1
|
Jafri M, Li L, Liang B, Luo M. The Effect of Heparin and Other Exogenous Glycosaminoglycans (GAGs) in Reducing IL-1β-Induced Pro-Inflammatory Cytokine IL-8 and IL-6 mRNA Expression and the Potential Role for Reducing Inflammation. Pharmaceuticals (Basel) 2024; 17:371. [PMID: 38543157 PMCID: PMC10976005 DOI: 10.3390/ph17030371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Glycosaminoglycans (GAGs) are long linear polysaccharides found in every mammalian tissue. Previously thought only to be involved in cellular structure or hydration, GAGs are now known to be involved in cell signaling and protein modulation in cellular adhesion, growth, proliferation, and anti-coagulation. In this study, we showed that GAGs have an inhibitory effect on the IL-1β-stimulated mRNA expression of IL-6 and IL-8. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), chondroitin (p < 0.049), dermatan (p < 0.0027), and hyaluronan (p < 0.0005) significantly reduced the IL-1β-induced IL-8 mRNA expression in HeLa cells. Exogenous heparin (p < 0.0001), heparan (p < 0.0001), and dermatan (p < 0.0027) also significantly reduced IL-1β-induced IL-6 mRNA expression in HeLa cells, but exogenous chondroitin and hyaluronan had no significant effect. The exogenous GAGs may reduce the transcription of these inflammatory cytokines through binding to TILRR, a co-receptor of IL-1R1, and block/reduce the interactions of TILRR with IL-1R1.
Collapse
Affiliation(s)
- Murtaza Jafri
- Faculty of Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Lin Li
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
| | - Binhua Liang
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ma Luo
- National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (L.L.); (B.L.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Sligar AD, Howe G, Goldman J, Felli P, Gómez-Hernández A, Takematsu E, Veith A, Desai S, Riley WJ, Singeetham R, Mei L, Callahan G, Ashirov D, Smalling R, Baker AB. Syndecan-4 Proteoliposomes Enhance Revascularization in a Rabbit Hind Limb Ischemia Model of Peripheral Ischemia. Acta Biomater 2023:S1742-7061(23)00331-8. [PMID: 37321528 DOI: 10.1016/j.actbio.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Andrew D Sligar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Julia Goldman
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Austin Veith
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Shubh Desai
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - William J Riley
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Rohan Singeetham
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Lei Mei
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gregory Callahan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - David Ashirov
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX; Memorial Hermann Heart and Vascular Institute, Houston, TX
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX.
| |
Collapse
|
3
|
Massidda MW, Im B, Lee J, Baker AB. Mechanical conditioning of human mesenchymal stem cells for enhancing vascular regeneration. STAR Protoc 2023; 4:102103. [PMID: 36853695 PMCID: PMC9929623 DOI: 10.1016/j.xpro.2023.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are an appealing cell type for therapeutic applications but remain limited by poor efficacy in clinical trials. Here, we describe a conditioning technique that enhances the vascular regenerative properties of hMSCs and increases their expression of endothelial cell and pericyte markers. We also describe an alginate gel encapsulation protocol for delivering the conditioned cells. For complete details on the use and execution of this protocol, please refer to Lee et al. (2021).1.
Collapse
Affiliation(s)
- Miles W Massidda
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - ByungGee Im
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Jason Lee
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
5
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Støle TP, Lunde M, Shen X, Martinsen M, Lunde PK, Li J, Lockwood F, Sjaastad I, Louch WE, Aronsen JM, Christensen G, Carlson CR. The female syndecan-4−/− heart has smaller cardiomyocytes, augmented insulin/pSer473-Akt/pSer9-GSK-3β signaling, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels. Front Cell Dev Biol 2022; 10:908126. [PMID: 36092718 PMCID: PMC9452846 DOI: 10.3389/fcell.2022.908126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In cardiac muscle, the ubiquitously expressed proteoglycan syndecan-4 is involved in the hypertrophic response to pressure overload. Protein kinase Akt signaling, which is known to regulate hypertrophy, has been found to be reduced in the cardiac muscle of exercised male syndecan-4−/− mice. In contrast, we have recently found that pSer473-Akt signaling is elevated in the skeletal muscle (tibialis anterior, TA) of female syndecan-4−/− mice. To determine if the differences seen in Akt signaling are sex specific, we have presently investigated Akt signaling in the cardiac muscle of sedentary and exercised female syndecan-4−/− mice. To get deeper insight into the female syndecan-4−/− heart, alterations in cardiomyocyte size, a wide variety of different extracellular matrix components, well-known syndecan-4 binding partners and associated signaling pathways have also been investigated.Methods: Left ventricles (LVs) from sedentary and exercise trained female syndecan-4−/− and WT mice were analyzed by immunoblotting and real-time PCR. Cardiomyocyte size and phosphorylated Ser473-Akt were analyzed in isolated adult cardiomyocytes from female syndecan-4−/− and WT mice by confocal imaging. LV and skeletal muscle (TA) from sedentary male syndecan-4−/− and WT mice were immunoblotted with Akt antibodies for comparison. Glucose levels were measured by a glucometer, and fasting blood serum insulin and C-peptide levels were measured by ELISA.Results: Compared to female WT hearts, sedentary female syndecan-4−/− LV cardiomyocytes were smaller and hearts had higher levels of pSer473-Akt and its downstream target pSer9-GSK-3β. The pSer473-Akt inhibitory phosphatase PHLPP1/SCOP was lowered, which may be in response to the elevated serum insulin levels found in the female syndecan-4−/− mice. We also observed lowered levels of pThr308-Akt/Akt and GLUT4 in the female syndecan-4−/− heart and an increased LRP6 level after exercise. Otherwise, few alterations were found. The pThr308-Akt and pSer473-Akt levels were unaltered in the cardiac and skeletal muscles of sedentary male syndecan-4−/− mice.Conclusion: Our data indicate smaller cardiomyocytes, an elevated insulin/pSer473-Akt/pSer9-GSK-3β signaling pathway, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels in the female syndecan-4−/− heart. In contrast, cardiomyocyte size, and Akt signaling were unaltered in both cardiac and skeletal muscles from male syndecan-4−/− mice, suggesting important sex differences.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- *Correspondence: Thea Parsberg Støle,
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Marita Martinsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Francesca Lockwood
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K. G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Takematsu E, Massidda M, Auster J, Chen PC, Im B, Srinath S, Canga S, Singh A, Majid M, Sherman M, Dunn A, Graham A, Martin P, Baker AB. Transmembrane stem cell factor protein therapeutics enhance revascularization in ischemia without mast cell activation. Nat Commun 2022; 13:2497. [PMID: 35523773 PMCID: PMC9076913 DOI: 10.1038/s41467-022-30103-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Stem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Miles Massidda
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jeff Auster
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Po-Chih Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - ByungGee Im
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sanjana Srinath
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sophia Canga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Aditya Singh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Michael Sherman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, G4 0BA, Scotland, UK
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, G4 0BA, Scotland, UK
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Shaik F, Balderstone MJM, Arokiasamy S, Whiteford JR. Roles of Syndecan-4 in cardiac injury and repair. Int J Biochem Cell Biol 2022; 146:106196. [PMID: 35331918 DOI: 10.1016/j.biocel.2022.106196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The heparan sulphate proteoglycan Syndecan-4 belongs to a 4-member family of transmembrane receptors. Genetic deletion of Syndecan-4 in mice causes negligible developmental abnormalities however when challenged these animals show distinct phenotypes. Synedcan-4 is expressed in many cell types in the heart and its expression is elevated in response to cardiac injury and recent studies have suggested roles for Syndecan-4 in repair mechanisms within the damaged heart. The purpose of this review is to explore these biological insights into the role of Syndecan-4 in both the injured heart and later during cardiac repair and remodeling.
