1
|
Xu Y, Chan MTJ, Yang M, Meng H, Chen CH. Time-resolved single-cell secretion analysis via microfluidics. LAB ON A CHIP 2025. [PMID: 39789982 DOI: 10.1039/d4lc00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1. Microwell real-time electrical detection: uses microelectrodes for precise, cell-specific, real-time measurement of secreted molecules. 2. Microwell real-time optical detection: employs advanced optical systems for real-time, multiplexed monitoring of cellular secretions. 3. Microvalve real-time optical detection: dynamically analyzes secretions under controlled in situ stimuli, enabling detailed kinetic studies at the single-cell level. 4. Droplet real-time optical detection: provides superior throughput by generating droplets containing single cells and sensors for high-throughput screening. 5. Microwell time-barcoded optical detection: utilizes sequential barcoding techniques to facilitate scalable assays for tracking multiple secretions over time. 6. Microvalve time-barcoded optical detection: incorporates automated time-barcoding via micro-valves for robust and scalable analysis. 7. Microwell time-barcoded sequencing: captures and labels secretions for sequencing, enabling multidimensional analysis, though currently limited to a few time points and extended intervals. This review specifically addresses the challenges of achieving high-resolution timing measurements with short intervals while maintaining scalability for single-cell screening. Future advancements in microfluidic devices, integrating innovative barcoding technologies, advanced imaging technologies, artificial intelligence-powered decoding and analysis, and automations are anticipated to enable highly sensitive, scalable, high-throughput single-cell dynamic analysis. These developments hold great promise for deepening our understanding of biosystems by exploring single-cell timing responses on a larger scale.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Mei Tsz Jewel Chan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Ming Yang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Heixu Meng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
2
|
Abedini-Nassab R, Adibi E, Ahmadiasl S. Characterization of AI-enhanced magnetophoretic transistors operating in a tri-axial magnetic field for on-chip bioparticle sorting. Sci Rep 2024; 14:23381. [PMID: 39379453 PMCID: PMC11461615 DOI: 10.1038/s41598-024-74761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
We demonstrate two general classes of magnetophoretic transistors, called the "trap" and the "repel-and-collect" transistors, capable of switching single magnetically labeled cells and magnetic particles between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors operating in a two-dimensional in-plane rotating field, the use of a tri-axial magnetic field has the fundamental advantages of preventing particle cluster formation and better syncing of single particles with the general operating clock. We use finite element methods to investigate the energy distribution on the chip surface and to predict the particle behavior at various device geometries. We then fabricate the proposed transistors and compare the experimental results with the simulation predictions. We found that with gate electrical currents of ~ 40 mA for a transistor with proper geometry, complete switching of magnetic particles with diameters in the range of 8-15 μm is achieved. We show that the device is reliable and works well at different magnetic field strengths (50-100 Oe) and frequencies (0.05-0.5 Hz). We also employed an image processing code with a trained convolutional neural network to automate the proposed transistors for identifying and sorting particles with various sizes and magnetic susceptibilities with accuracies higher than 98%. The proposed transistors can be used in designing novel magnetophoretic circuits for important applications in biomedical microdevices and single-cell biology.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Elias Adibi
- Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| | - Sina Ahmadiasl
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
3
|
Saed B, Ramseier NT, Perera T, Anderson J, Burnett J, Gunasekara H, Burgess A, Jing H, Hu YS. Increased vesicular dynamics and nanoscale clustering of IL-2 after T cell activation. Biophys J 2024; 123:2343-2353. [PMID: 38532626 PMCID: PMC11331045 DOI: 10.1016/j.bpj.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
T cells coordinate intercellular communication through the meticulous regulation of cytokine secretion. Direct visualization of vesicular transport and intracellular distribution of cytokines provides valuable insights into the temporal and spatial mechanisms involved in regulation. Employing Jurkat E6-1 T cells and interleukin-2 (IL-2) as a model system, we investigated vesicular dynamics using single-particle tracking and the nanoscale distribution of intracellular IL-2 in fixed T cells using superresolution microscopy. Live-cell imaging revealed that in vitro activation resulted in increased vesicular dynamics. Direct stochastic optical reconstruction microscopy and 3D structured illumination microscopy revealed nanoscale clustering of IL-2. In vitro activation correlated with spatial accumulation of IL-2 nanoclusters into more pronounced and elongated clusters. These observations provide visual evidence that accelerated vesicular transport and spatial concatenation of IL-2 clusters at the nanoscale may constitute a potential mechanism for modulating cytokine release by Jurkat T cells.
Collapse
Affiliation(s)
- Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Neal T Ramseier
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Thilini Perera
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Jesse Anderson
- Department of Chemical Engineering, College of Engineering, University of Illinois Chicago, Chicago, Illinois
| | | | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Alyssa Burgess
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Shin S, Kim YJ, Yun HG, Chung H, Cho H, Choi S. 3D Amplified Single-Cell RNA and Protein Imaging Identifies Oncogenic Transcript Subtypes in B-Cell Acute Lymphoblastic Leukemia. ACS NANO 2024. [PMID: 38320154 DOI: 10.1021/acsnano.3c10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Simultaneous in situ detection of transcript and protein markers at the single-cell level is essential for gaining a better understanding of tumor heterogeneity and for predicting and monitoring treatment responses. However, the limited accessibility to advanced 3D imaging techniques has hindered their rapid implementation. Here, we present a 3D single-cell imaging technique, termed 3D digital rolling circle amplification (4DRCA), capable of the multiplexed and amplified simultaneous digital quantification of single-cell RNAs and proteins using standard fluorescence microscopy and off-the-shelf reagents. We generated spectrally distinguishable DNA amplicons from molecular markers through an integrative protocol combining single-cell RNA and protein assays and directly enumerated the amplicons by leveraging an open-source algorithm for 3D deconvolution with a custom-built automatic gating algorithm. With 4DRCA, we were able to simultaneously quantify surface protein markers and cytokine transcripts in T-lymphocytes. We also show that 4DRCA can distinguish BCR-ABL1 fusion transcript positive B-cell acute lymphoblastic leukemia cells with or without CD19 protein expression. The accessibility and extensibility of 4DRCA render it broadly applicable to other cell-based diagnostic workflows, enabling sensitive and accurate single-cell RNA and protein profiling.
Collapse
Affiliation(s)
- Suyeon Shin
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoon-Jin Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Healthcare Digital Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Omidian H, Mfoafo K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics 2023; 15:1583. [PMID: 37376032 DOI: 10.3390/pharmaceutics15061583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The utilization of nanotechnology has brought about notable advancements in the field of pediatric medicine, providing novel approaches for drug delivery, disease diagnosis, and tissue engineering. Nanotechnology involves the manipulation of materials at the nanoscale, resulting in improved drug effectiveness and decreased toxicity. Numerous nanosystems, including nanoparticles, nanocapsules, and nanotubes, have been explored for their therapeutic potential in addressing pediatric diseases such as HIV, leukemia, and neuroblastoma. Nanotechnology has also shown promise in enhancing disease diagnosis accuracy, drug availability, and overcoming the blood-brain barrier obstacle in treating medulloblastoma. It is important to acknowledge that while nanotechnology offers significant opportunities, there are inherent risks and limitations associated with the use of nanoparticles. This review provides a comprehensive summary of the existing literature on nanotechnology in pediatric medicine, highlighting its potential to revolutionize pediatric healthcare while also recognizing the challenges and limitations that need to be addressed.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Kwadwo Mfoafo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
6
|
LaBelle CA, Zhang RJ, Hunsucker SA, Armistead PM, Allbritton NL. Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation. Cytometry A 2023; 103:208-220. [PMID: 35899783 PMCID: PMC9883594 DOI: 10.1002/cyto.a.24678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/30/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets. Thus, a platform capable of measuring time-dependent CAR-T cell mediated killing and then isolating single cells for downstream assays would be invaluable in characterizing CAR-T cells. An automated microraft array platform was designed to track CD19 CAR-T cell killing of CD19+ target cells and CAR-T cell motility over time followed by CAR-T cell collection based on killing behavior. The platform demonstrated automated CAR-T cell counting with up to 98% specificity and 96% sensitivity, and single cells were isolated with 89% efficiency. On average, 2.3% of single CAR-T cells were shown to participate in serial-killing of target cells, killing a maximum of three target cells in a 6 h period. The cytotoxicity and motility of >7000 individual CAR-T cells was tracked across four microraft arrays. The automated microraft array platform measured temporal cell-mediated cytotoxicity, CAR-T cell motility, CAR-T cell death, and CAR-T cell to target cell distances, followed by the capability to sort any desired CAR-T cell. The pipeline has the potential to further our understanding of T cell-based cancer immunotherapies and improve cell-therapy products for better patient outcomes.
