1
|
Lu Z, Morales MG, Liu S, Ramkumar HL. The Endogenous Expression of BMI1 in Adult Human Eyes. Cells 2024; 13:1672. [PMID: 39404434 PMCID: PMC11475477 DOI: 10.3390/cells13191672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BMI1, also known as B lymphoma Mo-MLV insertion region 1, is a protein in the Polycomb group that is implicated in various cellular processes, including stem cell self-renewal and the regulation of cellular senescence. BMI1 plays a role in the regulation of retinal progenitor cells and the renewal of adult neuronal cells. However, the presence, location, and quantification of BMI1 in the adult human eye have never previously been reported. In this study, we collected 45 frozen globes from eye banks, and ocular tissues were dissected. Protein was quantified by utilizing a custom electrochemiluminescence (ECL) assay developed to quantify the BMI1 protein. BMI1 was found in all ocular tissues at the following levels: the retina (1483.6 ± 191.7 pg/mL) and the RPE (296.4 ± 78.1 pg/mL). BMI1 expression was noted ubiquitously in the GCL (ganglion cell layer), the INL (inner nuclear layer), the ONL (outer nuclear layer), and the RPE (retinal pigment epithelium) via immunofluorescence, with higher levels in the inner than in the outer retinal layers and the RPE. These data confirm that BMI1 is expressed in the human retina. Further studies will illuminate the role that BMI1 plays in ocular cells. BMI1 levels are lower in aged retinas, possibly reflecting changes in retinal somatic and stem cell maintenance and disease susceptibility.
Collapse
|
2
|
Völkner M, Wagner F, Kurth T, Sykes AM, Del Toro Runzer C, Ebner LJA, Kavak C, Alexaki VI, Cimalla P, Mehner M, Koch E, Karl MO. Modeling inducible neuropathologies of the retina with differential phenotypes in organoids. Front Cell Neurosci 2023; 17:1106287. [PMID: 37213216 PMCID: PMC10196395 DOI: 10.3389/fncel.2023.1106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.
Collapse
Affiliation(s)
- Manuela Völkner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Felix Wagner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform Core Facility Electron Microscopy and Histology, Dresden, Germany
| | - Alex M. Sykes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Lynn J. A. Ebner
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Vasileia Ismini Alexaki
- Technische Universität Dresden, Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Dresden, Germany
| | - Peter Cimalla
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mirko Mehner
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Edmund Koch
- Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Dresden, Germany
| | - Mike O. Karl
- Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- *Correspondence: Mike O. Karl, ,
| |
Collapse
|
3
|
A Potential Role of Cyclic Dependent Kinase 1 (CDK1) in Late Stage of Retinal Degeneration. Cells 2022; 11:cells11142143. [PMID: 35883586 PMCID: PMC9317054 DOI: 10.3390/cells11142143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
Cyclin dependent kinase 1 (CDK1) has long been known to drive the cell cycle and to regulate the division and differentiation of cells. Apart from its role in mitosis regulation, it also exerts multiple functions as a protein kinase, including engagement in cell death, possibly via a cell cycle-independent mechanism. The latter is suggested, since CDK1 re-expression can be found in non-dividing and terminally differentiated neurons in several neurodegeneration models. However, the details of if and how CDK1 might be involved in the neurodegenerative condition, retinitis pigmentosa (RP), which displays progressive vision loss, are unclear. In the present study, we investigated CDK1 in degenerating RP photoreceptors of the rd1 RP model, including whether there is a link between this kinase and the cGMP-PKG system, which is regarded as a disease driver. With experiments performed using either in vivo retinal tissue or in vitro material, via organotypic retinal explants, our results showed that CDK1 appears in the photoreceptors at a late stage of their degeneration, and in such a position, it may be associated with the cGMP-PKG network.
Collapse
|
4
|
Barnstable CJ. Epigenetics and Degenerative Retinal Diseases: Prospects for New Therapeutic Approaches. Asia Pac J Ophthalmol (Phila) 2022; 11:328-334. [PMID: 36041147 DOI: 10.1097/apo.0000000000000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
ABSTRACT There is growing evidence that retinal degenerative diseases are accompanied by epigenetic changes in both deoxyribonucleic acid methylation and histone modification. Even in the monogenic disease retinitis pigmentosa, there is a cascade of changes in gene expression that correlate with epigenetic changes, suggesting that many of the symptoms, and degenerative changes, may be a result of epigenetic changes downstream from the genetic mutation. This is supported by data from studies of diabetic retinopathy and macular degeneration, 2 diseases where it has been difficult to define a single causative change. Initial studies with modifiers of deoxyribonucleic acid methylation suggest that they can provide therapeutic benefit. A number of drugs are available to inhibit specific epigenetic histone modifier enzymes, and these offer the possibility of new therapeutic approaches to retinal disease. Systemic treatment with inhibitors of histone demethylases and histone deacetylases have arrested rod degeneration in rodent models of retinitis pigmentosa. Some evidence has suggested that similar treatments may provide benefits for patients with diabetic retinopathy. Because differentiation of retinal stem cells is regulated in part by epigenetic mechanisms, it may also be possible to direct stem cell differentiation pathways through the use of selective epigenetic modifiers. This is predicted to provide a valuable avenue to accelerate the introduction of regenerative approaches to retinal disease. Epigenetic modifiers are poised to become a powerful new approach to treat retinal degenerative diseases.