Collapse
Affiliation(s)
- Faheem Shaik
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Michaela J M Balderstone
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| | - James R Whiteford
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| |
Collapse
|
9
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Keller-Pinter A, Gyulai-Nagy S, Becsky D, Dux L, Rovo L. Syndecan-4 in Tumor Cell Motility. Cancers (Basel) 2021; 13:cancers13133322. [PMID: 34282767 PMCID: PMC8268284 DOI: 10.3390/cancers13133322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell migration is crucial fReaor metastasis formation and a hallmark of malignancy. The primary cause of high mortality among oncology patients is the ability of cancer cells to metastasize. To form metastasis, primary tumor cells must be intrinsically able to move. The transmembrane, heparan sulfate proteoglycan syndecan-4 (SDC4) exhibits multiple functions in signal transduction by regulating Rac1 GTPase activity and consequently actin remodeling, as well as regulating focal adhesion kinase, protein kinase C-alpha and the level of intracellular calcium. By affecting several signaling pathways and biological processes, SDC4 is involved in cell migration under physiological and pathological conditions as well. In this review, we discuss the SDC4-mediated cell migration focusing on the role of SDC4 in tumor cell movement. Abstract Syndecan-4 (SDC4) is a ubiquitously expressed, transmembrane proteoglycan bearing heparan sulfate chains. SDC4 is involved in numerous inside-out and outside-in signaling processes, such as binding and sequestration of growth factors and extracellular matrix components, regulation of the activity of the small GTPase Rac1, protein kinase C-alpha, the level of intracellular calcium, or the phosphorylation of focal adhesion kinase. The ability of this proteoglycan to link the extracellular matrix and actin cytoskeleton enables SDC4 to contribute to biological functions like cell adhesion and migration, cell proliferation, cytokinesis, cellular polarity, or mechanotransduction. The multiple roles of SDC4 in tumor pathogenesis and progression has already been demonstrated; therefore, the expression and signaling of SDC4 was investigated in several tumor types. SDC4 influences tumor progression by regulating cell proliferation as well as cell migration by affecting cell-matrix adhesion and several signaling pathways. Here, we summarize the general role of SDC4 in cell migration and tumor cell motility.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
- Correspondence:
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
11
|
Chen W, Luo J, Ye Y, Hoyle R, Liu W, Borst R, Kazani S, Shikatani EA, Erpenbeck VJ, Pavord ID, Klenerman P, Sandham DA, Xue L. The Roles of Type 2 Cytotoxic T Cells in Inflammation, Tissue Remodeling, and Prostaglandin (PG) D 2 Production Are Attenuated by PGD 2 Receptor 2 Antagonism. THE JOURNAL OF IMMUNOLOGY 2021; 206:2714-2724. [PMID: 34011519 PMCID: PMC7610864 DOI: 10.4049/jimmunol.2001245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Multiple proinflammatory effects of Tc2 cells are inhibited by DP2 antagonism. Tissue-remodeling functions of Tc2 cells are attenuated by DP2 antagonism. Autocrine/paracrine PGD2 production in Tc2 cells is reduced by DP2 antagonism.
Human type 2 cytotoxic T (Tc2) cells are enriched in severe eosinophilic asthma and can contribute to airway eosinophilia. PGD2 and its receptor PGD2 receptor 2 (DP2) play important roles in Tc2 cell activation, including migration, cytokine production, and survival. In this study, we revealed novel, to our knowledge, functions of the PGD2/DP2 axis in Tc2 cells to induce tissue-remodeling effects and IgE-independent PGD2 autocrine production. PGD2 upregulated the expression of tissue-remodeling genes in Tc2 cells that enhanced the fibroblast proliferation and protein production required for tissue repair and myofibroblast differentiation. PGD2 stimulated Tc2 cells to produce PGD2 using the routine PGD2 synthesis pathway, which also contributed to TCR-dependent PGD2 production in Tc2 cells. Using fevipiprant, a specific DP2 antagonist, we demonstrated that competitive inhibition of DP2 not only completely blocked the cell migration, adhesion, proinflammatory cytokine production, and survival of Tc2 cells triggered by PGD2 but also attenuated the tissue-remodeling effects and autocrine/paracrine PGD2 production in Tc2 induced by PGD2 and other stimulators. These findings further confirmed the anti-inflammatory effect of fevipiprant and provided a better understanding of the role of Tc2 cells in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Wentao Chen
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jian Luo
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Yuan Ye
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ryan Hoyle
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Wei Liu
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Rowie Borst
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Shamsah Kazani
- Novartis Institutes for BioMedical Research, Cambridge MA
| | | | | | - Ian D Pavord
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit and Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Luzheng Xue
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
12
|
Hara T, Sato A, Yamamoto C, Kaji T. Syndecan-1 downregulates syndecan-4 expression by suppressing the ERK1/2 and p38 MAPK signaling pathways in cultured vascular endothelial cells. Biochem Biophys Rep 2021; 26:101001. [PMID: 33997316 PMCID: PMC8099740 DOI: 10.1016/j.bbrep.2021.101001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Syndecan-1 and syndecan-4 are members of the syndecan family of transmembrane heparan sulfate proteoglycans. Vascular endothelial cells synthesize both species of proteoglycans and use them to regulate the blood coagulation-fibrinolytic system and their proliferation via their heparin-like activity and FGF-2 binding activity, respectively. However, little is known about the crosstalk between the expressions of the proteoglycan species. Previously, we reported that biglycan, a small leucine-rich dermatan sulfate proteoglycan, intensifies ALK5-Smad2/3 signaling by TGF-β1 and downregulates syndecan-4 expression in vascular endothelial cells. In the present study, we investigated the crosstalk between the expressions of syndecan-1 and other proteoglycan species (syndecan-4, perlecan, glypican-1, and biglycan) in bovine aortic endothelial cells in a culture system. These data suggested that syndecan-1 downregulated syndecan-4 expression by suppressing the endogenous FGF-2-dependent ERK1/2 pathway and FGF-2-independent p38 MAPK pathway in the cells. Moreover, this crosstalk was a one-way communication from syndecan-1 to syndecan-4, suggesting that syndecan-4 compensated for the reduced activity in the regulation of vascular endothelial cell functions caused by the decreased expression of syndecan-1 under certain conditions.
