1
|
Liao YH, Hsu CL, Leu CY, Lai SF, Huang YL, Hsieh MS, Chen TC, Chen CN, Wang CP, Yang TL, Tsai MH, Lin MC, Lou PJ. Radiation-induced sarcoma of head and neck: Clinical characteristics and molecular signatures. Head Neck 2023; 45:638-646. [PMID: 36513597 DOI: 10.1002/hed.27279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiation-induced sarcoma of the head and neck (RISHN) is a rare yet devastating potential complication of radiotherapy treatment. We aimed to evaluate the clinicopathological characteristics and molecular signatures of RISHN in patients who underwent radiotherapy for head and neck cancer (HNC) to identify high-risk patients and enable earlier cancer detection. METHODS This study retrospectively evaluated 24 sarcoma patients who received radiotherapy for HNC between 1994 and 2019. Patients were divided into two groups based on RISHN latency period. Patient demographics, initial tumor staging, risk factors, and survival between groups were analyzed, and whole-exome sequencing (WES) of selected samples was performed. RESULTS The median age at diagnosis of RISHN was 54 years, and the male-to-female ratio was 2:1. The latency period ranged from 0.8 to 64.4 years (median 6.5 years), with a median survival of 21.5 months. Primary cancer in the oral cavity, treatment with alkylating agents, alcohol consumption, betel nut chewing, and smoking were identified as risk factors for short (<5 years) latency periods. The majority of RISHN cases occurred in the oral cavity (58.3%). WES analysis showed that tumor necrosis factor and cell cycle checkpoint pathways were differentially involved in both patient groups. CONCLUSIONS Although case numbers were small, our cohort represents the largest case series of RISHN from a single institution to date. Clinicians must be aware of factors affecting RISHN development and latency, and risk factor identification may lead to earlier detection and prevention in the future.
Collapse
Affiliation(s)
- Yu-Hao Liao
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Biomedical Park Branch, Hsinchu, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Yu Leu
- Department of Medical Education, National Taiwan University, Taipei, Taiwan
| | - Shih-Fan Lai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Nan Chen
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ping Wang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Machado ER, van de Vlekkert D, Sheppard HS, Perry S, Downing SM, Laxton J, Ashmun R, Finkelstein DB, Neale GA, Hu H, Harwood FC, Koo SC, Grosveld GC, d'Azzo A. Haploinsufficiency of the lysosomal sialidase NEU1 results in a model of pleomorphic rhabdomyosarcoma in mice. Commun Biol 2022; 5:992. [PMID: 36127469 PMCID: PMC9489700 DOI: 10.1038/s42003-022-03968-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Rhabdomyosarcoma, the most common pediatric sarcoma, has no effective treatment for the pleomorphic subtype. Still, what triggers transformation into this aggressive phenotype remains poorly understood. Here we used Ptch1+/-/ETV7TG/+/- mice with enhanced incidence of rhabdomyosarcoma to generate a model of pleomorphic rhabdomyosarcoma driven by haploinsufficiency of the lysosomal sialidase neuraminidase 1. These tumors share mostly features of embryonal and some of alveolar rhabdomyosarcoma. Mechanistically, we show that the transforming pathway is increased lysosomal exocytosis downstream of reduced neuraminidase 1, exemplified by the redistribution of the lysosomal associated membrane protein 1 at the plasma membrane of tumor and stromal cells. Here we exploit this unique feature for single cell analysis and define heterogeneous populations of exocytic, only partially differentiated cells that force tumors to pleomorphism and promote a fibrotic microenvironment. These data together with the identification of an adipogenic signature shared by human rhabdomyosarcoma, and likely fueling the tumor's metabolism, make this model of pleomorphic rhabdomyosarcoma ideal for diagnostic and therapeutic studies.
Collapse
Affiliation(s)
- Eda R Machado
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | | - Heather S Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Scott Perry
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Susanna M Downing
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan Laxton
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard Ashmun
- Flow Cytometry Core Facility, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey A Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Frank C Harwood
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Alessandra d'Azzo
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Wei Y, Qin Q, Yan C, Hayes MN, Garcia SP, Xi H, Do D, Jin AH, Eng TC, McCarthy KM, Adhikari A, Onozato ML, Spentzos D, Neilsen GP, Iafrate AJ, Wexler LH, Pyle AD, Suvà ML, Dela Cruz F, Pinello L, Langenau DM. Single-cell analysis and functional characterization uncover the stem cell hierarchies and developmental origins of rhabdomyosarcoma. NATURE CANCER 2022; 3:961-975. [PMID: 35982179 PMCID: PMC10430812 DOI: 10.1038/s43018-022-00414-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2022] [Indexed: 04/29/2023]
Abstract
Rhabdomyosarcoma (RMS) is a common childhood cancer that shares features with developing skeletal muscle. Yet, the conservation of cellular hierarchy with human muscle development and the identification of molecularly defined tumor-propagating cells has not been reported. Using single-cell RNA-sequencing, DNA-barcode cell fate mapping and functional stem cell assays, we uncovered shared tumor cell hierarchies in RMS and human muscle development. We also identified common developmental stages at which tumor cells become arrested. Fusion-negative RMS cells resemble early myogenic cells found in embryonic and fetal development, while fusion-positive RMS cells express a highly specific gene program found in muscle cells transiting from embryonic to fetal development at 7-7.75 weeks of age. Fusion-positive RMS cells also have neural pathway-enriched states, suggesting less-rigid adherence to muscle-lineage hierarchies. Finally, we identified a molecularly defined tumor-propagating subpopulation in fusion-negative RMS that shares remarkable similarity to bi-potent, muscle mesenchyme progenitors that can make both muscle and osteogenic cells.
Collapse
Affiliation(s)
- Yun Wei
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Chuan Yan
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Madeline N Hayes
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sara P Garcia
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
| | - Haibin Xi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alexander H Jin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Tiffany C Eng
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Karin M McCarthy
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Abhinav Adhikari
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Maristela L Onozato
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Dimitrios Spentzos
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gunnlaugur P Neilsen
- Center for Sarcoma and Connective Tissue Oncology, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A John Iafrate
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - April D Pyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Mario L Suvà
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - David M Langenau
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA.
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
4
|
Nakahata K, Simons BW, Pozzo E, Shuck R, Kurenbekova L, Prudowsky Z, Dholakia K, Coarfa C, Patel TD, Donehower LA, Yustein JT. K-Ras and p53 mouse model with molecular characteristics of human rhabdomyosarcoma and translational applications. Dis Model Mech 2022; 15:274377. [PMID: 35174853 PMCID: PMC8844455 DOI: 10.1242/dmm.049004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, with overall long-term survival rates of ∼65-70%. Thus, additional molecular insights and representative models are critical for identifying and evaluating new treatment modalities. Using MyoD-Cre-mediated introduction of mutant K-RasG12D and perturbations in p53, we developed a novel genetically engineered mouse model (GEMM) for RMS. The anatomic sites of primary RMS development recapitulated human disease, including tumors in the head, neck, extremities and abdomen. We confirmed RMS histology and diagnosis through Hematoxylin and Eosin staining, and positive immunohistochemical staining for desmin, myogenin, and phosphotungstic acid-Hematoxylin. Cell lines from GEMM tumors were established with the ability to engraft in immunocompetent mice with comparable histological and staining features as the primary tumors. Tail vein injection of cell lines had high metastatic potential to the lungs. Transcriptomic analyses of p53R172H/K-RasG12D GEMM-derived tumors showed evidence of high molecular homology with human RMS. Finally, pre-clinical use of these murine RMS lines showed similar therapeutic responsiveness to chemotherapy and targeted therapies as human RMS cell lines.
Collapse
Affiliation(s)
- Kengo Nakahata
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX 77030, USA, USA
| | - Enrico Pozzo
- Translational Cardiomyology Laboratory, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven 3000, Belgium
| | - Ryan Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary Prudowsky
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kshiti Dholakia
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA.,Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tajhal D Patel
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lawrence A Donehower
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA.,Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Tang YJ, Puviindran V, Xiang Y, Yahara Y, Zhang H, Nadesan P, Diao Y, Kirsch DG, Alman BA. Tumor-propagating side population cells are a dynamic subpopulation in undifferentiated pleomorphic sarcoma. JCI Insight 2021; 6:148768. [PMID: 34618689 PMCID: PMC8663789 DOI: 10.1172/jci.insight.148768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcomas contain a subpopulation of tumor-propagating cells (TPCs) with enhanced tumor-initiating and self-renewal properties. However, it is unclear whether the TPC phenotype in sarcomas is stable or a dynamic cell state that can derive from non-TPCs. In this study, we utilized a mouse model of undifferentiated pleomorphic sarcoma (UPS) to trace the lineage relationship between sarcoma side population (SP) cells that are enriched for TPCs and non-SP cells. By cotransplanting SP and non-SP cells expressing different endogenous fluorescent reporters, we show that non-SP cells can give rise to SP cells with enhanced tumor-propagating potential in vivo. Lineage trajectory analysis using single-cell RNA sequencing from SP and non-SP cells supports the notion that non-SP cells can assume the SP cell phenotype de novo. To test the effect of eradicating SP cells on tumor growth and self-renewal, we generated mouse sarcomas in which the diphtheria toxin receptor is expressed in the SP cells and their progeny. Ablation of the SP population using diphtheria toxin did not impede tumor growth or self-renewal. Altogether, we show that the sarcoma SP represent a dynamic cell state and targeting TPCs alone is insufficient to eliminate tumor progression.
Collapse
Affiliation(s)
- Yuning Jackie Tang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopedic Surgery
| | | | - Yu Xiang
- Department of Cell Biology.,Regeneration Next Initiative
| | | | - Hongyuan Zhang
- Department of Orthopedic Surgery.,Department of Cell Biology
| | | | - Yarui Diao
- Department of Orthopedic Surgery.,Department of Cell Biology.,Regeneration Next Initiative
| | - David G Kirsch
- Regeneration Next Initiative.,Department of Pharmacology and Cancer Biology, and.,Department of Radiation Oncology, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Benjamin A Alman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopedic Surgery.,Department of Cell Biology.,Regeneration Next Initiative
| |
Collapse
|
6
|
Garcia N, Del Pozo V, Yohe ME, Goodwin CM, Shackleford TJ, Wang L, Baxi K, Chen Y, Rogojina AT, Zimmerman SM, Peer CJ, Figg WD, Ignatius MS, Wood KC, Houghton PJ, Vaseva AV. Vertical Inhibition of the RAF-MEK-ERK Cascade Induces Myogenic Differentiation, Apoptosis and Tumor Regression in H/NRAS Q61X-mutant Rhabdomyosarcoma. Mol Cancer Ther 2021; 21:170-183. [PMID: 34737198 PMCID: PMC8742779 DOI: 10.1158/1535-7163.mct-21-0194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Oncogenic RAS signaling is an attractive target for fusion-negative rhabdomyosarcoma (FN-RMS). Our study validates the role of the ERK MAPK effector pathway in mediating RAS dependency in a panel of H/NRASQ61X-mutant RMS cells and correlates in vivo efficacy of the MEK inhibitor trametinib with pharmacodynamics of ERK activity. A screen is used to identify trametinib-sensitizing targets and combinations are evaluated in cells and tumor xenografts. We find that the ERK MAPK pathway is central to H/NRASQ61X-dependency in RMS cells, however there is poor in vivo response to clinically relevant exposures with trametinib, which correlates with inefficient suppression of ERK activity. CRISPR screening points to vertical inhibition of the RAF-MEK-ERK cascade by co-suppression of MEK and either CRAF or ERK. CRAF is central to rebound pathway activation following MEK or ERK inhibition. Concurrent CRAF suppression and MEK or ERK inhibition, or concurrent pan-RAF and MEK/ERK inhibition (pan-RAFi + MEKi/ERKi), or concurrent MEK and ERK inhibition (MEKi + ERKi) all synergistically block ERK activity and induce myogenic differentiation and apoptosis. In vivo assessment of pan-RAFi + ERKi or MEKi + ERKi potently suppress growth of H/NRASQ61X RMS tumor xenografts, with pan-RAFi + ERKi being more effective and better tolerated. We conclude that CRAF reactivation limits the activity of single agent MEK/ERK inhibitors in FN-RMS. Vertical targeting of the RAF-MEK-ERK cascade, and particularly co-targeting of CRAF and MEK or ERK, or the combination of pan-RAF inhibitors with MEK or ERK inhibitors, have synergistic activity and potently suppress H/NRASQ61X-mutant RMS tumor growth.