Collapse
Affiliation(s)
- Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, PA, US
| |
Collapse
|
5
|
Mbefo M, Berger A, Schouwey K, Gérard X, Kostic C, Beryozkin A, Sharon D, Dolfuss H, Munier F, Tran HV, van Lohuizen M, Beltran WA, Arsenijevic Y. Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy. Int J Mol Sci 2021; 22:ijms22179331. [PMID: 34502238 PMCID: PMC8430630 DOI: 10.3390/ijms22179331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.
Collapse
Affiliation(s)
- Martial Mbefo
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Adeline Berger
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Karine Schouwey
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Xavier Gérard
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Corinne Kostic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
| | - Avigail Beryozkin
- Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem 91120, Israel; (A.B.); (D.S.)
| | - Dror Sharon
- Hadassah Medical Center, Faculty of Medicine, The Hebrew University Jerusalem, Jerusalem 91120, Israel; (A.B.); (D.S.)
| | - Hélène Dolfuss
- UMR_S 1112, Laboratoire de Génétique Médicales, University of Strasbourg, CEDEX, 67084 Strasbourg, France;
| | - Francis Munier
- Unit of Oculogenetics, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (F.M.); (H.V.T.)
| | - Hoai Viet Tran
- Unit of Oculogenetics, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (F.M.); (H.V.T.)
| | | | - William A. Beltran
- Division of Experimental Retinal Therapies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (M.M.); (A.B.); (K.S.); (X.G.); (C.K.)
- Correspondence:
| |
Collapse
|
6
|
Lv Z, Xiao L, Tang Y, Chen Y, Chen D. Rb deficiency induces p21cip1 expression and delays retinal degeneration in rd1 mice. Exp Eye Res 2021; 210:108701. [PMID: 34252413 DOI: 10.1016/j.exer.2021.108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
Retinitis pigmentosa (RP) is a major cause of inherited blindness, and there is presently no cure for RP. Rd1 mouse is the most commonly used RP animal model. Re-expression of cell cycle proteins in post-mitotic neurons is considered an important mechanism of neurodegenerative diseases, including RP. The retinoblastoma tumor suppressor (Rb) is a major regulator of cell cycle progression, yet its role in rd1 mouse retina and related signaling pathways have never been analyzed. By crossing α-Cre, Rbf/f mice with rd1 mice, p21cip1-/- mice, Cdk1f/f mice and Cdk2f/f mice, we established multiple rd1 mouse models with deletions of Rb gene, Cdkn1a (p21cip1) gene, Cdk1 and Cdk2 gene in the retina. Cdk inhibitor CR8 was injected into the vitreous of rd1 mouse to investigate its effects on photoreceptor survival. Rb gene knockout (KO) induces cell death in excitatory retinal neurons (rods, rod bipolar and ganglions) and ectopic proliferation of retinal cells; but it paradoxically delays the rod death of rd1 mice, which is primarily mediated by the Cdk inhibitor Cdkn1a (p21cip1). Interestingly, p21cip1 protects the ectopic dividing rd1 rod cells by inhibiting Cdk1 and Cdk2. However, inhibiting Cdk1 and Cdk2 in rd1 mice with non-dividing rods only has limited and transient protective effects. Our data suggest that there is no ectopic division of rd1 rod cells, and RbKO induces ectopic division but delays the death of rd1 rod cells. This reveals the important protective role of Rb-p21cip1-Cdk axis in rd1 rod cells. P21cip1 is a potential target for future therapy of RP.
Collapse
Affiliation(s)
- Zhongping Lv
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lirong Xiao
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Inhibition of Epigenetic Modifiers LSD1 and HDAC1 Blocks Rod Photoreceptor Death in Mouse Models of Retinitis Pigmentosa. J Neurosci 2021; 41:6775-6792. [PMID: 34193554 DOI: 10.1523/jneurosci.3102-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Epigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes. The histone modification eraser enzymes lysine demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) are known to have dramatic effects on the development of rod photoreceptors. In the RP mouse model, inhibitors of these enzymes blocked rod degeneration, preserved vision, and affected the expression of multiple genes including maintenance of rod-specific transcripts and downregulation of those involved in inflammation, gliosis, and cell death. The neuroprotective activity of LSD1 inhibitors includes two pathways. First, through targeting histone modifications, they increase accessibility of chromatin and upregulate neuroprotective genes, such as from the Wnt pathway. We propose that this process is going in rod photoreceptors. Second, through nonhistone targets, they inhibit transcription of inflammatory genes and inflammation. This process is going in microglia, and lack of inflammation keeps rod photoreceptors alive.SIGNIFICANCE STATEMENT Retinal degenerations are a leading cause of vision loss. RP is genetically very heterogeneous, and the multiple pathways leading to cell death are one reason for the slow progress in identifying suitable treatments for patients. Here we demonstrate that inhibition of LSD1and HDAC1 in a mouse model of RP leads to preservation of rod photoreceptors and visual function, retaining of expression of rod-specific genes, and with decreased inflammation, cell death, and Müller cell gliosis. We propose that these epigenetic inhibitors cause more open and accessible chromatin, allowing expression of neuroprotective genes. A second mechanism that allows rod photoreceptor survival is suppression of inflammation by epigenetic inhibitors in microglia. Manipulation of epigenetic modifiers is a new strategy to fight neurodegeneration in RP.
