1
|
Choi EK, Aring L, Peng Y, Correia AB, Lieberman AP, Iwase S, Seo YA. Neuronal SLC39A8 deficiency impairs cerebellar development by altering manganese homeostasis. JCI Insight 2024; 9:e168440. [PMID: 39435657 PMCID: PMC11530126 DOI: 10.1172/jci.insight.168440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Solute carrier family 39, member 8 (SLC39A8), is a transmembrane transporter that mediates the cellular uptake of zinc, iron, and manganese (Mn). Human genetic studies document the involvement of SLC39A8 in Mn homeostasis, brain development, and function. However, the role and pathophysiological mechanisms of SLC39A8 in the central nervous system remain elusive. We generated Slc39a8 neuron-specific knockout (Slc39a8-NSKO) mice to study SLC39A8 function in neurons. The Slc39a8-NSKO mice displayed markedly decreased Mn levels in the whole brain and brain regions, especially the cerebellum. Radiotracer studies using 54Mn revealed that Slc39a8-NSKO mice had impaired brain uptake of Mn. Slc39a8-NSKO cerebellums exhibited morphological defects and abnormal dendritic arborization of Purkinje cells. Reduced neurogenesis and increased apoptotic cell death occurred in the cerebellar external granular layer of Slc39a8-NSKO mice. Brain Mn deficiency in Slc39a8-NSKO mice was associated with motor dysfunction. Unbiased RNA-Seq analysis revealed downregulation of key pathways relevant to neurodevelopment and synaptic plasticity, including cAMP signaling pathway genes. We further demonstrated that Slc39a8 was required for the optimal transcriptional response to the cAMP-mediated signaling pathway. In summary, our study highlighted the essential roles of SLC39A8 in brain Mn uptake and cerebellum development and functions.
Collapse
Affiliation(s)
- Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Yujie Peng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | | | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Fang Y, Wang W, Wang Q, Li HJ, Liu M. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2024; 15011:113-123. [PMID: 39463883 PMCID: PMC11512738 DOI: 10.1007/978-3-031-72120-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Asymptomatic neurocognitive impairment (ANI) is a predominant form of cognitive impairment among individuals infected with human immunodeficiency virus (HIV). The current diagnostic criteria for ANI primarily rely on subjective clinical assessments, possibly leading to different interpretations among clinicians. Some recent studies leverage structural or functional MRI containing objective biomarkers for ANI analysis, offering clinicians companion diagnostic tools. However, they mainly utilize a single imaging modality, neglecting complementary information provided by structural and functional MRI. To this end, we propose an attention-enhanced structural and functional MRI fusion (ASFF) framework for HIV-associated ANI analysis. Specifically, the ASFF first extracts data-driven and human-engineered features from structural MRI, and also captures functional MRI features via a graph isomorphism network and Transformer. A mutual cross-attention fusion module is then designed to model the underlying relationship between structural and functional MRI. Additionally, a semantic inter-modality constraint is introduced to encourage consistency of multimodal features, facilitating effective feature fusion. Experimental results on 137 subjects from an HIV-associated ANI dataset with T1-weighted MRI and resting-state functional MRI show the effectiveness of our ASFF in ANI identification. Furthermore, our method can identify both modality-shared and modality-specific brain regions, which may advance our understanding of the structural and functional pathology underlying ANI.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
4
|
Govender S, Hochstrasser D, Todd NPM, Keller PE, Colebatch JG. Responses to brief perturbations of stance: EMG, midline cortical, and subcortical changes. J Neurophysiol 2024; 132:1014-1024. [PMID: 39140589 DOI: 10.1152/jn.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
We studied simultaneous EMG and midline EEG responses, including over the cerebellum, in 10 standing subjects (35 ± 15 yr; 5 females, 5 males). Recordings were made following repeated taps to the sternum, stimuli known to evoke short-latency EMG responses in leg muscles, consistent with postural reflexes. EEG power had relatively more high-frequency components (>30 Hz) when recorded from electrodes over the cerebellum (Iz and SIz) compared with other midline electrodes. We confirmed a previous report using a similar stimulus that evoked short-latency potentials over the cerebellum. We showed clear midline-evoked EEG potentials occurring at short latency over the cerebellum (P23, N31, N42, and P54) and frontally (N28 and N57) before the previously described perturbation-evoked potential (P1/N1/P2). The P23 response correlated with the subsequent EMG response in the tibialis anterior muscles (r = 0.72, P = 0.018), confirming and extending previous observations. We did not find a correlation with the N1 amplitude. We conclude that early activity occurs from electrodes over the inion in response to a brief tap to the sternum. This is likely to represent cerebellar activity and it appears to modulate short-latency postural EMG responses.NEW & NOTEWORTHY We studied the effects of a brief tap to the sternum in human subjects, known to evoke short-latency postural responses. Using an extended EEG recording system, we showed early evoked responses over the midline cerebellum, including the P23 potential, which correlated with the EMG responses in tibialis anterior, consistent with a cerebellar role in postural reflexes. The stimulus also evoked later EEG responses, including the perturbation potential.
Collapse
Affiliation(s)
- Sendhil Govender
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Hochstrasser
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, New South Wales, Australia
| | - Neil P M Todd
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, New South Wales, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James G Colebatch
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Endepols H, Apetz N, Vieth L, Lesser C, Schulte-Holtey L, Neumaier B, Drzezga A. Cerebellar Metabolic Connectivity during Treadmill Walking before and after Unilateral Dopamine Depletion in Rats. Int J Mol Sci 2024; 25:8617. [PMID: 39201305 PMCID: PMC11354914 DOI: 10.3390/ijms25168617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Compensatory changes in brain connectivity keep motor symptoms mild in prodromal Parkinson's disease. Studying compensation in patients is hampered by the steady progression of the disease and a lack of individual baseline controls. Furthermore, combining fMRI with walking is intricate. We therefore used a seed-based metabolic connectivity analysis based on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in a unilateral 6-OHDA rat model. At baseline and in the chronic phase 6-7 months after lesion, rats received an intraperitoneal injection of [18F]FDG and spent 50 min walking on a horizontal treadmill, followed by a brain PET-scan under anesthesia. High activity was found in the cerebellar anterior vermis in both conditions. At baseline, the anterior vermis showed hardly any stable connections to the rest of the brain. The (future) ipsilesional cerebellar hemisphere was not particularly active during walking but was extensively connected to many brain areas. After unilateral dopamine depletion, rats still walked normally without obvious impairments. The ipsilesional cerebellar hemisphere increased its activity, but narrowed its connections down to the vestibulocerebellum, probably aiding lateral stability. The anterior vermis established a network involving the motor cortex, hippocampus and thalamus. Adding those regions to the vermis network of (previously) automatic control of locomotion suggests that after unilateral dopamine depletion considerable conscious and cognitive effort has to be provided to achieve stable walking.
Collapse
Affiliation(s)
- Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Nadine Apetz
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Lukas Vieth
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Christoph Lesser
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Léon Schulte-Holtey
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
6
|
Prati JM, Pontes-Silva A, Gianlorenço ACL. The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review. Behav Brain Res 2024; 465:114933. [PMID: 38458437 DOI: 10.1016/j.bbr.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
The cerebellum has a large network of neurons that communicate with several brain structures and participate in different functions. Recent studies have demonstrated that the cerebellum is not only associated with motor functions but also participates in several non-motor functions. It is suggested that the cerebellum can modulate behavior through many connections with different nervous system structures in motor, sensory, cognitive, autonomic, and emotional processes. Recently, a growing number of clinical and experimental studies support this theory and provide further evidence. In light of recent findings, a comprehensive review is needed to summarize the knowledge on the influence of the cerebellum on the processing of different functions. Therefore, the aim of this review was to describe the neuroanatomical aspects of the activation of the cerebellum and its connections with other structures of the central nervous system in different behaviors.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
7
|
Li CN, Keay KA, Henderson LA, Mychasiuk R. Re-examining the Mysterious Role of the Cerebellum in Pain. J Neurosci 2024; 44:e1538232024. [PMID: 38658164 PMCID: PMC11044115 DOI: 10.1523/jneurosci.1538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.
Collapse
Affiliation(s)
- Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
8
|
Li Z, Liu J, Miao X, Ge S, Shen J, Jin S, Gu Z, Jia Y, Zhang K, Wang J, Wang M. Reorganization of structural brain networks in Parkinson's disease with postural instability/gait difficulty. Neurosci Lett 2024; 827:137736. [PMID: 38513936 DOI: 10.1016/j.neulet.2024.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The Postural Instability/Gait Difficulty (PIGD) subtype of Parkinson's disease (PD) has a faster disease progression, a higher risk of cognitive and motor decline, yet the alterations of structural topological organization remain unknown. Diffusion Tensor Imaging (DTI) and 3D-TI scanning were conducted on 31 PD patients with PIGD (PD-PIGD), 30 PD patients without PIGD (PD-non-PIGD) and 35 Healthy Controls (HCs). Structural networks were constructed using DTI brain white matter fiber tractography. A graph theory approach was applied to characterize the topological properties of complex structural networks, and the relationships between significantly different network metrics and motor deficits were analyzed within the PD-PIGD group. PD-PIGD patients exhibited increased shortest path length compared with PD-non-PIGD and HCs (P < 0.05, respectively). Additionally, PD-PIGD patients exhibited decreased nodal properties, mainly in the cerebellar vermis, prefrontal cortex, paracentral lobule, and visual regions. Notably, the degree centrality of the cerebellar vermis was negatively correlated with the PIGD score (r = -0.390; P = 0.030) and Unified Parkinson's Disease Rating Scale Part III score (r = -0.436; P = 0.014) in PD-PIGD patients. Furthermore, network-based statistical analysis revealed decreased structural connectivity between the prefrontal lobe, putamen, supplementary motor area, insula, and cingulate gyrus in PD-PIGD patients. Our findings demonstrated that PD-PIGD patients existed abnormal structural connectomes in the cerebellar vermis, frontal-parietal cortex and visual regions. These topological differences can provide a topological perspective for understanding the potential pathophysiological mechanisms of PIGD in PD.