Collapse
Affiliation(s)
- Takato Hara
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Arisa Sato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chika Yamamoto
- Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Toshiyuki Kaji
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
13
|
De Rossi G, Vähätupa M, Cristante E, Arokiasamy S, Liyanage SE, May U, Pellinen L, Uusitalo-Järvinen H, Bainbridge JW, Järvinen TA, Whiteford JR. Pathological Angiogenesis Requires Syndecan-4 for Efficient VEGFA-Induced VE-Cadherin Internalization. Arterioscler Thromb Vasc Biol 2021; 41:1374-1389. [PMID: 33596666 PMCID: PMC7613699 DOI: 10.1161/atvbaha.121.315941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia De Rossi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- UCL Institute of Ophthalmology, Department of Cell Biology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maria Vähätupa
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Enrico Cristante
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Sidath E. Liyanage
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Laura Pellinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - James W. Bainbridge
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, City Road, London EC1V 2PD, UK
| | - Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - James R. Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
14
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
15
|
Li C, Kitzerow O, Nie F, Dai J, Liu X, Carlson MA, Casale GP, Pipinos II, Li X. Bioengineering strategies for the treatment of peripheral arterial disease. Bioact Mater 2021; 6:684-696. [PMID: 33005831 PMCID: PMC7511653 DOI: 10.1016/j.bioactmat.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by narrowing and occlusion of arteries supplying the lower extremities. Approximately 200 million people worldwide are affected by PAD. The current standard of operative care is open or endovascular revascularization in which blood flow restoration is the goal. However, many patients are not appropriate candidates for these treatments and are subject to continuous ischemia of their lower limbs. Current research in the therapy of PAD involves developing modalities that induce angiogenesis, but the results of simple cell transplantation or growth factor delivery have been found to be relatively poor mainly due to difficulties in stem cell retention and survival and rapid diffusion and enzymolysis of growth factors following injection of these agents in the affected tissues. Biomaterials, including hydrogels, have the capability to protect stem cells during injection and to support cell survival. Hydrogels can also provide a sustained release of growth factors at the injection site. This review will focus on biomaterial systems currently being investigated as carriers for cell and growth factor delivery, and will also discuss biomaterials as a potential stand-alone method for the treatment of PAD. Finally, the challenges of development and use of biomaterials systems for PAD treatment will be reviewed.
Collapse
Affiliation(s)
- Cui Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Oliver Kitzerow
- Department of Genetics Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jingxuan Dai
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Mark A. Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Omaha VA Medical Center, Omaha, NE, 68105, United States
| | - George P. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
16
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
17
|
Abstract
The quantitative analysis of blood vessel networks is an important component in many animal models of disease. We describe a nondestructive technique for blood vessel imaging that visualizes in situ vasculature in harvested tissues. The method allows for further analysis of the same tissues with histology and other methods that can be performed on fixed tissue. Consequently, it can easily be incorporated upstream to analysis methods to augment these with a three-dimensional reconstruction of the vascular network in the tissues to be analyzed. The method combines iodine-enhanced micro-computed tomography with a deep learning algorithm to segment vasculature within tissues. The procedure is relatively simple and can provide insight into complex changes in the vascular structure in the tissues.
Collapse
|
18
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
19
|
Kennelly TM, Li Y, Cao Y, Qwarnstrom EE, Geoghegan M. Distinct Binding Interactions of α 5β 1-Integrin and Proteoglycans with Fibronectin. Biophys J 2019; 117:688-695. [PMID: 31337547 PMCID: PMC6712418 DOI: 10.1016/j.bpj.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dynamic single-molecule force spectroscopy was performed to monitor the unbinding of fibronectin with the proteoglycans syndecan-4 (SDC4) and decorin and to compare this with the unbinding characteristics of α5β1-integrin. A single energy barrier was sufficient to describe the unbinding of both SDC4 and decorin from fibronectin, whereas two barriers were observed for the dissociation of α5β1-integrin from fibronectin. The outer (high-affinity) barriers in the interactions of fibronectin with α5β1-integrin and SDC4 are characterized by larger barrier heights and widths and slower dissociation rates than those of the inner (low-affinity) barriers in the interactions of fibronectin with α5β1-integrin and decorin. These results indicate that SDC4 and (ultimately) α5β1-integrin have the ability to withstand deformation in their interactions with fibronectin, whereas the decorin-fibronectin interaction is considerably more brittle.