Collapse
|
8
|
Völkner M, Kurth T, Schor J, Ebner LJA, Bardtke L, Kavak C, Hackermüller J, Karl MO. Mouse Retinal Organoid Growth and Maintenance in Longer-Term Culture. Front Cell Dev Biol 2021; 9:645704. [PMID: 33996806 PMCID: PMC8114082 DOI: 10.3389/fcell.2021.645704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Using retinal organoid systems, organ-like 3D tissues, relies implicitly on their robustness. However, essential key parameters, particularly retinal growth and longer-term culture, are still insufficiently defined. Here, we hypothesize that a previously optimized protocol for high yield of evenly-sized mouse retinal organoids with low variability facilitates assessment of such parameters. We demonstrate that these organoids reliably complete retinogenesis, and can be maintained at least up to 60 days in culture. During this time, the organoids continue to mature on a molecular and (ultra)structural level: They develop photoreceptor outer segments and synapses, transiently maintain its cell composition for about 5-10 days after completing retinogenesis, and subsequently develop pathologic changes - mainly of the inner but also outer retina and reactive gliosis. To test whether this organoid system provides experimental access to the retina during and upon completion of development, we defined and stimulated organoid growth by activating sonic hedgehog signaling, which in patients and mice in vivo with a congenital defect leads to enlarged eyes. Here, a sonic hedgehog signaling activator increased retinal epithelia length in the organoid system when applied during but not after completion of development. This experimentally supports organoid maturation, stability, and experimental reproducibility in this organoid system, and provides a potential enlarged retina pathology model, as well as a protocol for producing larger organoids. Together, our study advances the understanding of retinal growth, maturation, and maintenance, and further optimizes the organoid system for future utilization.
Collapse
Affiliation(s)
- Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Jana Schor
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lynn J A Ebner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lara Bardtke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mike O Karl
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Huang J, Xian B, Peng Y, Zeng B, Li W, Li Z, Xie Y, Zhao M, Zhang H, Zhou M, Yu H, Wu P, Liu X, Huang B. Migration of pre-induced human peripheral blood mononuclear cells from the transplanted to contralateral eye in mice. Stem Cell Res Ther 2021; 12:168. [PMID: 33691753 PMCID: PMC7945672 DOI: 10.1186/s13287-021-02180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Retina diseases may lead to blindness as they often afflict both eyes. Stem cell transplantation into the affected eye(s) is a promising therapeutic strategy for certain retinal diseases. Human peripheral blood mononuclear cells (hPBMCs) are a good source of stem cells, but it is unclear whether pre-induced hPBMCs can migrate from the injected eye to the contralateral eye for bilateral treatment. We examine the possibility of bilateral cell transplantation from unilateral cell injection. Methods One hundred and sixty-one 3-month-old retinal degeneration 1 (rd1) mice were divided randomly into 3 groups: an untreated group (n = 45), a control group receiving serum-free Dulbecco’s modified Eagle’s medium (DMEM) injection into the right subretina (n = 45), and a treatment group receiving injection of pre-induced hPBMCs into the right subretina (n = 71). Both eyes were examined by full-field electroretinogram (ERG), immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) at 1 and 3 months post-injection. Results At both 1 and 3 months post-injection, labeled pre-induced hPBMCs were observed in the retinal inner nuclear layer of the contralateral (left untreated) eye as well as the treated eye as evidenced by immunofluorescence staining for a human antigen. Flow cytometry of fluorescently label cells and qRT-PCR of hPBMCs genes confirmed that transplanted hPBMCs migrated from the treated to the contralateral untreated eye and remained viable for up to 3 months. Further, full-field ERG showed clear light-evoked a and b waves in both treated and untreated eyes at 3 months post-transplantation. Labeled pre-induced hPBMCs were also observed in the contralateral optic nerve but not in the blood circulation, suggesting migration via the optic chiasm. Conclusion It may be possible to treat binocular eye diseases by unilateral stem cell injection. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02180-5.
