different muscle fiber types and investigate the regulation of Sox6 on satellite cell myogenesis. First, we isolated satellite cells from fast- and slow-type muscles individually. We found that satellite cells derived from different muscle fiber types generated myotubes similar to their origin types. Further, we observed that cells derived from fast muscles had a higher efficiency to proliferate but lower potential to self-renew compared to the cells derived from slow muscles. Then we demonstrated that Sox6 facilitated the development of satellite cells-derived myotubes toward their inherent muscle fiber types. We revealed that higher expression of Nfix during the differentiation of fast-type muscle-derived myogenic cells inhibited the transcription of slow-type isoforms (MyH7B, Tnnc1) by binding to Sox6. On the other hand, Sox6 activated Mef2C to promote the slow fiber formation in slow-type muscle-derived myogenic cells with Nfix low expression, showing a different effect of Sox6 on the regulation of satellite cell development. Our findings demonstrated that satellite cells, the myogenic progenitor cells, tend to develop towards the fiber type similar to where they originated. The expression of Sox6 and Nfix partially explain the developmental differences of myogenic cells derived from fast- and slow-type muscles.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524000, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wangyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
16
|
Limonium tetragonum Promotes Running Endurance in Mice through Mitochondrial Biogenesis and Oxidative Fiber Formation. Nutrients 2022; 14:nu14193904. [PMID: 36235564 PMCID: PMC9570989 DOI: 10.3390/nu14193904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine whether Limonium tetragonum, cultivated in a smart-farming system with LED lamps, could increase exercise capacity in mice. C57BL/6 male mice were orally administered vehicle or Limonium tetragonum water extract (LTE), either 30 or 100 mg/kg, and were subjected to moderate intensity treadmill exercise for 4 weeks. Running distance markedly increased in the LTE group (100 mg/kg) by 80 ± 4% compared to the vehicle group, which was accompanied by a higher proportion of oxidative fibers (6 ± 6% vs. 10 ± 4%). Mitochondrial DNA content and gene expressions related to mitochondrial biogenesis were significantly increased in LTE-supplemented gastrocnemius muscles. At the molecular level, the expression of PGC-1α, a master regulator of fast-to-slow fiber-type transition, was increased downstream of the PKA/CREB signaling pathway. LTE induction of the PKA/CREB signaling pathway was also observed in C2C12 cells, which was effectively suppressed by PKA inhibitors H89 and Rp-cAMP. Altogether, these findings indicate that LTE treatment enhanced endurance exercise capacity via an improvement in mitochondrial biosynthesis and the increases in the formation of oxidative slow-twitch fibers. Future study is warranted to validate the exercise-enhancing effect of LTE in the human.
Collapse
|
17
|
Liu YF, Zhang M, Shan YJ, Pang LC, Ji GG, Ju XJ, Tu YJ, Shi SY, Bai H, Zou JM, Shu JT. Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification. Front Genet 2022; 13:1008649. [PMID: 36186474 PMCID: PMC9521549 DOI: 10.3389/fgene.2022.1008649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) might play critical roles in skeletal myofiber specification. In a previous study, we found that chicken miR-499-5p is specifically expressed in slow-twitch muscle and that its potential target gene is SOX6. In this study, we performed RNA sequencing to investigate the effects of SOX6 and miR-499-5p on the modulation and regulation of chicken muscle fiber type and its regulatory mechanism. The expression levels of miR-499-5p and SOX6 demonstrated opposing trends in different skeletal muscles and were associated with muscle fiber type composition. Differential expression analysis revealed that miR-499-5p overexpression led to significant changes in the expression of 297 genes in chicken primary myoblasts (CPMs). Myofiber type-related genes, including MYH7B and CSRP3, showed expression patterns similar to those in slow-twitch muscle. According to functional enrichment analysis, differentially expressed genes were mostly associated with muscle development and muscle fiber-related processes. SOX6 was identified as the target gene of miR-499-5p in CPM using target gene mining and luciferase reporter assays. SOX6 knockdown resulted in upregulation of the slow myosin genes and downregulation of fast myosin genes. Furthermore, protein-protein interaction network analysis revealed that MYH7B and RUNX2 may be the direct targets of SOX6. These results indicated that chicken miR-499-5p may promote slow-twitch muscle fiber formation by repressing SOX6 expression. Our study provides a dataset that can be used as a reference for animal meat quality and human muscle disease studies.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Ming Zhang
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yan-Ju Shan
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Li-Chuan Pang
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Gai-Ge Ji
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Xiao-Jun Ju
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yun-Jie Tu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Shi-Ying Shi
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of China, Yangzhou University, Yangzhou, China
| | - Jian-Min Zou
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jing-Ting Shu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- *Correspondence: Jing-Ting Shu,
| |
Collapse
|
18
|
Vemula SK, Kim SA, Muvavarirwa T, Bell JL, Whitman MC. Impaired Extraocular Muscle Innervation Is Present Before Eye Opening in a Mouse Model of Infantile Nystagmus Syndrome. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 36083589 PMCID: PMC9469029 DOI: 10.1167/iovs.63.10.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose To determine if extraocular muscles (EOMs) from mice with nystagmus show abnormalities in myofiber composition and innervation, as seen in EOMs from human nystagmus patients, and to determine when in development those changes occur. Methods Balb/c albino mice were crossed to pigmented mice to generate heterozygous mice, which were mated to create experimental litters containing albinos and wild-type controls. Orbits were harvested from adult animals (12 weeks old); on postnatal day (P)0, P10, P14, and P21; and from 6-week-old animals. EOM sections were collected from the intraorbital portion of the muscles. Sections were immunostained for slow and fast myosin and for neuromuscular junctions (NMJs). The proportion of each myofiber subtype and the density and size of NMJs were quantified. Initial innervation patterns were assessed using whole-mount immunostaining of embryonic day (E)13.5 embryos expressing IslMN:GFP. Results Adult albino EOMs display an increased proportion of slow myofibers, larger slow myofibers, and a decreased density of NMJs—similar to human nystagmus patients. The percentage of NMJs on slow myofibers is also lower in albino animals. The initial innervation pattern of the incoming ocular motor neurons is normal in E13.5 albino embryos. Differences in the proportion of slow and fast myofiber subtypes are present as early as P14, and a lower percentage of NMJs on slow myofibers is present by P21. There is a lower density of NMJs on albino EOMs as early as P10, prior to eye opening. Conclusions Changes in NMJ development observed before eye opening indicate that nystagmus is not solely secondary to poor vision.