Collapse
Affiliation(s)
- Thomas M Kennelly
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, People's Republic of China
| | - Eva E Qwarnstrom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
20
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 512] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
21
|
Cross-Talk between Fibroblast Growth Factor Receptors and Other Cell Surface Proteins. Cells 2019; 8:cells8050455. [PMID: 31091809 PMCID: PMC6562592 DOI: 10.3390/cells8050455] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute signaling circuits that transmit signals across the plasma membrane, regulating pivotal cellular processes like differentiation, migration, proliferation, and apoptosis. The malfunction of FGFs/FGFRs signaling axis is observed in numerous developmental and metabolic disorders, and in various tumors. The large diversity of FGFs/FGFRs functions is attributed to a great complexity in the regulation of FGFs/FGFRs-dependent signaling cascades. The function of FGFRs is modulated at several levels, including gene expression, alternative splicing, posttranslational modifications, and protein trafficking. One of the emerging ways to adjust FGFRs activity is through formation of complexes with other integral proteins of the cell membrane. These proteins may act as coreceptors, modulating binding of FGFs to FGFRs and defining specificity of elicited cellular response. FGFRs may interact with other cell surface receptors, like G-protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). The cross-talk between various receptors modulates the strength and specificity of intracellular signaling and cell fate. At the cell surface FGFRs can assemble into large complexes involving various cell adhesion molecules (CAMs). The interplay between FGFRs and CAMs affects cell–cell interaction and motility and is especially important for development of the central nervous system. This review summarizes current stage of knowledge about the regulation of FGFRs by the plasma membrane-embedded partner proteins and highlights the importance of FGFRs-containing membrane complexes in pathological conditions, including cancer.
Collapse
|
22
|
Monteforte A, Lam B, Sherman MB, Henderson K, Sligar AD, Spencer A, Tang B, Dunn AK, Baker AB. * Glioblastoma Exosomes for Therapeutic Angiogenesis in Peripheral Ischemia. Tissue Eng Part A 2018; 23:1251-1261. [PMID: 28699397 DOI: 10.1089/ten.tea.2016.0508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral ischemia as a result of occlusive vascular disease is a widespread problem in patients older than the age of 65. Angiogenic therapies that can induce microvascular growth have great potential for providing a long-lasting solution for patients with ischemia and would provide an appealing alternative to surgical and percutaneous interventions. However, many angiogenic therapies have seen poor efficacy in clinical trials, suggesting that patients with long-term peripheral ischemia have considerable therapeutic resistance to angiogenic stimuli. Glioblastoma is one of the most angiogenic tumor types, inducing robust vessel growth in the area surrounding the tumor. One major angiogenic mechanism used by the tumor cells to induce blood vessel growth is the production of exosomes and other extracellular vesicles that can carry pro-angiogenic and immunomodulatory signals. Here, we explored whether the pro-angiogenic aspects of glioblastoma-derived exosomes could be harnessed to promote angiogenesis and healing in the context of peripheral ischemic disease. We demonstrate that the exosomes derived from glioblastoma markedly enhance endothelial cell proliferation and increase endothelial tubule formation in vitro. An analysis of the microRNA expression using next generation sequencing identified that exosomes contained a high concentration of miR-221. In addition, we found that glioblastoma exosomes contained significant amounts of the proteoglycans glypican-1 and syndecan-4, which can serve as co-receptors for angiogenic factors, including fibroblast growth factor-2 (FGF-2). In a hindlimb ischemia model in mice, we found that the exosomes promoted enhanced revascularization in comparison to control alginate gels and FGF-2 treatment alone. Taken together, our results support the fact that glioblastoma-derived exosomes have powerful effects in increasing revascularization in the context of peripheral ischemia.
Collapse
Affiliation(s)
- Anthony Monteforte
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Brian Lam
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Michael B Sherman
- 2 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, Texas
| | - Kayla Henderson
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Andrew D Sligar
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Adrianne Spencer
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Brian Tang
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Andrew K Dunn
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas
| | - Aaron B Baker
- 1 Department of Biomedical Engineering, University of Texas at Austin , Texas.,3 Institute for Cellular and Molecular Biology, University of Texas at Austin , Austin, Texas.,4 Institute for Computational Engineering and Sciences, University of Texas at Austin , Austin, Texas.,5 Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin , Austin, Texas
| |
Collapse
|
23
|
Resveratrol Improves Tube Formation in AGE-Induced Late Endothelial Progenitor Cells by Suppressing Syndecan-4 Shedding. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9045976. [PMID: 29849922 PMCID: PMC5914122 DOI: 10.1155/2018/9045976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
Abstract
Dysfunction of endothelial progenitor cells (EPCs) contributes to cardiovascular complications in diabetes, and resveratrol has been shown to improve EPC functions. Syndecan-4 (Synd4), a cell surface heparin sulfate proteoglycan, has been shown to promote neovascularization. Thus, the present study was performed to determine whether resveratrol promoted angiogenesis of EPCs by regulating Synd4. Late EPCs were isolated from human peripheral blood and stimulated with AGEs. Western blot showed that AGEs induced Synd4 shedding in a dose- and time-dependent manner. AGE-induced Synd4 shedding was partly reversed by NAC or resveratrol, along with normalized ROS production. Overexpression of Synd4 or pretreatment of resveratrol reversed AGE-impaired tube formation of EPCs and regulated the Akt/eNOS pathway. Furthermore, resveratrol suppressed Synd4 shedding via the inhibition of oxidative stress and improved tube formation of late EPCs via the regulation of the Synd4/Akt/eNOS pathway.
Collapse
|
24
|
The IL-1RI Co-Receptor TILRR ( FREM1 Isoform 2) Controls Aberrant Inflammatory Responses and Development of Vascular Disease. JACC Basic Transl Sci 2017; 2:398-414. [PMID: 28920098 PMCID: PMC5582195 DOI: 10.1016/j.jacbts.2017.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023]
Abstract
The IL-1RI co-receptor, TILRR, is a potent amplifier of IL-1–induced responses. Blocking TILRR inhibits IL-1 receptor function and activation of inflammatory genes. TILRR expression is high in atherosclerotic lesions but low in healthy tissue, allowing distinct inhibition at sites of inflammation. Genetic deletion of TILRR and antibody blocking of TILRR function reduce plaque development and progression of atherosclerosis. Lesions exhibit low levels of macrophages and increased levels of smooth muscle cells and collagen, characteristics of stable plaques.
Expression of the interleukin-1 receptor type I (IL-1RI) co-receptor Toll-like and interleukin-1 receptor regulator (TILRR) is significantly increased in blood monocytes following myocardial infarction and in the atherosclerotic plaque, whereas levels in healthy tissue are low. TILRR association with IL-1RI at these sites causes aberrant activation of inflammatory genes, which underlie progression of cardiovascular disease. The authors show that genetic deletion of TILRR or antibody blocking of TILRR function reduces development of atherosclerotic plaques. Lesions exhibit decreased levels of monocytes, with increases in collagen and smooth muscle cells, characteristic features of stable plaques. The results suggest that TILRR may constitute a rational target for site- and signal-specific inhibition of vascular disease.
