1
|
Kang D, Yang MJ, Cheong HK, Park CJ. NMR investigation of FOXO4-DNA interaction for discriminating target and non-target DNA sequences. Commun Biol 2024; 7:1425. [PMID: 39487330 PMCID: PMC11530643 DOI: 10.1038/s42003-024-07133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Forkhead box O4 (FOXO4), a human transcription factor, recognizes target DNA through its forkhead domain (FHD) while maintaining comparable binding affinity to non-target DNA. The conserved region 3 (CR3), a transactivation domain, modulates DNA binding kinetics to FHD and contributes to target DNA selection, but the underlying mechanism of this selection remains elusive. Using paramagnetic relaxation enhancement analysis, we observed a minor state of CR3 close to FHD in the presence of non-target DNA, a state absent when FHD interacts with target DNA. This minor state suggests that CR3 effectively masks the non-target DNA-binding interface on FHD. The interaction weakens significantly under high salt concentration, implying that CR3 or high salt concentrations can modulate electrostatic interactions with non-target DNA. Our 15N relaxation measurements revealed FHD's flexibility with non-target DNA and increased rigidity with target DNA binding. Our findings offer insights into the role of FOXO4 as a transcription initiator.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hae-Kap Cheong
- Ochang Center, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Tycko J, Van MV, Aradhana, DelRosso N, Ye H, Yao D, Valbuena R, Vaughan-Jackson A, Xu X, Ludwig C, Spees K, Liu K, Gu M, Khare V, Mukund AX, Suzuki PH, Arana S, Zhang C, Du PP, Ornstein TS, Hess GT, Kamber RA, Qi LS, Khalil AS, Bintu L, Bassik MC. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Nat Biotechnol 2024:10.1038/s41587-024-02442-6. [PMID: 39487265 DOI: 10.1038/s41587-024-02442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Transcriptional effectors are protein domains known to activate or repress gene expression; however, a systematic understanding of which effector domains regulate transcription across genomic, cell type and DNA-binding domain (DBD) contexts is lacking. Here we develop dCas9-mediated high-throughput recruitment (HT-recruit), a pooled screening method for quantifying effector function at endogenous target genes and test effector function for a library containing 5,092 nuclear protein Pfam domains across varied contexts. We also map context dependencies of effectors drawn from unannotated protein regions using a larger library tiling chromatin regulators and transcription factors. We find that many effectors depend on target and DBD contexts, such as HLH domains that can act as either activators or repressors. To enable efficient perturbations, we select context-robust domains, including ZNF705 KRAB, that improve CRISPRi tools to silence promoters and enhancers. We engineer a compact human activator called NFZ, by combining NCOA3, FOXO3 and ZNF473 domains, which enables efficient CRISPRa with better viral delivery and inducible control of chimeric antigen receptor T cells.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hanrong Ye
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Alun Vaughan-Jackson
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Xiaoshu Xu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Connor Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katherine Liu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mingxin Gu
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Venya Khare
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sophia Arana
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Cancer Biology, Stanford University, Stanford, CA, USA
| | - Thea S Ornstein
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Gaelen T Hess
- Department of Biomolecular Chemistry and Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
DelRosso N, Suzuki PH, Griffith D, Lotthammer JM, Novak B, Kocalar S, Sheth MU, Holehouse AS, Bintu L, Fordyce P. High-throughput affinity measurements of direct interactions between activation domains and co-activators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608698. [PMID: 39229005 PMCID: PMC11370418 DOI: 10.1101/2024.08.19.608698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sequence-specific activation by transcription factors is essential for gene regulation1,2. Key to this are activation domains, which often fall within disordered regions of transcription factors3,4 and recruit co-activators to initiate transcription5. These interactions are difficult to characterize via most experimental techniques because they are typically weak and transient6,7. Consequently, we know very little about whether these interactions are promiscuous or specific, the mechanisms of binding, and how these interactions tune the strength of gene activation. To address these questions, we developed a microfluidic platform for expression and purification of hundreds of activation domains in parallel followed by direct measurement of co-activator binding affinities (STAMMPPING, for Simultaneous Trapping of Affinity Measurements via a Microfluidic Protein-Protein INteraction Generator). By applying STAMMPPING to quantify direct interactions between eight co-activators and 204 human activation domains (>1,500 K ds), we provide the first quantitative map of these interactions and reveal 334 novel binding pairs. We find that the metazoan-specific co-activator P300 directly binds >100 activation domains, potentially explaining its widespread recruitment across the genome to influence transcriptional activation. Despite sharing similar molecular properties (e.g. enrichment of negative and hydrophobic residues), activation domains utilize distinct biophysical properties to recruit certain co-activator domains. Co-activator domain affinity and occupancy are well-predicted by analytical models that account for multivalency, and in vitro affinities quantitatively predict activation in cells with an ultrasensitive response. Not only do our results demonstrate the ability to measure affinities between even weak protein-protein interactions in high throughput, but they also provide a necessary resource of over 1,500 activation domain/co-activator affinities which lays the foundation for understanding the molecular basis of transcriptional activation.