Collapse
Affiliation(s)
- Sampath Kumar Vemula
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Seoyoung A Kim
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Tapiwa Muvavarirwa
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
| |
Collapse
|
19
|
de Oliveira Silva T, Lino CA, Miranda JB, Balbino-Silva CS, Lunardon G, Lima VM, Jensen L, Donato J, Irigoyen MC, Barreto-Chaves MLM, Diniz GP. miRNA-143-3p-Sox6-Myh7 pathway is altered in obesogenic diet-induced cardiac hypertrophy. Exp Physiol 2022; 107:892-905. [PMID: 35765992 DOI: 10.1113/ep090315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? To investigate the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice. What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased levels of Sox6 and increased expression of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. Our results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. ABSTRACT Obesity induces cardiometabolic disorders associated with a high risk of mortality. We have previously shown that the microRNA (miRNA) expression profile is changed in obesity-induced cardiac hypertrophy in male mice. Here, we investigated the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice. Female mice fed an obesogenic diet displayed an increased body weight gain, glucose intolerance, insulin resistance, and dyslipidemia. In addition, obese female mice exhibited cardiac hypertrophy associated with increased levels of several miRNAs, including miR-143-3p. Bioinformatic analysis identified Sox6, a regulator of Myh7 transcription, as a predicted target of the miR-143-3p. Female mice fed an obesogenic diet exhibited decreased levels of Sox6 and increased expression of Myh7 in the heart. Loss-of-function studies in cardiomyocytes revealed that inhibition of miR-143-3p increased Sox6 mRNA levels and reduced Myh7 expression. Collectively, our results indicate that obesity-associated cardiac hypertrophy in female mice is accompanied by alterations in diverse miRNAs, and suggest that the miR-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliane B Miranda
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila S Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vanessa M Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Jensen
- Hypertension Unit, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
20
|
Ojima K, Kigaki M, Ichimura E, Suzuki T, Kobayashi K, Muroya S, Nishimura T. Endogenous slow and fast myosin dynamics in myofibers isolated from mice expressing GFP-Myh7 and Kusabira Orange-Myh1. Am J Physiol Cell Physiol 2022; 323:C520-C535. [PMID: 35759444 DOI: 10.1152/ajpcell.00415.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle consists of slow and fast myofibers in which different myosin isoforms are expressed. Approximately 300 myosins form a single thick filament in the myofibrils, where myosin is continuously exchanged. However, endogenous slow and fast myosin dynamics have not been fully understood. To elucidate those dynamics, here we generated mice expressing green fluorescence protein-tagged slow myosin heavy chain (GFP-Myh7) and Kusabira Orange fluorescence protein-tagged fast myosin heavy chain (KuO-Myh1). First, these mice enabled us to distinguish between GFP- and KuO-myofibers under fluorescence microscopy: GFP-Myh7 and KuO-Myh1 were exclusively expressed in slow myofibers and fast myofibers, respectively. Next, to monitor endogenous myosin dynamics, fluorescence recovery after photobleaching (FRAP) was conducted. The mobile fraction (Mf) of GFP-Myh7 and that of KuO-Myh1 were almost constant values independent of the regions of the myofibers and the muscle portions where the myofibers were isolated. Intriguingly, proteasome inhibitor treatment significantly decreased the Mf in GFP-Myh7 but not in KuO-Myh1 myofibers, indicating that the response to a disturbance in protein turnover depended on muscle fiber type. Taken together, the present results indicated that the mice we generated are promising tools not only for distinguishing between GFP- and KuO-myofibers but also for studying the dynamics of endogenous myosin isoforms by live-cell fluorescence imaging.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Masahiro Kigaki
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Emi Ichimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ken Kobayashi
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
Dungan CM, Brightwell CR, Wen Y, Zdunek CJ, Latham CM, Thomas NT, Zagzoog AM, Brightwell BD, Nolt GL, Keeble AR, Watowich SJ, Murach KA, Fry CS. Muscle-Specific Cellular and Molecular Adaptations to Late-Life Voluntary Concurrent Exercise. FUNCTION 2022; 3:zqac027. [PMID: 35774589 PMCID: PMC9233305 DOI: 10.1093/function/zqac027] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/07/2023] Open
Abstract
Murine exercise models can provide information on factors that influence muscle adaptability with aging, but few translatable solutions exist. Progressive weighted wheel running (PoWeR) is a simple, voluntary, low-cost, high-volume endurance/resistance exercise approach for training young mice. In the current investigation, aged mice (22-mo-old) underwent a modified version of PoWeR for 8 wk. Muscle functional, cellular, biochemical, transcriptional, and myonuclear DNA methylation analyses provide an encompassing picture of how muscle from aged mice responds to high-volume combined training. Mice run 6-8 km/d, and relative to sedentary mice, PoWeR increases plantarflexor muscle strength. The oxidative soleus of aged mice responds to PoWeR similarly to young mice in every parameter measured in previous work; this includes muscle mass, glycolytic-to-oxidative fiber type transitioning, fiber size, satellite cell frequency, and myonuclear number. The oxidative/glycolytic plantaris adapts according to fiber type, but with modest overall changes in muscle mass. Capillarity increases markedly with PoWeR in both muscles, which may be permissive for adaptability in advanced age. Comparison to published PoWeR RNA-sequencing data in young mice identified conserved regulators of adaptability across age and muscles; this includes Aldh1l1 which associates with muscle vasculature. Agrn and Samd1 gene expression is upregulated after PoWeR simultaneous with a hypomethylated promoter CpG in myonuclear DNA, which could have implications for innervation and capillarization. A promoter CpG in Rbm10 is hypomethylated by late-life exercise in myonuclei, consistent with findings in muscle tissue. PoWeR and the data herein are a resource for uncovering cellular and molecular regulators of muscle adaptation with aging.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Physical Therapy, University of Kentucky, Lexington 40536, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Yuan Wen
- Department of Physical Therapy, University of Kentucky, Lexington 40536, KY, USA
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | | | - Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Alyaa M Zagzoog
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Benjamin D Brightwell
- Kinesiology and Health Promotion Graduate Program, University of Kentucky, Lexington 40536, KY, USA
| | - Georgia L Nolt
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston 77555, TX, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville 72701, AR, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville 72701, AR, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington 40536, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington 40536, KY, USA
| |
Collapse
|
22
|
Saleem M, Rahman S, Elijovich F, Laffer CL, Ertuglu LA, Masenga SK, Kirabo A. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 2022; 24:145-156. [PMID: 35124768 DOI: 10.1007/s11906-022-01175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions. RECENT FINDINGS The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role. Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.
Collapse
Affiliation(s)
- Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sharla Rahman
- Centre for Translational and Clinical Research, Jamia Hamdard, New Delhi, India
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Lale A Ertuglu
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Sepiso K Masenga
- School of Medicine and Health Sciences, Mulungushi University, HAND Research Group, Livingstone, Zambia
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
23
|
Sirt6 reprograms myofibers to oxidative type through CREB-dependent Sox6 suppression. Nat Commun 2022; 13:1808. [PMID: 35379817 PMCID: PMC8980083 DOI: 10.1038/s41467-022-29472-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExpanding the exercise capacity of skeletal muscle is an emerging strategy to combat obesity-related metabolic diseases and this can be achieved by shifting skeletal muscle fibers toward slow-twitch oxidative type. Here, we report that Sirt6, an anti-aging histone deacetylase, is critical in regulating myofiber configuration toward oxidative type and that Sirt6 activator can be an exercise mimetic. Genetic inactivation of Sirt6 in skeletal muscle reduced while its transgenic overexpression increased mitochondrial oxidative capacity and exercise performance in mice. Mechanistically, we show that Sirt6 downregulated Sox6, a key repressor of slow fiber specific gene, by increasing the transcription of CREB. Sirt6 expression is elevated in chronically exercised humans, and mice treated with an activator of Sirt6 showed an increase in exercise endurance as compared to exercise-trained controls. Thus, the current study identifies Sirt6 as a molecular target for reprogramming myofiber composition toward the oxidative type and for improving muscle performance.