Collapse
Affiliation(s)
| | | | | | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | | | - Long Wang
- Cancer Therapy & Research Center, The University of Texas Health Science Center
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute, UTHSCSA
| | - Yidong Chen
- Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio
| | | | | | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute
| | - William D Figg
- Clinical Pharmacology Program and Genitourinary Malignancies Branch, National Cancer Institute
| | | | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio
| | | |
Collapse
|
7
|
Regina C, Hamed E, Andrieux G, Angenendt S, Schneider M, Ku M, Follo M, Wachtel M, Ke E, Kikuchi K, Henssen AG, Schäfer BW, Boerries M, Wagers AJ, Keller C, Hettmer S. Negative correlation of single-cell PAX3:FOXO1 expression with tumorigenicity in rhabdomyosarcoma. Life Sci Alliance 2021; 4:4/9/e202001002. [PMID: 34187933 PMCID: PMC8321661 DOI: 10.26508/lsa.202001002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Single-cell PAX3:FOXO1 expression in rhabdomyosarcoma is variable. PAX3:FOXO1 low cell states are characterized by more efficient adhesion, migration and tumor-propagating capacity. Rhabdomyosarcomas (RMS) are phenotypically and functionally heterogeneous. Both primary human RMS cultures and low-passage Myf6Cre,Pax3:Foxo1,p53 mouse RMS cell lines, which express the fusion oncoprotein Pax3:Foxo1 and lack the tumor suppressor Tp53 (Myf6Cre,Pax3:Foxo1,p53), exhibit marked heterogeneity in PAX3:FOXO1 (P3F) expression at the single cell level. In mouse RMS cells, P3F expression is directed by the Pax3 promoter and coupled to eYFP. YFPlow/P3Flow mouse RMS cells included 87% G0/G1 cells and reorganized their actin cytoskeleton to produce a cellular phenotype characterized by more efficient adhesion and migration. This translated into higher tumor-propagating cell frequencies of YFPlow/P3Flow compared with YFPhigh/P3Fhigh cells. Both YFPlow/P3Flow and YFPhigh/P3Fhigh cells gave rise to mixed clones in vitro, consistent with fluctuations in P3F expression over time. Exposure to the anti-tropomyosin compound TR100 disrupted the cytoskeleton and reversed enhanced migration and adhesion of YFPlow/P3Flow RMS cells. Heterogeneous expression of PAX3:FOXO1 at the single cell level may provide a critical advantage during tumor progression.
Collapse
Affiliation(s)
- Carla Regina
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sina Angenendt
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Wachtel
- University Children's Hospital, Children's Research Center and Department of Oncology, Zürich, Switzerland
| | - Eugene Ke
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anton G Henssen
- Experimental and Clinical Research Center of the Max Delbrück Center and Charité Berlin, Berlin, Germany
| | - Beat W Schäfer
- University Children's Hospital, Children's Research Center and Department of Oncology, Zürich, Switzerland
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Centre Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA, USA.,Joslin Diabetes Center, Boston, MA, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany .,Comprehensive Cancer Centre Freiburg, Medical Center-University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| |
Collapse
|
8
|
Prioritization of Novel Agents for Patients with Rhabdomyosarcoma: A Report from the Children's Oncology Group (COG) New Agents for Rhabdomyosarcoma Task Force. J Clin Med 2021; 10:jcm10071416. [PMID: 33915882 PMCID: PMC8037615 DOI: 10.3390/jcm10071416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma diagnosed in children and adolescents. Patients that are diagnosed with advanced or relapsed disease have exceptionally poor outcomes. The Children’s Oncology Group (COG) convened a rhabdomyosarcoma new agent task force in 2020 to systematically evaluate novel agents for inclusion in phase 2 or phase 3 clinical trials for patients diagnosed with rhabdomyosarcoma, following a similar effort for Ewing sarcoma. The task force was comprised of clinicians and basic scientists who collectively identified new agents for evaluation and prioritization in clinical trial testing. Here, we report the work of the task force including the framework upon which the decisions were rendered and review the top classes of agents that were discussed. Representative agents include poly-ADP-ribose polymerase (PARP) inhibitors in combination with cytotoxic agents, mitogen-activated protein kinase (MEK) inhibitors in combination with type 1 insulin-like growth factor receptor (IGFR1) inhibitors, histone deacetylase (HDAC) inhibitors, and novel cytotoxic agents.
Collapse
|
9
|
Lian X, Bond JS, Bharathy N, Boudko SP, Pokidysheva E, Shern JF, Lathara M, Sasaki T, Settelmeyer T, Cleary MM, Bajwa A, Srinivasa G, Hartley CP, Bächinger HP, Mansoor A, Gultekin SH, Berlow NE, Keller C. Defining the Extracellular Matrix of Rhabdomyosarcoma. Front Oncol 2021; 11:601957. [PMID: 33708626 PMCID: PMC7942227 DOI: 10.3389/fonc.2021.601957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/05/2021] [Indexed: 01/20/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood with a propensity to metastasize. Current treatment for patients with RMS includes conventional systemic chemotherapy, radiation therapy, and surgical resection; nevertheless, little to no improvement in long term survival has been achieved in decades-underlining the need for target discovery and new therapeutic approaches to targeting tumor cells or the tumor microenvironment. To evaluate cross-species sarcoma extracellular matrix production, we have used murine models which feature knowledge of the myogenic cell-of-origin. With focus on the RMS/undifferentiated pleomorphic sarcoma (UPS) continuum, we have constructed tissue microarrays of 48 murine and four human sarcomas to analyze expression of seven different collagens, fibrillins, and collagen-modifying proteins, with cross-correlation to RNA deep sequencing. We have uncovered that RMS produces increased expression of type XVIII collagen alpha 1 (COL18A1), which is clinically associated with decreased long-term survival. We have also identified significantly increased RNA expression of COL4A1, FBN2, PLOD1, and PLOD2 in human RMS relative to normal skeletal muscle. These results complement recent studies investigating whether soft tissue sarcomas utilize collagens, fibrillins, and collagen-modifying enzymes to alter the structural integrity of surrounding host extracellular matrix/collagen quaternary structure resulting in improved ability to improve the ability to invade regionally and metastasize, for which therapeutic targeting is possible.
Collapse
Affiliation(s)
- Xiaolei Lian
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | - J. Steffan Bond
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Narendra Bharathy
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | - Sergei P. Boudko
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Elena Pokidysheva
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Melvin Lathara
- Bioinformatics, Omics Data Automation, Beaverton, OR, United States
| | - Takako Sasaki
- Department of Matrix Medicine, Oita University, Oita, Japan
| | - Teagan Settelmeyer
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | - Megan M. Cleary
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | - Ayeza Bajwa
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | | | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Shriners Hospital for Children, Portland, OR, United States
| | - Atiya Mansoor
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Sakir H. Gultekin
- Department of Pathology, Oregon Health & Science University, Portland, OR, United States
| | - Noah E. Berlow
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | - Charles Keller
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| |
Collapse
|
10
|
Skeletal Muscle Subpopulation Rearrangements upon Rhabdomyosarcoma Development through Single-Cell Mass Cytometry. J Clin Med 2021; 10:jcm10040823. [PMID: 33671425 PMCID: PMC7922544 DOI: 10.3390/jcm10040823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
The embryonal rhabdomyosarcoma (eRMS) is a soft tissue sarcoma commonly affecting the head and neck, the extremities and the genitourinary tract. To contribute to revealing the cell types that may originate this tumor, we exploited mass cytometry, a single-cell technique that, by using heavy-metal-tagged antibodies, allows the accurate monitoring of the changes occurring in the mononuclear cell composition of skeletal muscle tissue during tumor development. To this end, we compared cell populations of healthy muscles with those from spatiotemporal-induced eRMS tumors in a mouse model (LSL-KrasG12D/+;Tp53Fl/Fl) that can be used to develop rhabdomyosarcoma by means of infection with an adenovirus vector expressing Cre (Ad-Cre) recombinase. By monitoring different time points after tumor induction, we were able to analyze tumor progression and composition, identifying fibro/adipogenic progenitors (FAPs) as the cell type that, in this model system, had a pivotal role in tumor development. In vitro studies highlighted that both FAPs and satellite cells (SCs), upon infection with the Ad-Cre, acquired the potential to develop rhabdomyosarcomas when transplanted into immunocompromised mice. However, only infected FAPs had an antigen profile that was similar to embryonal rhabdomyosarcoma cells. Overall, our analysis supports the involvement of FAPs in eRMS development.
Collapse
|
11
|
Bauer C, Quante M, Breunis WB, Regina C, Schneider M, Andrieux G, Gorka O, Groß O, Boerries M, Kammerer B, Hettmer S. Lack of Electron Acceptors Contributes to Redox Stress and Growth Arrest in Asparagine-Starved Sarcoma Cells. Cancers (Basel) 2021; 13:cancers13030412. [PMID: 33499165 PMCID: PMC7865502 DOI: 10.3390/cancers13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Amino acids are integral components of cancer metabolism. The non-essential amino acid asparagine supports the growth and survival of various cancer cell types. Here, different mass spectrometry approaches were employed to identify lower aspartate levels, higher aspartate/glutamine ratios and lower tricarboxylic acid (TCA) cycle metabolite levels in asparagine-deprived sarcoma cells. Reduced nicotinamide adenine dinucleotide (NAD+)/nicotinamide adenine dinucleotide hydride (NADH) ratios were consistent with redirection of TCA cycle flux and relative electron acceptor deficiency. Elevated lactate/pyruvate ratios may be due to compensatory NAD+ regeneration through increased pyruvate to lactate conversion by lactate dehydrogenase. Supplementation with exogenous pyruvate, which serves as an electron acceptor, restored aspartate levels, NAD+/NADH ratios, lactate/pyruvate ratios and cell growth in asparagine-deprived cells. Chemicals disrupting NAD+ regeneration in the electron transport chain further enhanced the anti-proliferative and pro-apoptotic effects of asparagine depletion. We speculate that reductive stress may be a major contributor to the growth arrest observed in asparagine-starved cells.