Collapse
Affiliation(s)
- Jianfa Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,The Second People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yuting Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yaojue Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minyi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Peixin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Potic J, Mbefo M, Berger A, Nicolas M, Wanner D, Kostic C, Matet A, Behar-Cohen F, Moulin A, Arsenijevic Y. An in vitro Model of Human Retinal Detachment Reveals Successive Death Pathway Activations. Front Neurosci 2020; 14:571293. [PMID: 33324144 PMCID: PMC7726250 DOI: 10.3389/fnins.2020.571293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 01/30/2023] Open
Abstract
Purpose was to create an in vitro model of human retinal detachment (RD) to study the mechanisms of photoreceptor death. Methods Human retinas were obtained through eye globe donations for research purposes and cultivated as explants. Cell death was investigated in retinas with (control) and without retinal pigment epithelium (RPE) cells to mimic RD. Tissues were studied at different time points and immunohistological analyses for TUNEL, Cleaved caspase3, AIF, CDK4 and the epigenetic mark H3K27me3 were performed. Human and monkey eye globes with retinal detachment served as controls. Results The number of TUNEL-positive cells, compared between 1 and 7 days, increased with time in both retinas with RPE (from 1.2 ± 0.46 to 8 ± 0.89, n = 4) and without RPE (from 2.6 ± 0.73 to 16.3 ± 1.27, p < 0.014). In the group without RPE, cell death peaked at day 3 (p = 0.014) and was high until day 7. Almost no Cleaved-Caspase3 signal was observed, whereas a transient augmentation at day 3 of AIF-positive cells was observed to be about 10-fold in comparison to the control group (n = 2). Few CDK4-positive cells were found in both groups, but significantly more in the RD group at day 7 (1.8 ± 0.24 vs. 4.7 ± 0.58, p = 0.014). The H3K27me3 mark increased by 7-fold after 5 days in the RD group (p = 0.014) and slightly decreased at day 7 and was also observed to be markedly increased in human and monkey detached retina samples. Conclusion AIF expression coincides with the first peak of cell death, whereas the H3K27me3 mark increases during the cell death plateau, suggesting that photoreceptor death is induced by different successive pathways after RD. This in vitro model should permit the identification of neuroprotective drugs with clinical relevance.
Collapse
Affiliation(s)
- Jelena Potic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,Clinic for Eye Diseases, Clinical Center of Serbia, Belgrade, Serbia.,Department of Ophthalmology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Martial Mbefo
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Adeline Berger
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Michael Nicolas
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Dana Wanner
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Corinne Kostic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Matet
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,Department of Ophthalmology, Institut Curie, Université de Paris, Paris, France
| | - Francine Behar-Cohen
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland.,INSERM U 1138, Centre de Recherches des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
11
|
Fairless R, Williams SK, Katiyar R, Maxeiner S, Schmitz F, Diem R. ERG Responses in Mice with Deletion of the Synaptic Ribbon Component RIBEYE. Invest Ophthalmol Vis Sci 2020; 61:37. [PMID: 32437548 PMCID: PMC7405791 DOI: 10.1167/iovs.61.5.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To determine the influence of RIBEYE deletion and the resulting absence of synaptic ribbons on retinal light signaling by electroretinography. Methods Full-field flash electroretinograms (ERGs) were recorded in RIBEYE knock-out (KO) and wild-type (WT) littermate mice under photopic and scotopic conditions, with oscillatory potentials (OPs) extracted by digital filtering. Flicker ERGs and ERGs following intravitreal injection of pharmacological agents were also obtained under scotopic conditions. Results The a-wave amplitudes were unchanged between RIBEYE KO and WT mice; however, the b-wave amplitudes were reduced in KOs under scotopic, but not photopic, conditions. Increasing stimulation frequency led to a greater reduction in RIBEYE KO b-wave amplitudes compared with WTs. Furthermore, we observed prominent, supernormal OPs in RIBEYE KO mice in comparison with WT mice. Following intravitreal injections with l-2 amino-4-phosphonobutyric acid and cis-2,3 piperidine dicarboxylic acid to block ON and OFF responses at photoreceptor synapses, OPs were completely abolished in both mice types, indicating a synaptic origin of the prominent OPs in the KOs. Conversely, tetrodotoxin treatment to block voltage-gated Na+ channels/spiking neurons did not differentially affect OPs in WT and KO mice. Conclusions The decreased scotopic b-wave and decreased responses to increased stimulation frequencies are consistent with signaling malfunctions at photoreceptor and inner retinal ribbon synapses. Because phototransduction in the photoreceptor outer segments is unaffected in the KOs, their supernormal OPs presumably result from a dysfunction in retinal synapses. The relatively mild ERG phenotype in KO mice, particularly in the photopic range, is probably caused by compensatory mechanisms in retinal signaling pathways.
Collapse
|
12
|
Hussein MNA, Cao X, Elokil AA, Huang S. Characterisation of stem and proliferating cells on the retina and lens of loach Misgurnus anguillicaudatus. JOURNAL OF FISH BIOLOGY 2020; 96:102-110. [PMID: 31674006 DOI: 10.1111/jfb.14189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
The eye of the fish has a lifelong persistent neurogenesis unlike eye of mammals, so it's highly interesting to study retinal neurogenesis and its genetic control to give complete knowledge about the cause of this property in fish in comparison to mammals. We performed fluorescent in situ hybridisation for loach Misgurnus anguillicaudatus bmi1, msi1 and sox2 genes, which are used as an indicator of the sites of multipotent stem cells. Proliferating cell nuclear antigen (PCNA), bromodeoxyuridine (BRDU) and KI67 markers were used as indicators of proliferating cells and glial fibrillary acidic protein (GFAP) immunofluorescence was used for detection of the glial property of cells, as well as, immunohistochemistry detected the role of peroxisome proliferator-activated receptor (PPAR)α and γ in retinal neurogenesis. Our results determined that the lens and the retina of loach M. anguillicaudatus contain proliferative and pluripotent stem cells that have both glial and neuroepithelial properties, which add new cells continuously throughout life even without injury-induced proliferation. The PPARα has an essential function in providing energy supply for retinal neurogenesis more than PPARγ.