Collapse
Key Words
- ApoE, apolipoprotein E
- DK, double knockout
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- IL, interleukin
- IL-1RI
- IL-1RI, interleukin-1 receptor type I
- IgG, immunoglobulin G
- IκBα, inhibitor kappa B alpha
- KO, knockout
- LDLR–/–, low-density lipoprotein receptor–/–
- LPS, lipopolysaccharide
- NF-κB
- NF-κB, nuclear factor-kappa B
- NSTEMI, non–ST-segment elevation myocardial infarction
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SDS, sodium dodecyl sulfate
- STEMI, ST-segment elevation myocardial infarction
- TILRR
- TILRR, toll-like and interleukin-1 receptor regulator
- heparan sulfate proteoglycan
- iBALT, inducible bronchus-associated lymphoid tissue
- interleukin-1 receptor
- qPCR, quantitative polymerase chain reaction
Collapse
|
25
|
Qin Y, Zhu Y, Luo F, Chen C, Chen X, Wu M. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification. Cell Death Dis 2017; 8:e2920. [PMID: 28703800 PMCID: PMC5550862 DOI: 10.1038/cddis.2017.315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The most common complication after cataract surgery is postoperative capsular opacification, which includes anterior capsular opacification (ACO) and posterior capsular opacification (PCO). Increased adhesion of lens epithelial cells (LECs) to the intraocular lens material surface promotes ACO formation, whereas proliferation and migration of LECs to the posterior capsule lead to the development of PCO. Cell adhesion is mainly mediated by the binding of integrin to extracellular matrix proteins, while cell proliferation and migration are regulated by fibroblast growth factor (FGF). Syndecan-4 (SDC-4) is a co-receptor for both integrin and FGF signaling pathways. Therefore, SDC-4 may be an ideal therapeutic target for the prevention and treatment of postoperative capsular opacification. However, how SDC-4 contributes to FGF-mediated proliferation, migration, and integrin-mediated adhesion of LECs is unclear. Here, we found that downregulation of SDC-4 inhibited FGF signaling through the blockade of ERK1/2 and PI3K/Akt/mTOR activation, thus suppressing cell proliferation and migration. In addition, downregulation of SDC-4 suppressed integrin-mediated cell adhesion through inhibiting focal adhesion kinase (FAK) phosphorylation. Moreover, SDC-4 knockout mice exhibited normal lens morphology, but had significantly reduced capsular opacification after injury. Finally, SDC-4 expression level was increased in the anterior capsule LECs of age-related cataract patients. Taken together, we for the first time characterized the key regulatory role of SDC-4 in FGF and integrin signaling in human LECs, and provided the basis for future pharmacological interventions of capsular opacification.
Collapse
Affiliation(s)
- Yingyan Qin
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi Zhu
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Furong Luo
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chuan Chen
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xiaoyun Chen
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mingxing Wu
- State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
26
|
Hyperspectral imaging using the single-pixel Fourier transform technique. Sci Rep 2017; 7:45209. [PMID: 28338100 PMCID: PMC5364546 DOI: 10.1038/srep45209] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2017] [Indexed: 11/15/2022] Open
Abstract
Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400–1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.
Collapse
|
27
|
Strunz CMC, Roggerio A, Cruz PL, Pacanaro AP, Salemi VMC, Benvenuti LA, Mansur ADP, Irigoyen MC. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes. J Nutr Biochem 2017; 40:219-227. [DOI: 10.1016/j.jnutbio.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023]
|
28
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
29
|
Cheng B, Toh EKW, Chen KH, Chang YC, Hu CMJ, Wu HC, Chau LY, Chen P, Hsieh PCH. Biomimicking Platelet-Monocyte Interactions as a Novel Targeting Strategy for Heart Healing. Adv Healthc Mater 2016; 5:2686-2697. [PMID: 27592617 DOI: 10.1002/adhm.201600724] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 12/24/2022]
Abstract
In patients who survive myocardial infarction, many go on to develop congestive heart failure (CHF). Despite ongoing efforts to develop new approaches for postinfarction therapy, there are still no effective therapeutic options available to CHF patients. Currently, the delivery of cardioprotective drugs relies entirely on passive uptake via the enhanced permeability and retention (EPR) effect which occurs in proximity to the infarction site. However, in ischemic disease, unlike in cancer, the EPR effect only exists for a short duration postinfarction and thus insufficient for meaningful cardioprotection. Splenic monocytes are recruited to the heart in large numbers postinfarction, and are known to interact with platelets during circulation. Therefore, the strategy is to exploit this interaction by developing platelet-like proteoliposomes (PLPs), biomimicking platelet interactions with circulating monocytes. PLPs show strong binding affinity for monocytes but not for endothelial cells in vitro, mimicking normal platelet activity. Furthermore, intravital multiphoton imaging shows that comparing to plain liposomes, PLPs do not aggregate on uninjured endothelium but do accumulate at the injury site 72 h postinfarction. Importantly, PLPs enhance the targeting of anti-inflammatory drug, cobalt protoporphyrin, to the heart in an EPR-independent manner, which result in better therapeutic outcome.
Collapse
Affiliation(s)
- Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Elsie K W Toh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Kun-Hung Chen
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang District Taipei, 115, Taiwan.
| |
Collapse
|
30
|
Das S, Singh G, Majid M, Sherman MB, Mukhopadhyay S, Wright CS, Martin PE, Dunn AK, Baker AB. Syndesome Therapeutics for Enhancing Diabetic Wound Healing. Adv Healthc Mater 2016; 5:2248-60. [PMID: 27385307 PMCID: PMC5228475 DOI: 10.1002/adhm.201600285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Chronic wounds represent a major healthcare and economic problem worldwide. Advanced wound dressings that incorporate bioactive compounds have great potential for improving outcomes in patients with chronic wounds but significant challenges in designing treatments that are effective in long-standing, nonhealing wounds. Here, an optimized wound healing gel was developed that delivers syndecan-4 proteoliposomes ("syndesomes") with fibroblast growth factor-2 (FGF-2) to enhance diabetic wound healing. In vitro studies demonstrate that syndesomes markedly increase migration of keratinocytes and fibroblasts isolated from both nondiabetic and diabetic donors. In addition, syndesome treatment leads to increased endocytic processing of FGF-2 that includes enhanced recycling of FGF-2 to the cell surface after uptake. The optimized syndesome formulation was incorporated into an alginate wound dressing and tested in a splinted wound model in diabetic, ob/ob mice. It was found that wounds treated with syndesomes and FGF-2 have markedly enhanced wound closure in comparison to wounds treated with only FGF-2. Moreover, syndesomes have an immunomodulatory effect on wound macrophages, leading to a shift toward the M2 macrophage phenotype and alterations in the wound cytokine profile. Together, these studies show that delivery of exogenous syndecan-4 is an effective method for enhancing wound healing in the long-term diabetic diseased state.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Gunjan Singh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78731, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78731, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78731, USA
| | - Catherine S Wright
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Patricia E Martin
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78731, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78731, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, 78731, USA.