Collapse
Affiliation(s)
- Cody A. LaBelle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Raymond J. Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
7
|
Cedillo-Alcantar DF, Rodriguez-Moncayo R, Maravillas-Montero JL, Garcia-Cordero JL. On-Chip Analysis of Protein Secretion from Single Cells Using Microbead Biosensors. ACS Sens 2023; 8:655-664. [PMID: 36710459 DOI: 10.1021/acssensors.2c02148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The profiling of the effector functions of single immune cells─including cytokine secretion─can lead to a deeper understanding of how the immune system operates and to potential diagnostics and therapeutical applications. Here, we report a microfluidic device that pairs single cells and antibody-functionalized microbeads in hydrodynamic traps to quantitate cytokine secretion. The device contains 1008 microchambers, each with a volume of ∼500 pL, divided into six different sections individually addressed to deliver an equal number of chemical stimuli. Integrating microvalves allowed us to isolate cell/bead pairs, preventing cross-contamination with factors secreted by adjacent cells. We implemented a fluorescence sandwich immunoassay on the biosensing microbeads with a limit of detection of 9 pg/mL and were able to detect interleukin-8 (IL-8) secreted by single blood-derived human monocytes in response to different concentrations of LPS. Finally, our platform allowed us to observe a significant decrease in the number of IL-8-secreting monocytes when paracrine signaling becomes disrupted. Overall, our platform could have a variety of applications for which the analysis of cellular function heterogeneity is necessary, such as cancer research, antibody discovery, or rare cell screening.
Collapse
Affiliation(s)
- Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies for Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Monterrey 66628, Nuevo León Mexico
| | - Roberto Rodriguez-Moncayo
- Laboratory of Microtechnologies for Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Monterrey 66628, Nuevo León Mexico
| | - Jose L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies for Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Monterrey 66628, Nuevo León Mexico.,Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel 4058, Switzerland
| |
Collapse
|
8
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Banik S, Uchil A, Kalsang T, Chakrabarty S, Ali MA, Srisungsitthisunti P, Mahato KK, Surdo S, Mazumder N. The revolution of PDMS microfluidics in cellular biology. Crit Rev Biotechnol 2022; 43:465-483. [PMID: 35410564 DOI: 10.1080/07388551.2022.2034733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microfluidics is revolutionizing the way research on cellular biology has been traditionally conducted. The ability to control the cell physicochemical environment by adjusting flow conditions, while performing cellular analysis at single-cell resolution and high-throughput, has made microfluidics the ideal choice to replace traditional in vitro models. However, such a revolution only truly started with the advent of polydimethylsiloxane (PDMS) as a microfluidic structural material and soft-lithography as a rapid manufacturing technology. Indeed, before the "PDMS age," microfluidic technologies were: costly, time-consuming and, more importantly, accessible only to specialized laboratories and users. The simplicity of molding PDMS in various shapes along with its inherent properties (transparency, biocompatibility, and gas permeability) has spread the applications of innovative microfluidic devices to diverse and important biological fields and clinical studies. This review highlights how PDMS-based microfluidic systems are innovating pre-clinical biological research on cells and organs. These devices were able to cultivate different cell lines, enhance the sensitivity and diagnostic effectiveness of numerous cell-based assays by maintaining consistent chemical gradients, utilizing and detecting the smallest number of analytes while being high-throughput. This review will also assist in identifying the pitfalls in current PDMS-based microfluidic systems to facilitate breakthroughs and advancements in healthcare research.
Collapse
Affiliation(s)
- Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ashwini Uchil
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Kalsang
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pornsak Srisungsitthisunti
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Salvatore Surdo
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
10
|
Su FY, Mac QD, Sivakumar A, Kwong GA. Interfacing Biomaterials with Synthetic T Cell Immunity. Adv Healthc Mater 2021; 10:e2100157. [PMID: 33887123 PMCID: PMC8349871 DOI: 10.1002/adhm.202100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Indexed: 12/14/2022]
Abstract
The clinical success of cancer immunotherapy is providing exciting opportunities for the development of new methods to detect and treat cancer more effectively. A new generation of biomaterials is being developed to interface with molecular and cellular features of immunity and ultimately shape or control anti-tumor responses. Recent advances that are supporting the advancement of engineered T cells are focused here. This class of cancer therapy has the potential to cure disease in subsets of patients, yet there remain challenges such as the need to improve response rates and safety while lowering costs to expand their use. To provide a focused overview, recent strategies in three areas of biomaterials research are highlighted: low-cost cell manufacturing to broaden patient access, noninvasive diagnostics for predictive monitoring of immune responses, and strategies for in vivo control that enhance anti-tumor immunity. These research efforts shed light on some of the challenges associated with T cell immunotherapy and how engineered biomaterials that interface with synthetic immunity are gaining traction to solve these challenges.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Quoc D Mac
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Anirudh Sivakumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute of Bioengineering and Bioscience, Integrated Cancer Research Center, Georgia Immunoengineering Consortium, Winship Cancer Institute, Emory University, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
11
|
Zhou Y, Shao N, Bessa de Castro R, Zhang P, Ma Y, Liu X, Huang F, Wang RF, Qin L. Evaluation of Single-Cell Cytokine Secretion and Cell-Cell Interactions with a Hierarchical Loading Microwell Chip. Cell Rep 2021; 31:107574. [PMID: 32348757 PMCID: PMC7583657 DOI: 10.1016/j.celrep.2020.107574] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Comprehensive evaluation of single T cell functions such as cytokine secretion and cytolysis of target cells is greatly needed in adoptive cell therapy (ACT) but has never been fully fulfilled by current approaches. Herein, we develop a hierarchical loading microwell chip (HL-Chip) that aligns multiple cells and functionalized beads in a high-throughput microwell array with single-cell/bead precision based on size differences. We demonstrate the potential of the HL-Chip in evaluating single T cell functions by three applications: high-throughput longitudinal secretory profiling of single T cells, large-scale evaluation of cytolytic activity of single T cells, and integrated T cell-tumor cell interactions. The HL-Chip is a simple and robust technology that constructs arrays of defined cell/object combinations for multiple measurements and material retrieval.