Collapse
Affiliation(s)
- Mona N A Hussein
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Abdelmotaleb A Elokil
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Animal Productions Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
13
|
Martín-Guerrero SM, Casado P, Muñoz-Gámez JA, Carrasco MC, Navascués J, Cuadros MA, López-Giménez JF, Cutillas PR, Martín-Oliva D. Poly(ADP-Ribose) Polymerase-1 inhibition potentiates cell death and phosphorylation of DNA damage response proteins in oxidative stressed retinal cells. Exp Eye Res 2019; 188:107790. [DOI: 10.1016/j.exer.2019.107790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
14
|
Sancho-Pelluz J, Cui X, Lee W, Tsai YT, Wu WH, Justus S, Washington I, Hsu CW, Park KS, Koch S, Velez G, Bassuk AG, Mahajan VB, Lin CS, Tsang SH. Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a Rho D190N mutation. Cell Mol Life Sci 2019; 76:3657-3665. [PMID: 30976840 PMCID: PMC7144803 DOI: 10.1007/s00018-019-03090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Abstract
D190N, a missense mutation in rhodopsin, causes photoreceptor degeneration in patients with autosomal dominant retinitis pigmentosa (adRP). Two competing hypotheses have been developed to explain why D190N rod photoreceptors degenerate: (a) defective rhodopsin trafficking prevents proteins from correctly exiting the endoplasmic reticulum, leading to their accumulation, with deleterious effects or (b) elevated mutant rhodopsin expression and unabated signaling causes excitotoxicity. A knock-in D190N mouse model was engineered to delineate the mechanism of pathogenesis. Wild type (wt) and mutant rhodopsin appeared correctly localized in rod outer segments of D190N heterozygotes. Moreover, the rhodopsin glycosylation state in the mutants appeared similar to that in wt mice. Thus, it seems plausible that the injurious effect of the heterozygous mutation is not related to mistrafficking of the protein, but rather from constitutive rhodopsin activity and a greater propensity for chromophore isomerization even in the absence of light.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Neurobiología y Neurofisiología, Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Xuan Cui
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Tianjin Medical University Eye Hospital, The College of Optometry, Tianjin Medical University Eye Institute, Tianjin, China
| | - Winston Lee
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Yi-Ting Tsai
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Wen-Hsuan Wu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sally Justus
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Harvard Medical School, Boston, MA, USA
| | - Ilyas Washington
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Chun-Wei Hsu
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Karen Sophia Park
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
| | - Susanne Koch
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, 10032, USA.
- Edward S. Harkness Eye Institute, Columbia University Medical Center, New York Presbyterian Hospital, 635 West 165th St, Box 212, New York, NY, 10032, USA.
- Institute of Human Nutrition and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Kim HS, Vargas A, Eom YS, Li J, Yamamoto KL, Craft CM, Lee EJ. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina. PLoS One 2018; 13:e0197322. [PMID: 29742163 PMCID: PMC5942829 DOI: 10.1371/journal.pone.0197322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/29/2018] [Indexed: 01/06/2023] Open
Abstract
Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1 works in the mouse animal model of RP.
Collapse
Affiliation(s)
- Hwa Sun Kim
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Andrew Vargas
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yun Sung Eom
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Justin Li
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kyra L. Yamamoto
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Cheryl Mae Craft
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- MDA Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zheng S, Xiao L, Liu Y, Wang Y, Cheng L, Zhang J, Yan N, Chen D. DZNep inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice. Cell Death Dis 2018; 9:310. [PMID: 29472543 PMCID: PMC5833420 DOI: 10.1038/s41419-018-0349-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative diseases causing progressive loss of photoreceptors. Numerous gene mutations are identified to be related with RP, but epigenetic modifications may also be involved in the pathogenesis. Previous studies suggested that both DNA methylation and histone acetylation regulate photoreceptor cell death in RP mouse models. However, the role of histone methylation in RP has never been investigated. In this study, we found that trimethylation of several lysine sites of histone H3, including lysine 27 (H3K27me3), increased in the retinas of rd1 mice. Histone methylation inhibitor DZNep significantly reduced the calpain activity, delayed the photoreceptor loss, and improved ERG response of rd1 retina. RNA-sequencing indicated that DZNep synergistically acts on several molecular pathways that regulate photoreceptor survival in rd1 retina, including PI3K-Akt and photoreceptor differentiation pathways, revealing the therapeutic potential of DZNep for RP treatment. PI3K-Akt pathway and H3K27me3 form a feedback loop in rd1 retina, thus PI3K inhibitor LY294002 reduces phosphorylation of Ezh2 at serine 21 and enhances H3K27me3 deposition, and inhibiting H3K27me3 by DZNep can activate PI3K-Akt pathway by de-repressing gene expression of PI3K subunits Pik3r1 and Pik3r3. These findings suggest that histone methylation, especially H3K27me3 deposition is a novel mechanism and therapeutic target for retinal degenerative diseases, similar to H3K27me3-mediated ataxia-telangiectasia in Atm−/− mouse.