| |
Collapse
|
31
|
Chung H, Multhaupt HAB, Oh ES, Couchman JR. Minireview: Syndecans and their crucial roles during tissue regeneration. FEBS Lett 2016; 590:2408-17. [PMID: 27383370 DOI: 10.1002/1873-3468.12280] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/30/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans, with roles in development, tumorigenesis and inflammation, and growing evidence for involvement in tissue regeneration. This is a fast developing field with the prospect of utilizing tissue engineering and biomaterials in novel therapies. Syndecan receptors are not only ubiquitous in mammalian tissues, regulating cell adhesion, migration, proliferation, and differentiation through independent signaling but also working alongside other receptors. Their importance is highlighted by an ability to interact with a diverse array of ligands, including extracellular matrix glycoproteins, growth factors, morphogens, and cytokines that are important regulators of regeneration. We also discuss the potential for syndecans to regulate stem cell properties, and suggest that understanding these proteoglycans is relevant to exploiting cell, tissue, and materials technologies.
Collapse
Affiliation(s)
- Heesung Chung
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Eok-Soo Oh
- Department of Life Sciences and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| |
Collapse
|
32
|
Das S, Monteforte AJ, Singh G, Majid M, Sherman MB, Dunn AK, Baker AB. Syndecan-4 Enhances Therapeutic Angiogenesis after Hind Limb Ischemia in Mice with Type 2 Diabetes. Adv Healthc Mater 2016; 5:1008-13. [PMID: 26891081 PMCID: PMC4864113 DOI: 10.1002/adhm.201500993] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/05/2016] [Indexed: 11/06/2022]
Abstract
Delivering syndecan-4 with FGF-2 improves the effectiveness of FGF-2 therapy for ischemia in the diabetic disease state. The syndecan-4 proteoliposomes significantly enhance in vitro tubule formation as well as blood perfusion and vessel density in the ischemic hind limbs of diseased ob/ob mice. Syndecan-4 therapy also induces a marked immunomodulation in the tissues, increasing the polarization of macrophages toward the M2 phenotype.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | | | - Gunjan Singh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Michael B. Sherman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX
| | - Andrew K. Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, Austin, TX
| |
Collapse
|
33
|
Lai MS, Wang CY, Yang SH, Wu CC, Sun HS, Tsai SJ, Chuang JI, Chen YC, Huang BM. The expression profiles of fibroblast growth factor 9 and its receptors in developing mice testes. Organogenesis 2016; 12:61-77. [PMID: 27078042 DOI: 10.1080/15476278.2016.1171448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An expressional lack of fibroblast growth factor 9 (FGF9) would cause male-to-female sex reversal in the mouse, implying the essential role of FGF9 in testicular organogenesis and maturation. However, the temporal expression of FGF9 and its receptors during testicular development remains elusive. In this study, immunohistochemistry was used to identify the localization of FGF9 and its receptors at different embryonic and postnatal stages in mice testes. Results showed that FGF9 continuously expressed in the testis during development. FGF9 had highest expression in the interstitial region at 17-18 d post coitum (dpc) and in the spermatocytes, spermatids and Leydig cell on postnatal days (pnd) 35-65. Regarding receptor expression, FGFR1 and FGFR4 were evenly expressed in the whole testis during the embryonic and postnatal stages. However, FGFR2 and FGFR3 were widely expressed during the embryonic testis development with higher FGFR2 expression in seminiferous tubules at 16-18 dpc and higher FGFR3 expression in interstitial region at 17-18 dpc. In postnatal stage, FGFR2 extensively expressed with higher expression at spermatids and Leydig cells on 35-65 pnd and FGFR3 widely expressed in the whole testis. Taken together, these results strongly suggest that FGF9 is correlated with the temporal expression profiles of FGFR2 and FGFR3 and possibly associated with testis development.
Collapse
Affiliation(s)
- Meng-Shao Lai
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Chia-Yih Wang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,b Department of Cell Biology and Anatomy , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Shang-Hsun Yang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,c Department of Physiology , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Chia-Ching Wu
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,b Department of Cell Biology and Anatomy , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - H Sunny Sun
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,d Institute of Molecular Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Shaw-Jenq Tsai
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,c Department of Physiology , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Jih-Ing Chuang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,c Department of Physiology , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Yung-Chia Chen
- e Department of Anatomy , School of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan , Republic of China
| | - Bu-Miin Huang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,b Department of Cell Biology and Anatomy , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| |
Collapse
|
34
|
Monteforte AJ, Lam B, Das S, Mukhopadhyay S, Wright CS, Martin PE, Dunn AK, Baker AB. Glypican-1 nanoliposomes for potentiating growth factor activity in therapeutic angiogenesis. Biomaterials 2016; 94:45-56. [PMID: 27101205 DOI: 10.1016/j.biomaterials.2016.03.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Therapeutic angiogenesis is a highly appealing concept for treating tissues that become ischemic due to vascular disease. A major barrier to the clinical translation of angiogenic therapies is that the patients that are in the greatest need of these treatments often have long term disease states and co-morbidities, such as diabetes and obesity, that make them resistant to angiogenic stimuli. In this study, we identified that human patients with type 2 diabetes have reduced levels of glypican-1 in the blood vessels of their skin. The lack of this key co-receptor in the tissue may make the application of exogenous angiogenic growth factors or cell therapies ineffective. We created a novel therapeutic enhancer for growth factor activity consisting of glypican-1 delivered in a nanoliposomal carrier (a "glypisome"). Here, we demonstrate that glypisomes enhance FGF-2 mediated endothelial cell proliferation, migration and tube formation. In addition, glypisomes enhance FGF-2 trafficking by increasing both uptake and endosomal processing. We encapsulated FGF-2 or FGF-2 with glypisomes in alginate beads and used these to deliver localized growth factor therapy in a murine hind limb ischemia model. Co-delivery of glypisomes with FGF-2 markedly increased the recovery of perfusion and vessel formation in ischemic hind limbs of wild type and diabetic mice in comparison to mice treated with FGF-2 alone. Together, our findings support that glypisomes are effective means for enhancing growth factor activity and may improve the response to local angiogenic growth factor therapies for ischemia.