Collapse
Affiliation(s)
- Yufu Zhou
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; The Third Xiangya Hospital, Central South University, Changsha 410008, China; Center for inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ricardo Bessa de Castro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xin Liu
- Center for inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine and Norris Comprehensive Cancer Center, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feizhou Huang
- The Third Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong-Fu Wang
- Center for inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Pediatrics, Children's Hospital of Los Angeles, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA; Department of Medicine and Norris Comprehensive Cancer Center, The Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
12
|
Bousbaine D, Ploegh HL. Antigen discovery tools for adaptive immune receptor repertoire research. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:64-70. [PMID: 33195881 PMCID: PMC7665270 DOI: 10.1016/j.coisb.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adaptive immune system has evolved to recognize with incredible precision a large diversity of molecules. Innovations in high-throughput sequencing and bioinformatics have accelerated large-scale immune repertoire analyses and given us important insights into the behavior of the adaptive immune system. However, establishing a connection between receptor sequence and its antigen-specificity remains a challenge despite its central role in determining T and B cell fate. We discuss recent large-scale antigen discovery technologies which can be combined with adaptive immune receptor repertoire (AIRR) studies. We highlight important discoveries made using repertoire analyses in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Department of Bioengineering and ChEM-H, Stanford University, Stanford CA, USA
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| |
Collapse
|
13
|
Jammes FC, Maerkl SJ. How single-cell immunology is benefiting from microfluidic technologies. MICROSYSTEMS & NANOENGINEERING 2020; 6:45. [PMID: 34567657 PMCID: PMC8433390 DOI: 10.1038/s41378-020-0140-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/25/2020] [Indexed: 05/03/2023]
Abstract
The immune system is a complex network of specialized cells that work in concert to protect against invading pathogens and tissue damage. Imbalances in this network often result in excessive or absent immune responses leading to allergies, autoimmune diseases, and cancer. Many of the mechanisms and their regulation remain poorly understood. Immune cells are highly diverse, and an immune response is the result of a large number of molecular and cellular interactions both in time and space. Conventional bulk methods are often prone to miss important details by returning population-averaged results. There is a need in immunology to measure single cells and to study the dynamic interplay of immune cells with their environment. Advances in the fields of microsystems and microengineering gave rise to the field of microfluidics and its application to biology. Microfluidic systems enable the precise control of small volumes in the femto- to nanoliter range. By controlling device geometries, surface chemistry, and flow behavior, microfluidics can create a precisely defined microenvironment for single-cell studies with spatio-temporal control. These features are highly desirable for single-cell analysis and have made microfluidic devices useful tools for studying complex immune systems. In addition, microfluidic devices can achieve high-throughput measurements, enabling in-depth studies of complex systems. Microfluidics has been used in a large panel of biological applications, ranging from single-cell genomics, cell signaling and dynamics to cell-cell interaction and cell migration studies. In this review, we give an overview of state-of-the-art microfluidic techniques, their application to single-cell immunology, their advantages and drawbacks, and provide an outlook for the future of single-cell technologies in research and medicine.
Collapse
Affiliation(s)
- Fabien C. Jammes
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Abstract
T cells respond to threats in an antigen-specific manner using T cell receptors (TCRs) that recognize short peptide antigens presented on major histocompatibility complex (MHC) proteins. The TCR-peptide-MHC interaction mediated between a T cell and its target cell dictates its function and thereby influences its role in disease. A lack of approaches for antigen discovery has limited the fundamental understanding of the antigenic landscape of the overall T cell response. Recent advances in high-throughput sequencing, mass cytometry, microfluidics and computational biology have led to a surge in approaches to address the challenge of T cell antigen discovery. Here, we summarize the scope of this challenge, discuss in depth the recent exciting work and highlight the outstanding questions and remaining technical hurdles in this field.
Collapse
|
15
|
Yang L, George J, Wang J. Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies. Proteomics 2020; 20:e1900226. [PMID: 31729152 PMCID: PMC7225074 DOI: 10.1002/pmic.201900226] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The ability to comprehensively profile cellular heterogeneity in functional proteome is crucial in advancing the understanding of cell behavior, organism development, and disease mechanisms. Conventional bulk measurement by averaging the biological responses across a population often loses the information of cellular variations. Single-cell proteomic technologies are becoming increasingly important to understand and discern cellular heterogeneity. The well-established methods for single-cell protein analysis based on flow cytometry and fluorescence microscopy are limited by the low multiplexing ability owing to the spectra overlap of fluorophores for labeling antibodies. Recent advances in mass spectrometry (MS), microchip, and reiterative staining-based techniques for single-cell proteomics have enabled the evaluation of cellular heterogeneity with high throughput, increased multiplexity, and improved sensitivity. In this review, the principles, developments, advantages, and limitations of these advanced technologies in analysis of single-cell proteins, along with their biological applications to study cellular heterogeneity, are described. At last, the remaining challenges, possible strategies, and future opportunities that will facilitate the improvement and broad applications of single-cell proteomic technologies in cell biology and medical research are discussed.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Justin George
- Department of Chemistry, State University of New York, University at Albany, Albany, NY 12222
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
16
|
Liu L, Chen D, Wang J, Chen J. Advances of Single-Cell Protein Analysis. Cells 2020; 9:E1271. [PMID: 32443882 PMCID: PMC7290353 DOI: 10.3390/cells9051271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Proteins play a significant role in the key activities of cells. Single-cell protein analysis provides crucial insights in studying cellular heterogeneities. However, the low abundance and enormous complexity of the proteome posit challenges in analyzing protein expressions at the single-cell level. This review summarizes recent advances of various approaches to single-cell protein analysis. We begin by discussing conventional characterization approaches, including fluorescence flow cytometry, mass cytometry, enzyme-linked immunospot assay, and capillary electrophoresis. We then detail the landmark advances of microfluidic approaches for analyzing single-cell protein expressions, including microfluidic fluorescent flow cytometry, droplet-based microfluidics, microwell-based assay (microengraving), microchamber-based assay (barcoding microchips), and single-cell Western blotting, among which the advantages and limitations are compared. Looking forward, we discuss future research opportunities and challenges for multiplexity, analyte, throughput, and sensitivity of the microfluidic approaches, which we believe will prompt the research of single-cell proteins such as the molecular mechanism of cell biology, as well as the clinical applications for tumor treatment and drug development.
Collapse
Affiliation(s)
- Lixing Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (L.L.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Liu L, Yang H, Men D, Wang M, Gao X, Zhang T, Chen D, Xue C, Wang Y, Wang J, Chen J. Development of microfluidic platform capable of high-throughput absolute quantification of single-cell multiple intracellular proteins from tumor cell lines and patient tumor samples. Biosens Bioelectron 2020; 155:112097. [PMID: 32090869 DOI: 10.1016/j.bios.2020.112097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Quantification of single-cell proteins plays key roles in cell heterogeneity while due to technical limitations absolute numbers of multiple intracellular proteins from large populations of single cells were still missing, leading to compromised results in cell-type classifications. This paper presents a microfluidic platform capable of high-throughput absolute quantification of single-cell multiple types of intracellular proteins where cells stained with fluorescent labelled antibodies are aspirated into the constriction microchannels with excited fluorescent signals detected and translated into numbers of binding sites of targeted proteins based on calibration curves formed by flushing gradient solutions of fluorescent labelled antibodies directly into constriction microchannels. Based on this approach, single-cell numbers of binding sites of β-actin, α-tubulin and β-tubulin from tens of thousands of five representative tumor cell lines were first quantified, reporting cell-type classification rates of 83.0 ± 7.1%. Then single-cell numbers of binding sites of β-actin, biotin and RhoA from thousands of five tumor cell lines with varieties in malignant levels were quantified, reporting cell-type classification rates of 93.7 ± 2.8%. Furthermore, single-cell numbers of binding sites of Ras, c-Myc and p53 from thousands of cells derived from two oral tumor lines of CAL 27, WSU-HN6 and two oral tumor patient samples were quantified, contributing to high classifications of both tumor cell lines (98.6%) and tumor patient samples (83.4%). In conclusion, the developed microfluidic platform was capable of quantifying multiple intracellular proteins from large populations of single cells, and the collected data of protein expressions enabled effective cell-type classifications.