Collapse
Affiliation(s)
- Christoph Bauer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Meret Quante
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
| | - Willemijn B. Breunis
- Department of Oncology and Children’s Research Center, University Children’s Hospital, Steinwiessstrasse 75, 8032 Zürich, Switzerland;
| | - Carla Regina
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79104 Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany; (O.G.); (O.G.)
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany; (O.G.); (O.G.)
- Signaling Research Center BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79104 Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), Medical Center-University of Freiburg, Hugstetter Strasse 49, 79106 Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
- Signaling Research Center BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstraße 19A, 79104 Freiburg, Germany
- Correspondence: (B.K.); (S.H.); Tel.: +49-761-203-97137 (B.K.); +49-761-270-45140 (S.H.); Fax: +49-761-203-97177 (B.K.); +49-761-270-45180 (S.H.)
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; (C.B.); (M.Q.); (C.R.); (M.S.)
- Comprehensive Cancer Centre Freiburg (CCCF), Medical Center-University of Freiburg, Hugstetter Strasse 49, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstraße 19A, 79104 Freiburg, Germany
- Correspondence: (B.K.); (S.H.); Tel.: +49-761-203-97137 (B.K.); +49-761-270-45140 (S.H.); Fax: +49-761-203-97177 (B.K.); +49-761-270-45180 (S.H.)
| |
Collapse
|
12
|
Würtemberger J, Tchessalova D, Regina C, Bauer C, Schneider M, Wagers AJ, Hettmer S. Growth inhibition associated with disruption of the actin cytoskeleton by Latrunculin A in rhabdomyosarcoma cells. PLoS One 2020; 15:e0238572. [PMID: 32898143 PMCID: PMC7478754 DOI: 10.1371/journal.pone.0238572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 08/19/2020] [Indexed: 11/18/2022] Open
Abstract
Functional genomic screening of KRAS-driven mouse sarcomas was previously employed to identify proliferation-relevant genes. Genes identified included Ubiquitin-conjugating enzyme E2 (Ube2c), Centromere Protein E (Cenpe), Hyaluronan Synthase 2 (Has2), and CAMP Responsive Element Binding Protein 3 Like 2 (Creb3l2). This study examines the expression and chemical inhibition of these candidate genes, identifying variable levels of protein expression and significant contributions to rhabdomyosarcoma (RMS) cell proliferation. Chemical treatment of human and murine RMS cell lines with bortezomib, UA62784, latrunculin A and sorafenib inhibited growth with approximate EC50 concentrations of 15-30nM for bortezomib, 25-80nM for UA62784 and 80-220nM for latrunculin A. The multi-kinase inhibitor sorafenib increased in vitro proliferation of 4 of 6 sarcoma cell lines tested. Latrunculin A was further associated with disruption of the actin cytoskeleton and reduced ERK1/2 phosphorylation. Together, this work advances opportunities for developing therapies to block progression of soft-tissue sarcomas and demonstrates that disruption of the actin cytoskeleton in sarcoma cells by latrunculin A is associated with a reduction in RMS cell growth. (167 words).
Collapse
Affiliation(s)
- Julia Würtemberger
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Daria Tchessalova
- Joslin Diabetes Center, Boston, Massachusetts, United States of America
| | - Carla Regina
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christoph Bauer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Amy J. Wagers
- Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Goldstein JM, Tabebordbar M, Zhu K, Wang LD, Messemer KA, Peacker B, Ashrafi Kakhki S, Gonzalez-Celeiro M, Shwartz Y, Cheng JKW, Xiao R, Barungi T, Albright C, Hsu YC, Vandenberghe LH, Wagers AJ. In Situ Modification of Tissue Stem and Progenitor Cell Genomes. Cell Rep 2020; 27:1254-1264.e7. [PMID: 31018138 PMCID: PMC6858480 DOI: 10.1016/j.celrep.2019.03.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Goldstein et al. demonstrate in vivo transduction of
endogenous tissue stem cells in the muscle, blood, and skin by systemic or local
administration of adeno-associated viruses (AAVs) encoding genome-modifying
enzymes. They report that AAV-transduced and genome-modified stem and progenitor
cells maintain their capacity to differentiate and engraft following
transplantation. In vivo delivery of genome-modifying enzymes holds
significant promise for therapeutic applications and functional genetic
screening. Delivery to endogenous tissue stem cells, which provide an enduring
source of cell replacement during homeostasis and regeneration, is of particular
interest. Here, we use a sensitive Cre/lox fluorescent reporter system to test
the efficiency of genome modification following in vivo
transduction by adeno-associated viruses (AAVs) in tissue stem and progenitor
cells. We combine immunophenotypic analyses with in vitro and
in vivo assays of stem cell function to reveal effective
targeting of skeletal muscle satellite cells, mesenchymal progenitors,
hematopoietic stem cells, and dermal cell subsets using multiple AAV serotypes.
Genome modification rates achieved through this system reached >60%, and
modified cells retained key functional properties. This study establishes a
powerful platform to genetically alter tissue progenitors within their
physiological niche while preserving their native stem cell properties and
regulatory interactions.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kexian Zhu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Leo D Wang
- Joslin Diabetes Center, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan Peacker
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Ashrafi Kakhki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Meryem Gonzalez-Celeiro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jason K W Cheng
- Editas Medicine, Inc., 11 Hurley Street, Cambridge, MA 02142, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Trisha Barungi
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Charles Albright
- Editas Medicine, Inc., 11 Hurley Street, Cambridge, MA 02142, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Luk H Vandenberghe
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The current review aims to highlight the frequency of RAS mutations in pediatric leukemias and solid tumors and to propose strategies for targeting oncogenic RAS in pediatric cancers. RECENT FINDINGS The three RAS genes (HRAS, NRAS, and KRAS) comprise the most frequently mutated oncogene family in human cancer. RAS mutations are commonly observed in three of the leading causes of cancer death in the United States, namely lung cancer, pancreatic cancer, and colorectal cancer. The association of RAS mutations with these aggressive malignancies inspired the creation of the National Cancer Institute RAS initiative and spurred intense efforts to develop strategies to inhibit oncogenic RAS, with much recent success. RAS mutations are frequently observed in pediatric cancers; however, recent advances in anti-RAS drug development have yet to translate into pediatric clinical trials. SUMMARY We find that RAS is mutated in common and rare pediatric malignancies and that oncogenic RAS confers a functional dependency in these cancers. Many strategies for targeting RAS are being pursued for malignancies that primarily affect adults and there is a clear need for inclusion of pediatric patients in clinical trials of these agents.
Collapse
|
15
|
Yohe ME, Heske CM, Stewart E, Adamson PC, Ahmed N, Antonescu CR, Chen E, Collins N, Ehrlich A, Galindo RL, Gryder BE, Hahn H, Hammond S, Hatley ME, Hawkins DS, Hayes MN, Hayes-Jordan A, Helman LJ, Hettmer S, Ignatius MS, Keller C, Khan J, Kirsch DG, Linardic CM, Lupo PJ, Rota R, Shern JF, Shipley J, Sindiri S, Tapscott SJ, Vakoc CR, Wexler LH, Langenau DM. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr Blood Cancer 2019; 66:e27869. [PMID: 31222885 PMCID: PMC6707829 DOI: 10.1002/pbc.27869] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Overall survival rates for pediatric patients with high-risk or relapsed rhabdomyosarcoma (RMS) have not improved significantly since the 1980s. Recent studies have identified a number of targetable vulnerabilities in RMS, but these discoveries have infrequently translated into clinical trials. We propose streamlining the process by which agents are selected for clinical evaluation in RMS. We believe that strong consideration should be given to the development of combination therapies that add biologically targeted agents to conventional cytotoxic drugs. One example of this type of combination is the addition of the WEE1 inhibitor AZD1775 to the conventional cytotoxic chemotherapeutics, vincristine and irinotecan.
Collapse
Affiliation(s)
| | | | | | | | - Nabil Ahmed
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | - Rene L. Galindo
- University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Heidi Hahn
- University Medical Center Gӧttingen, Gӧttingen, Germany
| | | | - Mark E. Hatley
- St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Douglas S. Hawkins
- Seattle Children’s Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA 98105
| | - Madeline N. Hayes
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| | | | - Lee J. Helman
- Children’s Hospital of Los Angeles, Los Angeles, CA 90027
| | | | | | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005
| | - Javed Khan
- National Cancer Institute, Bethesda, MD 20892
| | | | | | - Philip J. Lupo
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Rossella Rota
- Children’s Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | - Janet Shipley
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | - David M. Langenau
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| |
Collapse
|
16
|
Zhu W, Radadiya A, Bisson C, Wenzel S, Nordin BE, Martínez-Márquez F, Imasaki T, Sedelnikova SE, Coricello A, Baumann P, Berry AH, Nomanbhoy TK, Kozarich JW, Jin Y, Rice DW, Takagi Y, Richards NGJ. High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity. Commun Biol 2019; 2:345. [PMID: 31552298 PMCID: PMC6748925 DOI: 10.1038/s42003-019-0587-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Expression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis. Wen Zhu et al. report the crystal structure of human asparagine synthetase at a 1.85 Å resolution, enabling computational analysis of inhibitor binding. They also find new insights into the intermolecular interactions contributing to binding specificity of inhibitors.