Collapse
Affiliation(s)
- Zihan Li
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Miao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaoyun Ge
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Shen
- Department of Radiology, Taizhou Fourth People's Hospital, Taizhou, China
| | - Shaohua Jin
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Zhengxue Gu
- Department of Radiology, Nanjing Central Hospital, Nanjing, China
| | - Yongfeng Jia
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianwei Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Wang Y, Wang Y, Wang H, Ma L, Eickhoff SB, Madsen KH, Chu C, Fan L. Spatio-molecular profiles shape the human cerebellar hierarchy along the sensorimotor-association axis. Cell Rep 2024; 43:113770. [PMID: 38363683 DOI: 10.1016/j.celrep.2024.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Cerebellar involvement in both motor and non-motor functions manifests in specific regions of the human cerebellum, revealing the functional heterogeneity within it. One compelling theory places the heterogeneity within the cerebellar functional hierarchy along the sensorimotor-association (SA) axis. Despite extensive neuroimaging studies, evidence for the cerebellar SA axis from different modalities and scales was lacking. Thus, we establish a significant link between the cerebellar SA axis and spatio-molecular profiles. Utilizing the gene set variation analysis, we find the intermediate biological principles the significant genes leveraged to scaffold the cerebellar SA axis. Interestingly, we find these spatio-molecular profiles notably associated with neuropsychiatric dysfunction and recent evolution. Furthermore, cerebello-cerebral interactions at genetic and functional connectivity levels mirror the cerebral cortex and cerebellum's SA axis. These findings can provide a deeper understanding of how the human cerebellar SA axis is shaped and its role in transitioning from sensorimotor to association functions.
Collapse
Affiliation(s)
- Yaping Wang
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China; Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lingzhong Fan
- Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100190, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China.
| |
Collapse
|
10
|
Yoshii T, Oishi N, Sotozono Y, Watanabe A, Sakai Y, Yamada S, Matsuda KI, Kido M, Ikoma K, Tanaka M, Narumoto J. Validation of Wistar-Kyoto rats kept in solitary housing as an animal model for depression using voxel-based morphometry. Sci Rep 2024; 14:3601. [PMID: 38351316 PMCID: PMC10864298 DOI: 10.1038/s41598-024-53103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Major depressive disorder is a common psychiatric condition often resistant to medication. The Wistar-Kyoto (WKY) rat has been suggested as an animal model of depression; however, it is still challenging to translate results from animal models into humans. Solitary housing is a mild stress paradigm that can simulate the environment of depressive patients with limited social activity due to symptoms. We used voxel-based morphometry to associate the solitary-housed WKY (sWKY) rat model with data from previous human studies and validated our results with behavioural studies. As a result, atrophy in sWKY rats was detected in the ventral hippocampus, caudate putamen, lateral septum, cerebellar vermis, and cerebellar nuclei (p < 0.05, corrected for family-wise error rate). Locomotor behaviour was negatively correlated with habenula volume and positively correlated with atrophy of the cerebellar vermis. In addition, sWKY rats showed depletion of sucrose consumption not after reward habituation but without reward habituation. Although the application of sWKY rats in a study of anhedonia might be limited, we observed some similarities between the regions of brain atrophy in sWKY rats and humans with depression, supporting the translation of sWKY rat studies to humans.
Collapse
Affiliation(s)
- Takanobu Yoshii
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Johyo, Kyoto, 610-0113, Japan.
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yasutaka Sotozono
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Sakai
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Kido
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
11
|
Konosu A, Matsuki Y, Fukuhara K, Funato T, Yanagihara D. Roles of the cerebellar vermis in predictive postural controls against external disturbances. Sci Rep 2024; 14:3162. [PMID: 38326369 PMCID: PMC10850480 DOI: 10.1038/s41598-024-53186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.
Collapse
Affiliation(s)
- Akira Konosu
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| | - Yuma Matsuki
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kaito Fukuhara
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dai Yanagihara
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
12
|
Cirnigliaro L, Pettinato F, Valle MS, Casabona A, Fiumara A, Vecchio M, Amico V, Rizzo R, Jaeken J, Barone R, Cioni M. Instrumented assessment of gait disturbance in PMM2-CDG adults: a feasibility analysis. Orphanet J Rare Dis 2024; 19:39. [PMID: 38308356 PMCID: PMC10837865 DOI: 10.1186/s13023-024-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are genetic diseases caused by impaired synthesis of glycan moieties linked to glycoconjugates. Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent CDG, is characterized by prominent neurological involvement. Gait disturbance is a major cause of functional disability in patients with PMM2-CDG. However, no specific gait assessment for PMM2-CDG is available. This study analyses gait-related parameters in PMM2-CDG patients using a standardized clinical assessment and instrumented gait analysis (IGA). RESULTS Seven adult patients with a molecular diagnosis of PMM2-CDG were followed-up from February 2021 to December 2022 and compared to a group of healthy control (HC) subjects, matched for age and sex. Standardized assessment of disease severity including ataxia and peripheral neuropathy along with isometric muscle strength and echo-biometry measurements at lower limbs were performed. IGA spatiotemporal parameters were obtained by means of a wearable sensor in basal conditions. PMM2-CDG patients displayed lower gait speed, stride length, cadence and symmetry index, compared to HC. Significant correlations were found among the used clinical scales and between disease severity (NCRS) scores and the gait speed measured by IGA. Variable reduction of knee extension strength and a significant decrease of lower limb muscle thickness with conserved echo intensity were found in PMM2-CDG compared to HC. CONCLUSIONS The study elucidates different components of gait disturbance in PMM2-CDG patients and shows advantages of using wearable sensor-based IGA in this frame. IGA parameters may potentially serve as quantitative measures for follow-up or outcome quantification in PMM2-CDG.
Collapse
Affiliation(s)
- Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Fabio Pettinato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Referral Centre for Inherited Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123, Catania, Italy
- Rehabilitation Unit, AOU Policlinico-San Marco, 95123, Catania, Italy
| | - Valerio Amico
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy.
- Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Albishi AM. Why do different motor cortical areas activate the same muscles? Brain Struct Funct 2023; 228:2017-2024. [PMID: 37709903 DOI: 10.1007/s00429-023-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
The cortex contains multiple motor areas, including the primary motor cortex (M1) and supplementary motor area (SMA). Many muscles are represented in both the M1 and SMA, but the reason for this dual representation remains unclear. Previous work has shown that the M1 and SMA representations of a specific human muscle can be differentiated according to their functional connectivity with different brain areas located outside of the motor cortex. It is our perspective that this differential functional connectivity may be the neural substrate that allows an individual muscle to be accessed by distinct neural processes, such as those implementing volitional vs. postural task control. Here, we review existing human and animal literature suggesting how muscles are represented in the M1 and SMA and how these brain regions have distinct functions. We also discuss potential studies to further elucidate the distinct roles of the SMA and M1 in normal and dysfunctional motor control.
Collapse
Affiliation(s)
- Alaa M Albishi
- Department of Rehabilitation Sciences-Physical Therapy Division, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Carter SL, Patel R, Fisk JD, Figley CR, Marrie RA, Mazerolle EL, Uddin MN, Wong K, Graff LA, Bolton JM, Marriott JJ, Bernstein CN, Kornelsen J. Differences in resting state functional connectivity relative to multiple sclerosis and impaired information processing speed. Front Neurol 2023; 14:1250894. [PMID: 37928146 PMCID: PMC10625423 DOI: 10.3389/fneur.2023.1250894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Background Fifty-one percent of individuals with multiple sclerosis (MS) develop cognitive impairment (CI) in information processing speed (IPS). Although IPS scores are associated with health and well-being, neural changes that underlie IPS impairments in MS are not understood. Resting state fMRI can provide insight into brain function changes underlying impairment in persons with MS. Objectives We aimed to assess functional connectivity (FC) differences in (i) persons with MS compared to healthy controls (HC), (ii) persons with both MS and CI (MS-CI) compared to HC, (iii) persons with MS that are cognitively preserved (MS-CP) compared to HC, (iv) MS-CI compared to MS-CP, and (v) in relation to cognition within the MS group. Methods We included 107 participants with MS (age 49.5 ± 12.9, 82% women), and 94 controls (age 37.9 ± 15.4, 66% women). Each participant was administered the Symbol Digit Modalities Test (SDMT) and underwent a resting state fMRI scan. The MS-CI group was created by applying a z-score cut-off of ≤ -1.5 to locally normalized SDMT scores. The MS-CP group was created by applying a z-score of ≥0. Control groups (HCMS-CI and HCMS-CP) were based on the nearest age-matched HC participants. A whole-brain ROI-to-ROI analysis was performed followed by specific contrasts and a regression analysis. Results Individuals with MS showed FC differences compared to HC that involved the cerebellum, visual and language-associated brain regions, and the thalamus, hippocampus, and basal ganglia. The MS-CI showed FC differences compared to HCMS-CI that involved the cerebellum, visual and language-associated areas, thalamus, and caudate. SDMT scores were correlated with FC between the cerebellum and lateral occipital cortex in MS. No differences were observed between the MS-CP and HCMS-CP or MS-CI and MS-CP groups. Conclusion Our findings emphasize FC changes of cerebellar, visual, and language-associated areas in persons with MS. These differences were apparent for (i) all MS participants compared to HC, (ii) MS-CI subgroup and their matched controls, and (iii) the association between FC and SDMT scores within the MS group. Our findings strongly suggest that future work that examines the associations between FC and IPS impairments in MS should focus on the involvement of these regions.