Collapse
Affiliation(s)
- Lixing Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Meng Wang
- Peking University School of Stomatology, Beijing, China
| | - Xiaolei Gao
- Peking University School of Stomatology, Beijing, China
| | - Ting Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chunlai Xue
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Yixiang Wang
- Peking University School of Stomatology, Beijing, China.
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Abstract
The existence of cellular heterogeneity and its central relevance to biological phenomena provides a strong rationale for a need for analytical methods that enable analysis at the single-cell level. Analysis of the genome and transcriptome is possible at the single-cell level, but the comprehensive interrogation of the proteome with this level of resolution remains challenging. Single-cell protein analysis tools are advancing rapidly, however, and providing insights into collections of proteins with great relevance to cell and disease biology. Here, we review single-cell protein analysis technologies and assess their advantages and limitations. The emerging technologies presented have the potential to reveal new insights into tumour heterogeneity and therapeutic resistance, elucidate mechanisms of immune response and immunotherapy, and accelerate drug discovery.
Collapse
|
19
|
Liu M, Jin M, Li L, Ji Y, Zhu F, Luo Y, Liu T, Lin B, Lu Y. PDMS Microwell Stencil Based Multiplexed Single‐Cell Secretion Analysis. Proteomics 2020; 20:e1900231. [DOI: 10.1002/pmic.201900231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/13/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Meimei Liu
- Department of Materials Science and EngineeringDalian Maritime University Dalian 116026 China
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Meihua Jin
- Department of Materials Science and EngineeringDalian Maritime University Dalian 116026 China
| | - Linmei Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yahui Ji
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Fengjiao Zhu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yong Luo
- State Key Laboratory of Fine ChemicalsDepartment of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tingjiao Liu
- College of StomatologyDalian Medical University Dalian 116044 China
| | - Bingcheng Lin
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| | - Yao Lu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
20
|
Lagerman CE, López Acevedo SN, Fahad AS, Hailemariam AT, Madan B, DeKosky BJ. Ultrasonically-guided flow focusing generates precise emulsion droplets for high-throughput single cell analyses. J Biosci Bioeng 2019; 128:226-233. [PMID: 30904454 PMCID: PMC6688500 DOI: 10.1016/j.jbiosc.2019.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
Emulsion-based techniques have dramatically advanced our understanding of single-cell biology and complex single-cell features over the past two decades. Most approaches for precise single cell isolation rely on microfluidics, which has proven highly effective but requires substantial investment in equipment and expertise that can be difficult to access for researchers that specialize in other areas of bioengineering and molecular biotechnology. Inspired by the robust droplet generation technologies in modern flow cytometry instrumentation, here we established a new platform for high-throughput isolation of single cells within droplets of tunable sizes by combining flow focusing with ultrasonic vibration for rapid and effective droplet formation. Application of ultrasonic pressure waves to the flowing jet provided enhanced control of emulsion droplet size, permitting capture of 25,000 to 50,000 single cells per minute. As an example application, we applied this new droplet generation platform to sequence the antibody variable region heavy and light chain pairings (VH:VL) from large repertoires of single B cells. We demonstrated the recovery of > 40,000 paired CDRH3:CDRL3 antibody clusters from a single individual, validating that these droplet systems can enable the genetic analysis of very large single-cell populations. These accessible new technologies will allow rapid, large-scale, and precise single-cell analyses for a broad range of bioengineering and molecular biotechnology applications.
Collapse
Affiliation(s)
- Colton E Lagerman
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA
| | - Sheila N López Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Amen T Hailemariam
- Department of Biochemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA
| | - Brandon J DeKosky
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66044, USA; Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66044, USA; Kansas Vaccine Institute, The University of Kansas, Lawrence, KS 66044, USA.
| |
Collapse
|
21
|
Chen Z, Chen JJ, Fan R. Single-Cell Protein Secretion Detection and Profiling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:431-449. [PMID: 30978293 DOI: 10.1146/annurev-anchem-061318-115055] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Secreted proteins play important roles in mediating various biological processes such as cell-cell communication, differentiation, migration, and homeostasis at the population or tissue level. Here, we review bioanalytical technologies and devices for detecting protein secretions from single cells. We begin by discussing conventional approaches followed by detailing the latest advances in microengineered systems for detecting single-cell protein secretions with an emphasis on multiplex measurement. These platforms include droplet microfluidics, micro-/nanowell-based assays, and microchamber-based assays, among which the advantages and limitations are compared. Microscale systems also enable the tracking of protein secretion dynamics in single cells, further empowering the study of the cell-cell communication network. Looking forward, we discuss the remaining challenges and future opportunities that will transform basic research of cellular secretion functions at the systems level and the clinical applications for immune monitoring and cancer treatment.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Jonathan J Chen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
- Yale Cancer Center, Yale Stem Cell Center, Human and Translational Immunology Program, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
22
|
Chen Z, Lu Y, Zhang K, Xiao Y, Lu J, Fan R. Multiplexed, Sequential Secretion Analysis of the Same Single Cells Reveals Distinct Effector Response Dynamics Dependent on the Initial Basal State. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801361. [PMID: 31065513 PMCID: PMC6498135 DOI: 10.1002/advs.201801361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/03/2019] [Indexed: 05/10/2023]
Abstract
The effector response of immune cells dictated by an array of secreted proteins is a highly dynamic process, requiring sequential measurement of all relevant proteins from single cells. Herein, a microchip-based, 10-plexed, sequential secretion assay on the same single cells and at the scale of ≈5000 single cells measured simultaneously over 4 time points are shown. It is applied to investigating the time course of single human macrophage response to toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) and reveals four distinct activation modes for different proteins in single cells. Protein secretion dynamics classifies the cells into two major activation states dependent on the basal state of each cell. Single-cell RNA sequencing performed on the same samples at the matched time points further demonstrates the existence of two major activation states at the transcriptional level, which are enriched for translation versus inflammatory programs, respectively. These results show a cell-intrinsic heterogeneous response in a phenotypically homogeneous cell population. This work demonstrates the longitudinal tracking of protein secretion signature in thousands of single cells at multiple time points, providing dynamic information to better understand how individual immune cells react to pathogenic challenges over time and how they together constitute a population response.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Yao Lu
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Kerou Zhang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Yang Xiao
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Jun Lu
- Department of GeneticsYale School of MedicineNew HavenCT06520USA
- Yale Stem Cell CenterNew HavenCT06520USA
| | - Rong Fan
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
- Department of GeneticsYale School of MedicineNew HavenCT06520USA
- Yale Stem Cell CenterNew HavenCT06520USA
- Yale Cancer CenterNew HavenCT06520USA
| |
Collapse
|
23
|
Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. LAB ON A CHIP 2018; 18:3733-3749. [PMID: 30397689 PMCID: PMC6279597 DOI: 10.1039/c8lc00818c] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adoptive T cell transfer, in particular TCR T cell therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, finding the right TCR T cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest. Here, we use droplet microfluidics for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells. Notably, our platform includes a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. Our TCR screening prototype will facilitate immunotherapeutic screening and development of T cell therapies.