Collapse
Affiliation(s)
- Shijie Zheng
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yu Liu
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantations Street, Worcester, MA, 01606, USA
| | - Yujiao Wang
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lin Cheng
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital Affiliated to Jinan University, 518040, Shenzhen, China
| | - Junjun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
17
|
Wang Y, Zhou Y, Xiao L, Zheng S, Yan N, Chen D. E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants. Cell Cycle 2017; 16:1824-1834. [PMID: 28825879 DOI: 10.1080/15384101.2017.1361070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1-/- mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl2) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.
Collapse
Affiliation(s)
- Yujiao Wang
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Yi Zhou
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Lirong Xiao
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Shijie Zheng
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Naihong Yan
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| | - Danian Chen
- a Department of Ophthalmology, Research Laboratory of Ophthalmology and Vision Sciences , Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , China
| |
Collapse
|
18
|
Zhu ZH, Fu Y, Weng CH, Zhao CJ, Yin ZQ. Proteomic profiling of early degenerative retina of RCS rats. Int J Ophthalmol 2017; 10:878-889. [PMID: 28730077 DOI: 10.18240/ijo.2017.06.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/06/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To identify the underlying cellular and molecular changes in retinitis pigmentosa (RP). METHODS Label-free quantification-based proteomics analysis, with its advantages of being more economic and consisting of simpler procedures, has been used with increasing frequency in modern biological research. Dystrophic RCS rats, the first laboratory animal model for the study of RP, possess a similar pathological course as human beings with the diseases. Thus, we employed a comparative proteomics analysis approach for in-depth proteome profiling of retinas from dystrophic RCS rats and non-dystrophic congenic controls through Linear Trap Quadrupole - orbitrap MS/MS, to identify the significant differentially expressed proteins (DEPs). Bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation and upstream regulatory analysis, were then performed on these retina proteins. Finally, a Western blotting experiment was carried out to verify the difference in the abundance of transcript factor E2F1. RESULTS In this study, we identified a total of 2375 protein groups from the retinal protein samples of RCS rats and non-dystrophic congenic controls. Four hundred thirty-four significantly DEPs were selected by Student's t-test. Based on the results of the bioinformatics analysis, we identified mitochondrial dysfunction and transcription factor E2F1 as the key initiation factors in early retinal degenerative process. CONCLUSION We showed that the mitochondrial dysfunction and the transcription factor E2F1 substantially contribute to the disease etiology of RP. The results provide a new potential therapeutic approach for this retinal degenerative disease.
Collapse
Affiliation(s)
- Zhi-Hong Zhu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yan Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Chuan-Huang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Cong-Jian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
19
|
Gardiner KL, Downs L, Berta-Antalics AI, Santana E, Aguirre GD, Genini S. Photoreceptor proliferation and dysregulation of cell cycle genes in early onset inherited retinal degenerations. BMC Genomics 2016; 17:221. [PMID: 26969498 PMCID: PMC4788844 DOI: 10.1186/s12864-016-2477-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mitotic terminally differentiated photoreceptors (PRs) are observed in early retinal degeneration (erd), an inherited canine retinal disease driven by mutations in the NDR kinase STK38L (NDR2). Results We demonstrate that a similar proliferative response, but of lower magnitude, occurs in two other early onset disease models, X-linked progressive retinal atrophy 2 (xlpra2) and rod cone dysplasia 1 (rcd1). Proliferating cells are rod PRs, and not microglia or Müller cells. Expression of the cell cycle related genes RB1 and E2F1 as well as CDK2,4,6 was up-regulated, but changes were mutation-specific. Changes in cyclin expression differed across all genes, diseases and time points analyzed, although CCNA1 and CCNE1 expression increased with age in the three models suggesting that there is a dysregulation of cell cycle gene expression in all three diseases. Unique to erd, however, are mutation-specific changes in the expression of NDR kinases and Hippo signaling members with increased expression of MOB1 and LATS1 in the newly generated hybrid rod/S-cones. Conclusions Our data raise the intriguing possibility that terminally differentiated normal PRs are kept from dividing by NDR2-MOB1 interaction. Furthermore, they provide the framework for the selection of candidate genes for further investigation as potential targets of therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2477-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin L Gardiner
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Louise Downs
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Agnes I Berta-Antalics
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA.,Augenklinik Uniklinik Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Evelyn Santana
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA
| | - Sem Genini
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Barabino A, Plamondon V, Abdouh M, Chatoo W, Flamier A, Hanna R, Zhou S, Motoyama N, Hébert M, Lavoie J, Bernier G. Loss of Bmi1 causes anomalies in retinal development and degeneration of cone photoreceptors. Development 2016; 143:1571-84. [PMID: 26965367 DOI: 10.1242/dev.125351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
Abstract