Collapse
|
24
|
Rodriguez VR, Maffioly JI, Zdanovicz LA, Fabre RM, Barrandeguy ME, García MV, Lagadari M. Genetic diversity of meat quality related genes in Argentinean pigs. Vet Anim Sci 2022; 15:100237. [PMID: 35169654 PMCID: PMC8829130 DOI: 10.1016/j.vas.2022.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
25
|
Sahinyan K, Blackburn DM, Simon MM, Lazure F, Kwan T, Bourque G, Soleimani VD. Application of ATAC-Seq for genome-wide analysis of the chromatin state at single myofiber resolution. eLife 2022; 11:72792. [PMID: 35188098 PMCID: PMC8901173 DOI: 10.7554/elife.72792] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Myofibers are the main components of skeletal muscle, which is the largest tissue in the body. Myofibers are highly adaptive and can be altered under different biological and disease conditions. Therefore, transcriptional and epigenetic studies on myofibers are crucial to discover how chromatin alterations occur in the skeletal muscle under different conditions. However, due to the heterogenous nature of skeletal muscle, studying myofibers in isolation proves to be a challenging task. Single-cell sequencing has permitted the study of the epigenome of isolated myonuclei. While this provides sequencing with high dimensionality, the sequencing depth is lacking, which makes comparisons between different biological conditions difficult. Here, we report the first implementation of single myofiber ATAC-Seq, which allows for the sequencing of an individual myofiber at a depth sufficient for peak calling and for comparative analysis of chromatin accessibility under various physiological and disease conditions. Application of this technique revealed significant differences in chromatin accessibility between resting and regenerating myofibers, as well as between myofibers from a mouse model of Duchenne Muscular Dystrophy (mdx) and wild-type (WT) counterparts. This technique can lead to a wide application in the identification of chromatin regulatory elements and epigenetic mechanisms in muscle fibers during development and in muscle-wasting diseases.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Marie-Michelle Simon
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada.,Canadian Centre for Computational Genomics, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
26
|
Xu Z, Fu T, Guo Q, Zhou D, Sun W, Zhou Z, Chen X, Zhang J, Liu L, Xiao L, Yin Y, Jia Y, Pang E, Chen Y, Pan X, Fang L, Zhu MS, Fei W, Lu B, Gan Z. Disuse-associated loss of the protease LONP1 in muscle impairs mitochondrial function and causes reduced skeletal muscle mass and strength. Nat Commun 2022; 13:894. [PMID: 35173176 PMCID: PMC8850466 DOI: 10.1038/s41467-022-28557-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse. Mitochondrial function is important for muscle maintenance and function, and mitochondrial proteolysis maintains mitochondrial integrity and function. Here the authors report that that loss of LONP1-dependent mitochondrial proteolysis in muscle causes reduced muscle mass and strength via activation of autophagy.
Collapse
Affiliation(s)
- Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xinyi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Erkai Pang
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wenyong Fei
- Sports Medicine Department, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University Medical School, Nanjing University, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Huang XH, Li JL, Li XY, Wang SX, Jiao ZH, Li SQ, Liu J, Ding J. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med 2021; 8:773314. [PMID: 34957257 PMCID: PMC8695683 DOI: 10.3389/fcvm.2021.773314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Various stresses, including pressure overload and myocardial stretch, can trigger cardiac remodeling and result in heart diseases. The disorders are associated with high risk of morbidity and mortality and are among the major health problems in the world. MicroRNAs, a class of ~22nt-long small non-coding RNAs, have been found to participate in regulating heart development and function. One of them, miR-208a, a cardiac-specific microRNA, plays key role(s) in modulating gene expression in the heart, and is involved in a broad array of processes in cardiac pathogenesis. Genetic deletion or pharmacological inhibition of miR-208a in rodents attenuated stress-induced cardiac hypertrophy and remodeling. Transgenic expression of miR-208a in the heart was sufficient to cause hypertrophic growth of cardiomyocytes. miR-208a is also a key regulator of cardiac conduction system, either deletion or transgenic expression of miR-208a disturbed heart electrophysiology and could induce arrhythmias. In addition, miR-208a appeared to assist in regulating the expression of fast- and slow-twitch myofiber genes in the heart. Notably, this heart-specific miRNA could also modulate the “endocrine” function of cardiac muscle and govern the systemic energy homeostasis in the whole body. Despite of the critical roles, the underlying regulatory networks involving miR-208a are still elusive. Here, we summarize the progress made in understanding the function and mechanisms of this important miRNA in the heart, and propose several topics to be resolved as well as the hypothetical answers. We speculate that miR-208a may play diverse and even opposite roles by being involved in distinct molecular networks depending on the contexts. A deeper understanding of the precise mechanisms of its action under the conditions of cardiac homeostasis and diseases is needed. The clinical implications of miR-208a are also discussed.
Collapse
Affiliation(s)
- Xing-Huai Huang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Lu Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yue Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Xia Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Han Jiao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Si-Qi Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Liu
- Department of Orthopaedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Traditional Medicine, Nanjing, China
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Zhuang A, Yang C, Liu Y, Tan Y, Bond ST, Walker S, Sikora T, Laskowski A, Sharma A, de Haan JB, Meikle PJ, Shimizu T, Coughlan MT, Calkin AC, Drew BG. SOD2 in skeletal muscle: New insights from an inducible deletion model. Redox Biol 2021; 47:102135. [PMID: 34598016 PMCID: PMC8487078 DOI: 10.1016/j.redox.2021.102135] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic conditions such as obesity, insulin resistance and glucose intolerance are frequently associated with impairments in skeletal muscle function and metabolism. This is often linked to dysregulation of homeostatic pathways including an increase in reactive oxygen species (ROS) and oxidative stress. One of the main sites of ROS production is the mitochondria, where the flux of substrates through the electron transport chain (ETC) can result in the generation of oxygen free radicals. Fortunately, several mechanisms exist to buffer bursts of intracellular ROS and peroxide production, including the enzymes Catalase, Glutathione Peroxidase and Superoxide Dismutase (SOD). Of the latter, there are two intracellular isoforms; SOD1 which is mostly cytoplasmic, and SOD2 which is found exclusively in the mitochondria. Developmental and chronic loss of these enzymes has been linked to disease in several studies, however the temporal effects of these disturbances remain largely unexplored. Here, we induced a post-developmental (8-week old mice) deletion of SOD2 in skeletal muscle (SOD2-iMKO) and demonstrate that 16 weeks of SOD2 deletion leads to no major impairment in whole body metabolism, despite these mice displaying alterations in aspects of mitochondrial abundance and voluntary ambulatory movement. This is likely partly explained by the suggestive data that a compensatory response may exist from other redox enzymes, including catalase and glutathione peroxidases. Nevertheless, we demonstrated that inducible SOD2 deletion impacts on specific aspects of muscle lipid metabolism, including the abundance of phospholipids and phosphatidic acid (PA), the latter being a key intermediate in several cellular signaling pathways. Thus, our findings suggest that post-developmental deletion of SOD2 induces a more subtle phenotype than previous embryonic models have shown, allowing us to highlight a previously unrecognized link between SOD2, mitochondrial function and bioactive lipid species including PA.
Collapse
Affiliation(s)
- Aowen Zhuang
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Christine Yang
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia
| | - Yingying Liu
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia
| | - Yanie Tan
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Simon T Bond
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Shannen Walker
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Tim Sikora
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia
| | - Adrienne Laskowski
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Arpeeta Sharma
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia
| | - Judy B de Haan
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, 3083, Australia; Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, 3122, Australia
| | - Peter J Meikle
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Melinda T Coughlan
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Anna C Calkin
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Brian G Drew
- Baker Heart & Diabetes Institute, Melbourne, 3004, Australia; Central Clinical School, Monash University, Melbourne, 3004, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
29
|
Hasan S, Asakawa S, Watabe S, Kinoshita S. Regulation of the Expression of the Myosin Heavy Chain (MYH) Gene myh14 in Zebrafish Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:821-835. [PMID: 34490548 DOI: 10.1007/s10126-021-10066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The human sarcomeric myosin heavy chain gene MYH14 contains an intronic microRNA, miR-499. Our previous studies demonstrated divergent genomic organization and expression patterns of myh14/miR-499 among teleosts; however, the regulatory mechanism is partly known. In this study, we report the regulation of myh14 expression in zebrafish, Danio rerio. Zebrafish myh14 has three paralogs, myh14-1, myh14-2, and myh14-3. Detailed promoter analysis suggested that a 5710-bp 5'-flanking region of myh14-1 and a 5641-bp region of myh14-3 contain a necessary regulatory region to recapitulate specific expression during embryonic development. The 5'-flanking region of zebrafish myh14-1 and its torafugu ortholog shared two distal and a single proximal conserved region. The two distal conserved regions had no effect on zebrafish myh14-1 expression, in contrast to torafugu expression, suggesting an alternative regulatory mechanism among the myh14 orthologs. Comparison among the 5'-flanking regions of the myh14 paralogs revealed two conserved regions. Deletion of these conserved regions significantly reduced the promoter activity of myh14-3 but had no effect on myh14-1, indicating different cis-regulatory mechanisms of myh14 paralogs. Loss of function of miR-499 resulted in a marked reduction in slow muscle fibers in embryonic development. Our study identified different cis-regulatory mechanisms controlling the expression of myh14/miR-499 and an indispensable role of miR-499 in muscle fiber-type specification in zebrafish.