Collapse
MESH Headings
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Equipment Design
- Humans
- Immunotherapy, Adoptive
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Aude I. Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Ci Ren
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Xiaoming Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Jessica K. Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Guikai Wu
- Amberstone Biosciences LLC, Irvine, CA 92617, U.S.A
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| |
Collapse
|
24
|
Permar S, Levy O, Kollman TR, Singh A, De Paris K. Early Life HIV-1 Immunization: Providing a Window for Protection Before Sexual Debut. AIDS Res Hum Retroviruses 2018; 34:823-827. [PMID: 29860868 DOI: 10.1089/aid.2018.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Limited success of current HIV-1 vaccines warrants new approaches. We discuss feasibility and potential benefits of early life HIV-1 immunization followed by vaccine boosts during childhood that may enable maturation of vaccine-induced broad anti-HIV-1 immunity over several years. By initiating this immunization approach in the very young, well before sexual debut, such a strategy may dramatically reduce the risk of HIV-1 infection.
Collapse
Affiliation(s)
- Sallie Permar
- Department of Pediatrics, Duke University Medical School, Durham, North Carolina
- Human Vaccine Institute, Duke University Medical School, Durham, North Carolina
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard University, Boston, Massachusetts
| | - Tobias R. Kollman
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Anjali Singh
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Li X, Fan B, Liu L, Chen D, Cao S, Men D, Wang J, Chen J. A Microfluidic Fluorescent Flow Cytometry Capable of Quantifying Cell Sizes and Numbers of Specific Cytosolic Proteins. Sci Rep 2018; 8:14229. [PMID: 30242168 PMCID: PMC6155059 DOI: 10.1038/s41598-018-32333-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022] Open
Abstract
This study presents a microfluidics based cytometry capable of characterizing cell sizes and counting numbers of specific cytosolic proteins where cells were first bound by antibodies labelled with fluorescence and then aspirated into a constriction microchannel in which fluorescent levels were measured. These raw fluorescent pulses were further divided into a rising domain, a stable domain and a declining domain. In addition, antibody solutions with labelled fluorescence were aspirated through the constriction microchannel, yielding curves to translate raw fluorescent levels to protein concentrations. By using key parameters of three domains as well as the calibration curves, cell diameters and the absolute number of β-actins at the single-cell level were quantified as 14.2 ± 1.7 μm and 9.62 ± 4.29 × 105 (A549, ncell = 14 242), 13.0 ± 2.0 μm and 6.46 ± 3.34 × 105 (Hep G2, ncell = 35 932), 13.8 ± 1.9 μm and 1.58 ± 0.90 × 106 (MCF 10 A, ncell = 16 650), and 12.7 ± 1.5 μm and 1.09 ± 0.49 × 106 (HeLa, ncell = 26 246). This platform could be further adopted to measure numbers of various cytosolic proteins, providing key insights in proteomics at the single-cell level.
Collapse
Affiliation(s)
- Xiufeng Li
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Beiyuan Fan
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Lixing Liu
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Deyong Chen
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China.,University of Chinese Academy of Sciences, Beijing City, China
| | - Shanshan Cao
- State Key Lab of Virology, Wuhan Institute of Virology of Chinese Academy of Sciences, Wuhan City, Hubei Province, China
| | - Dong Men
- State Key Lab of Virology, Wuhan Institute of Virology of Chinese Academy of Sciences, Wuhan City, Hubei Province, China.
| | - Junbo Wang
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China. .,University of Chinese Academy of Sciences, Beijing City, China.
| | - Jian Chen
- State Key Lab of Transducer Technology, Institute of Electronics of Chinese Academy of Sciences, Beijing City, China. .,University of Chinese Academy of Sciences, Beijing City, China.
| |
Collapse
|
26
|
The emerging role of nanomaterials in immunological sensing - a brief review. Mol Immunol 2018; 98:28-35. [PMID: 29325980 DOI: 10.1016/j.molimm.2017.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Nanomaterials are beginning to play an important role in the next generation of immunological assays and biosensors, with potential impacts both in research and clinical practice. In this brief review, we highlight two areas in which nanomaterials are already making new and important contributions in the past 5-10 years: firstly, in the improvement of assay and biosensor sensitivity for detection of low abundance proteins of immunological significance, and secondly, in the real-time and continuous monitoring of protein secretion from arrays of individual cells. We finish by challenging the immunology/sensing communities to work together to develop nanomaterials that can provide real-time, continuous, and sensitive molecular readouts in vivo, a lofty goal that will require significant collaborative effort.
Collapse
|
27
|
Abstract
Quantification of single-cell proteomics provides key insights in the field of cellular heterogeneity. This chapter discusses the emerging techniques that are being used to measure the protein copy numbers at the single-cell level, which includes flow cytometry, mass cytometry, droplet cytometry, microengraving, and single-cell barcoding microchip. The advantages and limitations of each technique are compared, and future research opportunities are highlighted.
Collapse
|
28
|
Shen C, Xu T, Wu Y, Li X, Xia L, Wang W, Shahzad KA, Zhang L, Wan X, Qiu J. Frequency and reactivity of antigen-specific T cells were concurrently measured through the combination of artificial antigen-presenting cell, MACS and ELISPOT. Sci Rep 2017; 7:16400. [PMID: 29180767 PMCID: PMC5703716 DOI: 10.1038/s41598-017-16549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023] Open
Abstract
Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin257-264-specific CD8+ T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen18-27- and surface antigen183-191-specific CD8+ T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.
Collapse
Affiliation(s)
- Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China.
| | - Tao Xu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - You Wu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xiaoe Li
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lingzhi Xia
- Department of Laboratory Medicine, Nanjing KingMed Diagnostics Company Limited, Nanjing, Jiangsu, China
| | - Wei Wang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Jie Qiu
- Division of Infectious Diseases, Second Hospital of Nanjing, Affiliated Second Hospital of Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Li X, Fan B, Cao S, Chen D, Zhao X, Men D, Yue W, Wang J, Chen J. A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins. LAB ON A CHIP 2017; 17:3129-3137. [PMID: 28805868 DOI: 10.1039/c7lc00546f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Quantification of single-cell proteomics provides key insights into cellular heterogeneity while conventional flow cytometry cannot provide absolute quantification of intracellular proteins of single cells due to the lack of calibration approaches. This paper presents a constriction channel (with a cross sectional area smaller than cells) based microfluidic flow cytometer, capable of collecting copy numbers of specific intracellular proteins. In this platform, single cells stained with fluorescence labelled antibodies were forced to squeeze through the constriction channel with the fluorescence intensities quantified and since cells fully filled the constriction channel during the squeezing process, solutions with fluorescence labelled antibodies were flushed into the constriction channel to obtain calibration curves. By combining raw fluorescence data and calibration curves, absolute quantification of intracellular proteins was realized. As a demonstration, copy numbers of beta-actin of single tumour cells were quantified to be 0.90 ± 0.30 μM (A549, ncell = 14 228), 2.34 ± 0.70 μM (MCF 10A, ncell = 2455), and 0.98 ± 0.65 μM (Hep G2, ncell = 6945). The travelling time for individual cells was quantified to be roughly 10 ms and thus a throughput of 100 cells per s can be achieved. This microfluidic system can be used to quantify the copy numbers of intracellular proteins in a high-throughput manner, which may function as an enabling technique in the field of single-cell proteomics.