Collapse
Affiliation(s)
- Wen Zhu
- 1School of Chemistry, Cardiff University, Cardiff, UK.,8Present Address: Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
| | | | - Claudine Bisson
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.,8Present Address: Department of Chemistry and California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
| | - Sabine Wenzel
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Brian E Nordin
- 4ActivX Biosciences, Inc, La Jolla, CA USA.,Present Address: Vividion Therapeutics, San Diego, CA USA
| | - Francisco Martínez-Márquez
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tsuyoshi Imasaki
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA.,5Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Svetlana E Sedelnikova
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | | | - Alexandria H Berry
- 6Department of Biology, California Institute of Technology, Pasadena, CA USA
| | | | | | - Yi Jin
- 1School of Chemistry, Cardiff University, Cardiff, UK
| | - David W Rice
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Yuichiro Takagi
- 3Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nigel G J Richards
- 1School of Chemistry, Cardiff University, Cardiff, UK.,7Foundation for Applied Molecular Evolution, Alachua, FL USA
| |
Collapse
|
17
|
Li Q, Zeng Y, Jiang Q, Wu C, Zhou J. Role of mTOR signaling in the regulation of high glucose-induced podocyte injury. Exp Ther Med 2019; 17:2495-2502. [PMID: 30906437 PMCID: PMC6425130 DOI: 10.3892/etm.2019.7236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Podocyte injury, which promotes progressive nephropathy, is considered a key factor in the progression of diabetic nephropathy. The mammalian target of rapamycin (mTOR) signaling cascade controls cell growth, survival and metabolism. The present study investigated the role of mTOR signaling in regulating high glucose (HG)-induced podocyte injury. MTT assay and flow cytometry assay results indicated that HG significantly increased podocyte viability and apoptosis. HG effects on podocytes were suppressed by mTOR complex 1 (mTORC1) inhibitor, rapamycin, and further suppressed by dual mTORC1 and mTORC2 inhibitor, KU0063794, when compared with podocytes that received mannitol treatment. In addition, western blot analysis revealed that the expression levels of Thr-389-phosphorylated p70S6 kinase (p-p70S6K) and phosphorylated Akt (p-Akt) were significantly increased by HG when compared with mannitol treatment. Notably, rapamycin significantly inhibited HG-induced p-p70S6K expression, but did not significantly impact p-Akt expression. However, KU0063794 significantly inhibited the HG-induced p-p70S6K and p-Akt expression levels. Furthermore, the expression of ezrin was significantly reduced by HG when compared with mannitol treatment; however, α-smooth muscle actin (α-SMA) expression was significantly increased. Immunofluorescence analysis on ezrin and α-SMA supported the results of western blot analysis. KU0063794, but not rapamycin, suppressed the effect of HG on the expression levels of ezrin and α-SMA. Thus, it was suggested that the increased activation of mTOR signaling mediated HG-induced podocyte injury. In addition, the present findings suggest that the mTORC1 and mTORC2 signaling pathways may be responsible for the cell viability and apoptosis, and that the mTORC2 pathway could be primarily responsible for the regulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Qiuyue Li
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Zeng
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Jiang
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Cong Wu
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Nephrology Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Oncogenic Amplification of Zygotic Dux Factors in Regenerating p53-Deficient Muscle Stem Cells Defines a Molecular Cancer Subtype. Cell Stem Cell 2018; 23:794-805.e4. [PMID: 30449715 DOI: 10.1016/j.stem.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 01/09/2023]
Abstract
The identity of tumor-initiating cells in many cancer types is unknown. Tumors often express genes associated with embryonic development, although the contributions of zygotic programs to tumor initiation and formation are poorly understood. Here, we show that regeneration-induced loss of quiescence in p53-deficient muscle stem cells (MuSCs) results in rhabdomyosarcoma formation with 100% penetrance. Genomic analyses of purified tumor cells revealed spontaneous and discrete oncogenic amplifications in MuSCs that drive tumorigenesis, including, but not limited to, the amplification of the cleavage-stage Dux transcription factor (TF) Duxbl. We further found that Dux factors drive an early embryonic gene signature that defines a molecular subtype across a broad range of human cancers. Duxbl initiates tumorigenesis by enforcing a mesenchymal-to-epithelial transition, and targeted inactivation of Duxbl specifically in Duxbl-expressing tumor cells abolishes their expansion. These findings reveal how regeneration and genomic instability can interact to activate zygotic genes that drive tumor initiation and growth.
Collapse
|
19
|
Mohamed AD, Shah N, Hettmer S, Vargesson N, Wackerhage H. Analysis of the relationship between the KRAS G12V oncogene and the Hippo effector YAP1 in embryonal rhabdomyosarcoma. Sci Rep 2018; 8:15674. [PMID: 30353028 PMCID: PMC6199242 DOI: 10.1038/s41598-018-33852-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/27/2018] [Indexed: 01/09/2023] Open
Abstract
Persistent hyperactivity of the Hippo effector YAP in activated satellite cells is sufficient to cause embryonal rhabdomyosarcoma (ERMS) in mice. In humans, YAP is abundant and nuclear in the majority of ERMS cases, and high YAP expression is associated with poor survival. However, YAP1 is rarely mutated in human ERMS. Instead, the most common mutations in ERMS are oncogenic RAS mutations. First, to compare YAP1 S127A and KRAS G12V-driven rhabdomyosarcomas, we re-analysed gene expression microarray datasets from mouse rhabdomyosarcomas caused by these genes. This revealed that only 20% of the up or downregulated genes are identical, suggesting substantial differences in gene expression between YAP and KRAS-driven rhabdomyosarcomas. As oncogenic RAS has been linked to YAP in other types of cancer, we also tested whether KRAS G12V alone or in combination with loss of p53 and p16 activates YAP in myoblasts. We found that neither KRAS G12V alone nor KRAS G12V combined with loss of p53 and p16 activated Yap or Yap/Taz-Tead1-4 transcriptional activity in C2C12 myoblasts or U57810 cells. In conclusion, whilst oncogenic KRAS mutation might activate Yap in other cell types, we could find no evidence for this in myoblasts because the expression of KRAS G12V expression did not change Yap/Taz activity in myoblasts and there was a limited overlap in gene expression between KRAS G12V and YAP1 S127A-driven tumours.
Collapse
Affiliation(s)
- Abdalla D Mohamed
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland.
- Institute of Developmental Genetics Helmholtz Zentrum München, German Research Center for Environment and Health Ingolstaedter Landstrasse 1, D-85764, Munich, Neuherberg, Germany.
| | - Nupur Shah
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Medical Center Freiburg, Freiburg, Germany
| | - Neil Vargesson
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Henning Wackerhage
- University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Foresterhill, Aberdeen, AB25 2ZD, Scotland
- Technical University of Munich, Faculty of Sport and Health Sciences, Georg-Brauchle Ring 60-62, 80992, Munich, Germany
| |
Collapse
|
20
|
Yohe ME, Gryder BE, Shern JF, Song YK, Chou HC, Sindiri S, Mendoza A, Patidar R, Zhang X, Guha R, Butcher D, Isanogle KA, Robinson CM, Luo X, Chen JQ, Walton A, Awasthi P, Edmondson EF, Difilippantonio S, Wei JS, Zhao K, Ferrer M, Thomas CJ, Khan J. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med 2018; 10:eaan4470. [PMID: 29973406 PMCID: PMC8054766 DOI: 10.1126/scitranslmed.aan4470] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
The RAS isoforms are frequently mutated in many types of human cancers, including PAX3/PAX7 fusion-negative rhabdomyosarcoma. Pediatric RMS arises from skeletal muscle progenitor cells that have failed to differentiate normally. The role of mutant RAS in this differentiation blockade is incompletely understood. We demonstrate that oncogenic RAS, acting through the RAF-MEK [mitogen-activated protein kinase (MAPK) kinase]-ERK (extracellular signal-regulated kinase) MAPK effector pathway, inhibits myogenic differentiation in rhabdomyosarcoma by repressing the expression of the prodifferentiation myogenic transcription factor, MYOG. This repression is mediated by ERK2-dependent promoter-proximal stalling of RNA polymerase II at the MYOG locus. Small-molecule screening with a library of mechanistically defined inhibitors showed that RAS-driven RMS is vulnerable to MEK inhibition. MEK inhibition with trametinib leads to the loss of ERK2 at the MYOG promoter and releases the transcriptional stalling of MYOG expression. MYOG subsequently opens chromatin and establishes super-enhancers at genes required for late myogenic differentiation. Furthermore, trametinib, in combination with an inhibitor of IGF1R, potently decreases rhabdomyosarcoma cell viability and slows tumor growth in xenograft models. Therefore, this combination represents a potential therapeutic for RAS-mutated rhabdomyosarcoma.
Collapse
Affiliation(s)
- Marielle E Yohe
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Patidar
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Kristine A Isanogle
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Christina M Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ashley Walton
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Elijah F Edmondson
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Dayton TL, Gocheva V, Miller KM, Bhutkar A, Lewis CA, Bronson RT, Vander Heiden MG, Jacks T. Isoform-specific deletion of PKM2 constrains tumor initiation in a mouse model of soft tissue sarcoma. Cancer Metab 2018; 6:6. [PMID: 29854399 PMCID: PMC5977456 DOI: 10.1186/s40170-018-0179-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023] Open
Abstract
Background Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of the glycolytic enzyme pyruvate kinase. PKM2 expression is associated with embryogenesis, tissue regeneration, and cancer. PKM2 is also the pyruvate kinase isoform expressed in most wild-type adult tissues, with PKM1 restricted primarily to skeletal muscle, heart, and brain. To interrogate the functional requirement for PKM2 during tumor initiation in an autochthonous mouse model for soft tissue sarcoma (STS), we used a conditional Pkm2 allele (Pkm2fl ) to abolish PKM2 expression. Results PKM2 deletion slowed tumor onset but did not abrogate eventual tumor outgrowth. PKM2-null sarcoma cells expressed PKM1 with tumors containing a high number of infiltrating PKM2 expressing stromal cells. End-stage PKM2-null tumors showed increased proliferation compared to tumors with a wild-type Pkm2 allele, and tumor metabolite analysis revealed metabolic changes associated with PKM2 loss. Conclusions While PKM2 is not required for soft tissue sarcoma growth, PKM2 expression may facilitate initiation of this tumor type. Because these data differ from what has been observed in other cancer models where PKM2 has been deleted, they argue that the consequences of PKM2 loss during tumor initiation are dependent on the tumor type.
Collapse
Affiliation(s)
- Talya L Dayton
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Vasilena Gocheva
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Kathryn M Miller
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Arjun Bhutkar
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Caroline A Lewis
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Roderick T Bronson
- 2Rodent Histopathology Core, Harvard Medical School, Boston, MA 02111 USA
| | - Matthew G Vander Heiden
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.,3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Tyler Jacks
- 1David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.,4Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| |
Collapse
|
22
|
Brandt LP, Albers J, Hejhal T, Pfundstein S, Gonçalves AF, Catalano A, Wild PJ, Frew IJ. Mouse genetic background influences whether HrasG12V expression plus Cdkn2a knockdown causes angiosarcoma or undifferentiated pleomorphic sarcoma. Oncotarget 2018; 9:19753-19766. [PMID: 29731980 PMCID: PMC5929423 DOI: 10.18632/oncotarget.24831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Soft tissue sarcomas are rare mesenchymal tumours accounting for 1% of adult malignancies and are fatal in approximately one third of patients. Two of the most aggressive and lethal forms of soft tissue sarcomas are angiosarcomas and undifferentiated pleomorphic sarcomas (UPS). To examine sarcoma-relevant molecular pathways, we employed a lentiviral gene regulatory system to attempt to generate in vivo models that reflect common molecular alterations of human angiosarcoma and UPS. Mice were intraveneously injected with MuLE lentiviruses expressing combinations of shRNA against Cdkn2a, Trp53, Tsc2 and Pten with or without expression of HrasG12V , PIK3CAH1047R or Myc. The systemic injection of an ecotropic lentivirus expressing oncogenic HrasG12V together with the knockdown of Cdkn2a or Trp53 was sufficient to initiate angiosarcoma and/or UPS development, providing a flexible system to generate autochthonous mouse models of these diseases. Unexpectedly, different mouse strains developed different types of sarcoma in response to identical genetic drivers, implicating genetic background as a contributor to the genesis and spectrum of sarcomas.