Collapse
Affiliation(s)
- Sharmin Hasan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
- Department of Biology and Chemistry, Texas A&M International University, 5201 University Blvd., Laredo, TX, 78041, USA.
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Bioscience, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
30
|
Plotkin DL, Roberts MD, Haun CT, Schoenfeld BJ. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports (Basel) 2021; 9:sports9090127. [PMID: 34564332 PMCID: PMC8473039 DOI: 10.3390/sports9090127] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Human muscle fibers are generally classified by myosin heavy chain (MHC) isoforms characterized by slow to fast contractile speeds. Type I, or slow-twitch fibers, are seen in high abundance in elite endurance athletes, such as long-distance runners and cyclists. Alternatively, fast-twitch IIa and IIx fibers are abundant in elite power athletes, such as weightlifters and sprinters. While cross-sectional comparisons have shown marked differences between athletes, longitudinal data have not clearly converged on patterns in fiber type shifts over time, particularly between slow and fast fibers. However, not all fiber type identification techniques are created equal and, thus, may limit interpretation. Hybrid fibers, which express more than one MHC type (I/IIa, IIa/IIx, I/IIa/IIx), may make up a significant proportion of fibers. The measurement of the distribution of fibers would necessitate the ability to identify hybrid fibers, which is best done through single fiber analysis. Current evidence using the most appropriate techniques suggests a clear ability of fibers to shift between hybrid and pure fibers as well as between slow and fast fiber types. The context and extent to which this occurs, along with the limitations of current evidence, are discussed herein.
Collapse
Affiliation(s)
- Daniel L. Plotkin
- Health Sciences Department, CUNY Lehman College, Bronx, NY 10468, USA; (D.L.P.); (B.J.S.)
| | | | - Cody T. Haun
- Fitomics, LLC., Pelham, AL 35124, USA
- Correspondence:
| | - Brad J. Schoenfeld
- Health Sciences Department, CUNY Lehman College, Bronx, NY 10468, USA; (D.L.P.); (B.J.S.)
| |
Collapse
|
31
|
Santoso JW, Li X, Gupta D, Suh GC, Hendricks E, Lin S, Perry S, Ichida JK, Dickman D, McCain ML. Engineering skeletal muscle tissues with advanced maturity improves synapse formation with human induced pluripotent stem cell-derived motor neurons. APL Bioeng 2021; 5:036101. [PMID: 34286174 PMCID: PMC8282350 DOI: 10.1063/5.0054984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
To develop effective cures for neuromuscular diseases, human-relevant in vitro models of neuromuscular tissues are critically needed to probe disease mechanisms on a cellular and molecular level. However, previous attempts to co-culture motor neurons and skeletal muscle have resulted in relatively immature neuromuscular junctions (NMJs). In this study, NMJs formed by human induced pluripotent stem cell (hiPSC)-derived motor neurons were improved by optimizing the maturity of the co-cultured muscle tissue. First, muscle tissues engineered from the C2C12 mouse myoblast cell line, cryopreserved primary human myoblasts, and freshly isolated primary chick myoblasts on micromolded gelatin hydrogels were compared. After three weeks, only chick muscle tissues remained stably adhered to hydrogels and exhibited progressive increases in myogenic index and stress generation, approaching values generated by native muscle tissue. After three weeks of co-culture with hiPSC-derived motor neurons, engineered chick muscle tissues formed NMJs with increasing co-localization of pre- and postsynaptic markers as well as increased frequency and magnitude of synaptic activity, surpassing structural and functional maturity of previous in vitro models. Engineered chick muscle tissues also demonstrated increased expression of genes related to sarcomere maturation and innervation over time, revealing new insights into the molecular pathways that likely contribute to enhanced NMJ formation. These approaches for engineering advanced neuromuscular tissues with relatively mature NMJs and interrogating their structure and function have many applications in neuromuscular disease modeling and drug development.
Collapse
Affiliation(s)
- Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Xiling Li
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Gio C. Suh
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Shaoyu Lin
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Sarah Perry
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Dion Dickman
- Department of Biological Sciences, Dornsife College of Arts and Letters, University of Southern California, Los Angeles, California 90089, USA
| | - Megan L. McCain
- Author to whom correspondence should be addressed:. Tel: +1 2138210791. URL:https://livingsystemsengineering.usc.edu
| |
Collapse
|
32
|
Incardona JP, Linbo TL, French BL, Cameron J, Peck KA, Laetz CA, Hicks MB, Hutchinson G, Allan SE, Boyd DT, Ylitalo GM, Scholz NL. Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent trabeculation in Pacific herring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105810. [PMID: 33823483 DOI: 10.1016/j.aquatox.2021.105810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
There is a growing awareness that transient, sublethal embryonic exposure to crude oils cause subtle but important forms of delayed toxicity in fish. While the precise mechanisms for this loss of individual fitness are not well understood, they involve the disruption of early cardiogenesis and a subsequent pathological remodeling of the heart much later in juveniles. This developmental cardiotoxicity is attributable, in turn, to the inhibitory actions of crude oil-derived mixtures of polycyclic aromatic compounds (PACs) on specific ion channels and other proteins that collectively drive the rhythmic contractions of heart muscle cells via excitation-contraction coupling. Here we exposed Pacific herring (Clupea pallasi) embryos to oiled gravel effluent yielding ΣPAC concentrations as low as ~ 1 μg/L (64 ng/g in tissues). Upon hatching in clean seawater, and following the depuration of tissue PACs (as evidenced by basal levels of cyp1a gene expression), the ventricles of larval herring hearts showed a concentration-dependent reduction in posterior growth (ballooning). This was followed weeks later in feeding larvae by abnormal trabeculation, or formation of the finger-like projections of interior spongy myocardium, and months later with hypertrophy (overgrowth) of the spongy myocardium in early juveniles. Given that heart muscle cell differentiation and migration are driven by Ca2+-dependent intracellular signaling, the observed disruption of ventricular morphogenesis was likely a secondary (downstream) consequence of reduced calcium cycling and contractility in embryonic cardiomyocytes. We propose defective trabeculation as a promising phenotypic anchor for novel morphometric indicators of latent cardiac injury in oil-exposed herring, including an abnormal persistence of cardiac jelly in the ventricle wall and cardiomyocyte hyperproliferation. At a corresponding molecular level, quantitative expression assays in the present study also support biomarker roles for genes known to be involved in muscle contractility (atp2a2, myl7, myh7), cardiomyocyte precursor fate (nkx2.5) and ventricular trabeculation (nrg2, and hbegfa). Overall, our findings reinforce both proximal and indirect roles for dysregulated intracellular calcium cycling in the canonical fish early life stage crude oil toxicity syndrome. More work on Ca2+-mediated cellular dynamics and transcription in developing cardiomyocytes is needed. Nevertheless, the highly specific actions of ΣPAC mixtures on the heart at low, parts-per-billion tissue concentrations directly contravene classical assumptions of baseline (i.e., non-specific) crude oil toxicity.