Collapse
Affiliation(s)
- Xiufeng Li
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
An X, Sendra VG, Liadi I, Ramesh B, Romain G, Haymaker C, Martinez-Paniagua M, Lu Y, Radvanyi LG, Roysam B, Varadarajan N. Single-cell profiling of dynamic cytokine secretion and the phenotype of immune cells. PLoS One 2017; 12:e0181904. [PMID: 28837583 PMCID: PMC5570329 DOI: 10.1371/journal.pone.0181904] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells are a highly heterogeneous population of innate lymphocytes that constitute our first line of defense against several types of tumors and microbial infections. Understanding the heterogeneity of these lymphocytes requires the ability to integrate their underlying phenotype with dynamic functional behaviors. We have developed and validated a single-cell methodology that integrates cellular phenotyping and dynamic cytokine secretion based on nanowell arrays and bead-based molecular biosensors. We demonstrate the robust passivation of the polydimethylsiloxane (PDMS)-based nanowells arrays with polyethylene glycol (PEG) and validated our assay by comparison to enzyme-linked immunospot (ELISPOT) assays. We used numerical simulations to optimize the molecular density of antibodies on the surface of the beads as a function of the capture efficiency of cytokines within an open-well system. Analysis of hundreds of individual human peripheral blood NK cells profiled ex vivo revealed that CD56dimCD16+ NK cells are immediate secretors of interferon gamma (IFN-γ) upon activation by phorbol 12-myristate 13-acetate (PMA) and ionomycin (< 3 h), and that there was no evidence of cooperation between NK cells leading to either synergistic activation or faster IFN-γ secretion. Furthermore, we observed that both the amount and rate of IFN-γ secretion from individual NK cells were donor-dependent. Collectively, these results establish our methodology as an investigational tool for combining phenotyping and real-time protein secretion of individual cells in a high-throughput manner.
Collapse
Affiliation(s)
- Xingyue An
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Victor G. Sendra
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Balakrishnan Ramesh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Melisa Martinez-Paniagua
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Yanbin Lu
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States of America
| | - Laszlo G. Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, United States of America
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Caen O, Lu H, Nizard P, Taly V. Microfluidics as a Strategic Player to Decipher Single-Cell Omics? Trends Biotechnol 2017. [DOI: 10.1016/j.tibtech.2017.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
High-throughput Characterization of HIV-1 Reservoir Reactivation Using a Single-Cell-in-Droplet PCR Assay. EBioMedicine 2017; 20:217-229. [PMID: 28529033 PMCID: PMC5478213 DOI: 10.1016/j.ebiom.2017.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/25/2023] Open
Abstract
Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs) increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent) infection. We therefore developed a microfluidic single-cell-in-droplet (scd)PCR assay to directly measure the number of CD4+ T cells that produce unspliced (us)RNA and multiply spliced (ms)RNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin) or T cell receptor (TCR) stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4 + T-cells in a single experiment. The scdPCR method was then applied to CD4+ T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous—increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies. A common approach to HIV cure involves reactivating HIV-infected cells. Developed single cell assay to directly quantify HIV transcriptionally reactivated cells. Single cell effects of latency reversing agents on HIV reactivation are heterogeneous. Bulk cell-associated HIV RNA levels are divergent from the number of RNA-producing cells. Assay allows for single-cell quantification of genomic DNA and mRNA following target cell identification.
We designed and implemented a microfluidic, single-cell assay to directly measure the number of individual cells from individuals on antiretroviral therapy that produce HIV-1 RNA. The assay also allows for single-cell quantification of human genomic DNA and messenger RNA following identification and isolation of actively HIV-1-infected cells. The ability to directly measure transcriptional activity of HIV-1 in individual cells followed by downstream characterization of human and viral genetic information within these cells has the potential to provide a greater mechanistic understanding of experimental strategies to purge residual HIV-1 reservoirs.
Collapse
|
33
|
Prakadan SM, Shalek AK, Weitz DA. Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nat Rev Genet 2017; 18:345-361. [PMID: 28392571 DOI: 10.1038/nrg.2017.15] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in cellular profiling have demonstrated substantial heterogeneity in the behaviour of cells once deemed 'identical', challenging fundamental notions of cell 'type' and 'state'. Not surprisingly, these findings have elicited substantial interest in deeply characterizing the diversity, interrelationships and plasticity among cellular phenotypes. To explore these questions, experimental platforms are needed that can extensively and controllably profile many individual cells. Here, microfluidic structures - whether valve-, droplet- or nanowell-based - have an important role because they can facilitate easy capture and processing of single cells and their components, reducing labour and costs relative to conventional plate-based methods while also improving consistency. In this article, we review the current state-of-the-art methodologies with respect to microfluidics for mammalian single-cell 'omics' and discuss challenges and future opportunities.
Collapse
Affiliation(s)
- Sanjay M Prakadan
- Institute for Medical Engineering &Science (IMES) and Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Alex K Shalek
- Institute for Medical Engineering &Science (IMES) and Department of Chemistry, MIT, Cambridge, Massachusetts 02139, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
34
|
Lu Y, Yang L, Wei W, Shi Q. Microchip-based single-cell functional proteomics for biomedical applications. LAB ON A CHIP 2017; 17:1250-1263. [PMID: 28280819 PMCID: PMC5459479 DOI: 10.1039/c7lc00037e] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that traditional population-based methods fail to address. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical frameworks to extract new biology. In this review article, we highlight a few biological and clinical applications in which microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies.
Collapse
Affiliation(s)
- Yao Lu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Liu Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA. and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Single cell screening approaches for antibody discovery. Methods 2017; 116:34-42. [DOI: 10.1016/j.ymeth.2016.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022] Open
|
36
|
Attayek PJ, Waugh JP, Hunsucker SA, Grayeski PJ, Sims CE, Armistead PM, Allbritton NL. Automated microraft platform to identify and collect non-adherent cells successfully gene-edited with CRISPR-Cas9. Biosens Bioelectron 2016; 91:175-182. [PMID: 28006686 DOI: 10.1016/j.bios.2016.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
Microraft arrays have been used to screen and then isolate adherent and non-adherent cells with very high efficiency and excellent viability; however, manual screening and isolation limits the throughput and utility of the technology. In this work, novel hardware and software were developed to automate the microraft array platform. The developed analysis software identified microrafts on the array with greater than 99% sensitivity and cells on the microrafts with 100% sensitivity. The software enabled time-lapse imaging and the use of temporally varying characteristics as sort criteria. The automated hardware released microrafts with 98% efficiency and collected released microrafts with 100% efficiency. The automated system was used to examine the temporal variation in EGFP expression in cells transfected with CRISPR-Cas9 components for gene editing. Of 11,499 microrafts possessing a single cell, 220 microrafts were identified as possessing temporally varying EGFP-expression. Candidate cells (n=172) were released and collected from the microraft array and screened for the targeted gene mutation. Two cell colonies were successfully gene edited demonstrating the desired mutation.