Collapse
Affiliation(s)
- Sean L. Carter
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
| | - Ronak Patel
- Department of Clinical Health Psychology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John D. Fisk
- Nova Scotia Health and the Departments of Psychiatry, Psychology & Neuroscience, and Medicine, Dalhousie University, Halifax, NS, Canada
| | - Chase R. Figley
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Departments of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Erin L. Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Md Nasir Uddin
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, School of Medicine & Dentistry, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, NY, United States
| | - Kaihim Wong
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lesley A. Graff
- Department of Clinical Health Psychology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James M. Bolton
- Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James J. Marriott
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer Kornelsen
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Division of Diagnostic Imaging, Winnipeg Health Sciences Centre, Winnipeg, MB, Canada
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Departments of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
16
|
Wilkes BJ, Adury RZ, Berryman D, Concepcion LR, Liu Y, Yokoi F, Maugee C, Li Y, Vaillancourt DE. Cell-specific Dyt1 ∆GAG knock-in to basal ganglia and cerebellum reveal differential effects on motor behavior and sensorimotor network function. Exp Neurol 2023; 367:114471. [PMID: 37321386 PMCID: PMC10695146 DOI: 10.1016/j.expneurol.2023.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Dystonia is a neurological movement disorder characterized by repetitive, unintentional movements and disabling postures that result from sustained or intermittent muscle contractions. The basal ganglia and cerebellum have received substantial focus in studying DYT1 dystonia. It remains unclear how cell-specific ∆GAG mutation of torsinA within specific cells of the basal ganglia or cerebellum affects motor performance, somatosensory network connectivity, and microstructure. In order to achieve this goal, we generated two genetically modified mouse models: in model 1 we performed Dyt1 ∆GAG conditional knock-in (KI) in neurons that express dopamine-2 receptors (D2-KI), and in model 2 we performed Dyt1 ∆GAG conditional KI in Purkinje cells of the cerebellum (Pcp2-KI). In both of these models, we used functional magnetic resonance imaging (fMRI) to assess sensory-evoked brain activation and resting-state functional connectivity, and diffusion MRI to assess brain microstructure. We found that D2-KI mutant mice had motor deficits, abnormal sensory-evoked brain activation in the somatosensory cortex, as well as increased functional connectivity of the anterior medulla with cortex. In contrast, we found that Pcp2-KI mice had improved motor performance, reduced sensory-evoked brain activation in the striatum and midbrain, as well as reduced functional connectivity of the striatum with the anterior medulla. These findings suggest that (1) D2 cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the basal ganglia results in detrimental effects on the sensorimotor network and motor output, and (2) Purkinje cell-specific Dyt1 ∆GAG mediated torsinA dysfunction in the cerebellum results in compensatory changes in the sensorimotor network that protect against dystonia-like motor deficits.
Collapse
Affiliation(s)
- B J Wilkes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| | - R Z Adury
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - D Berryman
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - L R Concepcion
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Y Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - F Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - C Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Y Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - D E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
18
|
Cao L, Li L, Huang Z, Xia F, Huang R, Ma Y, Qin Y, Wu J, Tong L, Zhang C, Zhang Y, Ren Z. Functional network segregation is associated with higher functional connectivity in endurance runners. Neurosci Lett 2023; 812:137401. [PMID: 37460055 DOI: 10.1016/j.neulet.2023.137401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Neuroimaging studies have identified significant differences in brain structure, function, and connectivity between endurance runners and healthy controls. However, the topological organization of large-scale functional brain networks remains unexplored in endurance runners. Using resting-state functional magnetic resonance imaging data, this study examined the differences in the topological organization of functional networks between endurance runners (n = 22) and healthy controls (n = 20). Endurance runners had significantly higher clustering coefficients in the whole-brain functional network than healthy controls, but the two did not differ regarding the shortest path length or small-world index. Using network-based statistics, we identified one subnetwork in endurance runners with higher functional connectivity than healthy controls, and the mean functional connectivity of the subnetwork significantly correlated with the three aforementioned small-world parameters. In this subnetwork, the mean clustering coefficient of nodes associated with short-range connections was higher in endurance runners than in healthy controls, but the mean clustering coefficient of nodes associated with long-range connections did not differ between the two groups. In conclusion, using graph theoretical approaches, we revealed significant differences in the topological organization of the whole-brain functional network and functional connectivity between endurance runners and healthy controls. The relationship between these two features suggests that a more segregated network may arise from the optimization of the identified subnetwork in endurance runners. These findings are possibly the neural basis underlying the good performance of endurance runners in endurance running.
Collapse
Affiliation(s)
- Long Cao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lunxiong Li
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, China; Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Zitong Huang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengguang Xia
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, China; Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yudan Ma
- School of Public Teaching, Shanwei Institute of Technology, Shanwei 516600, China
| | - Yifan Qin
- College of Physical Education, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Wu
- College of physical education, Southwest University, Chongqing 400715, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhanbing Ren
- College of Physical Education, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
19
|
Smith JA, Tain R, Sharp KG, Glynn LM, Van Dillen LR, Henslee K, Jacobs JV, Cramer SC. Identifying the neural correlates of anticipatory postural control: A novel fMRI paradigm. Hum Brain Mapp 2023; 44:4088-4100. [PMID: 37162423 PMCID: PMC10258523 DOI: 10.1002/hbm.26332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Altered postural control in the trunk/hip musculature is a characteristic of multiple neurological and musculoskeletal conditions. Previously it was not possible to determine if altered cortical and subcortical sensorimotor brain activation underlies impairments in postural control. This study used a novel fMRI-compatible paradigm to identify the brain activation associated with postural control in the trunk and hip musculature. BOLD fMRI imaging was conducted as participants performed two versions of a lower limb task involving lifting the left leg to touch the foot to a target. For the supported leg raise (SLR) the leg is raised from the knee while the thigh remains supported. For the unsupported leg raise (ULR) the leg is raised from the hip, requiring postural muscle activation in the abdominal/hip extensor musculature. Significant brain activation during the SLR task occurred predominantly in the right primary and secondary sensorimotor cortical regions. Brain activation during the ULR task occurred bilaterally in the primary and secondary sensorimotor cortical regions, as well as cerebellum and putamen. In comparison with the SLR, the ULR was associated with significantly greater activation in the right premotor/SMA, left primary motor and cingulate cortices, primary somatosensory cortex, supramarginal gyrus/parietal operculum, superior parietal lobule, cerebellar vermis, and cerebellar hemispheres. Cortical and subcortical regions activated during the ULR, but not during the SLR, were consistent with the planning, and execution of a task involving multisegmental, bilateral postural control. Future studies using this paradigm will determine mechanisms underlying impaired postural control in patients with neurological and musculoskeletal dysfunction.
Collapse
Affiliation(s)
- Jo Armour Smith
- Department of Physical TherapyChapman UniversityOrangeCaliforniaUSA
| | - Rongwen Tain
- Campus Center for NeuroimagingUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kelli G. Sharp
- Department of Dance, School of ArtsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Physical Medicine and RehabilitationUniversity of CaliforniaIrvineCaliforniaUSA
| | - Laura M. Glynn
- Department of PsychologyChapman UniversityOrangeCaliforniaUSA
| | - Linda R. Van Dillen
- Program in Physical Therapy, Orthopaedic SurgeryWashington University School of Medicine in St. LouisSt. LouisWashingtonUSA
| | - Korinne Henslee
- Department of Physical TherapyChapman UniversityOrangeCaliforniaUSA
| | - Jesse V. Jacobs
- Rehabilitation and Movement ScienceUniversity of VermontBurlingtonVermontUSA
| | - Steven C. Cramer
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
- California Rehabilitation InstituteLos AngelesCaliforniaUSA
| |
Collapse
|
20
|
Maldonado T, Jackson TB, Bernard JA. Time dependent effects of cerebellar tDCS on cerebello-cortical connectivity networks in young adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546626. [PMID: 37425924 PMCID: PMC10327157 DOI: 10.1101/2023.06.26.546626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function and network connectivity in aging or disease may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. This allows us to investigate network changes that may parallel what is seen in aging and clinical populations, providing additional insights into these key circuits. Critically, what happens to these circuits if the cerebellum is not functioning optimally remains relatively unknown. We employed a between-subjects design applying anodal (n=25), cathodal (n=25), or sham (n=24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a sliding window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly in cognitive region in the cortex. Assuming the difference in connectivity and network-behavior relationships here parallels what occurs in aging or disease, this may provide a mechanism whereby offloading of function to the cerebellum is negatively impacted, resulting in subsequent differences in prefrontal cortical activation patterns and performance deficits. These results might inform and update existing compensatory models of function to include the cerebellum as a vital structure needed for scaffolding.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, United States of America
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - T. Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
21
|
Jiang L, Zhuo J, Furman A, Fishman PS, Gullapalli R. Cerebellar functional connectivity change is associated with motor and neuropsychological function in early stage drug-naïve patients with Parkinson's disease. Front Neurosci 2023; 17:1113889. [PMID: 37425003 PMCID: PMC10324581 DOI: 10.3389/fnins.2023.1113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Parkinson's Disease (PD) is a progressive neurodegenerative disorder affecting both motor and cognitive function. Previous neuroimaging studies have reported altered functional connectivity (FC) in distributed functional networks. However, most neuroimaging studies focused on patients at an advanced stage and with antiparkinsonian medication. This study aims to conduct a cross-sectional study on cerebellar FC changes in early-stage drug-naïve PD patients and its association with motor and cognitive function. Methods Twenty-nine early-stage drug-naïve PD patients and 20 healthy controls (HCs) with resting-state fMRI data and motor UPDRS and neuropsychological cognitive data were extracted from the Parkinson's Progression Markers Initiative (PPMI) archives. We used seed-based resting-state fMRI (rs-fMRI) FC analysis and the cerebellar seeds were defined based on the hierarchical parcellation of the cerebellum (AAL atlas) and its topological function mapping (motor cerebellum and non-motor cerebellum). Results The early stage drug-naïve PD patients had significant differences in cerebellar FC when compared with HCs. Our findings include: (1) Increased intra-cerebellar FC within motor cerebellum, (2) increase motor cerebellar FC in inferior temporal gyrus and lateral occipital gyrus within ventral visual pathway and decreased motor-cerebellar FC in cuneus and dorsal posterior precuneus within dorsal visual pathway, (3) increased non-motor cerebellar FC in attention, language, and visual cortical networks, (4) increased vermal FC in somatomotor cortical network, and (5) decreased non-motor and vermal FC within brainstem, thalamus and hippocampus. Enhanced FC within motor cerebellum is positively associated with the MDS-UPDRS motor score and enhanced non-motor FC and vermal FC is negatively associated with cognitive function test scores of SDM and SFT. Conclusion These findings provide support for the involvement of cerebellum at an early stage and prior to clinical presentation of non-motor features of the disease in PD patients.