Collapse
Affiliation(s)
- John P Incardona
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Barbara L French
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - James Cameron
- Earth Resources Technology, under contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Karen A Peck
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Cathy A Laetz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Mary Beth Hicks
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Greg Hutchinson
- Oregon State University, Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Newport, OR, USA
| | - Sarah E Allan
- National Oceanic and Atmospheric Administration, Office of Response and Restoration, Anchorage, AK, USA
| | - Daryle T Boyd
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
33
|
Atemin S, Todorov T, Maver A, Chamova T, Georgieva B, Tincheva S, Pacheva I, Ivanov I, Taneva A, Zlatareva D, Tournev I, Guergueltcheva V, Gospodinova M, Chochkova L, Peterlin B, Mitev V, Todorova A. MYH7-related disorders in two Bulgarian families: Novel variants in the same region associated with different clinical manifestation and disease penetrance. Neuromuscul Disord 2021; 31:633-641. [PMID: 34053846 DOI: 10.1016/j.nmd.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Pathogenic variants in MYH7 cause a wide range of cardiac and skeletal muscle diseases with childhood or adult onset. These include dilated and/or hypertrophic cardiomyopathy, left ventricular non-compaction cardiomyopathy, congenital myopathies with multi-minicores and myofiber type disproportion, myosin storage myopathy, Laing distal myopathy and others (scapulo-peroneal or limb-girdle muscle forms). Here we report the results from molecular genetic analyses (NGS and Sanger sequencing) of 4 patients in two families with variable neuromuscular phenotypes with or without cardiac involvement. Interestingly, variants in MYH7 gene appeared to be the cause in all the cases. A novel nonsense variant c.5746C>T, p.(Gln1916Ter) was found in the patient in Family 1 who deceased at the age of 2 years 4 months with the clinical diagnosis of dilated cardiomyopathy, whose father died before the age of 40 years, due to cardiac failure with clinical diagnosis of suspected limb-girdle muscular dystrophy. A splice acceptor variant c.5560-2A>C in MYH7 was detected in the second proband and her sister, with late onset distal myopathy without cardiac involvement. These different phenotypes (muscular involvement with severe cardiomyopathy and pure late onset neuromuscular phenotype without heart involvement) may result from novel MYH7 variants, which most probably impact the LMM (light meromyosin) domain's function of the mature protein.
Collapse
Affiliation(s)
- Slavena Atemin
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria.
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Ales Maver
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Teodora Chamova
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Bilyana Georgieva
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Savina Tincheva
- Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Ani Taneva
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria
| | - Dora Zlatareva
- Department of Diagnostic Imaging, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, University hospital "Alexandrovska", Medical University Sofia, Sofia, Bulgaria; Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| | | | | | - Lyubov Chochkova
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Bulgaria; Department of Pediatrics, University Hospital "St. George", Plovdiv, Bulgaria
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, UMC Ljubljana, Šlajmerjeva 4, SI-1000 Ljubljana, Slovenia
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; Genetic Medico-Diagnostic Laboratory "Genica", Sofia, Bulgaria
| |
Collapse
|
34
|
da Paixão AO, Bolin AP, Silvestre JG, Rodrigues AC. Palmitic Acid Impairs Myogenesis and Alters Temporal Expression of miR-133a and miR-206 in C2C12 Myoblasts. Int J Mol Sci 2021; 22:ijms22052748. [PMID: 33803124 PMCID: PMC7963199 DOI: 10.3390/ijms22052748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of sarcopenic obesity. Herein, we chose two non-cytotoxic concentrations to better understand how excess PA could impact myotube formation or diameter without inducing cell death. Forty-eight hours of 100 µM PA induced a reduction of myotube diameter and increased the number of type I fibers, which was associated with increased miR-206 expression. Next, C2C12 myotube growth in the presence of PA was evaluated. Compared to control cells, 150 µM PA reduces myoblast proliferation and the expression of MyoD and miR-206 and miR-133a expression, leading to a reduced number and diameter of myotubes. PA (100 µM), despite not affecting proliferation, impairs myotube formation by reducing the expression of Myf5 and miR-206 and decreasing protein synthesis. Interestingly, 100 and 150 µM PA-treated myotubes had a higher number of type II fibers than control cells. In conclusion, PA affects negatively myotube diameter, fusion, and metabolism, which may be related to myomiRs. By providing new insights into the mechanisms by which PA affects negatively skeletal muscle, our data may help in the discovery of new targets to treat sarcopenic obesity.
Collapse
Affiliation(s)
- Ailma O. da Paixão
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (A.O.d.P.); (A.P.B.)
| | - Anaysa Paola Bolin
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (A.O.d.P.); (A.P.B.)
| | - João G. Silvestre
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (A.O.d.P.); (A.P.B.)
- Correspondence: ; Tel.: +55-11-3091-7406
| |
Collapse
|
35
|
Li B, Tian Y, Wen H, Qi X, Wang L, Zhang J, Li J, Dong X, Zhang K, Li Y. Systematic identification and expression analysis of the Sox gene family in spotted sea bass (Lateolabrax maculatus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100817. [PMID: 33677158 DOI: 10.1016/j.cbd.2021.100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
The Sox gene family encodes a set of transcription factors characterized by a conserved Sry-related high mobility group (HMG)-box domain, which performs a series of essential biological functions in diverse tissues and developmental processes. In this study, the Sox gene family was systematically characterized in spotted sea bass (Lateolabrax maculatus). A total of 26 Sox genes were identified and classified into eight subfamilies, namely, SoxB1, SoxB2, SoxC, SoxD, SoxE, SoxF, SoxH and SoxK. The phylogenetic relationship, exon-intron and domain structure analyses supported their annotation and classification. Comparison of gene copy numbers and chromosome locations among different species indicated that except tandem duplicated paralogs of Sox17/Sox32, duplicated Sox genes in spotted sea bass were generated from teleost-specific whole genome duplication during evolution. In addition, qRT-PCR was performed to detect the expression profiles of Sox genes during development and adulthood. The results showed that the expression of 16 out of 26 Sox genes was induced dramatically at different starting points after the multicellular stage, which is consistent with embryogenesis. At the early stage of sex differentiation, 9 Sox genes exhibited sexually dimorphic expression patterns, among which Sox3, Sox19 and Sox6b showed the most significant ovary-biased expression. Moreover, the distinct expression pattern of Sox genes was observed in different adult tissues. Our results provide a fundamental resource for further investigating the functions of Sox genes in embryonic processes, sex determination and differentiation as well as controlling the homeostasis of adult tissues in spotted sea bass.