Collapse
Affiliation(s)
- Anthony J Monteforte
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Brian Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Catherine S Wright
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Patricia E Martin
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Yabluchanskiy A, Ma Y, Lindsey ML. Syndecan-4: a novel regulator of collagen synthesis and deposition in the pressure-overloaded myocardium. Cardiovasc Res 2015; 106:178-9. [PMID: 25808974 DOI: 10.1093/cvr/cvv114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andriy Yabluchanskiy
- San Antonio Cardiovascular Proteomics Center, Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA
| | - Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA
| | - Merry L Lindsey
- San Antonio Cardiovascular Proteomics Center, Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, 1500 E Woodrow Wilson Dr., Jackson, MS 39216, USA
| |
Collapse
|
36
|
Tu C, Das S, Baker AB, Zoldan J, Suggs LJ. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS NANO 2015; 9:3436-52. [PMID: 25844518 PMCID: PMC5494973 DOI: 10.1021/nn507269g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.
Collapse
|
37
|
Zhang JC, Zheng GF, Wu L, Ou Yang LY, Li WX. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats. ACTA ACUST UNITED AC 2014; 47:886-94. [PMID: 25118628 PMCID: PMC4181224 DOI: 10.1590/1414-431x20143765] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/19/2014] [Indexed: 12/20/2022]
Abstract
Administration or expression of growth factors, as well as implantation of autologous
bone marrow cells, promote in vivo angiogenesis. This study
investigated the angiogenic potential of combining both approaches through the
allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs)
expressing human basic fibroblast growth factor (hbFGF). After establishing a hind
limb ischemia model in Sprague Dawley rats, the animals were randomly divided into
four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs
expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS)
controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular
endothelial growth factor (VEGF) expression, and microvessel density of ischemic
muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group
after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into
vascular endothelial cells (P<0.001); however, their differentiation rates were
similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression
(P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing
MSCs promoted angiogenesis in an in vivo hind limb ischemia model by
increasing the survival of transplanted cells that subsequently differentiated into
vascular endothelial cells. This study showed the therapeutic potential of combining
cell-based therapy with gene therapy to treat ischemic disease.
Collapse
Affiliation(s)
- J C Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - G F Zheng
- Department of Vascular Surgery, The People's Hospital of Ganzhou, Ganzhou, China
| | - L Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - L Y Ou Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - W X Li
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
38
|
Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 2014; 9:e89824. [PMID: 24587062 PMCID: PMC3934950 DOI: 10.1371/journal.pone.0089824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling. METHODS AND RESULTS Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin. CONCLUSIONS Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.
Collapse
Affiliation(s)
- Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Christoffer H. Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Derek S. Ho
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Proske
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
39
|
Huang C, Yuan X, Wan Y, Liu F, Chen X, Zhan X, Li X. VE-statin/Egfl7 expression in malignant glioma and its relevant molecular network. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1022-1031. [PMID: 24696719 PMCID: PMC3971305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
This study investigated VE-statin/Egfl7 expression and its role and regulatory mechanism in malignant glioma progression. Forty-five paraffin-embedded glioma (grade I-II: n=24; grade III-IV: n=21) were examined. VE-statin/Egfl7 protein expression was detected via immunohistochemistry, and its correlation with pathological grade was evaluated. Three-dimensional cell culture was then performed to investigate the influence of VE-statin/Egfl7 on the angiogenesis of umbilical vein endothelial cells. Microarray detection was used to molecularly profile VE-statin/Egfl7 and relevant signaling pathways in malignant glioma (U251 cells). Data showed that VE-statin/Egfl7 protein was mainly expressed in the cytoplasm of cancer and vascular endothelial cells and was significantly related to the degree of malignancy (t=4.399, P<0.01). Additionally, VE-statin/Egfl7 expression was low in certain gray-matter neurons but undetectable in glial cells. VE-statin/Egfl7 gene silencing significantly inhibited angiogenesis in umbilical vein endothelial cells. The following microarray results were observed in VE-statin/Egfl7-silenced U251 cells: 1) EGFR family members showed the highest differential expression, accounting for 5.54% of differentially expressed genes; 2) cell survival-related signaling pathways changed significantly; and 3) the integrin ανβ3 signaling pathway was markedly altered. Thus, malignant glioma cells and glioma vascular endothelial cells highly express VE-statin/Egfl7, which is significantly correlated with the degree of malignancy. Moreover, VE-statin/Egfl7 plays an important role in glioma angiogenesis. Microarray results indicate that VE-statin/Egfl7 may regulate EGFR and integrins to influence the FAK activity of downstream factors, triggering the PI3K/Akt and Ras/MAPK cascades and subsequent malignant glioma development.