Collapse
Affiliation(s)
- Laura P. Brandt
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Joachim Albers
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tomas Hejhal
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Svende Pfundstein
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology, University of Zurich, Zurich, Switzerland
| | | | - Antonella Catalano
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter J. Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ian J. Frew
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Teot LA, Schneider M, Thorner AR, Tian J, Chi YY, Ducar M, Lin L, Wlodarski M, Grier HE, Fletcher CDM, van Hummelen P, Skapek SX, Hawkins DS, Wagers AJ, Rodriguez-Galindo C, Hettmer S. Clinical and mutational spectrum of highly differentiated, paired box 3:forkhead box protein o1 fusion-negative rhabdomyosarcoma: A report from the Children's Oncology Group. Cancer 2018; 124:1973-1981. [PMID: 29461635 DOI: 10.1002/cncr.31286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pediatric paired box 3:forkhead box protein O1 fusion-negative (PF-) rhabdomyosarcoma (RMS) represents a diverse spectrum of tumors with marked differences in histology, myogenic differentiation, and clinical behavior. METHODS This study sought to evaluate the clinical and mutational spectrum of 24 pediatric PF- human RMS tumors with high levels of myogenic differentiation. Tumors were sequenced with OncoPanel v.2, a panel consisting of the coding regions of 504 genes previously linked to human cancer. RESULTS Most of the tumors (19 of 24) arose at head/neck or genitourinary sites, and the overall survival rate was 100% with a median follow-up time of 4.6 years (range, 1.4-8.6 years). RAS pathway gene mutations were the most common mutations in PF-, highly differentiated RMS tumors. In addition, Hedgehog (Hh) and mechanistic target of rapamycin (mTOR) gene mutations with evidence for functional relevance (high-impact) were identified in subsets of tumors. The presence of Hh and mTOR pathway gene mutations was mutually exclusive and was associated with high-impact RAS pathway gene mutations in 3 of 4 Hh-mutated tumors and in 1 of 6 mTOR-mutated tumors. CONCLUSIONS Interestingly, Hh and mTOR gene mutations were previously associated with rhabdomyomas, which are also known to preferentially arise at head/neck and genitourinary sites. Findings from this study further support the idea that PF-, highly differentiated RMS tumors and rhabdomyomas may represent a continuous spectrum of tumors. Cancer 2018;124:1973-81. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Lisa A Teot
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Aaron R Thorner
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jing Tian
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Yueh-Yun Chi
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | - Matthew Ducar
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ling Lin
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Holcombe E Grier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Paul van Hummelen
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stephen X Skapek
- Division of Hematology/Oncology, Children's Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Douglas S Hawkins
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
- Fred Hutchinson Cancer Center, Seattle, Washington
| | - Amy J Wagers
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Department of Stem Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts
- Paul F. Glenn Center for the Biology of Aging at Harvard Medical School, Boston, Massachusetts
| | - Carlos Rodriguez-Galindo
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
24
|
Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME. Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. Cancer Cell 2018; 33:108-124.e5. [PMID: 29316425 PMCID: PMC5790179 DOI: 10.1016/j.ccell.2017.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.
Collapse
Affiliation(s)
- Catherine J Drummond
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A Hanna
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R Garcia
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J Devine
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alana J Heyrana
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark E Hatley
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
25
|
Fanzani A, Poli M. Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma. Int J Mol Sci 2017; 18:ijms18081718. [PMID: 28783123 PMCID: PMC5578108 DOI: 10.3390/ijms18081718] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Recent data have indicated a fundamental role of iron in mediating a non-apoptotic and non-necrotic oxidative form of programmed cell death termed ferroptosis that requires abundant cytosolic free labile iron to promote membrane lipid peroxidation. Different scavenger molecules and detoxifying enzymes, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), have been shown to overwhelm or exacerbate ferroptosis depending on their expression magnitude. Ferroptosis is emerging as a potential weapon against tumor growth since it has been shown to potentiate cell death in some malignancies. However, this mechanism has been poorly studied in Rhabdomyosarcoma (RMS), a myogenic tumor affecting childhood and adolescence. One of the main drivers of RMS genesis is the Retrovirus Associated DNA Sequences/Extracellular signal Regulated Kinases (RAS/ERK)signaling pathway, the deliberate activation of which correlates with tumor aggressiveness and oxidative stress levels. Since recent studies have indicated that treatment with oxidative inducers can significantly halt RMS tumor progression, in this review we covered different aspects, ranging from iron metabolism in carcinogenesis and tumor growth, to mechanisms of iron-mediated cell death, to highlight the potential role of ferroptosis in counteracting RMS growth.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Maura Poli
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
26
|
Tenente IM, Hayes MN, Ignatius MS, McCarthy K, Yohe M, Sindiri S, Gryder B, Oliveira ML, Ramakrishnan A, Tang Q, Chen EY, Petur Nielsen G, Khan J, Langenau DM. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. eLife 2017; 6. [PMID: 28080960 PMCID: PMC5231408 DOI: 10.7554/elife.19214] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI:http://dx.doi.org/10.7554/eLife.19214.001
Collapse
Affiliation(s)
- Inês M Tenente
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,GABBA Program, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Myron S Ignatius
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, United States
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Marielle Yohe
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Sivasish Sindiri
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Berkley Gryder
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ashwin Ramakrishnan
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Qin Tang
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, United States
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
27
|
Hayes MN, Langenau DM. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol 2017; 138:525-561. [PMID: 28129857 DOI: 10.1016/bs.mcb.2016.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcoma is a type of cancer affecting connective, supportive, or soft tissue of mesenchymal origin. Despite rare incidence in adults (<1%), over 15% of pediatric cancers are sarcoma. Sadly, both adults and children with relapsed or metastatic disease have devastatingly high rates of mortality. Current treatment options for sarcoma include surgery, radiation, and/or chemotherapy; however, significant limitations exist with respect to the efficacy of these strategies. Strong impetus has been placed on the development of novel therapies and preclinical models for uncovering mechanisms involved in the development, progression, and therapy resistance of sarcoma. Over the past 15 years, the zebrafish has emerged as a powerful genetic model of human cancer. High genetic conservation when combined with a unique susceptibility to develop sarcoma has made the zebrafish an effective tool for studying these diseases. Transgenic and gene-activation strategies have been employed to develop zebrafish models of rhabdomyosarcoma, malignant peripheral nerve sheath tumors, Ewing's sarcoma, chordoma, hemangiosarcoma, and liposarcoma. These models all display remarkable molecular and histopathological conservation with their human cancer counterparts and have offered excellent platforms for understanding disease progression in vivo. Short tumor latency and the amenability of zebrafish for ex vivo manipulation, live imaging studies, and tumor cell transplantation have allowed for efficient study of sarcoma initiation, growth, self-renewal, and maintenance. When coupled with facile chemical genetic approaches, zebrafish models of sarcoma have provided a strong translational tool to uncover novel drug pathways and new therapeutic strategies.
Collapse
Affiliation(s)
- M N Hayes
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| | - D M Langenau
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| |
Collapse
|
28
|
Moore JC, Tang Q, Yordán NT, Moore FE, Garcia EG, Lobbardi R, Ramakrishnan A, Marvin DL, Anselmo A, Sadreyev RI, Langenau DM. Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J Exp Med 2016; 213:2575-2589. [PMID: 27810924 PMCID: PMC5110017 DOI: 10.1084/jem.20160378] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/16/2016] [Indexed: 12/03/2022] Open
Abstract
Cell transplantation into immunodeficient mice has revolutionized our understanding of regeneration, stem cell self-renewal, and cancer; yet models for direct imaging of engrafted cells has been limited. Here, we characterize zebrafish with mutations in recombination activating gene 2 (rag2), DNA-dependent protein kinase (prkdc), and janus kinase 3 (jak3). Histology, RNA sequencing, and single-cell transcriptional profiling of blood showed that rag2 hypomorphic mutant zebrafish lack T cells, whereas prkdc deficiency results in loss of mature T and B cells and jak3 in T and putative Natural Killer cells. Although all mutant lines engraft fluorescently labeled normal and malignant cells, only the prkdc mutant fish reproduced as homozygotes and also survived injury after cell transplantation. Engraftment into optically clear casper, prkdc-mutant zebrafish facilitated dynamic live cell imaging of muscle regeneration, repopulation of muscle stem cells within their endogenous niche, and muscle fiber fusion at single-cell resolution. Serial imaging approaches also uncovered stochasticity in fluorescently labeled leukemia regrowth after competitive cell transplantation into prkdc mutant fish, providing refined models to assess clonal dominance and progression in the zebrafish. Our experiments provide an optimized and facile transplantation model, the casper, prkdc mutant zebrafish, for efficient engraftment and direct visualization of fluorescently labeled normal and malignant cells at single-cell resolution.
Collapse
Affiliation(s)
- John C Moore
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Qin Tang
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Nora Torres Yordán
- Harvard Stem Cell Institute, Cambridge, MA 02139
- Harvard University, Cambridge, MA 02138
| | - Finola E Moore
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Elaine G Garcia
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Riadh Lobbardi
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Ashwin Ramakrishnan
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| | - Dieuwke L Marvin
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - David M Langenau
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02139
| |
Collapse
|
29
|
Abstract
Rhabdomyosarcoma (RMS) is a myogenic tumor classified as the most frequent soft tissue sarcoma affecting children and adolescents. The histopathological classification includes 5 different histotypes, with 2 most predominant referred as to embryonal and alveolar, the latter being characterized by adverse outcome. The current molecular classification identifies 2 major subsets, those harboring the fused Pax3-Foxo1 transcription factor generating from a recurrent specific translocation (fusion-positive RMS), and those lacking this signature but harboring mutations in the RAS/PI3K/AKT signaling axis (fusion-negative RMS). Since little attention has been devoted to RMS metabolism until now, in this review we summarize the "state of art" of metabolism and discuss how some of the molecular signatures found in this cancer, as observed in other more common tumors, can predict important metabolic challenges underlying continuous cell growth, oxidative stress resistance and metastasis, which could be the subject of future targeted therapies.