Collapse
Affiliation(s)
- Li Jiang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiachen Zhuo
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew Furman
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul S. Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao Gullapalli
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Advanced Imaging Research (CAIR), University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Tays GD, Hupfeld KE, McGregor HR, Beltran NE, Kofman IS, De Dios YE, Mulder ER, Bloomberg JJ, Mulavara AP, Wood SJ, Seidler RD. Daily artificial gravity is associated with greater neural efficiency during sensorimotor adaptation. Cereb Cortex 2023; 33:8011-8023. [PMID: 36958815 PMCID: PMC10267627 DOI: 10.1093/cercor/bhad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
Altered vestibular signaling and body unloading in microgravity results in sensory reweighting and adaptation. Microgravity effects are well-replicated in head-down tilt bed rest (HDBR). Artificial gravity (AG) is a potential countermeasure to mitigate the effects of microgravity on human physiology and performance. We examined the effectiveness of daily AG for mitigating brain and/or behavioral changes in 60 days of HDBR. One group received AG for 30 minutes daily (AG; n = 16) and a control group spent the same time in HDBR but received no AG (CTRL; n = 8). All participants performed a sensorimotor adaptation task five times during fMRI scanning: twice prior to HDBR, twice during HDBR, and once following HDBR. The AG group showed similar behavioral adaptation effects compared with the CTRLs. We identified decreased brain activation in the AG group from pre to late HDBR in the cerebellum for the task baseline portion and in the thalamus, calcarine, cuneus, premotor cortices, and superior frontal gyrus in the AG group during the early adaptation phase. The two groups also exhibited differential brain-behavior correlations. Together, these results suggest that AG may result in a reduced recruitment of brain activity for basic motor processes and sensorimotor adaptation. These effects may stem from the somatosensory and vestibular stimulation that occur with AG.
Collapse
Affiliation(s)
- Grant D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - Kathleen E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | | | | | | | | | | | | | - Scott J Wood
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
23
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
24
|
Richter JK, Vallesi V, Zölch N, Chan KL, Hunkeler N, Abramovic M, Hashagen C, Christiaanse E, Shetty G, Verma RK, Berger MF, Frotzler A, Eisenlohr H, Eriks Hoogland I, Scheel-Sailer A, Wyss PO. Metabolic profile of complete spinal cord injury in pons and cerebellum: A 3T 1H MRS study. Sci Rep 2023; 13:7245. [PMID: 37142669 PMCID: PMC10160051 DOI: 10.1038/s41598-023-34326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The aim of this exploratory study was the assessment of the metabolic profiles of persons with complete spinal cord injury (SCI) in three region-of-interests (pons, cerebellar vermis, and cerebellar hemisphere), with magnetic resonance spectroscopy, and their correlations to clinical scores. Group differences and association between metabolic and clinical scores were examined. Fifteen people with chronic SCI (cSCI), five people with subacute SCI (sSCI) and fourteen healthy controls were included. Group comparison between cSCI and HC showed lower total N-acetyl-aspartate (tNAA) in the pons (p = 0.04) and higher glutathione (GSH) in the cerebellar vermis (p = 0.02). Choline levels in the cerebellar hemisphere were different between cSCI and HC (p = 0.02) and sSCI and HC (p = 0.02). A correlation was reported for choline containing compounds (tCho) to clinical scores in the pons (rho = - 0.55, p = 0.01). tNAA to total creatine (tNAA/tCr ratio) correlated to clinical scores in the cerebellar vermis (rho = 0.61, p = 0.004) and GSH correlated to the independence score in the cerebellar hemisphere (rho = 0.56, p = 0.01). The correlation of tNAA, tCr, tCho and GSH to clinical scores might be indicators on how well the CNS copes with the post-traumatic remodeling and might be further examined as outcome markers.
Collapse
Affiliation(s)
- Johannes K Richter
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
- Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital of Bern, Inselspital, University of Bern, Bern, Switzerland
- Institute of Radiology and Nuclear Medicine, GZO Hospital Wetzikon, Wetzikon, Switzerland
| | - Vanessa Vallesi
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
- Support Center for Advanced Neuroimaging (SCAN), Neuroradiology, University Hospital of Bern, Inselspital, Bern, Switzerland
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - Niklaus Zölch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Kimberly L Chan
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Hunkeler
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | - Mihael Abramovic
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | - Claus Hashagen
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | - Ernst Christiaanse
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
- Image Science Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ganesh Shetty
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | - Rajeev K Verma
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | - Markus F Berger
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | - Angela Frotzler
- Clinical Trial Unit, Swiss Paraplegic Centre, Nottwil, Switzerland
- Digital Trial Intervention Platform, ETH Zurich, Zurich, Switzerland
| | - Heidrun Eisenlohr
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland
| | | | - Anke Scheel-Sailer
- Department of Paraplegia, Rehabilitation and Quality Management, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Guido A. Zaech - Strasse 1, 6207, Nottwil, Switzerland.
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
Xie ST, Fan WC, Zhao XS, Ma XY, Li ZL, Zhao YR, Yang F, Shi Y, Rong H, Cui ZS, Chen JY, Li HZ, Yan C, Zhang Q, Wang JJ, Zhang XY, Gu XP, Ma ZL, Zhu JN. Proinflammatory activation of microglia in the cerebellum hyperexcites Purkinje cells to trigger ataxia. Pharmacol Res 2023; 191:106773. [PMID: 37068531 DOI: 10.1016/j.phrs.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Specific medications to combat cerebellar ataxias, a group of debilitating movement disorders characterized by difficulty with walking, balance and coordination, are still lacking. Notably, cerebellar microglial activation appears to be a common feature in different types of ataxic patients and rodent models. However, direct evidence that cerebellar microglial activation in vivo is sufficient to induce ataxia is still lacking. Here, by employing chemogenetic approaches to manipulate cerebellar microglia selectively and directly, we found that specific chemogenetic activation of microglia in the cerebellar vermis directly leads to ataxia symptoms in wild-type mice and aggravated ataxic motor deficits in 3-acetylpyridine (3-AP) mice, a classic mouse model of cerebellar ataxia. Mechanistically, cerebellar microglial proinflammatory activation induced by either chemogenetic M3D(Gq) stimulation or 3-AP modeling hyperexcites Purkinje cells (PCs), which consequently triggers ataxia. Blockade of microglia-derived TNF-α, one of the most important proinflammatory cytokines, attenuates the hyperactivity of PCs driven by microglia. Moreover, chemogenetic inhibition of cerebellar microglial activation or suppression of cerebellar microglial activation by PLX3397 and minocycline reduces the production of proinflammatory cytokines, including TNF-α, to effectively restore the overactivation of PCs and alleviate motor deficits in 3-AP mice. These results suggest that cerebellar microglial activation may aggravate the neuroinflammatory response and subsequently induce dysfunction of PCs, which in turn triggers ataxic motor deficits. Our findings thus reveal a causal relationship between proinflammatory activation of cerebellar microglia and ataxic motor symptoms, which may offer novel evidence for therapeutic intervention for cerebellar ataxias by targeting microglia and microglia-derived inflammatory mediators.