Collapse
Affiliation(s)
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffrey M Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Kocalar
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya U Sheth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Lacramioara Bintu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, USA
| |
Collapse
|
4
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Guo X, Peng K, He Y, Xue L. Mechanistic regulation of FOXO transcription factors in the nucleus. Biochim Biophys Acta Rev Cancer 2024; 1879:189083. [PMID: 38309444 DOI: 10.1016/j.bbcan.2024.189083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
FOXO proteins represent evolutionarily conserved transcription factors (TFs) that play critical roles in responding to various physiological signals or pathological stimuli, either through transcription-dependent or -independent mechanisms. Dysfunction of these proteins have been implicated in numerous diseases, including cancer. Although the regulation of FOXO TFs shuttling between the cytoplasm and the nucleus has been extensively studied and reviewed, there's still a lack of a comprehensive review focusing on the intricate interactions between FOXO, DNA, and cofactors in the regulation of gene expression. In this review, we aim to summarize recent advances and provide a detailed understanding of the mechanism underlying FOXO proteins binding to target DNA. Additionally, we will discuss the challenges associated with pharmacological approaches in modulating FOXO function, and explore the dynamic association between TF, DNA, and RNA on chromatin. This review will contribute to a better understanding of mechanistic regulations of eukaryotic TFs within the nucleus.
Collapse
Affiliation(s)
- Xiaowei Guo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China.
| | - Kai Peng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yanwen He
- Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Dong Z, Guo Z, Li H, Han D, Xie W, Cui S, Zhang W, Huang S. FOXO3a-interacting proteins' involvement in cancer: a review. Mol Biol Rep 2024; 51:196. [PMID: 38270719 DOI: 10.1007/s11033-023-09121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Due to its role in apoptosis, differentiation, cell cycle arrest, and DNA damage repair in stress responses (oxidative stress, hypoxia, chemotherapeutic drugs, and UV irradiation or radiotherapy), FOXO3a is considered a key tumor suppressor that determines radiotherapeutic and chemotherapeutic responses in cancer cells. Mutations in the FOXO3a gene are rare, even in cancer cells. Post-translational regulations are the main mechanisms for inactivating FOXO3a. The subcellular localization, stability, transcriptional activity, and DNA binding affinity for FOXO3a can be modulated via various post-translational modifications, including phosphorylation, acetylation, and interactions with other transcriptional factors or regulators. This review summarizes how proteins that interact with FOXO3a engage in cancer progression.
Collapse
Affiliation(s)
- Zhiqiang Dong
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China
| | - Zongming Guo
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Hui Li
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Dequan Han
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Xie
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Shaoning Cui
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China
| | - Wei Zhang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
| | - Shuhong Huang
- Health College, Yantai Nanshan University, Yantai, 265700, Shandong, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, Shandong, China.
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
7
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
8
|
Yoo W, Song YW, Kim J, Ahn J, Kim J, Shin Y, Ryu JK, Kim KK. Molecular basis for SOX2-dependent regulation of super-enhancer activity. Nucleic Acids Res 2023; 51:11999-12019. [PMID: 37930832 PMCID: PMC10711550 DOI: 10.1093/nar/gkad908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Pioneer transcription factors (TFs) like SOX2 are vital for stemness and cancer through enhancing gene expression within transcriptional condensates formed with coactivators, RNAs and mediators on super-enhancers (SEs). Despite their importance, how these factors work together for transcriptional condensation and activation remains unclear. SOX2, a pioneer TF found in SEs of pluripotent and cancer stem cells, initiates SE-mediated transcription by binding to nucleosomes, though the mechanism isn't fully understood. To address SOX2's role in SEs, we identified mSE078 as a model SOX2-enriched SE and p300 as a coactivator through bioinformatic analysis. In vitro and cell assays showed SOX2 forms condensates with p300 and SOX2-binding motifs in mSE078. We further proved that SOX2 condensation is highly correlated with mSE078's enhancer activity in cells. Moreover, we successfully demonstrated that p300 not only elevated transcriptional activity but also triggered chromatin acetylation via its direct interaction with SOX2 within these transcriptional condensates. Finally, our validation of SOX2-enriched SEs showcased their contribution to target gene expression in both stem cells and cancer cells. In its entirety, this study imparts valuable mechanistic insights into the collaborative interplay of SOX2 and its coactivator p300, shedding light on the regulation of transcriptional condensation and activation within SOX2-enriched SEs.