Collapse
Affiliation(s)
- Eugenio Monti
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Alessandro Fanzani
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy.,b Interuniversity Institute of Myology , Rome , Italy
| |
Collapse
|
30
|
Ratajczak MZ, Suszynska M, Kucia M. Does it make sense to target one tumor cell chemotactic factor or its receptor when several chemotactic axes are involved in metastasis of the same cancer? Clin Transl Med 2016; 5:28. [PMID: 27510263 PMCID: PMC4980325 DOI: 10.1186/s40169-016-0113-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
The major problem with cancer progression and anti-cancer therapy is the inherent ability of cancer cells to migrate and establish distant metastases. This ability to metastasize correlates with the presence in a growing tumor of cells with a more malignant phenotype, which express certain cancer stem cell markers. The propensity of malignant cells to migrate and their resistance to radio-chemotherapy somewhat mimics the properties of normal developmentally early stem cells that migrate during organogenesis in the developing embryo. In the past, several factors, including cell migration-promoting cytokines, chemokines, growth factors, bioactive lipids, extracellular nucleotides, and even H(+) ions, were found to influence the metastasis of cancer cells. This plethora of pro-migratory factors demonstrates the existence of significant redundancy in the chemoattractants for cancer cells. In spite of this obvious fact, significant research effort has been dedicated to demonstrating the crucial involvement of particular pro-metastatic factor-receptor axes and the development of new drugs targeting one receptor or one chemoattractant. Based on our own experience working with a model of metastatic rhabdomyosarcoma as well as the work of others, in this review we conclude that targeting a single receptor-ligand pro-metastatic axis will not effectively prevent metastasis and that we should seek other more effective therapeutic options.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA. .,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA.,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA.,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
McKinnon T, Venier R, Dickson BC, Kabaroff L, Alkema M, Chen L, Shern JF, Yohe ME, Khan J, Gladdy RA. Kras activation in p53-deficient myoblasts results in high-grade sarcoma formation with impaired myogenic differentiation. Oncotarget 2016; 6:14220-32. [PMID: 25992772 PMCID: PMC4546462 DOI: 10.18632/oncotarget.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022] Open
Abstract
While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53−/− myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53−/− myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Brendan C Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Manon Alkema
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Li Chen
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Marielle E Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Ontario Institute for Cancer Research, Cancer Stem Cell Program, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Hettmer S, Lin MM, Tchessalova D, Tortorici SJ, Castiglioni A, Desai T, Mao J, McMahon AP, Wagers AJ. Hedgehog-driven myogenic tumors recapitulate skeletal muscle cellular heterogeneity. Exp Cell Res 2016; 340:43-52. [PMID: 26460176 PMCID: PMC4718790 DOI: 10.1016/j.yexcr.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/18/2022]
Abstract
Hedgehog (Hh) pathway activation in R26-SmoM2;CAGGS-CreER mice, which carry a tamoxifen-inducible activated Smoothened allele (SmoM2), results in numerous microscopic tumor foci in mouse skeletal muscle. These tumors exhibit a highly differentiated myogenic phenotype and resemble human fetal rhabdomyomas. This study sought to apply previously established strategies to isolate lineally distinct populations of normal mouse myofiber-associated cells in order to examine cellular heterogeneity in SmoM2 tumors. We demonstrate that established SmoM2 tumors are composed of cells expressing myogenic, adipocytic and hematopoietic lineage markers and differentiation capacity. SmoM2 tumors thus recapitulate the phenotypic and functional hetereogeneity observed in normal mouse skeletal muscle. SmoM2 tumors also contain an expanded population of PAX7+ and MyoD+ satellite-like cells with extremely low clonogenic activity. Selective activation of Hh signaling in freshly isolated muscle satellite cells enhanced terminal myogenic differentiation without stimulating proliferation. Our findings support the conclusion that SmoM2 tumors represent an aberrant skeletal muscle state and demonstrate that, similar to normal muscle, myogenic tumors contain functionally distinct cell subsets, including cells lacking myogenic differentiation potential.
Collapse
Affiliation(s)
- Simone Hettmer
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA; Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany.
| | - Michael M Lin
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Daria Tchessalova
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Sara J Tortorici
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Alessandra Castiglioni
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Tushar Desai
- Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
33
|
A Patient-Derived Xenograft Model of Parameningeal Embryonal Rhabdomyosarcoma for Preclinical Studies. Sarcoma 2015; 2015:826124. [PMID: 26696773 PMCID: PMC4677247 DOI: 10.1155/2015/826124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Embryonal rhabdomyosarcoma (eRMS) is one of the most common soft tissue sarcomas in children and adolescents. Parameningeal eRMS is a variant that is often more difficult to treat than eRMS occurring at other sites. A 14-year-old female with persistent headaches and rapid weight loss was diagnosed with parameningeal eRMS. She progressed and died despite chemotherapy with vincristine, actinomycin-D, and cyclophosphamide plus 50.4 Gy radiation therapy to the primary tumor site. Tumor specimens were acquired by rapid autopsy and tumor tissue was transplanted into immunodeficient mice to create a patient-derived xenograft (PDX) animal model. As autopsy specimens had an ALK R1181C mutation, PDX tumor bearing animals were treated with the pan-kinase inhibitor lestaurtinib but demonstrated no decrease in tumor growth, suggesting that single agent kinase inhibitor therapy may be insufficient in similar cases. This unique parameningeal eRMS PDX model is publicly available for preclinical study.
Collapse
|
34
|
Hettmer S, Schinzel AC, Tchessalova D, Schneider M, Parker CL, Bronson RT, Richards NG, Hahn WC, Wagers AJ. Functional genomic screening reveals asparagine dependence as a metabolic vulnerability in sarcoma. eLife 2015; 4. [PMID: 26499495 PMCID: PMC4695385 DOI: 10.7554/elife.09436] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/23/2015] [Indexed: 01/17/2023] Open
Abstract
Current therapies for sarcomas are often inadequate. This study sought to identify actionable gene targets by selective targeting of the molecular networks that support sarcoma cell proliferation. Silencing of asparagine synthetase (ASNS), an amidotransferase that converts aspartate into asparagine, produced the strongest inhibitory effect on sarcoma growth in a functional genomic screen of mouse sarcomas generated by oncogenic Kras and disruption of Cdkn2a. ASNS silencing in mouse and human sarcoma cell lines reduced the percentage of S phase cells and impeded new polypeptide synthesis. These effects of ASNS silencing were reversed by exogenous supplementation with asparagine. Also, asparagine depletion via the ASNS inhibitor amino sulfoximine 5 (AS5) or asparaginase inhibited mouse and human sarcoma growth in vitro, and genetic silencing of ASNS in mouse sarcoma cells combined with depletion of plasma asparagine inhibited tumor growth in vivo. Asparagine reliance of sarcoma cells may represent a metabolic vulnerability with potential anti-sarcoma therapeutic value. DOI:http://dx.doi.org/10.7554/eLife.09436.001 Sarcoma is a type of cancer that forms in the connective tissues of the body, such as bone, cartilage, muscle and fat. Usually, treatment involves surgical removal of the tumor and/or radiation to kill the tumor cells. However, if sarcomas spread to other parts of the body, the treatment options are limited. Genetic studies have revealed several genetic changes that contribute to the formation of sarcomas. Many sarcomas have a mutation in a gene that encodes a protein called Ras. In 2011, researchers found that injecting Ras mutant muscle cells into the muscles of mice could lead to the formation of sarcomas. Next, the researchers compared gene expression in the mouse sarcoma cells with gene expression in normal mouse muscle cells and found that certain genes appeared to be more highly expressed in the sarcoma cells. These genes were also hyperactive in human sarcoma cells and may promote the growth of sarcomas carrying mutant forms of Ras. Now, Hettmer et al. – including some of the same researchers involved in the earlier work – show that targeting one of these hyperactive genes can slow sarcoma growth. The experiments made use of a technique called ribonucleic acid interference (or RNAi for short) to specifically switch off the expression of the hyperactive genes and then observed how this affected sarcoma growth. Hettmer et al. found that blocking the expression of one particular gene, which encodes an enzyme called asparagine synthetase, slowed down the growth of the sarcoma the most. Asparagine synthetase makes the amino acid asparagine, which is needed to make proteins in cells. Further experiments showed that reducing the amount of asparagine in human and mouse sarcoma cells slowed down the growth of these cells. A drug that lowers the amount of asparagine in cells is already used to treat some blood cancers. Hettmer et al.’s findings suggest that drugs that alter the availability of asparagine in the body might also be useful to treat sarcomas with mutant forms of Ras. DOI:http://dx.doi.org/10.7554/eLife.09436.002
Collapse
Affiliation(s)
- Simone Hettmer
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, United States.,Pediatric Hematology/Oncology, Charité, University Hospital Berlin, Berlin, Germany.,Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.,Joslin Diabetes Center, Harvard Medical School, Boston, United States
| | - Anna C Schinzel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Daria Tchessalova
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, United States.,Joslin Diabetes Center, Harvard Medical School, Boston, United States
| | - Michaela Schneider
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Christina L Parker
- Summer Honors Undergraduate Program, Harvard Medical School, Boston, United States.,University of Maryland, Baltimore County, Baltimore, United States
| | - Roderick T Bronson
- Department of Biomedical Sciences, Tufts University Veterinary School, North Grafton, United States
| | - Nigel Gj Richards
- Department of Chemistry and Chemical Biology, Indiana University - Purdue University Indianapolis, Indianapolis, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, United States.,Joslin Diabetes Center, Harvard Medical School, Boston, United States
| |
Collapse
|
35
|
Slemmons KK, Crose LES, Rudzinski E, Bentley RC, Linardic CM. Role of the YAP Oncoprotein in Priming Ras-Driven Rhabdomyosarcoma. PLoS One 2015; 10:e0140781. [PMID: 26496700 PMCID: PMC4619859 DOI: 10.1371/journal.pone.0140781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Rhabdomyosarcoma (RMS), a cancer characterized by features of skeletal muscle histogenesis, is the most common soft tissue sarcoma of childhood and adolescence. Survival for high-risk groups is less than 30% at 5 years. RMS also occurs during adulthood, with a lower incidence but higher mortality. Recently, mutational profiling has revealed a correlation between activating Ras mutations in the embryonal (eRMS) and pleomorphic (pRMS) histologic variants of RMS, and a poorer outcome for those patients. Independently, the YAP transcriptional coactivator, an oncoprotein kept in check by the Hippo tumor suppressor pathway, is upregulated in eRMS. Here we show that YAP promotes cell proliferation and antagonizes apoptosis and myogenic differentiation of human RMS cells bearing oncogenic Ras mutations in cell culture studies in vitro and in murine xenografts in vivo. Pharmacologic inhibition of YAP by the benzoporphyrin derivative verteporfin decreased cell proliferation and tumor growth in vivo. To interrogate the temporal contribution of YAP in eRMS tumorigenesis, we used a primary human cell-based genetic model of Ras-driven RMS. Constitutively active YAP functioned as an early genetic lesion, permitting bypass of senescence and priming myoblasts to tolerate subsequent expression of hTERT and oncogenic Ras, which were necessary and sufficient to generate murine xenograft tumors mimicking RMS in vivo. This work provides evidence for cooperation between YAP and oncogenic Ras in RMS tumorigenesis, laying the foundation for preclinical co-targeting of these pathways.
Collapse
Affiliation(s)
- Katherine K. Slemmons
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lisa E. S. Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erin Rudzinski
- Department of Laboratories, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Rex C. Bentley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Corinne M. Linardic
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kashi VP, Hatley ME, Galindo RL. Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems. Nat Rev Cancer 2015; 15:426-39. [PMID: 26105539 PMCID: PMC4599785 DOI: 10.1038/nrc3961] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhabdomyosarcoma (RMS) is a mesenchymal malignancy composed of neoplastic primitive precursor cells that exhibit histological features of myogenic differentiation. Despite intensive conventional multimodal therapy, patients with high-risk RMS typically suffer from aggressive disease. The lack of directed therapies against RMS emphasizes the need to further uncover the molecular underpinnings of the disease. In this Review, we discuss the notable advances in the model systems now available to probe for new RMS-targetable pathogenetic mechanisms, and the possibilities for enhanced RMS therapeutics and improved clinical outcomes.