Collapse
Affiliation(s)
- Bingyu Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yuan Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Lingyu Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jingru Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Jinku Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Ximeng Dong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China.
| |
Collapse
|
36
|
Hamm SE, Fathalikhani DD, Bukovec KE, Addington AK, Zhang H, Perry JB, McMillan RP, Lawlor MW, Prom MJ, Vanden Avond MA, Kumar SN, Coleman KE, Dupont JB, Mack DL, Brown DA, Morris CA, Gonzalez JP, Grange RW. Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:144-160. [PMID: 33850950 PMCID: PMC8020351 DOI: 10.1016/j.omtm.2021.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
We tested the hypothesis that voluntary wheel running would complement microdystrophin gene therapy to improve muscle function in young mdx mice, a model of Duchenne muscular dystrophy. mdx mice injected with a single dose of AAV9-CK8-microdystrophin or vehicle at age 7 weeks were assigned to three groups: mdxRGT (run, gene therapy), mdxGT (no run, gene therapy), or mdx (no run, no gene therapy). Wild-type (WT) mice were assigned to WTR (run) and WT (no run) groups. WTR and mdxRGT performed voluntary wheel running for 21 weeks; remaining groups were cage active. Robust expression of microdystrophin occurred in heart and limb muscles of treated mice. mdxRGT versus mdxGT mice showed increased microdystrophin in quadriceps but decreased levels in diaphragm. mdx final treadmill fatigue time was depressed compared to all groups, improved in mdxGT, and highest in mdxRGT. Both weekly running distance (km) and final treadmill fatigue time for mdxRGT and WTR were similar. Remarkably, mdxRGT diaphragm power was only rescued to 60% of WT, suggesting a negative impact of running. However, potential changes in fiber type distribution in mdxRGT diaphragms could indicate an adaptation to trade power for endurance. Post-treatment in vivo maximal plantar flexor torque relative to baseline values was greater for mdxGT and mdxRGT versus all other groups. Mitochondrial respiration rates from red quadriceps fibers were significantly improved in mdxGT animals, but the greatest bioenergetic benefit was observed in the mdxRGT group. Additional assessments revealed partial to full functional restoration in mdxGT and mdxRGT muscles relative to WT. These data demonstrate that voluntary wheel running combined with microdystrophin gene therapy in young mdx mice improved whole-body performance, affected muscle function differentially, mitigated energetic deficits, but also revealed some detrimental effects of exercise. With microdystrophin gene therapy currently in clinical trials, these data may help us understand the potential impact of exercise in treated patients.
Collapse
Affiliation(s)
- Shelby E Hamm
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Daniel D Fathalikhani
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Katherine E Bukovec
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Adele K Addington
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Haiyan Zhang
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Justin B Perry
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mariah J Prom
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark A Vanden Avond
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Suresh N Kumar
- Department of Pathology and Laboratory Medicine and Children's Hospital of Wisconsin Research Institute Imaging Core, Milwaukee, WI 53226, USA
| | - Kirsten E Coleman
- Powell Gene Therapy Center Toxicology Core, University of Florida, Gainesville, FL 32610, USA
| | - J B Dupont
- Translational Gene Therapy for Genetic Diseases, INSERM UMR1089, IRS2 Nantes Biotech, Université de Nantes, Nantes 44200, France
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA.,Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| | | | | | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
37
|
Khodabukus A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front Physiol 2021; 12:619710. [PMID: 33716768 PMCID: PMC7952620 DOI: 10.3389/fphys.2021.619710] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle possesses remarkable plasticity that permits functional adaptations to a wide range of signals such as motor input, exercise, and disease. Small animal models have been pivotal in elucidating the molecular mechanisms regulating skeletal muscle adaptation and plasticity. However, these small animal models fail to accurately model human muscle disease resulting in poor clinical success of therapies. Here, we review the potential of in vitro three-dimensional tissue-engineered skeletal muscle models to study muscle function, plasticity, and disease. First, we discuss the generation and function of in vitro skeletal muscle models. We then discuss the genetic, neural, and hormonal factors regulating skeletal muscle fiber-type in vivo and the ability of current in vitro models to study muscle fiber-type regulation. We also evaluate the potential of these systems to be utilized in a patient-specific manner to accurately model and gain novel insights into diseases such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss. We conclude with a discussion on future developments required for tissue-engineered skeletal muscle models to become more mature, biomimetic, and widely utilized for studying muscle physiology, disease, and clinical use.
Collapse
Affiliation(s)
- Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
38
|
Liu L, Ding C, Fu T, Feng Z, Lee JE, Xiao L, Xu Z, Yin Y, Guo Q, Sun Z, Sun W, Mao Y, Yang L, Zhou Z, Zhou D, Xu L, Zhu Z, Qiu Y, Ge K, Gan Z. Histone methyltransferase MLL4 controls myofiber identity and muscle performance through MEF2 interaction. J Clin Invest 2021; 130:4710-4725. [PMID: 32544095 DOI: 10.1172/jci136155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle depends on the precise orchestration of contractile and metabolic gene expression programs to direct fiber-type specification and to ensure muscle performance. Exactly how such fiber type-specific patterns of gene expression are established and maintained remains unclear, however. Here, we demonstrate that histone monomethyl transferase MLL4 (KMT2D), an enhancer regulator enriched in slow myofibers, plays a critical role in controlling muscle fiber identity as well as muscle performance. Skeletal muscle-specific ablation of MLL4 in mice resulted in downregulation of the slow oxidative myofiber gene program, decreased numbers of type I myofibers, and diminished mitochondrial respiration, which caused reductions in muscle fatty acid utilization and endurance capacity during exercise. Genome-wide ChIP-Seq and mRNA-Seq analyses revealed that MLL4 directly binds to enhancers and functions as a coactivator of the myocyte enhancer factor 2 (MEF2) to activate transcription of slow oxidative myofiber genes. Importantly, we also found that the MLL4 regulatory circuit is associated with muscle fiber-type remodeling in humans. Thus, our results uncover a pivotal role for MLL4 in specifying structural and metabolic identities of myofibers that govern muscle performance. These findings provide therapeutic opportunities for enhancing muscle fitness to combat a variety of metabolic and muscular diseases.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chenyun Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Leilei Xu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Department of Spine Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
39
|
The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization. Nat Commun 2021; 12:690. [PMID: 33514739 PMCID: PMC7846557 DOI: 10.1038/s41467-021-20987-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/24/2020] [Indexed: 01/14/2023] Open
Abstract
Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear envelope transmembrane protein 39 (Net39) is a muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression, and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings highlight the role of Net39 at the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and its potential contribution to the molecular etiology of EDMD.