Collapse
Affiliation(s)
- Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yi Wei Song
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Je-Kyung Ryu
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Santos BF, Grenho I, Martel PJ, Ferreira BI, Link W. FOXO family isoforms. Cell Death Dis 2023; 14:702. [PMID: 37891184 PMCID: PMC10611805 DOI: 10.1038/s41419-023-06177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
FOXO family of proteins are transcription factors involved in many physiological and pathological processes including cellular homeostasis, stem cell maintenance, cancer, metabolic, and cardiovascular diseases. Genetic evidence has been accumulating to suggest a prominent role of FOXOs in lifespan regulation in animal systems from hydra, C elegans, Drosophila, and mice. Together with the observation that FOXO3 is the second most replicated gene associated with extreme human longevity suggests that pharmacological targeting of FOXO proteins can be a promising approach to treat cancer and other age-related diseases and extend life and health span. However, due to the broad range of cellular functions of the FOXO family members FOXO1, 3, 4, and 6, isoform-specific targeting of FOXOs might lead to greater benefits and cause fewer side effects. Therefore, a deeper understanding of the common and specific features of these proteins as well as their redundant and specific functions in our cells represents the basis of specific targeting strategies. In this review, we provide an overview of the evolution, structure, function, and disease-relevance of each of the FOXO family members.
Collapse
Affiliation(s)
- Bruno F Santos
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Centro Hospitalar Universitário do Algarve (CHUA). Rua Leão Penedo, 8000-386, Faro, Portugal
| | - Inês Grenho
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Paulo J Martel
- Center for Health Technology and Services Research (CINTESIS)@RISE, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute-ABC-RI, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Brown AD, Vergunst KL, Branch M, Blair CM, Dupré DJ, Baillie GS, Langelaan DN. Structural basis of CBP/p300 recruitment by the microphthalmia-associated transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119520. [PMID: 37353163 DOI: 10.1016/j.bbamcr.2023.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is a master regulator of the melanocyte cell lineage. Aberrant MITF activity can lead to multiple malignancies including skin cancer, where it modulates the progression and invasiveness of melanoma. MITF-regulated gene expression requires recruitment of the transcriptional co-regulator CBP/p300, but details of this process are not fully defined. In this study, we investigate the structural and functional interaction between the MITF N-terminal transactivation domain (MITFTAD) and CBP/p300. Using pulldown assays and nuclear magnetic resonance spectroscopy we determined that MITFTAD is intrinsically disordered and binds to the TAZ1 and TAZ2 domains of CBP/p300 with moderate affinity. The solution-state structure of the MITFTAD:TAZ2 complex reveals that MITF interacts with a hydrophobic surface of TAZ2, while remaining somewhat dynamic. Peptide array and mutagenesis experiments determined that an acidic motif is integral to the MITFTAD:TAZ2 interaction and is necessary for transcriptional activity of MITF. Peptides that bind to the same surface of TAZ2 as MITFTAD, such as the adenoviral protein E1A, are capable of displacing MITF from TAZ2 and inhibiting transactivation. These findings provide insight into co-activator recruitment by MITF that are fundamental to our understanding of MITF targeted gene regulation and melanoma biology.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kathleen L Vergunst
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Makenzie Branch
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor M Blair
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom of Great Britain and Northern Ireland
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
11
|
Jacome Burbano MS, Robin JD, Bauwens S, Martin M, Donati E, Martínez L, Lin P, Sacconi S, Magdinier F, Gilson E. Non-canonical telomere protection role of FOXO3a of human skeletal muscle cells regulated by the TRF2-redox axis. Commun Biol 2023; 6:561. [PMID: 37231173 DOI: 10.1038/s42003-023-04903-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) binds to telomeres and protects chromosome ends against the DNA damage response and senescence. Although the expression of TRF2 is downregulated upon cellular senescence and in various aging tissues, including skeletal muscle tissues, very little is known about the contribution of this decline to aging. We previously showed that TRF2 loss in myofibers does not trigger telomere deprotection but mitochondrial dysfunction leading to an increased level of reactive oxygen species. We show here that this oxidative stress triggers the binding of FOXO3a to telomeres where it protects against ATM activation, revealing a previously unrecognized telomere protective function of FOXO3a, to the best of our knowledge. We further showed in transformed fibroblasts and myotubes that the telomere properties of FOXO3a are dependent on the C-terminal segment of its CR2 domain (CR2C) but independent of its Forkhead DNA binding domain and of its CR3 transactivation domain. We propose that these non-canonical properties of FOXO3a at telomeres play a role downstream of the mitochondrial signaling induced by TRF2 downregulation to regulate skeletal muscle homeostasis and aging.