Collapse
Affiliation(s)
- Venkatesh P Kashi
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Rene L Galindo
- 1] Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9072, USA. [2] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA. [3] Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9063, USA
| |
Collapse
|
37
|
Faggi F, Codenotti S, Poliani PL, Cominelli M, Chiarelli N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanzani A. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS One 2015; 10:e0130287. [PMID: 26086601 PMCID: PMC4472524 DOI: 10.1371/journal.pone.0130287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/19/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Tulipano
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Zanola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Harriet P. Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Keller
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- Children’s Cancer Therapy Development Institute, Fort Collins, CO, United States of America
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
- * E-mail:
| |
Collapse
|
38
|
Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. J Transl Med 2015; 95:585-602. [PMID: 25822667 DOI: 10.1038/labinvest.2015.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood soft tissue tumor with broad expression of markers that are typically found in skeletal muscle. Cavin-1 is a recently discovered protein actively cooperating with Caveolin-1 (Cav-1) in the morphogenesis of caveolae and whose role in cancer is drawing increasing attention. Using a combined in silico and in vitro analysis here we show that Cavin-1 is expressed in myogenic RMS tumors as well as in human and primary mouse RMS cultures, exhibiting a broad subcellular localization, ranging from nuclei and cytosol to plasma membrane. In particular, the coexpression and plasma membrane interaction between Cavin-1 and Cav-1 characterized the proliferation of human and mouse RMS cell cultures, while a downregulation of their expression levels was observed during the myogenic differentiation. Knockdown of Cavin-1 or Cav-1 in the human RD and RH30 cells led to impairment of cell proliferation and migration. Moreover, loss of Cavin-1 in RD cells impaired the anchorage-independent cell growth in soft agar. While the loss of Cavin-1 did not affect the Cav-1 protein levels in RMS cells, Cav-1 overexpression and knockdown triggered a rise or depletion of Cavin-1 protein levels in RD cells, respectively, in turn reflecting on increased or decreased cell proliferation, migration and anchorage-independent cell growth. Collectively, these data indicate that the interaction between Cavin-1 and Cav-1 underlies the cell growth and migration in myogenic tumors.
Collapse
|
39
|
Albers J, Danzer C, Rechsteiner M, Lehmann H, Brandt LP, Hejhal T, Catalano A, Busenhart P, Gonçalves AF, Brandt S, Bode PK, Bode-Lesniewska B, Wild PJ, Frew IJ. A versatile modular vector system for rapid combinatorial mammalian genetics. J Clin Invest 2015; 125:1603-19. [PMID: 25751063 PMCID: PMC4396471 DOI: 10.1172/jci79743] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 01/29/2023] Open
Abstract
Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.
Collapse
|
40
|
Hettmer S, Bronson RT, Wagers AJ. Distinct malignant behaviors of mouse myogenic tumors induced by different oncogenetic lesions. Front Oncol 2015; 5:50. [PMID: 25759794 PMCID: PMC4338657 DOI: 10.3389/fonc.2015.00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are heterogeneous cancers with myogenic differentiation features. The cytogenetic and mutational aberrations in RMS are diverse. This study examined differences in the malignant behavior of two genetically distinct and disease-relevant mouse myogenic tumor models. Kras; p1619(null) myogenic tumors, initiated by expression of oncogenic Kras in p16p19(null) mouse satellite cells, were metastatic to the lungs of the majority of tumor-bearing animals and repopulated tumors in seven of nine secondary recipients. In contrast, SmoM2 tumors, initiated by ubiquitous expression of a mutant Smoothened allele, did not metastasize and repopulated tumors in 2 of 18 recipients only. In summary, genetically distinct myogenic tumors in mice exhibit marked differences in malignant behavior.
Collapse
Affiliation(s)
- Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg , Freiburg , Germany ; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University , Boston, MA , USA ; Howard Hughes Medical Institute , Chevy Chase, MD , USA ; Joslin Diabetes Center , Boston, MA , USA
| | - Roderick T Bronson
- Department of Biomedical Sciences, Tufts University Veterinary School , North Grafton, MA , USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University , Boston, MA , USA ; Howard Hughes Medical Institute , Chevy Chase, MD , USA ; Joslin Diabetes Center , Boston, MA , USA
| |
Collapse
|
41
|
Rajurkar M, Huang H, Cotton JL, Brooks JK, Sicklick J, McMahon AP, Mao J. Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene 2014; 33:5370-8. [PMID: 24276242 PMCID: PMC4309268 DOI: 10.1038/onc.2013.480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
Dysregulation of the Hedgehog (Hh)-Gli signaling pathway is implicated in a variety of human cancers, including basal cell carcinoma (BCC), medulloblastoma (MB) and embryonal rhabdhomyosarcoma (eRMS), three principle tumors associated with human Gorlin syndrome. However, the cells of origin of these tumors, including eRMS, remain poorly understood. In this study, we explore the cell populations that give rise to Hh-related tumors by specifically activating Smoothened (Smo) in both Hh-producing and -responsive cell lineages in postnatal mice. Interestingly, we find that unlike BCC and MB, eRMS originates from the stem/progenitor populations that do not normally receive active Hh signaling. Furthermore, we find that the myogenic lineage in postnatal mice is largely Hh quiescent and that Pax7-expressing muscle satellite cells are not able to give rise to eRMS upon Smo or Gli1/2 overactivation in vivo, suggesting that Hh-induced skeletal muscle eRMS arises from Hh/Gli quiescent non-myogenic cells. In addition, using the Gli1 null allele and a Gli3 repressor allele, we reveal a specific genetic requirement for Gli proteins in Hh-induced eRMS formation and provide molecular evidence for the involvement of Sox4/11 in eRMS cell survival and differentiation.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - He Huang
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jennifer L. Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Julie K. Brooks
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason Sicklick
- Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, WM Keck School of Medicine of the University of Southern California, Los Angeles, CA 90015
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
42
|
Hettmer S, Li Z, Billin AN, Barr FG, Cornelison DDW, Ehrlich AR, Guttridge DC, Hayes-Jordan A, Helman LJ, Houghton PJ, Khan J, Langenau DM, Linardic CM, Pal R, Partridge TA, Pavlath GK, Rota R, Schäfer BW, Shipley J, Stillman B, Wexler LH, Wagers AJ, Keller C. Rhabdomyosarcoma: current challenges and their implications for developing therapies. Cold Spring Harb Perspect Med 2014; 4:a025650. [PMID: 25368019 PMCID: PMC4208704 DOI: 10.1101/cshperspect.a025650] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhabdomyosarcoma (RMS) represents a rare, heterogeneous group of mesodermal malignancies with skeletal muscle differentiation. One major subgroup of RMS tumors (so-called "fusion-positive" tumors) carries exclusive chromosomal translocations that join the DNA-binding domain of the PAX3 or PAX7 gene to the transactivation domain of the FOXO1 (previously known as FKHR) gene. Fusion-negative RMS represents a heterogeneous spectrum of tumors with frequent RAS pathway activation. Overtly metastatic disease at diagnosis is more frequently found in individuals with fusion-positive than in those with fusion-negative tumors. RMS is the most common pediatric soft-tissue sarcoma, and approximately 60% of all children and adolescents diagnosed with RMS are cured by currently available multimodal therapies. However, a curative outcome is achieved in <30% of high-risk individuals with RMS, including all those diagnosed as adults, those diagnosed with fusion-positive tumors during childhood (including metastatic and nonmetastatic tumors), and those diagnosed with metastatic disease during childhood (including fusion-positive and fusion-negative tumors). This white paper outlines current challenges in RMS research and their implications for developing more effective therapies. Urgent clinical problems include local control, systemic disease, need for improved risk stratification, and characterization of differences in disease course in children and adults. Biological challenges include definition of the cellular functions of PAX-FOXO1 fusion proteins, clarification of disease heterogeneity, elucidation of the cellular origins of RMS, delineation of the tumor microenvironment, and identification of means for rational selection and testing of new combination therapies. To streamline future therapeutic developments, it will be critical to improve access to fresh tumor tissue for research purposes, consider alternative trial designs to optimize early clinical testing of candidate drugs, coalesce advocacy efforts to garner public and industry support, and facilitate collaborative efforts between academia and industry.
Collapse
|
43
|
Li G, Kikuchi K, Radka M, Abraham J, Rubin BP, Keller C. IL-4 receptor blockade abrogates satellite cell: rhabdomyosarcoma fusion and prevents tumor establishment. Stem Cells 2014; 31:2304-12. [PMID: 23897781 DOI: 10.1002/stem.1491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 11/07/2022]
Abstract
Tumor cells of the muscle-related cancer alveolar rhabdomyosarcoma (aRMS) have dysregulated terminal myogenic differentiation that is characterized by continuous proliferation, decreased capacity to express markers of terminal differentiation, and inability of tumor cells to fuse to one another in the manner seen for normal myoblasts. Whether aRMS tumor cells can fuse with normal myogenic progenitors such as skeletal muscle stem cells (satellite cells) or myoblasts is unknown, as is the biological effect of fusion events if the phenomenon occurs. To study this possibility, we isolated primary satellite cells harboring a lacZ Cre-LoxP reporter gene for coculture with murine aRMS primary tumor cells expressing Cre. Results of in vitro and in vivo experiments demonstrated tumor cell-muscle cell progenitor fusion events as well as accelerated rates of tumor establishment and progression when satellite cells and derived muscle progenitors were coinjected with tumor cells in an orthotopic allograft model. Interleukin 4 receptor (IL-4R) blocking antibody treatment reversed fusion events in vitro and blocked tumor initiation and progression in vivo. Taken together, this study supports a potential role of tumor cell-host cell fusion and the strong therapeutic potential of IL-4R blockade to prevent the establishment of RMS tumors at new anatomical sites.
Collapse
Affiliation(s)
- Guangheng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The cell of origin remains debated for the aggressive childhood cancer alveolar rhabdomyosarcoma (aRMS). Abraham et al. used conditional mouse models of aRMS to activate the Pax3:Foxo1 fusion oncogene and inactivate p53 in several lineages of early development. The results reveal that the tumor cell of origin significantly influences tumor sensitivity to targeted therapies. Furthermore, the transcriptional regulation of the Pax3:Foxo1a locus varies by lineage of origin. These discoveries led to the identification of the histone deacetylase inhibitor entinostat as a potential agent for pharmacological intervention. Lineage or cell of origin of cancers is often unknown and thus is not a consideration in therapeutic approaches. Alveolar rhabdomyosarcoma (aRMS) is an aggressive childhood cancer for which the cell of origin remains debated. We used conditional genetic mouse models of aRMS to activate the pathognomonic Pax3:Foxo1 fusion oncogene and inactivate p53 in several stages of prenatal and postnatal muscle development. We reveal that lineage of origin significantly influences tumor histomorphology and sensitivity to targeted therapeutics. Furthermore, we uncovered differential transcriptional regulation of the Pax3:Foxo1 locus by tumor lineage of origin, which led us to identify the histone deacetylase inhibitor entinostat as a pharmacological agent for the potential conversion of Pax3:Foxo1-positive aRMS to a state akin to fusion-negative RMS through direct transcriptional suppression of Pax3:Foxo1.