Collapse
Affiliation(s)
- Peter J Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh, NC, United States
| | - Jennifer P Waugh
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Sally A Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Philip J Grayeski
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Christopher E Sims
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States; Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States
| | - Paul M Armistead
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy L Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States; Department of Chemistry, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
37
|
Attayek PJ, Hunsucker SA, Sims CE, Allbritton NL, Armistead PM. Identification and isolation of antigen-specific cytotoxic T lymphocytes with an automated microraft sorting system. Integr Biol (Camb) 2016; 8:1208-1220. [PMID: 27853786 PMCID: PMC5138107 DOI: 10.1039/c6ib00168h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems. We have developed a microraft array methodology that automatically measures the ability of individual T cells to kill a population of target cells and viably sorts specific cells into a 96-well plate for expansion. A human T cell culture was generated against the influenza M1p antigen. Individual microrafts on a 70 × 70 array were loaded with on average 1 CD8+ cell from the culture and a population of M1p presenting target cells. Target cell killing, measured by fluorescence microscopy, was quantified in each microraft. The rates of target cell death among the individual CD8+ T cells varied greatly; however, individual T cells maintained their rates of cytotoxicity throughout the time course of the experiment enabling rapid identification of highly cytotoxic CD8+ T cells. Microrafts with highly active CD8+ T cells were individually transferred to wells of a 96-well plate, using a needle-release device coupled to the microscope. Three sorted T cells clonally expanded. All of these expressed high-avidity T cell receptors for M1p/HLA*02:01 tetramers, and 2 of the 3 receptors were sequenced. While this study investigated single T cell cytotoxicity rates against simple targets with subsequent cell sorting, future studies will involve measuring T cell mediated cytotoxicity in more complex cellular environments, enlarging the arrays to identify very rare antigen specific T cells, and measuring single cell CD4+ and CD8+ T cell proliferation.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
38
|
Abedini-Nassab R, Joh DY, Albarghouthi F, Chilkoti A, Murdoch DM, Yellen BB. Magnetophoretic transistors in a tri-axial magnetic field. LAB ON A CHIP 2016; 16:4181-4188. [PMID: 27714014 PMCID: PMC5072173 DOI: 10.1039/c6lc00878j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to direct and sort individual biological and non-biological particles into spatially addressable locations is fundamentally important to the emerging field of single cell biology. Towards this goal, we demonstrate a new class of magnetophoretic transistors, which can switch single magnetically labeled cells and magnetic beads between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors driven by a two-dimensional in-plane rotating field, the addition of a vertical magnetic field bias provides significant advantages in preventing the formation of particle clumps and in better replicating the operating principles of circuits in general. However, the three-dimensional driving field requires a complete redesign of the magnetic track geometry and switching electrodes. We have solved this problem by developing several types of transistor geometries which can switch particles between two different tracks by either presenting a local energy barrier or by repelling magnetic objects away from a given track, hereby denoted as "barrier" and "repulsion" transistors, respectively. For both types of transistors, we observe complete switching of magnetic objects with currents of ∼40 mA, which is consistent over a range of particle sizes (8-15 μm). The switching efficiency was also tested at various magnetic field strengths (50-90 Oe) and driving frequencies (0.1-0.6 Hz); however, we again found that the device performance only weakly depended on these parameters. These findings support the use of these novel transistor geometries to form circuit architectures in which cells can be placed in defined locations and retrieved on demand.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA.
| | - Daniel Y Joh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Faris Albarghouthi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA. and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - David M Murdoch
- Department of Medicine, Duke University, Durham, North Carolina 27708, USA
| | - Benjamin B Yellen
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC 27708, USA. and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
39
|
Abstract
INTRODUCTION Cellular heterogeneity has challenged current cancer therapeutics and hindered the discovery and development of cancer drugs. The heterogeneity in functional proteome is of particular interest because many cancer drugs are developed to target signaling proteins. The complex nature of tumor systems calls for more advanced multiplexed single-cell tools to address the heterogeneity issue. AREA COVERED Over the past five years, there are a few single-cell functional proteomics tools introduced with unprecedented multiplexity and performance that are transforming the oncology field. Those tools are generally categorized as cytometry-based tools and microfluidics-based tools, and we discuss the representatives in both categories. Expert commentary: The single-cell tools have provided an avenue to understand the multifaceted differences of cancer cells, the complex signaling networks, and the relationship of intercellular interaction and tumor architecture. We also provide an outlook of single-cell tools in five years and the challenges to address before a greater impact on oncology can be made.
Collapse
Affiliation(s)
- Jun Wang
- a Multiplex Biotechnology Laboratory, Department of Chemistry , University at Albany, State University of New York , Albany , NY , USA.,b Cancer Research Center , University at Albany, State University of New York , Rensselaer , NY , USA
| | - Fan Yang
- a Multiplex Biotechnology Laboratory, Department of Chemistry , University at Albany, State University of New York , Albany , NY , USA
| |
Collapse
|
40
|
Micro- and Nanoscale Technologies for Delivery into Adherent Cells. Trends Biotechnol 2016; 34:665-678. [PMID: 27287927 DOI: 10.1016/j.tibtech.2016.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. We review here recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss the major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, for example non-destructive sampling and analysis of intracellular molecules.
Collapse
|
41
|
Hu S, Liu G, Chen W, Li X, Lu W, Lam RHW, Fu J. Multiparametric Biomechanical and Biochemical Phenotypic Profiling of Single Cancer Cells Using an Elasticity Microcytometer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2300-11. [PMID: 26929029 PMCID: PMC6232842 DOI: 10.1002/smll.201503620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Deep phenotyping of single cancer cells is of critical importance in the era of precision medicine to advance understanding of relationships between gene mutation and cell phenotype and to elucidate the biological nature of tumor heterogeneity. Existing microfluidic single-cell phenotyping tools, however, are limited to phenotypic measurements of 1-2 selected morphological and physiological features of single cells. Herein a microfluidic elasticity microcytometer is reported for multiparametric biomechanical and biochemical phenotypic profiling of free-floating, live single cancer cells for quantitative, simultaneous characterizations of cell size, cell deformability/stiffness, and surface receptors. The elasticity microcytometer is implemented for measurements and comparisons of four human cell lines with distinct metastatic potentials and derived from different human tissues. An analytical model is developed from first principles for the first time to convert cell deformation and adhesion information of single cancer cells encapsulated inside the elasticity microcytometer to cell deformability/stiffness and surface protein expression. Together, the elasticity microcytometer holds great promise for comprehensive molecular, cellular, and biomechanical phenotypic profiling of live cancer cells at the single cell level, critical for studying intratumor cellular and molecular heterogeneity using low-abundance, clinically relevant human cancer cells.
Collapse
Affiliation(s)
- Shuhuan Hu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Guangyu Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Weiqiang Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Mechanical and Aerospace Engineering, New York University, New York 11201, USA
| | - Xiang Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Wei Lu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Raymond H. W. Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
42
|
Guldevall K, Brandt L, Forslund E, Olofsson K, Frisk TW, Olofsson PE, Gustafsson K, Manneberg O, Vanherberghen B, Brismar H, Kärre K, Uhlin M, Önfelt B. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity. Front Immunol 2016; 7:119. [PMID: 27092139 PMCID: PMC4820656 DOI: 10.3389/fimmu.2016.00119] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/17/2016] [Indexed: 12/31/2022] Open
Abstract
Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.
Collapse
Affiliation(s)
- Karolin Guldevall
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Ludwig Brandt
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Elin Forslund
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology, Solna, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Olofsson
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Thomas W Frisk
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Per E Olofsson
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Karin Gustafsson
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Otto Manneberg
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Bruno Vanherberghen
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology , Solna , Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Michael Uhlin
- Center for Allogeneic Stem Cell Transplantation, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Önfelt
- Science for Life Laboratory, Department of Applied Physics, KTH - Royal Institute of Technology, Solna, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. SENSORS 2016; 16:232. [PMID: 26891303 PMCID: PMC4801608 DOI: 10.3390/s16020232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on three key performance parameters (absolute quantification, sensitivity, and throughput).
Collapse
|
44
|
Ramirez LS, Wang J. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray. J Vis Exp 2016. [PMID: 26780370 DOI: 10.3791/53644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications.