Collapse
Affiliation(s)
- Chunhai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou UniversityJishou 416000, Hunan, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- The Institute of Skull Base Surgery and Neurooncology at HunanChangsha 410008, Hunan, China
| | - Yi Wan
- Department of Neurosurgery, First Affiliated Hospital of Jishou UniversityJishou 416000, Hunan, China
| | - Fei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- The Institute of Skull Base Surgery and Neurooncology at HunanChangsha 410008, Hunan, China
| | - Xiaoyu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- The Institute of Skull Base Surgery and Neurooncology at HunanChangsha 410008, Hunan, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
- The Institute of Skull Base Surgery and Neurooncology at HunanChangsha 410008, Hunan, China
| |
Collapse
|
40
|
Das S, Singh G, Baker AB. Overcoming disease-induced growth factor resistance in therapeutic angiogenesis using recombinant co-receptors delivered by a liposomal system. Biomaterials 2013; 35:196-205. [PMID: 24138828 DOI: 10.1016/j.biomaterials.2013.09.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022]
Abstract
Current treatment options for ischemia include percutaneous interventions, surgical bypass or pharmacological interventions aimed at slowing the progression of vascular disease. Unfortunately, while each of these treatment modalities provides some benefit for patients in the short-term, many patients have resistant or recurrent disease that is poorly managed by these therapies. A highly appealing strategy for treating ischemic disease is to stimulate the revascularization of the tissue to restore blood flow. While many techniques have been explored in this regard, clinically effective angiogenic therapies remain elusive. Here, we hypothesized that the presence of co-morbid disease states inherently alters the ability of the body to respond to angiogenic therapies. Using a mouse model of diabetes and obesity, we examined alterations in the major components for the signaling pathways for FGF-2, VEGF-A and PDGF under normal and high fat dietary conditions. In skeletal muscle, a high fat diet increased levels of growth factor receptors and co-receptors including syndecan-1, syndecan-4 and PDGFR-α in wild-type mice. These increases did not occur in Ob/Ob mice on a high fat diet and there was a significant decrease in protein levels for neuropilin-1 and heparanase in these mice. With the aim of increasing growth factor effectiveness in the context of disease, we examined whether local treatment with alginate gel-delivered FGF-2 and syndecan-4 proteoliposomes could overcome the growth factor resistance in these mice. This treatment enhanced the formation of new blood vessels in Ob/Ob mice by 6 fold in comparison to FGF-2 delivered alone. Our studies support that disease states cause a profound shift in growth factor signaling pathways and that co-receptor-based therapies have potential to overcome growth factor resistance in the context of disease.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
41
|
Ju R, Simons M. Syndecan 4 regulation of PDK1-dependent Akt activation. Cell Signal 2013; 25:101-5. [PMID: 22975683 PMCID: PMC3508137 DOI: 10.1016/j.cellsig.2012.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 12/17/2022]
Abstract
The phosphatidylinositol 3 kinase (Pi3K)/Akt pathway is a major regulator of cell growth, proliferation, metabolism, survival, and angiogenesis. Despite extensive study, a thorough understanding of the modulation and regulation of this pathway has remained elusive. We have previously demonstrated that syndecan 4 (S4) regulates the intracellular localization of mTORC2, thus altering phosphorylation of Akt at serine473 (Ser473), one of two critical phosphorylation sites essential for the full activation of Akt [1]. Here we report that S4 also regulates the phosphorylation of Akt at threonine308 (Thr308), the second phosphorylation site required for the full Akt activation. A deletion of S4 resulted in lower levels of Thr308 phosphorylation both in vitro and in vivo. Furthermore, a deletion or knockdown of the S4 effector molecule PKCα led to a similar reduction in phosphorylation of Thr308 while overexpression of myristoylated PKCα rescued AktThr308 phosphorylation in endothelial cells lacking S4. Finally, PAK1/2 is also recruited to the rafts by the S4-PKCα complex and is required for AKT activation.
Collapse
Affiliation(s)
- Rong Ju
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
42
|
Cheng JYC, Whitelock J, Poole-Warren L. Syndecan-4 is associated with beta-cells in the pancreas and the MIN6 beta-cell line. Histochem Cell Biol 2012; 138:933-44. [PMID: 22872317 DOI: 10.1007/s00418-012-1004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Basement membranes (BM) in the pancreatic islet are important for islet survival and function, but supplementation of isolated islets with these components have had limited success. Currently, little is understood about which BM components and proteoglycans are essential to maintaining islet homeostasis. This study therefore aimed to characterize the BM components and proteoglycans of the islet in the mouse, rat and rabbit species. The BM of the mouse islet was varied in continuity around the islet and was discontinuous in the rat and rabbit islets. The BM consisted of collagen IV, laminin, fibronectin and perlecan in the mouse and was in tight association with the underlying islet endothelium. None of these components were found directly associated with the β-cells in tissue and in the MIN6 β-cell line. In contrast, heparan sulfate (HS) was distributed throughout the islet in all three species in a pattern distinctly different to that of perlecan and was observed mainly on the β-cells and not the α-cells in the mouse and rat. Similarly, syndecan-4 showed a staining pattern almost identical to that of HS and was mostly observed on the β-cells, not α-cells, in the mouse and rat. Both HS and syndecan-4 were also observed in the MIN6 β-cell line. The mouse islet and MIN6 syndecan-4 were both ~37 kDa in size, after deglycosylation with heparitinase. These results indicate that syndecan-4 may play an important role in β-cell function and that the cell-surface HS proteoglycans may be the missing link to maintaining islet longevity after isolation.
Collapse
Affiliation(s)
- Jennifer Y C Cheng
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
43
|
Dias JV, Benslimane-Ahmim Z, Egot M, Lokajczyk A, Grelac F, Galy-Fauroux I, Juliano L, Le-Bonniec B, Takiya CM, Fischer AM, Blanc-Brude O, Morandi V, Boisson-Vidal C. A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells. Biochem Pharmacol 2012; 84:1014-23. [PMID: 22796565 DOI: 10.1016/j.bcp.2012.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023]
Abstract
Thrombospondin-1 (TSP-1) gives rise to fragments that have both pro- and anti-angiogenic effects in vitro and in vivo. The TSP-HepI peptide (2.3 kDa), located in the N-terminal domain of TSP-1, has proangiogenic effects on endothelial cells. We have previously shown that TSP-1 itself exhibits a dual effect on endothelial colony-forming cells (ECFC) by enhancing their adhesion through its TSP-HepI fragment while reducing their proliferation and differentiation into vascular tubes (tubulogenesis) in vitro. This effect is likely mediated through CD47 binding to the TSP-1 C-terminal domain. Here we investigated the effect of TSP-HepI peptide on the angiogenic properties of ECFC in vitro and in vivo. TSP-HepI peptide potentiated FGF-2-induced neovascularisation by enhancing ECFC chemotaxis and tubulogenesis in a Matrigel plug assay. ECFC exposure to 20 μg/mL of TSP-HepI peptide for 18 h enhanced cell migration (p < 0.001 versus VEGF exposure), upregulated alpha 6-integrin expression, and enhanced their cell adhesion to activated endothelium under physiological shear stress conditions at levels comparable to those of SDF-1α. The adhesion enhancement appeared to be mediated by the heparan sulfate proteoglycan (HSPG) syndecan-4, as ECFC adhesion was significantly reduced by a syndecan-4-neutralising antibody. ECFC migration and tubulogenesis were stimulated neither by a TSP-HepI peptide with a modified heparin-binding site (S/TSP-HepI) nor when the glycosaminoglycans (GAGs) moieties were removed from the ECFC surface by enzymatic treatment. Ex vivo TSP-HepI priming could potentially serve to enhance the effectiveness of therapeutic neovascularisation with ECFC.
Collapse
Affiliation(s)
- Juliana Vieira Dias
- Departamento de Biologia Celular, Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|