Collapse
|
45
|
Development of genetically flexible mouse models of sarcoma using RCAS-TVA mediated gene delivery. PLoS One 2014; 9:e94817. [PMID: 24733554 PMCID: PMC3986235 DOI: 10.1371/journal.pone.0094817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies and unfortunately there are limited functional genomics platforms to assess the molecular pathways contributing to sarcomagenesis. Thus, novel model systems are needed to validate which genes should be targeted for therapeutic intervention. We hypothesized that delivery of oncogenes into mouse skeletal muscle using a retroviral (RCAS-TVA) system would result in sarcomagenesis. We also sought to determine if the cell type transformed (mesenchymal progenitors vs. terminally differentiated tissues) would influence sarcoma biology. Cells transduced with RCAS vectors directing the expression of oncoproteins KrasG12D, c-Myc and/or Igf2 were injected into the hindlimbs of mice that expressed the retroviral TVA receptor in neural/mesenchymal progenitors, skeletal/cardiac muscle or ubiquitously (N-tva, AKE and BKE strains respectively). Disrupting the G1 checkpoint CDKN2 (p16/p19-/-) resulted in sarcoma in 30% of p16/p19-/- xN-tva mice with a median latency of 23 weeks (range 8-40 weeks). A similar incidence occurred in p16/p19-/- xBKE mice (32%), however, a shorter median latency (10.4 weeks) was observed. p16/p19-/- xAKE mice also developed sarcomas (24% incidence; median 9 weeks) yet 31% of mice also developed lung sarcomas. Gene-anchored PCR demonstrated retroviral DNA integration in 86% of N-tva, 93% of BKE and 88% of AKE tumors. KrasG12D was the most frequent oncogene isolated. Oncogene delivery by the RCAS-TVA system can generate sarcomas in mice with a defective cell cycle checkpoint. Sarcoma biology differed between the different RCAS models we created, likely due to the cell population being transformed. This genetically flexible system will be a valuable tool for sarcoma research.
Collapse
|
46
|
Yen J, White RM, Stemple DL. Zebrafish models of cancer: progress and future challenges. Curr Opin Genet Dev 2014; 24:38-45. [PMID: 24657535 PMCID: PMC4003353 DOI: 10.1016/j.gde.2013.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/21/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
Abstract
The need for scalable strategies to probe the biological consequences of candidate cancer genes has never been more pressing. The zebrafish, with its capacity for high-throughput transgenesis, in vivo imaging and chemical/genetic screening, has ideal features for undertaking this task. Unique biological insights from zebrafish have already led to the identification of novel oncogenic drivers and small molecules being used to treat the human cancer. This review summarizes the recent main findings and describes pertinent areas where the zebrafish can greatly contribute to our understanding of cancer biology and treatment.
Collapse
Affiliation(s)
- Jennifer Yen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Richard M White
- Memorial Sloan Kettering Cancer Center and Weill-Cornell Medical College, New York, NY 11788, United States
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
47
|
Radons J. The role of inflammation in sarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:259-313. [PMID: 24818727 DOI: 10.1007/978-3-0348-0837-8_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sarcomas encompass a heterogenous group of tumors with diverse pathologically and clinically overlapping features. It is a rarely curable disease, and their management requires a multidisciplinary team approach. Chronic inflammation has emerged as one of the hallmarks of tumors including sarcomas. Classical inflammation-associated sarcomas comprise the inflammatory malignant fibrous histiocytoma and Kaposi sarcoma. The identification of specific chromosomal translocations and important intracellular signaling pathways such as Ras/Raf/MAPK, insulin-like growth factor, PI3K/AKT/mTOR, sonic hedgehog and Notch together with the increasing knowledge of angiogenesis has led to development of targeted therapies that aim to interrupt these pathways. Innovative agents like oncolytic viruses opened the way to design new therapeutic options with encouraging findings. Preclinical evidence also highlights the therapeutic potential of anti-inflammatory nutraceuticals as they can inhibit multiple pathways while being less toxic. This chapter gives an overview of actual therapeutic standards, newest evidence-based studies and exciting options for targeted therapies in sarcomas.
Collapse
Affiliation(s)
- Jürgen Radons
- Department of Radiotherapy and Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany,
| |
Collapse
|
48
|
Kikuchi K, Taniguchi E, Chen HIH, Svalina MN, Abraham J, Huang ET, Nishijo K, Davis S, Louden C, Zarzabal LA, Recht O, Bajwa A, Berlow N, Suelves M, Perkins SL, Meltzer PS, Mansoor A, Michalek JE, Chen Y, Rubin BP, Keller C. Rb1 loss modifies but does not initiate alveolar rhabdomyosarcoma. Skelet Muscle 2013; 3:27. [PMID: 24274149 PMCID: PMC4177545 DOI: 10.1186/2044-5040-3-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/23/2013] [Indexed: 01/31/2023] Open
Abstract
Background Alveolar rhabdomyosarcoma (aRMS) is a myogenic childhood sarcoma frequently associated with a translocation-mediated fusion gene, Pax3:Foxo1a. Methods We investigated the complementary role of Rb1 loss in aRMS tumor initiation and progression using conditional mouse models. Results Rb1 loss was not a necessary and sufficient mutational event for rhabdomyosarcomagenesis, nor a strong cooperative initiating mutation. Instead, Rb1 loss was a modifier of progression and increased anaplasia and pleomorphism. Whereas Pax3:Foxo1a expression was unaltered, biomarkers of aRMS versus embryonal rhabdomyosarcoma were both increased, questioning whether these diagnostic markers are reliable in the context of Rb1 loss. Genome-wide gene expression in Pax3:Foxo1a,Rb1 tumors more closely approximated aRMS than embryonal rhabdomyosarcoma. Intrinsic loss of pRb function in aRMS was evidenced by insensitivity to a Cdk4/6 inhibitor regardless of whether Rb1 was intact or null. This loss of function could be attributed to low baseline Rb1, pRb and phospho-pRb expression in aRMS tumors for which the Rb1 locus was intact. Pax3:Foxo1a RNA interference did not increase pRb or improve Cdk inhibitor sensitivity. Human aRMS shared the feature of low and/or heterogeneous tumor cell pRb expression. Conclusions Rb1 loss from an already low pRb baseline is a significant disease modifier, raising the possibility that some cases of pleomorphic rhabdomyosarcoma may in fact be Pax3:Foxo1a-expressing aRMS with Rb1 or pRb loss of function.
Collapse
Affiliation(s)
- Ken Kikuchi
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Eri Taniguchi
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hung-I Harry Chen
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Matthew N Svalina
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Jinu Abraham
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Elaine T Huang
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Koichi Nishijo
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sean Davis
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Christopher Louden
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Lee Ann Zarzabal
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Olivia Recht
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Ayeza Bajwa
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Noah Berlow
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| | - Mònica Suelves
- Institut de Medicina Predictiva i Personalitzada del Càncer, Ctra. de Can Ruti, Barcelona 08916, Spain
| | - Sherrie L Perkins
- ARUP Laboratories and Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul S Meltzer
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Atiya Mansoor
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joel E Michalek
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Yidong Chen
- Departments of Epidemiology & Biostatistics, Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA.,Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, MD 20877, USA
| | - Brian P Rubin
- Departments of Anatomic Pathology and Molecular Genetics, Taussig Cancer Center and Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Charles Keller
- Department of Pediatrics, Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Portland, OR 97239, USA
| |
Collapse
|
49
|
Storer NY, White RM, Uong A, Price E, Nielsen GP, Langenau DM, Zon LI. Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis. Development 2013; 140:3040-50. [PMID: 23821038 DOI: 10.1242/dev.087858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhabdomyosarcoma is a pediatric malignancy thought to arise from the uncontrolled proliferation of myogenic cells. Here, we have generated models of rhabdomyosarcoma in the zebrafish by inducing oncogenic KRAS(G12D) expression at different stages during muscle development. Several zebrafish promoters were used, including the cdh15 and rag2 promoters, which drive gene expression in early muscle progenitors, and the mylz2 promoter, which is expressed in differentiating myoblasts. The tumors that developed differed in their ability to recapitulate normal myogenesis. cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish developed tumors that displayed an inability to complete muscle differentiation as determined by histological appearance and gene expression analyses. By contrast, mylz2:KRAS(G12D) tumors more closely resembled mature skeletal muscle and were most similar to well-differentiated human rhabdomyosarcoma in terms of gene expression. mylz2:KRAS(G12D) fish showed significantly improved survival compared with cdh15:KRAS(G12D) and rag2:KRAS(G12D) fish. Tumor-propagating activity was enriched in myf5-expressing cell populations within all of the tumor types. Our results demonstrate that oncogenic KRAS(G12D) expression at different stages during muscle development has profound effects on the ability of tumor cells to recapitulate normal myogenesis, altering the tumorigenic capability of these cells.
Collapse
Affiliation(s)
- Narie Y Storer
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Chen EY, Dobrinski KP, Brown KH, Clagg R, Edelman E, Ignatius MS, Chen JYH, Brockmann J, Nielsen GP, Ramaswamy S, Keller C, Lee C, Langenau DM. Cross-species array comparative genomic hybridization identifies novel oncogenic events in zebrafish and human embryonal rhabdomyosarcoma. PLoS Genet 2013; 9:e1003727. [PMID: 24009521 PMCID: PMC3757044 DOI: 10.1371/journal.pgen.1003727] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022] Open
Abstract
Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS – identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer. Cancer is a complex genetic disease that is often associated with regional gains and losses of genomic DNA segments. These changes result in aberrant gene expression and drive continued tumor growth. Because amplified and deleted DNA segments tend to span large regions of chromosomes, it has been challenging to identify the genes that are required for continued tumor growth and progression. Array comparative genomic hybridization (array CGH) is an effective technology in identifying abnormal copy number variations in cancer genomes. In this study, array CGH was used in a zebrafish model of embryonal rhabdomyosarcoma - a pediatric muscle tumor. Our work shows that the zebrafish cancer genome contains a small number of recurrent DNA copy number changes, which are also commonly amplified in the human disease. Moreover, these chromosomal regions are small, facilitating rapid identification of candidate oncogenes. A subset of genes identified in zebrafish array CGH was prioritized for functional characterization in human ERMS, identifying evolutionarily conserved pathways that regulate proliferation, migration, differentiation, and neovascularization. Our results demonstrate the broad utility of cross-species array CGH comparisons of human and zebrafish cancer and provide a much needed discovery platform for identifying critical cancer-causing genes in a wide range of malignancies.
Collapse
Affiliation(s)
- Eleanor Y. Chen
- Division of Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kimberly P. Dobrinski
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Pathology and Cell Biology, College of Medicine, University of Southern Florida, Tampa, Florida, United States of America
| | - Kim H. Brown
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Biology, Portland State University, Portland, Oregon, United States of America
| | - Ryan Clagg
- Division of Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Elena Edelman
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Myron S. Ignatius
- Division of Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jin Yun Helen Chen
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Jillian Brockmann
- Division of Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - G. Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sridhar Ramaswamy
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Charles Lee
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - David M. Langenau
- Division of Molecular Pathology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- Cancer Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|