Collapse
Affiliation(s)
| | - Jérôme D Robin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Marjorie Martin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Emma Donati
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Lucia Martínez
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
| | - Peipei Lin
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China
| | - Sabrina Sacconi
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France
- Peripheral Nervous System, Muscle and ALS, Neuromuscular & ALS Center of Reference, FHU Oncoage, Nice University Hospital, Pasteur 2, Nice, France
| | | | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculté de médecine Nice, Nice, France.
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, International Research Project in Hematology, Cancer and Aging, RuiJin Hospital, Shanghai Jiao Tong University School, Shanghai, China.
- Department of Genetics, CHU; FHU OncoAge, Nice, France.
| |
Collapse
|
12
|
Sato N, Suetaka S, Hayashi Y, Arai M. Rational peptide design for inhibition of the KIX-MLL interaction. Sci Rep 2023; 13:6330. [PMID: 37072438 PMCID: PMC10113271 DOI: 10.1038/s41598-023-32848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
The kinase-inducible domain interacting (KIX) domain is an integral part of the general transcriptional coactivator CREB-binding protein, and has been associated with leukemia, cancer, and various viral diseases. Hence, the KIX domain has attracted considerable attention in drug discovery and development. Here, we rationally designed a KIX inhibitor using a peptide fragment corresponding to the transactivation domain (TAD) of the transcriptional activator, mixed-lineage leukemia protein (MLL). We performed theoretical saturation mutagenesis using the Rosetta software to search for mutants expected to bind KIX more tightly than the wild-type MLL TAD. Mutant peptides with higher helical propensities were selected for experimental characterization. We found that the T2857W mutant of the MLL TAD peptide had the highest binding affinity for KIX compared to the other 12 peptides designed in this study. Moreover, the peptide had a high inhibitory effect on the KIX-MLL interaction with a half-maximal inhibitory concentration close to the dissociation constant for this interaction. To our knowledge, this peptide has the highest affinity for KIX among all previously reported inhibitors that target the MLL site of KIX. Thus, our approach may be useful for rationally developing helical peptides that inhibit protein-protein interactions implicated in the progression of various diseases.
Collapse
Affiliation(s)
- Nao Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
13
|
Krempl C, Sprangers R. Assessing the applicability of 19F labeled tryptophan residues to quantify protein dynamics. JOURNAL OF BIOMOLECULAR NMR 2023; 77:55-67. [PMID: 36639431 PMCID: PMC10149471 DOI: 10.1007/s10858-022-00411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.