Collapse
|
40
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
41
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
42
|
Wei X, Franke J, Ost M, Wardelmann K, Börno S, Timmermann B, Meierhofer D, Kleinridders A, Klaus S, Stricker S. Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis. J Cachexia Sarcopenia Muscle 2020; 11:1758-1778. [PMID: 33078583 PMCID: PMC7749575 DOI: 10.1002/jcsm.12632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multi-organ disease caused by mutations in neurofibromin 1 (NF1). Amongst other features, NF1 patients frequently show reduced muscle mass and strength, impairing patients' mobility and increasing the risk of fall. The role of Nf1 in muscle and the cause for the NF1-associated myopathy are mostly unknown. METHODS To dissect the function of Nf1 in muscle, we created muscle-specific knockout mouse models for NF1, inactivating Nf1 in the prenatal myogenic lineage either under the Lbx1 promoter or under the Myf5 promoter. Mice were analysed during prenatal and postnatal myogenesis and muscle growth. RESULTS Nf1Lbx1 and Nf1Myf5 animals showed only mild defects in prenatal myogenesis. Nf1Lbx1 animals were perinatally lethal, while Nf1Myf5 animals survived only up to approximately 25 weeks. A comprehensive phenotypic characterization of Nf1Myf5 animals showed decreased postnatal growth, reduced muscle size, and fast fibre atrophy. Proteome and transcriptome analyses of muscle tissue indicated decreased protein synthesis and increased proteasomal degradation, and decreased glycolytic and increased oxidative activity in muscle tissue. High-resolution respirometry confirmed enhanced oxidative metabolism in Nf1Myf5 muscles, which was concomitant to a fibre type shift from type 2B to type 2A and type 1. Moreover, Nf1Myf5 muscles showed hallmarks of decreased activation of mTORC1 and increased expression of atrogenes. Remarkably, loss of Nf1 promoted a robust activation of AMPK with a gene expression profile indicative of increased fatty acid catabolism. Additionally, we observed a strong induction of genes encoding catabolic cytokines in muscle Nf1Myf5 animals, in line with a drastic reduction of white, but not brown adipose tissue. CONCLUSIONS Our results demonstrate a cell autonomous role for Nf1 in myogenic cells during postnatal muscle growth required for metabolic and proteostatic homeostasis. Furthermore, Nf1 deficiency in muscle drives cross-tissue communication and mobilization of lipid reserves.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Franke
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Kristina Wardelmann
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany
| | - Stefan Börno
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Core Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andre Kleinridders
- Junior Research Group Central Regulation of Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Potsdam, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute for Human Nutrition, Nuthetal, Germany.,Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
43
|
Saleem M, Barturen‐Larrea P, Gomez JA. Emerging roles of Sox6 in the renal and cardiovascular system. Physiol Rep 2020; 8:e14604. [PMID: 33230925 PMCID: PMC7683808 DOI: 10.14814/phy2.14604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
The function of Sex-determining Region Y (SRY)-related high-mobility-group box (Sox) family of transcription factors in cell fate decisions during embryonic development are well-established. Accumulating evidence indicates that the Sox family of transcription factors are fundamental in adult tissue homeostasis, regeneration, and physiology. The SoxD subfamily of genes are expressed in various cell types of different organs during embryogenesis and adulthood and have been involved in cell-fate determination, cellular proliferation and survival, differentiation, and terminal maturation in a number of cell lineages. The dysregulation in the function of SoxD proteins (i.e. Sox5, Sox6, Sox13, and Sox23) have been implicated in different disease conditions such as chondrodysplasia, cancer, diabetes, hypertension, autoimmune diseases, osteoarthritis among others. In this minireview, we present recent developments related to the transcription factor Sox6, which is involved in a number of diseases such as diabetic nephropathy, adipogenesis, cardiomyopathy, inflammatory bowel disease, and cancer. Sox6 has been implicated in the regulation of renin expression and JG cell recruitment in mice during sodium depletion and dehydration. We provide a current perspective of Sox6 research developments in last five years, and the implications of Sox6 functions in cardiovascular physiology and disease conditions.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Pierina Barturen‐Larrea
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| | - Jose A. Gomez
- Department of Medicine / Clinical Pharmacology DivisionVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
44
|
Li X, Wang C, Zhang X, Liu J, Wang Y, Li C, Guo D. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy. Hereditas 2020; 157:42. [PMID: 33099311 PMCID: PMC7585681 DOI: 10.1186/s41065-020-00155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To reveal the molecular mechanism underlying the pathogenesis of HCM and find new effective therapeutic strategies using a systematic biological approach. Methods The WGCNA algorithm was applied to building the co-expression network of HCM samples. A sample cluster analysis was performed using the hclust tool and a co-expression module was constructed. The WGCNA algorithm was used to study the interactive connection between co-expression modules and draw a heat map to show the strength of interactions between modules. The genetic information of the respective modules was mapped to the associated GO terms and KEGG pathways, and the Hub Genes with the highest connectivity in each module were identified. The Wilcoxon test was used to verify the expression level of hub genes between HCM and normal samples, and the “pROC” R package was used to verify the possibility of hub genes as biomarkers. Finally, the potential functions of hub genes were analyzed by GSEA software. Results Seven co-expression modules were constructed using sample clustering analysis. GO and KEGG enrichment analysis judged that the turquoise module is an important module. The hub genes of each module are RPL35A for module Black, FH for module Blue, PREI3 for module Brown, CREB1 for module Green, LOC641848 for module Pink, MYH7 for module Turquoise and MYL6 for module Yellow. The results of the differential expression analysis indicate that MYH7 and FH are considered true hub genes. In addition, the ROC curves revealed their high diagnostic value as biomarkers for HCM. Finally, in the results of the GSEA analysis, MYH7 and FH highly expressed genes were enriched with the “proteasome” and a “PPAR signaling pathway,” respectively. Conclusions The MYH7 and FH genes may be the true hub genes of HCM. Their respective enriched pathways, namely the “proteasome” and the “PPAR signaling pathway,” may play an important role in the development of HCM.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiovascular, The Third Central Hospital of Tianjin, Tianjin, China
| | - Chenxin Wang
- Department of Respiratory medicine, The Third Central Hospital of Tianjin, Tianjin, China
| | - Xiaoqing Zhang
- Department of internal medicine, Affiliated Hospital of Nankai University, Tianjin, China
| | - Jiali Liu
- Department of Hematology, Taian City Central Hospital, 29 Longtan Road, Taian, 271000, Shandong, China
| | - Yu Wang
- Department of Cardiovascular, The Third Central Hospital of Tianjin, Tianjin, China
| | - Chunpu Li
- Department of Orthopedics, Taian City Central Hospital, 29 Longtan Road, Taian, 271000, Shandong, China.
| | - Dongmei Guo
- Department of Hematology, Taian City Central Hospital, 29 Longtan Road, Taian, 271000, Shandong, China.
| |
Collapse
|
45
|
Tolchin D, Yeager JP, Prasad P, Dorrani N, Russi AS, Martinez-Agosto JA, Haseeb A, Angelozzi M, Santen GWE, Ruivenkamp C, Mercimek-Andrews S, Depienne C, Kuechler A, Mikat B, Ludecke HJ, Bilan F, Le Guyader G, Gilbert-Dussardier B, Keren B, Heide S, Haye D, Van Esch H, Keldermans L, Ortiz D, Lancaster E, Krantz ID, Krock BL, Pechter KB, Arkader A, Medne L, DeChene ET, Calpena E, Melistaccio G, Wilkie AOM, Suri M, Foulds N, Begtrup A, Henderson LB, Forster C, Reed P, McDonald MT, McConkie-Rosell A, Thevenon J, Le Tanno P, Coutton C, Tsai ACH, Stewart S, Maver A, Gorazd R, Pichon O, Nizon M, Cogné B, Isidor B, Martin-Coignard D, Stoeva R, Lefebvre V, Le Caignec C. De Novo SOX6 Variants Cause a Neurodevelopmental Syndrome Associated with ADHD, Craniosynostosis, and Osteochondromas. Am J Hum Genet 2020; 106:830-845. [PMID: 32442410 PMCID: PMC7273536 DOI: 10.1016/j.ajhg.2020.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.