Retinal development occurs through the sequential but overlapping generation of six types of neuronal cells and one glial cell type. Of these, rod and cone photoreceptors represent the functional unit of light detection and phototransduction and are frequently affected in retinal degenerative diseases. During mouse development, the Polycomb group protein Bmi1 is expressed in immature retinal progenitors and differentiated retinal neurons, including cones. We show here that Bmi1 is required to prevent post natal degeneration of cone photoreceptors and bipolar neurons and that inactivation of Chk2 or p53 could improve but not overcome cone degeneration in Bmi1(-/-) mice. The retinal phenotype of Bmi1(-/-) mice was also characterized by loss of heterochromatin, activation of tandem repeats, oxidative stress and Rip3-associated necroptosis. In the human retina, BMI1 was preferentially expressed in cones at heterochromatic foci. BMI1 inactivation in human embryonic stem cells was compatible with retinal induction but impaired cone terminal differentiation. Despite this developmental arrest, BMI1-deficient cones recapitulated several anomalies observed in Bmi1(-/-) photoreceptors, such as loss of heterochromatin, activation of tandem repeats and induction of p53, revealing partly conserved biological functions between mouse and man.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Vicky Plamondon
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Mohamed Abdouh
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Wassim Chatoo
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Shufeng Zhou
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4
| | - Noboru Motoyama
- Department of Cognitive Brain Science, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | - Marc Hébert
- Department of Ophthalmology, Otorhinolaryngology and Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Laval, Canada G1V 0A6
| | - Joëlle Lavoie
- Department of Ophthalmology, Otorhinolaryngology and Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Laval, Canada G1V 0A6
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal, Canada H1T 2M4 Department of Neurosciences, Université de Montréal, Montréal, Canada H3T 1J4 Department of Ophthalmology, Université de Montréal, Montréal, Canada H3T 1J4
| |
Collapse
|
21
|
Arsenijevic Y. Cell Cycle Proteins and Retinal Degeneration: Evidences of New Potential Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:371-7. [DOI: 10.1007/978-3-319-17121-0_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat Commun 2015; 6:8005. [PMID: 26272629 PMCID: PMC4538705 DOI: 10.1038/ncomms9005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deacetylase 4 (HDAC4) prolongs rod survival in rd1 mice. Here we report a key role of a short N-terminal domain of HDAC4 in photoreceptor protection. Expression of this domain suppresses multiple cell death pathways in photoreceptor degeneration, and preserves even more rd1 rods than the full-length HDAC4 protein. Expression of a short N-terminal domain of HDAC4 as a transgene in mice carrying the rd1 mutation also prolongs the survival of cone photoreceptors, and partially restores visual function. Our results may facilitate the design of a small protein therapy for some forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- Xinzheng Guo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Shao-Bin Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Hongping Xu
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ethan J Mohns
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Yu Zhou
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Bo Chen
- 1] Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA [2] Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| |
Collapse
|
23
|
Qureshi IA, Mehler MF. Epigenetics and therapeutic targets mediating neuroprotection. Brain Res 2015; 1628:265-272. [PMID: 26236020 DOI: 10.1016/j.brainres.2015.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 11/29/2022]
Abstract
The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Center for Epigenomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
24
|
Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, Stankevicius V, Kaupinis A, Valius M. Roscovitine in cancer and other diseases. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207228 DOI: 10.3978/j.issn.2305-5839.2015.03.61] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Roscovitine [CY-202, (R)-Roscovitine, Seliciclib] is a small molecule that inhibits cyclin-dependent kinases (CDKs) through direct competition at the ATP-binding site. It is a broad-range purine inhibitor, which inhibits CDK1, CDK2, CDK5 and CDK7, but is a poor inhibitor for CDK4 and CDK6. Roscovitine is widely used as a biological tool in cell cycle, cancer, apoptosis and neurobiology studies. Moreover, it is currently evaluated as a potential drug to treat cancers, neurodegenerative diseases, inflammation, viral infections, polycystic kidney disease and glomerulonephritis. This review focuses on the use of roscovitine in the disease model as well as clinical model research.
Collapse
Affiliation(s)
- Jonas Cicenas
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Karthik Kalyan
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Aleksandras Sorokinas
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Edvinas Stankunas
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Josh Levy
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Ingrida Meskinyte
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Vaidotas Stankevicius
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- 1 CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland ; 2 MAP Kinase Resource, Bern, Switzerland ; 3 Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania ; 4 Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India ; 5 Department of Biochemistry, Vilnius University, Vilnius, Lithuania ; 6 RTI International, Research Triangle Park, NC, USA ; 7 Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania ; 8 National Cancer Institute, Vilnius, Lithuania ; 9 Vilnius University, Vilnius, Lithuania
| |
Collapse
|
25
|
Farinelli P, Perera A, Arango-Gonzalez B, Trifunovic D, Wagner M, Carell T, Biel M, Zrenner E, Michalakis S, Paquet-Durand F, Ekström PAR. DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death Dis 2014; 5:e1558. [PMID: 25476906 PMCID: PMC4649831 DOI: 10.1038/cddis.2014.512] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP.