Collapse
Affiliation(s)
- Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen-Chu Fan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xian-Sen Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ze-Lin Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Ran Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hui Rong
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi-San Cui
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun-Yi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xiao-Ping Gu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Zheng-Liang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Anesthesiology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; Institute for Brain Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Fanning A, Kuo SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. CEREBELLUM (LONDON, ENGLAND) 2023:10.1007/s12311-023-01551-3. [PMID: 37022657 PMCID: PMC10556200 DOI: 10.1007/s12311-023-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Rühl M, Kimmel R, Ertl M, Conrad J, Zu Eulenburg P. In Vivo Localization of the Human Velocity Storage Mechanism and Its Core Cerebellar Networks by Means of Galvanic-Vestibular Afternystagmus and fMRI. CEREBELLUM (LONDON, ENGLAND) 2023; 22:194-205. [PMID: 35212978 PMCID: PMC9985569 DOI: 10.1007/s12311-022-01374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Humans are able to estimate head movements accurately despite the short half-life of information coming from our inner ear motion sensors. The observation that the central angular velocity estimate outlives the decaying signal of the semicircular canal afferents led to the concept of a velocity storage mechanism (VSM). The VSM can be activated via visual and vestibular modalities and becomes manifest in ocular motor responses after sustained stimulation like whole-body rotations, optokinetic or galvanic vestibular stimulation (GVS). The VSM has been the focus of many computational modelling approaches; little attention though has been paid to discover its actual structural correlates. Animal studies localized the VSM in the medial and superior vestibular nuclei. A significant modulation by cerebellar circuitries including the uvula and nodulus has been proposed. Nevertheless, the corresponding neuroanatomical structures in humans have not been identified so far. The aim of the present study was to delineate the neural substrates of the VSM using high-resolution infratentorial fMRI with a fast T2* sequence optimized for infratentorial neuroimaging and via video-oculography (VOG). The neuroimaging experiment (n=20) gave first in vivo evidence for an involvement of the vestibular nuclei in the VSM and substantiate a crucial role for cerebellar circuitries. Our results emphasize the importance of cerebellar feedback loops in VSM most likely represented by signal increases in vestibulo-cerebellar hubs like the uvula and nodulus and lobule VIIIA. The delineated activation maps give new insights regarding the function and embedment of Crus I, Crus II, and lobule VII and VIII in the human vestibular system.
Collapse
Affiliation(s)
- Maxine Rühl
- Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany.
| | - Rebecca Kimmel
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Matthias Ertl
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Julian Conrad
- Department of Neurology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
28
|
Lu J, Zhou C, Pu J, Tian J, Yin X, Lv D, Guan X, Guo T, Zhang M, Zhang B, Yan Y, Zhao G. Brain microstructural changes in essential tremor patients and correlations with clinical characteristics: a diffusion kurtosis imaging study. J Neurol 2023; 270:2106-2116. [PMID: 36609498 DOI: 10.1007/s00415-023-11557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Essential tremor (ET) is the second most common movement disorder; however, the pathophysiological mechanism of ET is unclear. We aimed to investigate the microstructural degeneration of gray matter (GM) and white matter (WM) and their correlations with cognition and tremor in patients with ET. METHODS The participants were 63 patients with ET and 63 matched healthy controls (HCs) who underwent 3D-T1 weighted and diffusion kurtosis images (DKI). Microstructural degeneration was measured using high-level diffusion parameters derived from DKI. A voxel-wise analysis of the means of the GM-based spatial statistics and tract-based spatial statistics were conducted to assess differences in diffusion parameters between the ET and HC groups. The volume differences between the two groups were also assessed, and tremor severity and multi-domain cognitive performance were evaluated. Finally, the relationship between microstructural degeneration and clinical characteristics were assessed. RESULTS The ET group had significantly lower mean kurtosis of the temporal, parietal, and occipital lobes and the cerebellum and lower radial kurtosis in several tracts. These microstructural changes in GM and WM were correlated with tremor and cognitive scores. However, no significant difference in volume was found between the groups. CONCLUSION Our findings suggest that ET entails extensive GM and WM microstructural alterations, which support the neurodegenerative hypothesis of ET. Our study contributes to a better understanding of the mechanisms underlying tremor and cognitive impairment in ET.
Collapse
Affiliation(s)
- Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
29
|
Maldonado T, Jackson TB, Bernard JA. Anodal cerebellar stimulation increases cortical activation: Evidence for cerebellar scaffolding of cortical processing. Hum Brain Mapp 2023; 44:1666-1682. [PMID: 36468490 PMCID: PMC9921230 DOI: 10.1002/hbm.26166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
While the cerebellum contributes to nonmotor task performance, the specific contributions of the structure remain unknown. One possibility is that the cerebellum allows for the offloading of cortical processing, providing support during task performance, using internal models. Here we used transcranial direct current stimulation to modulate cerebellar function and investigate the impact on cortical activation patterns. Participants (n = 74; 22.03 ± 3.44 years) received either cathodal, anodal, or sham stimulation over the right cerebellum before a functional magnetic resonance imaging scan during which they completed a sequence learning and a working memory task. We predicted that cathodal stimulation would improve, and anodal stimulation would hinder task performance and cortical activation. Behaviorally, anodal stimulation negatively impacted behavior during late-phase sequence learning. Functionally, we found that anodal cerebellar stimulation resulted in increased bilateral cortical activation, particularly in parietal and frontal regions known to be involved in cognitive processing. This suggests that if the cerebellum is not functioning optimally, there is a greater need for cortical resources.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, Indiana, USA.,Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Trevor Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
30
|
Mali I, Payne M, King C, Maze TR, Davison T, Challans B, Bossmann SH, Plakke B. Adolescent female valproic acid rats have impaired extra-dimensional shifts of attention and enlarged anterior cingulate cortices. Brain Res 2023; 1800:148199. [PMID: 36509128 PMCID: PMC9835202 DOI: 10.1016/j.brainres.2022.148199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In order to develop better treatments for autism spectrum disorder (ASD) it is critical to understand the developmental trajectory of the disorder and the accompanying brain changes. This study used the valproic acid (VPA) model to induce ASD-like symptoms in rodents. Prior studies have demonstrated that VPA animals are impaired on executive function tasks, paralleling results in humans with ASD. Here, VPA adolescent female rats were impaired on a set-shifting task and had enlarged frontal cortices compared to control females. The deficits observed in the VPA female rats mirrors results in females with ASD. In addition, adolescent VPA females with enlarged frontal cortices performed the worst across the entire task. These brain changes in adolescence are also found in adolescent humans with ASD. These novel findings highlight the importance of studying the brain at different developmental stages.
Collapse
Affiliation(s)
- Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Cole King
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Tessa R Maze
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Taylor Davison
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Brandon Challans
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
31
|
Steinsiepe KF. The 'worm' in our brain. An anatomical, historical, and philological study on the vermis cerebelli. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2023:1-36. [PMID: 36599122 DOI: 10.1080/0964704x.2022.2146515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The cell doctrine-the theory of ventricular localization of the mental faculties-includes Galen's idea of a locking or valve mechanism between the middle and the rear ventricle. The anatomical substrate was the vermiform epiphysis, known today as the vermis cerebelli. This entity played a significant role in brain physiology even though its appearance, texture, and location changed over time. This article tells the story of the "worm's" transformation from Galen to Vesalius and beyond. Until the time of Albertus Magnus (c. 1200-1280 ce), the worm corresponded to the vermis cerebelli. From the beginning of the fourteenth century, under the influence of Mondino's Anothomia, the worm referred to the choroid plexus in the anterior ventricles; its Galenic heritage was abandoned. Contemporaneous illustrations confirm this anterograde movement. The contributions of post-Galenic natural philosophers and pre-Vesalian anatomists to this development are discussed. Today, the worm can serve as an example for different viewpoints and often deadlocked doctrines (religious, philosophic, scientific). In tracing beliefs about the worm from the Greeks to the Arabs and back to the Latin West, this article follows the history of neuroanatomy in the Middle Ages and the Renaissance.
Collapse
Affiliation(s)
- Klaus F Steinsiepe
- Faculty of Arts and Social Sciences, The University of Zurich, Zurich, Switzerland
- Institute for the History of Medicine, University of Berne, Berne, Switzerland
| |
Collapse
|
32
|
Functional connectivity and amplitude of low-frequency fluctuations changes in people with complete subacute and chronic spinal cord injury. Sci Rep 2022; 12:20874. [PMID: 36463248 PMCID: PMC9719483 DOI: 10.1038/s41598-022-25345-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
After spinal cord injury (SCI), reorganization processes and changes in brain connectivity occur. Besides the sensorimotor cortex, the subcortical areas are strongly involved in motion and executive control. This exploratory study focusses on the cerebellum and vermis. Resting-state functional magnetic resonance imaging (fMRI) was performed. Between-group differences were computed using analysis of covariance and post-hoc tests for the seed-based connectivity measure with vermis and cerebellum as regions of interest. Twenty participants with complete SCI (five subacute SCI, 15 with chronic SCI) and 14 healthy controls (HC) were included. Functional connectivity (FC) was lower in all subjects with SCI compared with HC in vermis IX, right superior frontal gyrus (pFDR = 0.008) and right lateral occipital cortex (pFDR = 0.036). In addition, functional connectivity was lower in participants with chronic SCI compared with subacute SCI in bilateral cerebellar crus I, left precentral- and middle frontal gyrus (pFDR = 0.001). Furthermore, higher amplitude of low-frequency fluctuations (ALFF) was found in the left thalamus in individuals with subacute SCI (pFDR = 0.002). Reduced FC in SCI indicates adaptation with associated deficit in sensory and motor function. The increased ALFF in subacute SCI might reflect reorganization processes in the subacute phase.