Collapse
Affiliation(s)
- Christina Krempl
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Remco Sprangers
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
14
|
Brown AD, Cranstone C, Dupré DJ, Langelaan DN. β-Catenin interacts with the TAZ1 and TAZ2 domains of CBP/p300 to activate gene transcription. Int J Biol Macromol 2023; 238:124155. [PMID: 36963539 DOI: 10.1016/j.ijbiomac.2023.124155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
The transcriptional co-regulator β-catenin is a critical member of the canonical Wnt signaling pathway, which plays an important role in regulating cell fate. Deregulation of the Wnt/β-catenin pathway is characteristic in the development of major types of cancer, where accumulation of β-catenin promotes cancer cell proliferation and renewal. β-catenin gene expression is facilitated through recruitment of co-activators such as histone acetyltransferases CBP/p300; however, the mechanism of their interaction is not fully understood. Here we investigate the interaction between the C-terminal transactivation domain of β-catenin and CBP/p300. Using a combination of pulldown assays, isothermal titration calorimetry, and nuclear resonance spectroscopy we determine the disordered C-terminal region of β-catenin binds promiscuously to the TAZ1 and TAZ2 domains of CBP/p300. We then map the interaction site of the C-terminal β-catenin transactivation domain onto TAZ1 and TAZ2 using chemical-shift perturbation studies. Luciferase-based gene reporter assays indicate Asp750-Leu781 is critical to β-catenin gene activation, and mutagenesis revealed that acidic and hydrophobic residues within this region are necessary to maintain TAZ1 binding. These results outline a mechanism of Wnt/β-catenin gene regulation that underlies cell development and provides a framework to develop methods to block β-catenin dependent signaling.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor Cranstone
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
15
|
Gawriyski L, Jouhilahti EM, Yoshihara M, Fei L, Weltner J, Airenne TT, Trokovic R, Bhagat S, Tervaniemi MH, Murakawa Y, Salokas K, Liu X, Miettinen S, Bürglin TR, Sahu B, Otonkoski T, Johnson MS, Katayama S, Varjosalo M, Kere J. Comprehensive characterization of the embryonic factor LEUTX. iScience 2023; 26:106172. [PMID: 36876139 PMCID: PMC9978639 DOI: 10.1016/j.isci.2023.106172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 14186 Stockholm, Sweden
| | - Tomi T. Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mari H. Tervaniemi
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM-ETS, Milan, Italy
| | - Kari Salokas
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Sini Miettinen
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | | | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, 0349 Oslo, Norway
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
16
|
Jones M, Grosche P, Floersheimer A, André J, Gattlen R, Oser D, Tinchant J, Wille R, Chie-Leon B, Gerspacher M, Ertl P, Ostermann N, Altmann E, Manchado E, Vorherr T, Chène P. Design and Biochemical Characterization of Peptidic Inhibitors of the Myb/p300 Interaction. Biochemistry 2023; 62:1321-1329. [PMID: 36883372 DOI: 10.1021/acs.biochem.2c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.
Collapse
Affiliation(s)
- Matthew Jones
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Philipp Grosche
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Andreas Floersheimer
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Jérome André
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Raphael Gattlen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Dieter Oser
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Juliette Tinchant
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Roman Wille
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Barbara Chie-Leon
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Marc Gerspacher
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Nils Ostermann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Eusebio Manchado
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Thomas Vorherr
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
17
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
18
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
19
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
20
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
21
|
Daffern N, Radhakrishnan I. A Novel Mechanism of Coactivator Recruitment by the Nurr1 Nuclear Receptor. J Mol Biol 2022; 434:167718. [PMID: 35810793 PMCID: PMC9922031 DOI: 10.1016/j.jmb.2022.167718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/29/2023]
Abstract
Nuclear receptors constitute one of the largest families of transcription factors that regulate genes in metazoans in response to small molecule ligands. Many receptors harbor two transactivation domains, one at each end of the protein sequence. Whereas the molecular mechanisms of transactivation mediated by the ligand-binding domain at the C-terminus of the protein are generally well established, the mechanism involving the N-terminal domain called activation function 1 (AF1) has remained elusive. Previous studies implicated the AF1 domain as a significant contributor towards the overall transcriptional activity of the NR4A family of nuclear receptors and suggested that the steroid receptor coactivators (SRCs) play an important role in this process. Here we show that a short segment within the AF1 domain of the NR4A receptor Nurr1 can directly engage with the SRC1 PAS-B domain. We also show that this segment forms a helix upon binding to a largely hydrophobic groove on PAS-B, overlapping with the surface engaged by the STAT6 transcription factor, suggesting that this mode of recruitment could be shared by diverse transcription factors including other nuclear receptors.