Collapse
Affiliation(s)
- Dara Tolchin
- Department of Surgery, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jessica P Yeager
- Department of Surgery, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Priya Prasad
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Naghmeh Dorrani
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alvaro Serrano Russi
- Division of Medical Genetics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Julian A Martinez-Agosto
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abdul Haseeb
- Department of Surgery, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marco Angelozzi
- Department of Surgery, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - G W E Santen
- Department of Clinical Genetics, Leiden University Medical Centre, 2300 LC Leiden, the Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, 2300 LC Leiden, the Netherlands
| | - Saadet Mercimek-Andrews
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Barbara Mikat
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hermann-Josef Ludecke
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; Institute für Humangenetik, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Frederic Bilan
- Neurovascular Unit and Cognitive Disorders (EA-3808 NEUVACOD), Université de Poitiers, 86073 Poitiers, France; Service de Génétique Clinique, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Gwenael Le Guyader
- Neurovascular Unit and Cognitive Disorders (EA-3808 NEUVACOD), Université de Poitiers, 86073 Poitiers, France; Service de Génétique Clinique, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Brigitte Gilbert-Dussardier
- Neurovascular Unit and Cognitive Disorders (EA-3808 NEUVACOD), Université de Poitiers, 86073 Poitiers, France; Service de Génétique Clinique, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Boris Keren
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Solveig Heide
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Damien Haye
- Service de Génétique, Centre Hospitalier Universitaire de Nice Hôpital de l'Archet 2,151 route Saint Antoine de la Ginestière, 062002 Nice, France
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Liesbeth Keldermans
- Laboratory for Molecular Diagnosis, Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Damara Ortiz
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Emily Lancaster
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ian D Krantz
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bryan L Krock
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kieran B Pechter
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandre Arkader
- Department of Surgery, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Livija Medne
- Roberts Individualized Medical Genetics Center, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth T DeChene
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eduardo Calpena
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Giada Melistaccio
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK; Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton SO16 5YA, UK
| | | | | | | | | | - Marie T McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Julien Thevenon
- Service de Génétique, Génomique, et Procréation, Centre Hospitalier Universitaire Grenoble Alpes, 38700 La Tronche, France; INSERM 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38706 Grenoble, France
| | - Pauline Le Tanno
- Service de Génétique, Génomique, et Procréation, Centre Hospitalier Universitaire Grenoble Alpes, 38700 La Tronche, France; INSERM 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38706 Grenoble, France
| | - Charles Coutton
- Service de Génétique, Génomique, et Procréation, Centre Hospitalier Universitaire Grenoble Alpes, 38700 La Tronche, France; INSERM 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Université Grenoble Alpes, 38706 Grenoble, France
| | - Anne C H Tsai
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sarah Stewart
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Ales Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Rudolf Gorazd
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Olivier Pichon
- Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France
| | - Mathilde Nizon
- Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, L'Institut du Thorax, 44000 Nantes, France
| | - Benjamin Cogné
- Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, L'Institut du Thorax, 44000 Nantes, France
| | - Bertrand Isidor
- Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France; Université de Nantes, CNRS, INSERM, L'Institut du Thorax, 44000 Nantes, France
| | | | - Radka Stoeva
- Service de Cytogénétique, Centre Hospitalier Universitaire de Le Mans, 72037 Le Mans, France
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Cédric Le Caignec
- Centre Hospitalier Universitaire Nantes, Service de Génétique Médicale, 44000 Nantes, France; Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale, 31000 Toulouse, France.
| |
Collapse
|
46
|
Chemello F, Grespi F, Zulian A, Cancellara P, Hebert-Chatelain E, Martini P, Bean C, Alessio E, Buson L, Bazzega M, Armani A, Sandri M, Ferrazza R, Laveder P, Guella G, Reggiani C, Romualdi C, Bernardi P, Scorrano L, Cagnin S, Lanfranchi G. Transcriptomic Analysis of Single Isolated Myofibers Identifies miR-27a-3p and miR-142-3p as Regulators of Metabolism in Skeletal Muscle. Cell Rep 2020; 26:3784-3797.e8. [PMID: 30917329 DOI: 10.1016/j.celrep.2019.02.105] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle is composed of different myofiber types that preferentially use glucose or lipids for ATP production. How fuel preference is regulated in these post-mitotic cells is largely unknown, making this issue a key question in the fields of muscle and whole-body metabolism. Here, we show that microRNAs (miRNAs) play a role in defining myofiber metabolic profiles. mRNA and miRNA signatures of all myofiber types obtained at the single-cell level unveiled fiber-specific regulatory networks and identified two master miRNAs that coordinately control myofiber fuel preference and mitochondrial morphology. Our work provides a complete and integrated mouse myofiber type-specific catalog of gene and miRNA expression and establishes miR-27a-3p and miR-142-3p as regulators of lipid use in skeletal muscle.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesca Grespi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Alessandra Zulian
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Lisa Buson
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Andrea Armani
- Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ruggero Ferrazza
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Paolo Laveder
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; Venetian Institute of Molecular Medicine, Via Orus 2, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy; CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
47
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
48
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
49
|
Ciano M, Mantellato G, Connolly M, Paul-Clark M, Willis-Owen S, Moffatt MF, Cookson WOCM, Mitchell JA, Polkey MI, Hughes SM, Kemp PR, Natanek SA. EGF receptor (EGFR) inhibition promotes a slow-twitch oxidative, over a fast-twitch, muscle phenotype. Sci Rep 2019; 9:9218. [PMID: 31239465 PMCID: PMC6592914 DOI: 10.1038/s41598-019-45567-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
A low quadriceps slow-twitch (ST), oxidative (relative to fast-twitch) fiber proportion is prevalent in chronic diseases such Chronic Obstructive Pulmonary Disease (COPD) and is associated with exercise limitation and poor outcomes. Benefits of an increased ST fiber proportion are demonstrated in genetically modified animals. Pathway analysis of published data of differentially expressed genes in mouse ST and FT fibers, mining of our microarray data and a qPCR analysis of quadriceps specimens from COPD patients and controls were performed. ST markers were quantified in C2C12 myotubes with EGF-neutralizing antibody, EGFR inhibitor or an EGFR-silencing RNA added. A zebrafish egfra mutant was generated by genome editing and ST fibers counted. EGF signaling was (negatively) associated with the ST muscle phenotype in mice and humans, and muscle EGF transcript levels were raised in COPD. In C2C12 myotubes, EGFR inhibition/silencing increased ST, including mitochondrial, markers. In zebrafish, egfra depletion increased ST fibers and mitochondrial content. EGF is negatively associated with ST muscle phenotype in mice, healthy humans and COPD patients. EGFR blockade promotes the ST phenotype in myotubes and zebrafish embryos. EGF signaling suppresses the ST phenotype, therefore EGFR inhibitors may be potential treatments for COPD-related muscle ST fiber loss.
Collapse
Affiliation(s)
| | - Giada Mantellato
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin Connolly
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark Paul-Clark
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Simon M Hughes
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - Paul R Kemp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - S Amanda Natanek
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
50
|
Wang C, Zhang B, Ratliff AC, Arrington J, Chen J, Xiong Y, Yue F, Nie Y, Hu K, Jin W, Tao WA, Hrycyna CA, Sun X, Kuang S. Methyltransferase-like 21e inhibits 26S proteasome activity to facilitate hypertrophy of type IIb myofibers. FASEB J 2019; 33:9672-9684. [PMID: 31162944 DOI: 10.1096/fj.201900582r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscles contain heterogeneous myofibers that are different in size and contractile speed, with type IIb myofiber being the largest and fastest. Here, we identify methyltransferase-like 21e (Mettl21e), a member of newly classified nonhistone methyltransferases, as a gene enriched in type IIb myofibers. The expression of Mettl21e was strikingly up-regulated in hypertrophic muscles and during myogenic differentiation in vitro and in vivo. Knockdown (KD) of Mettl21e led to atrophy of cultured myotubes, and targeted mutation of Mettl21e in mice reduced the size of IIb myofibers without affecting the composition of myofiber types. Mass spectrometry and methyltransferase assay revealed that Mettl21e methylated valosin-containing protein (Vcp/p97), a key component of the ubiquitin-proteasome system. KD or knockout of Mettl21e resulted in elevated 26S proteasome activity, and inhibition of proteasome activity prevented atrophy of Mettl21e KD myotubes. These results demonstrate that Mettl21e functions to maintain myofiber size through inhibiting proteasome-mediated protein degradation.-Wang, C., Zhang, B., Ratliff, A. C., Arrington, J., Chen, J., Xiong, Y., Yue, F., Nie, Y., Hu, K., Jin, W., Tao, W. A., Hrycyna, C. A., Sun, X., Kuang, S. Methyltransferase-like 21e inhibits 26S proteasome activity to facilitate hypertrophy of type IIb myofibers.
Collapse
Affiliation(s)
- Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anna C Ratliff
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Justine Arrington
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yan Xiong
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yaohui Nie
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Keping Hu
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Jin
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Christine A Hrycyna
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|