Collapse
|
33
|
A classification framework for investigating neural correlates of the limit of stability during weight shifting in lower limb amputees. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Feng S, Zheng S, Zou H, Dong L, Zhu H, Liu S, Wang D, Ning Y, Jia H. Altered functional connectivity of cerebellar networks in first-episode schizophrenia. Front Cell Neurosci 2022; 16:1024192. [PMID: 36439199 PMCID: PMC9692071 DOI: 10.3389/fncel.2022.1024192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Abnormalities of the cerebellum have been displayed to be a manifestation of schizophrenia (SCH) which is a detrimental psychiatric disorder. It has been recognized that the cerebellum contributes to motor function, sensorimotor function, cognition, and other brain functions in association with cerebral functions. Multiple studies have observed that abnormal alterations in cerebro-cerebellar functional connectivity (FC) were shown in patients with SCH. However, the FC of cerebellar networks in SCH remains unclear. Methods In this study, we explored the FC of cerebellar networks of 45 patients with first-episode SCH and 45 healthy control (HC) subjects by using a defined Yeo 17 network parcellation system. Furthermore, we performed a correlation analysis between cerebellar networks' FC and positive and negative symptoms in patients with first-episode SCH. Finally, we established the classification model to provide relatively suitable features for patients with first-episode SCH concerning the cerebellar networks. Results We found lower between-network FCs between 14 distinct cerebellar network pairs in patients with first-episode SCH, compared to the HCs. Significantly, the between-network FC in N2-N15 was positively associated with positive symptom severity; meanwhile, N4-N15 was negatively associated with negative symptom severity. Besides, our results revealed a satisfactory classification accuracy (79%) of these decreased between-network FCs of cerebellar networks for correctly identifying patients with first-episode SCH. Conclusion Conclusively, between-network abnormalities in the cerebellum are closely related to positive and negative symptoms of patients with first-episode SCH. In addition, the classification results suggest that the cerebellar networks can be a potential target for further elucidating the underlying mechanisms in first-episode SCH.
Collapse
Affiliation(s)
- Sitong Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Haoming Zou
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Linrui Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hong Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shanshan Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Dan Wang
- Inner Mongolia Autonomous Region Mental Health Center, Hohhot, China
| | - Yanzhe Ning
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Human cerebellum and corticocerebellar connections involved in emotional memory enhancement. Proc Natl Acad Sci U S A 2022; 119:e2204900119. [PMID: 36191198 PMCID: PMC9564100 DOI: 10.1073/pnas.2204900119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Enhanced memory for emotional stimuli is crucial for survival, but it may also contribute to the development and maintenance of fear-related disorders in case of highly aversive experiences. This large-scale functional brain imaging study identifies the cerebellum and cerebellar–cerebral connections involved in the phenomenon of superior memory for emotionally arousing visual information. These findings expand knowledge on the role of the cerebellum in complex cognitive and emotional processes and may be relevant for the understanding of psychiatric disorders with aberrant emotional circuitry, such as posttraumatic stress disorder or autism spectrum disorder. Emotional information is better remembered than neutral information. Extensive evidence indicates that the amygdala and its interactions with other cerebral regions play an important role in the memory-enhancing effect of emotional arousal. While the cerebellum has been found to be involved in fear conditioning, its role in emotional enhancement of episodic memory is less clear. To address this issue, we used a whole-brain functional MRI approach in 1,418 healthy participants. First, we identified clusters significantly activated during enhanced memory encoding of negative and positive emotional pictures. In addition to the well-known emotional memory–related cerebral regions, we identified a cluster in the cerebellum. We then used dynamic causal modeling and identified several cerebellar connections with increased connection strength corresponding to enhanced emotional memory, including one to a cluster covering the amygdala and hippocampus, and bidirectional connections with a cluster covering the anterior cingulate cortex. The present findings indicate that the cerebellum is an integral part of a network involved in emotional enhancement of episodic memory.
Collapse
|
36
|
Han S, Aili X, Ma J, Liu J, Wang W, Yang X, Wang X, Sun L, Li H. Altered regional homogeneity and functional connectivity of brain activity in young HIV-infected patients with asymptomatic neurocognitive impairment. Front Neurol 2022; 13:982520. [PMID: 36303561 PMCID: PMC9593212 DOI: 10.3389/fneur.2022.982520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Objective Asymptomatic neurocognitive impairment (ANI) is a predominant form of cognitive impairment in young HIV-infected patients. However, the neurophysiological mechanisms underlying this disorder have not been clarified. We aimed to evaluate the altered patterns of functional brain activity in young HIV-infected patients with ANI by quantifying regional homogeneity (ReHo) and region of interest (ROI)-based functional connectivity (FC). Methods The experiment involved 44 young HIV-infected patients with ANI and 47 well-matched healthy controls (HCs) undergoing resting-state functional magnetic resonance imaging (rs-fMRI) and neurocognitive tests. Reho alterations were first explored between the ANI group and HC groups. Subsequently, regions showing differences in ReHo were defined as ROIs for FC analysis. Finally, the correlation of ReHo and FC with cognitive function and clinical variables was assessed. Results Compared with HCs, ANI patients had a significant ReHo decrease in the right lingual gyrus (LING. R), right superior occipital gyrus (SOG. R), left superior occipital gyrus (SOG. L), left middle occipital gyrus (MOG. L), right middle frontal gyrus (MFG. R), cerebellar vermis, ReHo enhancement in the left middle frontal gyrus (MFG. L), and left insula (INS L). The ANI patients showed increased FC between the LING. R and MOG. L compared to HC. For ANI patients, verbal and language scores were negatively correlated with increased mean ReHo values in the MFG.L. Increased mean ReHo values in the INS. L was positively correlated with disease duration—the mean ReHo values in the LING. R was positively correlated with the abstraction and executive function scores. Increased FC between the LING. R and MOG. L was positively correlated with verbal and language performance. Conclusion The results suggest that the visual network might be the most vulnerable area of brain function in young HIV-infected patients with ANI. The middle frontal gyrus, cerebellar vermis, and insula also play an important role in asymptomatic neurocognitive impairment. The regional homogeneity and functional connectivity of these regions have compound alterations, which may be related to the course of the disease and neurocognitive function. These neuroimaging findings will help us understand the characteristics of brain network modifications in young HIV-infected patients with ANI.
Collapse
Affiliation(s)
- Shuai Han
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Juming Ma
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Yang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xi Wang
- STD & AIDS Clinic, Department of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lijun Sun
- STD & AIDS Clinic, Department of Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Lijun Sun
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Hongjun Li
| |
Collapse
|
37
|
Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy. EBioMedicine 2022; 84:104255. [PMID: 36116214 PMCID: PMC9483733 DOI: 10.1016/j.ebiom.2022.104255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Advanced imaging modalities have helped elucidate the cerebral alterations associated with neurological impairment caused by degenerative cervical myelopathy (DCM), but it remains unknown how brain functional network changes at different stages of myelopathy severity in DCM patients, and if patterns in network connectivity can be used to predict transition to more myelopathic stages of DCM. METHODS This pilot cross-sectional study, which involves the collection of resting-state functional MRI (rs-fMRI) images and the modified Japanese Orthopedic Association (mJOA) score, enrolled 116 participants (99 patients and 17 healthy controls) from 2016 to 2021. The patient cohort included 21patients with asymptomatic spinal cord compression, 48 mild DCM patients, and 20 moderate or severe DCM patients. Functional connectivity networks were quantified for all participants, and the transition matrices were quantified to determine the differences in network connectivity through increasingly myelopathic stages of DCM. Additionally, a link prediction model was used to determine whether more severe stages of DCM can be predicted from less symptomatic stages using the transition matrices. FINDINGS Results indicated interruptions in most connections within the sensorimotor network in conjunction with spinal cord compression, while compensatory connectivity was observed within and between primary and secondary sensorimotor regions, subcortical regions, visuospatial regions including the cuneus, as well as the brainstem and cerebellum. A link prediction model achieved an excellent predictive performance in estimating connectivity of more severe myelopathic stages of DCM, with the highest area under the receiver operator curve (AUC) of 0.927 for predicting mild DCM from patients with asymptomatic spinal cord compression. INTERPRETATION A series of predictable changes in functional connectivity occur throughout the stages of DCM pathogenesis. The brainstem and cerebellum appear highly influential in optimizing sensorimotor function during worsening myelopathy. The link predication model can inclusively estimate brain alterations associated with myelopathy severity. FUNDING NIH/NINDS grants (1R01NS078494-01A1, and 2R01NS078494).
Collapse
|
38
|
Matsugi A, Mori N, Hosomi K, Saitoh Y. Cerebellar repetitive transcranial magnetic stimulation modulates the motor learning of visually guided voluntary postural control task. Neurosci Lett 2022; 788:136859. [PMID: 36038031 DOI: 10.1016/j.neulet.2022.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
We investigated whether vermal cerebellar low-frequency repetitive transcranial magnetic stimulation (crTMS) affects motor learning of visually guided postural tracking training (VTT) using foot center of pressure (COP) as well as the stability and sensory contribution of upright standing. Twenty-one healthy volunteers participated (10 in the sham-crTMS group and 11 in the active-crTMS group). For VTT, participants stood on the force plate 1.5 m from the monitor on which the COP and target moved in a circle. Participants tracked the target with their own COP for 1 min, and 10 VTT sessions were conducted. The tracking error (TE) was compared between trials. Active- or sham-crTMS sessions were conducted prior to VTT. At baseline (before crTMS), pre-VTT (after crTMS), and post-VTT, the COP trajectory during upright static standing under four conditions (eyes, open/closed; surface, hard/rubber) was recorded. Comparison of the length of the COP trajectory or path and sensory-contribution-rate showed no significant difference between baseline and pre- and post-VTT. There was a significant decrease in TE in the sham-crTMS but not in the active-crTMS group. VTT and crTMS did not immediately affect the stability and sensory contribution of upright standing; however, crTMS immediately affected motor learning. The vermal cerebellum may contribute to motor learning of voluntary postural control.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou City, Osaka 574-0011, Japan.