Collapse
Affiliation(s)
- P Farinelli
- 1] Division of Ophthalmology, Department of Clinical Sciences, University of Lund, BMC-B11, Lund 22184, Sweden [2] Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - A Perera
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - B Arango-Gonzalez
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - D Trifunovic
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - M Wagner
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - T Carell
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - M Biel
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - E Zrenner
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - S Michalakis
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - F Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - P A R Ekström
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, BMC-B11, Lund 22184, Sweden
| |
Collapse
|
26
|
|
27
|
Sarode B, Nowell CS, Ihm J, Kostic C, Arsenijevic Y, Moulin AP, Schorderet DF, Beermann F, Radtke F. Notch signaling in the pigmented epithelium of the anterior eye segment promotes ciliary body development at the expense of iris formation. Pigment Cell Melanoma Res 2014; 27:580-9. [DOI: 10.1111/pcmr.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/12/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Bhushan Sarode
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| | - Craig S. Nowell
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| | - JongEun Ihm
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
| | - Alexandre P. Moulin
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
| | - Daniel F. Schorderet
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Eye Pathology Laboratory; Jules-Gonin Eye Hospital; University of Lausanne; Lausanne Switzerland
- IRO - Institute for Research in Ophthalmology; Sion Switzerland
| | - Friedrich Beermann
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| | - Freddy Radtke
- School of Life Science; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC); Lausanne Switzerland
| |
Collapse
|
28
|
Genini S, Guziewicz KE, Beltran WA, Aguirre GD. Altered miRNA expression in canine retinas during normal development and in models of retinal degeneration. BMC Genomics 2014; 15:172. [PMID: 24581223 PMCID: PMC4029133 DOI: 10.1186/1471-2164-15-172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Background Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease expression and progression, we examined miRNAs expression changes in normal retinal development and in four canine models of retinal degenerative disease. Results The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks) in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature. miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by a microdeletion in RPGRORF15, and normal dogs early in development (3 wks) and at the peak of photoreceptor death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. qRT-PCR of selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, -19a, -20, -21, -29b, -146a, -155, -221) and down-regulation of pro-apoptotic (miR-122, -129) apoptomirs in the early-onset diseases and, with few exceptions, also in the prcd-mutants. Conclusions Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the development of novel miRNA-based therapies to delay the progression of the degenerative process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-172) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sem Genini
- Department of Clinical Studies-Philadelphia, Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey Street, 19104 Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
29
|
Li CM, Yan HC, Fu HL, Xu GF, Wang XQ. Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells1. J Anim Sci 2014; 92:85-94. [DOI: 10.2527/jas.2013-7048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- C.-M. Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - H.-C. Yan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - H.-L. Fu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - G.-F. Xu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - X.-Q. Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Wahlin KJ, Enke RA, Fuller JA, Kalesnykas G, Zack DJ, Merbs SL. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. PLoS One 2013; 8:e79140. [PMID: 24244436 PMCID: PMC3823652 DOI: 10.1371/journal.pone.0079140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Background Vertebrate genomes undergo epigenetic reprogramming during development and disease. Emerging evidence suggests that DNA methylation plays a key role in cell fate determination in the retina. Despite extensive studies of the programmed cell death that occurs during retinal development and degeneration, little is known about how DNA methylation might regulate neuronal cell death in the retina. Methods The developing chicken retina and the rd1 and rhodopsin-GFP mouse models of retinal degeneration were used to investigate programmed cell death during retinal development and degeneration. Changes in DNA methylation were determined by immunohistochemistry using antibodies against 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Results Punctate patterns of hypermethylation paralleled patterns of caspase3-dependent apoptotic cell death previously reported to occur during development in the chicken retina. Degenerating rd1 mouse retinas, at time points corresponding to the peak of rod cell death, showed elevated signals for 5mC and 5hmC in photoreceptors throughout the retina, with the most intense staining observed in the peripheral retina. Hypermethylation of photoreceptors in rd1 mice was associated with TUNEL and PAR staining and appeared to be cCaspase3-independent. After peak rod degeneration, during the period of cone death, occasional hypermethylation was observed in the outer nuclear layer. Conclusion The finding that cell-specific increases of 5mC and 5hmC immunostaining are associated with the death of retinal neurons during both development and degeneration suggests that changes in DNA methylation may play a role in modulating gene expression during the process of retinal degeneration. During retinal development, hypermethylation of retinal neurons associates with classical caspase-dependent apoptosis as well as caspase-3 independent cell death, while hypermethylation in the rd1 mouse photoreceptors is primarily associated with caspase-3 independent programmed cell death. These findings suggest a previously unrecognized role for epigenetic mechanisms in the onset and/or progression of programed cell death in the retina.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raymond A. Enke
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - John A. Fuller
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Giedrius Kalesnykas
- Department of Ophthalmology, Clinical Research Unit, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Donald J. Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute de la Vision, Université Pierre et Marie Curie, Paris, France
| | - Shannath L. Merbs
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|