Collapse
Affiliation(s)
- Lisa S Ramirez
- Department of Chemistry, University at Albany, State University of New York; Multiplex Biotechnology Laboratory, Cancer Research Center
| | - Jun Wang
- Department of Chemistry, University at Albany, State University of New York; Multiplex Biotechnology Laboratory, Cancer Research Center;
| |
Collapse
|
45
|
Attayek PJ, Hunsucker SA, Wang Y, Sims CE, Armistead PM, Allbritton NL. Array-Based Platform To Select, Release, and Capture Epstein-Barr Virus-Infected Cells Based on Intercellular Adhesion. Anal Chem 2015; 87:12281-9. [PMID: 26558605 PMCID: PMC6026766 DOI: 10.1021/acs.analchem.5b03579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microraft arrays were developed to select and separate cells based on a complex phenotype, weak intercellular adhesion, without knowledge of cell-surface markers or intracellular proteins. Since the cells were also not competent to bind to a culture surface, a method to encapsulate nonadherent cells within a gelatin plug on the concave microraft surface was developed, enabling release and collection of the cells without the need for cell attachment to the microraft surface. After microraft collection, the gelatin was liquified to release the cell(s) for culture or analysis. A semiautomated release and collection device for the microrafts demonstrated 100 ± 0% collection efficiency of the microraft while increasing throughput 5-fold relative to that of manual release and collection. Using the microraft array platform along with the gelatin encapsulation method, single cells that were not surface-attached were isolated with a 100 ± 0% efficiency and a 96 ± 4% postsort single-cell cloning efficiency. As a demonstration, Epstein-Barr virus-infected lymphoblastoid cell lines (EBV-LCL) were isolated based on their intercellular adhesive properties. The identified cell colonies were collected with a 100 ± 0% sorting efficiency and a postsort viability of 87 ± 3%. When gene expression analysis of the EBV latency-associated gene, EBNA-2, was performed, there was no difference in expression between blasting or weakly adhesive cells and nonblasting or nonadhesive cells. Microraft arrays are a versatile method enabling separation of cells based on complicated and as yet poorly understood cell phenotypes.
Collapse
Affiliation(s)
| | - Sally A Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
| | - Yuli Wang
- Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
| | - Nancy L Allbritton
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States
| |
Collapse
|
46
|
Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci 2015; 16:18878-93. [PMID: 26274954 PMCID: PMC4581277 DOI: 10.3390/ijms160818878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Collapse
Affiliation(s)
| | - John James Zaunders
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| | - Anthony Dominic Kelleher
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| |
Collapse
|
47
|
Merouane A, Rey-Villamizar N, Lu Y, Liadi I, Romain G, Lu J, Singh H, Cooper LJN, Varadarajan N, Roysam B. Automated profiling of individual cell-cell interactions from high-throughput time-lapse imaging microscopy in nanowell grids (TIMING). Bioinformatics 2015; 31:3189-97. [PMID: 26059718 DOI: 10.1093/bioinformatics/btv355] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/04/2015] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION There is a need for effective automated methods for profiling dynamic cell-cell interactions with single-cell resolution from high-throughput time-lapse imaging data, especially, the interactions between immune effector cells and tumor cells in adoptive immunotherapy. RESULTS Fluorescently labeled human T cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4) were co-incubated on polydimethylsiloxane arrays of sub-nanoliter wells (nanowells), and imaged using multi-channel time-lapse microscopy. The proposed cell segmentation and tracking algorithms account for cell variability and exploit the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading. Automated analysis of recordings from 12 different experiments demonstrated automated nanowell delineation accuracy >99%, automated cell segmentation accuracy >95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering. An example analysis revealed that NK cells efficiently discriminate between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells display higher motility than non-killers, both before and during contact. CONTACT broysam@central.uh.edu or nvaradar@central.uh.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Yanbin Lu
- Department of Electrical and Computer Engineering and
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA and
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA and
| | - Jennifer Lu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA and
| | - Harjeet Singh
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurence J N Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA and
| | | |
Collapse
|
48
|
Chattopadhyay PK, Roederer M. A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis. Am J Transplant 2015; 15:1155-61. [PMID: 25708158 DOI: 10.1111/ajt.13193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
In recent years, an incredible variety of single cell technologies have become available to analyze immune responses. These technologies include polychromatic flow cytometry, mass cytometry, highly multiplexed single cell qPCR, RNA sequencing, microtools, and high-resolution imaging. In this article, we review these platforms, describing their power and limitations for comprehensive analysis of the immune system. We relate the properties of these technologies to the various cellular states relevant to an immune response, in order to address which technologies are most appropriate for which settings.
Collapse
Affiliation(s)
- P K Chattopadhyay
- Vaccine Research Center, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
49
|
Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 2015; 112:E607-15. [PMID: 25646488 DOI: 10.1073/pnas.1416756112] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in single-cell genomic, transcriptional, and mass-cytometric profiling, it remains a challenge to collect highly multiplexed measurements of secreted proteins from single cells for comprehensive analysis of functional states. Herein, we combine spatial and spectral encoding with polydimethylsiloxane (PDMS) microchambers for codetection of 42 immune effector proteins secreted from single cells, representing the highest multiplexing recorded to date for a single-cell secretion assay. Using this platform to profile differentiated macrophages stimulated with lipopolysaccharide (LPS), the ligand of Toll-like receptor 4 (TLR4), reveals previously unobserved deep functional heterogeneity and varying levels of pathogenic activation. Uniquely protein profiling on the same single cells before and after LPS stimulation identified a role for macrophage inhibitory factor (MIF) to potentiate the activation of LPS-induced cytokine production. Advanced clustering analysis identified functional subsets including quiescent, polyfunctional fully activated, partially activated populations with different cytokine profiles. This population architecture is conserved throughout the cell activation process and prevails as it is extended to other TLR ligands and to primary macrophages derived from a healthy donor. This work demonstrates that the phenotypically similar cell population still exhibits a large degree of intrinsic heterogeneity at the functional and cell behavior level. This technology enables full-spectrum dissection of immune functional states in response to pathogenic or environmental stimulation, and opens opportunities to quantify deep functional heterogeneity for more comprehensive and accurate immune monitoring.
Collapse
|
50
|
Castellarnau M, Szeto GL, Su HW, Tokatlian T, Love JC, Irvine DJ, Voldman J. Stochastic particle barcoding for single-cell tracking and multiparametric analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:489-98. [PMID: 25180800 PMCID: PMC4303509 DOI: 10.1002/smll.201401369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/29/2014] [Indexed: 05/04/2023]
Abstract
This study presents stochastic particle barcoding (SPB), a method for tracking cell identity across bioanalytical platforms. In this approach, single cells or small collections of cells are co-encapsulated within an enzymatically-degradable hydrogel block along with a random collection of fluorescent beads, whose number, color, and position encode the identity of the cell, enabling samples to be transferred in bulk between single-cell assay platforms without losing the identity of individual cells. The application of SPB is demonstrated for transferring cells from a subnanoliter protein secretion/phenotyping array platform into a microtiter plate, with re-identification accuracies in the plate assay of 96±2%. Encapsulated cells are recovered by digesting the hydrogel, allowing subsequent genotyping and phenotyping of cell lysates. Finally, a model scaling is developed to illustrate how different parameters affect the accuracy of SPB and to motivate scaling of the method to thousands of unique blocks.
Collapse
Affiliation(s)
- Marc Castellarnau
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Gregory L. Szeto
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Hao-Wei Su
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Talar Tokatlian
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - J. Christopher Love
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Darrell J. Irvine
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| | - Joel Voldman
- Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139, USA
| |
Collapse
|