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka 560-8531, Japan; Tokuyukai Rehabilitation Clinic, Shinsenri-nishimachi 2-24-18, Toyonaka City, Osaka 560-0083, Japan
| |
Collapse
|
39
|
Pouw W, Fuchs S. Origins Of Vocal-Entangled Gesture. Neurosci Biobehav Rev 2022; 141:104836. [PMID: 36031008 DOI: 10.1016/j.neubiorev.2022.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/13/2023]
Abstract
Gestures during speaking are typically understood in a representational framework: they represent absent or distal states of affairs by means of pointing, resemblance, or symbolic replacement. However, humans also gesture along with the rhythm of speaking, which is amenable to a non-representational perspective. Such a perspective centers on the phenomenon of vocal-entangled gestures and builds on evidence showing that when an upper limb with a certain mass decelerates/accelerates sufficiently, it yields impulses on the body that cascade in various ways into the respiratory-vocal system. It entails a physical entanglement between body motions, respiration, and vocal activities. It is shown that vocal-entangled gestures are realized in infant vocal-motor babbling before any representational use of gesture develops. Similarly, an overview is given of vocal-entangled processes in non-human animals. They can frequently be found in rats, bats, birds, and a range of other species that developed even earlier in the phylogenetic tree. Thus, the origins of human gesture lie in biomechanics, emerging early in ontogeny and running deep in phylogeny.
Collapse
Affiliation(s)
- Wim Pouw
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Susanne Fuchs
- Leibniz Center General Linguistics, Berlin, Germany.
| |
Collapse
|
40
|
Fermin ASR, Friston K, Yamawaki S. An insula hierarchical network architecture for active interoceptive inference. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220226. [PMID: 35774133 PMCID: PMC9240682 DOI: 10.1098/rsos.220226] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 05/05/2023]
Abstract
In the brain, the insular cortex receives a vast amount of interoceptive information, ascending through deep brain structures, from multiple visceral organs. The unique hierarchical and modular architecture of the insula suggests specialization for processing interoceptive afferents. Yet, the biological significance of the insula's neuroanatomical architecture, in relation to deep brain structures, remains obscure. In this opinion piece, we propose the Insula Hierarchical Modular Adaptive Interoception Control (IMAC) model to suggest that insula modules (granular, dysgranular and agranular), forming parallel networks with the prefrontal cortex and striatum, are specialized to form higher order interoceptive representations. These interoceptive representations are recruited in a context-dependent manner to support habitual, model-based and exploratory control of visceral organs and physiological processes. We discuss how insula interoceptive representations may give rise to conscious feelings that best explain lower order deep brain interoceptive representations, and how the insula may serve to defend the body and mind against pathological depression.
Collapse
Affiliation(s)
- Alan S. R. Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, England
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
41
|
Liu XX, Chen XH, Zheng ZW, Jiang Q, Li C, Yang L, Chen X, Mao XF, Yuan HY, Feng LL, Jiang Q, Shi WX, Sasaki T, Fukunaga K, Chen Z, Han F, Lu YM. BOD1 regulates the cerebellar IV/V lobe-fastigial nucleus circuit associated with motor coordination. Signal Transduct Target Ther 2022; 7:170. [PMID: 35641478 PMCID: PMC9156688 DOI: 10.1038/s41392-022-00989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebellar ataxias are characterized by a progressive decline in motor coordination, but the specific output circuits and underlying pathological mechanism remain poorly understood. Through cell-type-specific manipulations, we discovered a novel GABAergic Purkinje cell (PC) circuit in the cerebellar IV/V lobe that projected to CaMKIIα+ neurons in the fastigial nucleus (FN), which regulated sensorimotor coordination. Furthermore, transcriptomics profiling analysis revealed various cerebellar neuronal identities, and we validated that biorientation defective 1 (BOD1) played an important role in the circuit of IV/V lobe to FN. BOD1 deficit in PCs of IV/V lobe attenuated the excitability and spine density of PCs, accompany with ataxia behaviors. Instead, BOD1 enrichment in PCs of IV/V lobe reversed the hyperexcitability of CaMKIIα+ neurons in the FN and ameliorated ataxia behaviors in L7-Cre; BOD1f/f mice. Together, these findings further suggest that specific regulation of the cerebellar IV/V lobePCs → FNCaMKIIα+ circuit might provide neuromodulatory targets for the treatment of ataxia behaviors.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xing-Hui Chen
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhi-Wei Zheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Qin Jiang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Chen Li
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lin Yang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xing-Feng Mao
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Hao-Yang Yuan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Li-Li Feng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wei-Xing Shi
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China. .,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, China. .,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 215002, Suzhou, China.
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China. .,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
42
|
Indelicato E, Raccagni C, Runer S, Hannink J, Nachbauer W, Eigentler A, Amprosi M, Wenning G, Boesch S. Instrumented gait analysis defines the walking signature of CACNA1A disorders. J Neurol 2022; 269:2941-2947. [PMID: 34755206 PMCID: PMC9120104 DOI: 10.1007/s00415-021-10878-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Gait disturbances are a frequent symptom in CACNA1A disorders. Even though, data about their severity and progression are lacking and no CACNA1A-specific scale or assessment for gait is available. METHODS We applied a gait assessment protocol in 20 ambulatory patients with genetically confirmed CACNA1A disorders and 39 matched healthy controls. An instrumented gait analysis (IGA) was performed by means of wearable sensors in basal condition and after a treadmill/cycloergometer challenge in selected cases. RESULTS CACNA1A patients displayed lower gait speed, shorter steps with increased step length variability, a reduced landing acceleration as well as a reduced range of ankle motion compared to controls. Furthermore, gait-width in patients with episodic CACNA1A disorders was narrower as compared to controls. In one patient experiencing mild episodic symptoms after the treadmill challenge, the IGA was able to detect a deterioration over all gait parameters. CONCLUSIONS In CACNA1A patients, the IGA with wearable sensors unravels specific gait signatures which are not detectable at naked eye. These features (narrow-based gait, lower landing acceleration) distinguish these patients from other ataxic disorders and may be target of focused rehabilitative interventions. IGA can potentially be applied to monitor the neurological fluctuations associated with CACNA1A disorders.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Cecilia Raccagni
- Neurobiology Division, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Department of Neurology, Regional General Hospital, Lorenz Boehler Strasse 5, 39100, Bolzano, Italy.
| | - Sarah Runer
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Julius Hannink
- Portablies HealthCare Technologies GmbH, Henkestr. 91, 91052, Erlangen, Germany
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andreas Eigentler
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor Wenning
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Neurobiology Division, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
43
|
Goda N, Hasegawa T, Koketsu D, Chiken S, Kikuta S, Sano H, Kobayashi K, Nambu A, Sadato N, Fukunaga M. Cerebro-cerebellar interactions in nonhuman primates examined by optogenetic functional magnetic resonance imaging. Cereb Cortex Commun 2022; 3:tgac022. [PMID: 35769971 PMCID: PMC9233902 DOI: 10.1093/texcom/tgac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a promising approach for the simultaneous and extensive scanning of whole-brain activities. Optogenetics is free from electrical and magnetic artifacts and is an ideal stimulation method for combined use with fMRI. However, the application of optogenetics in nonhuman primates (NHPs) remains limited. Recently, we developed an efficient optogenetic intracortical microstimulation method of the primary motor cortex (M1), which successfully induced forelimb movements in macaque monkeys. Here, we aimed to investigate how optogenetic M1 stimulation causes neural modulation in the local and remote brain regions in anesthetized monkeys using 7-tesla fMRI. We demonstrated that optogenetic stimulation of the M1 forelimb and hindlimb regions successfully evoked robust direct and remote fMRI activities. Prominent remote activities were detected in the anterior and posterior lobes in the contralateral cerebellum, which receive projections polysynaptically from the M1. We further demonstrated that the cerebro-cerebellar projections from these M1 regions were topographically organized, which is concordant with the somatotopic map in the cerebellar cortex previously reported in macaques and humans. The present study significantly enhances optogenetic fMRI in NHPs, resulting in profound understanding of the brain network, thereby accelerating the translation of findings from animal models to humans.
Collapse
Affiliation(s)
- Naokazu Goda
- Division of Cerebral Integration, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Taku Hasegawa
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Koketsu
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Satomi Chiken
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Satomi Kikuta
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiromi Sano
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Atsushi Nambu
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Division of System Neurophysiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
44
|
Wang L, Huang G, Zhang L, Yang J, Ren C, Liang C, Shen Y, Su B. Effects of the Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Balance Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial. Front Aging Neurosci 2022; 14:881311. [PMID: 35572148 PMCID: PMC9099377 DOI: 10.3389/fnagi.2022.881311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background The recovery of balance function is a critical segment in the rehabilitation treatment of stroke. The cerebellum is considered as the key structure involved in balance and motor control. The cerebellar vermis plays an important role in integrating vision, proprioception, and sensory skin input and may be a candidate stimulation target for regulating the motor network related with balance. However, evidence that the intermittent theta burst stimulation (iTBS) of cerebellar vermis can promote the recovery of balance function after stroke remains insufficient. Therefore, this study aims to explore the efficacy of the cerebellar vermis iTBS for the treatment of balance function in patients with stroke. Methods and Analysis Forty patients with stroke will be recruited in this prospective, randomized, sham-controlled trial. Participants will be randomized in a 1:1 ratio to receive either 15 sessions of cerebellar vermis iTBS (600 pulses) or sham stimulation. Additionally, a routine rehabilitation therapy follows the intervention. The primary outcome is the Berg Balance Scale, and the secondary outcomes are the Fugl–Meyer assessment of the lower extremity and modified Barthel index. The above outcomes will be assessed before intervention and at the end of each week. Pre- and post-iTBS resting-state functional magnetic resonance imaging (rs-fMRI) will be acquired, and the regional homogeneity, fractional amplitude of low-frequency fluctuation and functional connectivity will be calculated and analyzed. Discussion This protocol holds promise as a potential method to improve balance function in patients with stroke. If the outcomes of patients improve after the intervention, the study will provide new insights into improving balance function. Ethics and Dissemination This study has been approved by the Medical Research Ethics Committee of Wuxi Mental Health Center (Wuxi Tongren Rehabilitation Hospital). Results will be disseminated through (open-access) peer-reviewed publications, networks of scientists, professionals, and the public and presented at conferences. Clinical Trial Registration Number www.chictr.org.cn, identifier ChiCTR2100052590.
Collapse
Affiliation(s)
- Lin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Chengpan Liang
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ying Shen,
| | - Bin Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
- Bin Su,
| |
Collapse
|
45
|
Bernard JA. Understanding cerebellar function through network perspectives: A review of resting-state connectivity of the cerebellum. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Tan HX, Wei QC, Chen Y, Xie YJ, Guo QF, He L, Gao Q. The Immediate Effects of Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Cerebral Cortical Excitability During a Balance Task in Healthy Individuals: A Pilot Study. Front Hum Neurosci 2021; 15:748241. [PMID: 34867241 PMCID: PMC8632863 DOI: 10.3389/fnhum.2021.748241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: This pilot study aimed to investigate the immediate effects of single-session intermittent theta-burst stimulation (iTBS) on the cerebellar vermis during a balance task, which could unveil the changes of cerebral cortical excitability in healthy individuals. Subjects: A total of seven right-handed healthy subjects (26.86 ± 5.30 years) were included in this study. Interventions: Each subject received single-session iTBS on cerebellar vermis in a sitting position. Main Measures: Before and after the intervention, all subjects were asked to repeat the balance task of standing on the left leg three times. Each task consisted of 15 s of standing and 20 s of resting. Real-time changes in cerebral cortex oxygen concentrations were monitored with functional near-infrared spectroscopy (fNIRS). During the task, changes in blood oxygen concentration were recorded and converted into the mean HbO2 for statistical analysis. Results: After stimulation, the mean HbO2 in the left SMA (P = 0.029) and right SMA (P = 0.043) significantly increased compared with baseline. However, no significant changes of mean HbO2 were found in the bilateral dorsolateral prefrontal lobe (P > 0.05). Conclusion: Single-session iTBS on the cerebellar vermis in healthy adults can increase the excitability of the cerebral cortex in the bilateral supplementary motor areas during balance tasks. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [ChiCTR2100048915].
Collapse
Affiliation(s)
- Hui-Xin Tan
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Chuan Wei
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Juan Xie
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Fan Guo
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Gao
- West China Hospital, Sichuan University, Chengdu, China.,Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Wang X, Novello M, Gao Z, Ruigrok TJH, De Zeeuw CI. Input and output organization of the mesodiencephalic junction for cerebro-cerebellar communication. J Neurosci Res 2021; 100:620-637. [PMID: 34850425 PMCID: PMC9300004 DOI: 10.1002/jnr.24993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Most studies investigating the impact of the cerebral cortex (CC) onto the cerebellum highlight the role of the pons, which provides the mossy fibers to the cerebellum. However, cerebro‐cerebellar communication may also be mediated by the nuclei of the mesodiencephalic junction (MDJ) that project to the inferior olive (IO), which in turn provides the climbing fibers to the molecular layer. Here, we uncover the precise topographic relations of the inputs and outputs of the MDJ using multiple, classical, and transneuronal tracing methods as well as analyses of mesoscale cortical injections from Allen Mouse Brain. We show that the caudal parts of the CC predominantly project to the principal olive via the rostral MDJ and that the rostral parts of the CC predominantly project to the rostral medial accessory olive via the caudal MDJ. Moreover, using triple viral tracing technology, we show that the cerebellar nuclei directly innervate the neurons in the MDJ that receive input from CC and project to the IO. By unraveling these topographic and prominent, mono‐ and disynaptic projections through the MDJ, this work establishes that cerebro‐cerebellar communication is not only mediated by the pontine mossy fiber system, but also by the climbing fiber system.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Maiti B, Rawson KS, Tanenbaum AB, Koller JM, Snyder AZ, Campbell MC, Earhart GM, Perlmutter JS. Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease. Mov Disord 2021; 36:2559-2568. [PMID: 34109682 PMCID: PMC8595492 DOI: 10.1002/mds.28684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Dysfunction of cerebellar vermis contributes to gait abnormalities in multiple conditions and may play a key role in gait impairment in Parkinson's disease (PD). OBJECTIVE The purpose of this study was to investigate whether altered resting-state functional connectivity of the vermis relates to subsequent impairment of specific domains of gait in PD. METHODS We conducted morphometric and resting-state functional connectivity MRI analyses contrasting 45 PD and 32 age-matched healthy participants. Quantitative gait measures were acquired with a GAITRite walkway at varying intervals after functional connectivity data acquisition. RESULTS At baseline, PD participants had significantly altered functional connectivity between vermis and sensorimotor cortex compared with controls. Altered vermal functional connectivity with bilateral paracentral lobules correlated with subsequent measures of variability in stride length, step time, and single support time after controlling for confounding variables including the interval between imaging and gait measures. Similarly, altered functional connectivity between vermis and left sensorimotor cortex correlated with mean stride length and its variability. Vermis volume did not relate to any gait measure. PD participants did not differ from controls in vermis volume or cortical thickness at the site of significant regional clusters. Only altered lobule V:sensorimotor cortex functional connectivity correlated with subsequent gait measures in exploratory analyses involving all the other cerebellar lobules. CONCLUSIONS These results demonstrate that abnormal vermal functional connectivity with sensorimotor cortex, in the absence of relevant vermal or cortical atrophy, correlates with subsequent gait impairment in PD. Our data reflect the potential of vermal functional connectivity as a novel imaging biomarker of gait impairment in PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Baijayanta Maiti
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Kerri S. Rawson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Aaron B. Tanenbaum
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Meghan C. Campbell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Gammon M. Earhart
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
49
|
Payne M, Mali I, McKinnell ZE, Vangsness L, Shrestha TB, Bossmann SH, Plakke B. Increased volumes of lobule VI in a valproic acid model of autism are associated with worse set-shifting performance in male Long-Evan rats. Brain Res 2021; 1765:147495. [PMID: 33894224 PMCID: PMC8205983 DOI: 10.1016/j.brainres.2021.147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a skewed sex-based diagnostic ratio. While males are at a higher risk for ASD, it is critical to understand the neurobiology of the disorder to develop better treatments for both males and females. Our prior work has demonstrated that VPA (valproic acid) treated offspring had impaired performance on an attentional set-shifting task. The current study used MRI and regions of interest analyses to measure the volumes of cerebellar subregions in VPA and controls rats that had participated in the attentional set-shifting task. VPA males had significantly more volume in lobule VI compared to male controls. VPA female rats had significantly less volume in lobules I, IV and X compared to female controls. In addition, it was revealed that decreases in volume for VPA females was associated with worse performance. Males with increases in lobule VI were also impaired on the set-shifting task. Similar volumetric differences within the cerebellum have been observed in humans with ASD, which suggests that the VPA model is capturing some of the same brain changes observed in humans with ASD, and that these changes in volume may be impacting cognition.
Collapse
Affiliation(s)
- Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Ivina Mali
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Zach E McKinnell
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Lisa Vangsness
- Department of Psychology, Wichita State University, Wichita, KS, USA
| | - Tej B Shrestha
- Department of Anatomy & Physiology, Nanotechnology Innovation Center of Kansas State-NICKS, KS, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Bethany Plakke
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
50
|
Zhang C, Lai Y, Li J, He N, Liu Y, Li Y, Li H, Wei H, Yan F, Horn A, Li D, Sun B. Subthalamic and Pallidal Stimulations in Patients with Parkinson's Disease: Common and Dissociable Connections. Ann Neurol 2021; 90:670-682. [PMID: 34390280 PMCID: PMC9292442 DOI: 10.1002/ana.26199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The subthalamic nucleus (STN) and internal globus pallidus (GPi) are the most effective targets in deep brain stimulation (DBS) for Parkinson's disease (PD). However, the common and specific effects on brain connectivity of stimulating the 2 nuclei remain unclear. METHODS Patients with PD receiving STN-DBS (n = 27, 6 women, mean age 64.8 years) or GPi-DBS (n = 28, 13 women, mean age 64.6 years) were recruited for resting-state functional magnetic resonance imaging to assess the effects of STN-DBS and GPi-DBS on brain functional dynamics. RESULTS The functional connectivity both between the somatosensory-motor cortices and thalamus, and between the somatosensory-motor cortices and cerebellum decreased in the DBS-on state compared with the off state (p < 0.05). The changes in thalamocortical connectivity correlated with DBS-induced motor improvement (p < 0.05) and were negatively correlated with the normalized intersection volume of tissues activated at both DBS targets (p < 0.05). STN-DBS modulated functional connectivity among a wider range of brain areas than GPi-DBS (p = 0.009). Notably, only STN-DBS affected connectivity between the postcentral gyrus and cerebellar vermis (p < 0.001) and between the somatomotor and visual networks (p < 0.001). INTERPRETATION Our findings highlight common alterations in the motor pathway and its relationship with the motor improvement induced by both STN- and GPi-DBS. The effects on cortico-cerebellar and somatomotor-visual functional connectivity differed between groups, suggesting differentiated neural modulation of the 2 target sites. Our results provide mechanistic insight and yield the potential to refine target selection strategies for focal brain stimulation in PD. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.,Department of Anatomy and Physiology, Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Information Science and Technology, Shanghai Tech University, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|