Collapse
Affiliation(s)
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
22
|
Hao Y, Ren Z, Yu L, Zhu G, Zhang P, Zhu J, Cao S. p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis. Aging Cell 2022; 21:e13677. [PMID: 35907249 PMCID: PMC9381896 DOI: 10.1111/acel.13677] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023] Open
Abstract
The transcription factor p300 is reportedly involved in age-associated human diseases, including intervertebral disc degeneration (IDD). In this study, we investigate the potential role and pathophysiological mechanism of p300 in IDD. Clinical tissue samples were collected from patients with lumbar disc herniation (LDH), in which the expression of p300, forkhead box O3 (FOXO3), and sirtuin 1 (Sirt1) was determined. Nucleus pulposus cells (NPCs) isolated from clinical degenerative intervertebral disc (IVD) tissues were introduced with oe-p300, oe-FOXO3, Wnt/β-catenin agonist 1, C646 (p300/CBP inhibitor), or si-p300 to explore the functional role of p300 in IDD and to characterize the relationship between p300 and the FOXO3/Sirt1/Wnt/β-catenin pathway. Also, we established a rat IDD model by inducing needle puncture injuries in the caudal IVDs for further verification of p300 functional role. We found that p300 was downregulated in the clinical tissues and NPCs of IDD. Overexpression of p300 promoted the proliferation and autophagy of NPCs while inhibiting cell apoptosis, which was associated with FOXO3 upregulation. p300 could increase the expression of FOXO3 by binding to the Sirt1 promoter, and thus, contributed to inactivation of the Wnt/β-catenin pathway. In vivo results further displayed that p300 slowed down the progression of IDD by disrupting the Wnt/β-catenin pathway through the FOXO3/Sirt1 axis. Taken together, we suggest that p300 can act to suppress IDD via a FOXO3-dependent mechanism, highlighting a potential novel target for treatment of IDD.
Collapse
Affiliation(s)
- Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panke Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyan Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Vuoristo S, Bhagat S, Hydén-Granskog C, Yoshihara M, Gawriyski L, Jouhilahti EM, Ranga V, Tamirat M, Huhtala M, Kirjanov I, Nykänen S, Krjutškov K, Damdimopoulos A, Weltner J, Hashimoto K, Recher G, Ezer S, Paluoja P, Paloviita P, Takegami Y, Kanemaru A, Lundin K, Airenne TT, Otonkoski T, Tapanainen JS, Kawaji H, Murakawa Y, Bürglin TR, Varjosalo M, Johnson MS, Tuuri T, Katayama S, Kere J. DUX4 is a multifunctional factor priming human embryonic genome activation. iScience 2022; 25:104137. [PMID: 35402882 PMCID: PMC8990217 DOI: 10.1016/j.isci.2022.104137] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Double homeobox 4 (DUX4) is expressed at the early pre-implantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.
Collapse
Affiliation(s)
- Sanna Vuoristo
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Instutute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Vipin Ranga
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mahlet Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mikko Huhtala
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Ida Kirjanov
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sonja Nykänen
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Competence Centre for Health Technologies, 51010 Tartu, Estonia.,University of Tartu, Department of Obstetrics and Gynecology, Institute of Clinical Medicine, 50406 Tartu, Estonia
| | | | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Gaëlle Recher
- Laboratoire Photonique Numérique et Nanosciences, CNRS, Institut d'Optique Graduate School, University of Bordeaux, UMR 5298, 33400 Bordeaux, France
| | - Sini Ezer
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Priit Paluoja
- Competence Centre for Health Technologies, 51010 Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia.,University of Helsinki, Doctoral Program in Population Health, 00014 Helsinki, Finland
| | - Pauliina Paloviita
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | | | | | - Karolina Lundin
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital, 00290
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Reproductive Medicine Unit, Helsinki University Hospital, 00290 Helsinki, Finland.,Oulu University Hospital, 90220 Oulu, Finland
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako 351-0198, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Instutute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan.,IFOM, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Reproductive Medicine Unit, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|
24
|
Soto L, Li Z, Santoso CS, Berenson A, Ho I, Shen VX, Yuan S, Bass JIF. Compendium of human transcription factor effector domains. Mol Cell 2022; 82:514-526. [PMID: 34863368 PMCID: PMC8818021 DOI: 10.1016/j.molcel.2021.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA sequences and modulating transcriptional activity through their effector domains. Despite the central role of effector domains in TF function, there is a current lack of a comprehensive resource and characterization of effector domains. Here, we provide a catalog of 924 effector domains across 594 human TFs. Using this catalog, we characterized the amino acid composition of effector domains, their conservation across species and across the human population, and their roles in human diseases. Furthermore, we provide a classification system for effector domains that constitutes a valuable resource and a blueprint for future experimental studies of TF effector domain function.
Collapse
Affiliation(s)
- Luis Soto
- Escuela Profesional de Genética y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Perú
| | - Zhaorong Li
- Bioinformatics Program, Boston University, Boston MA 02215
| | - Clarissa S Santoso
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Anna Berenson
- Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215
| | - Isabella Ho
- Biology Department, Boston University, Boston MA 02215
| | - Vivian X Shen
- Biology Department, Boston University, Boston MA 02215
| | - Samson Yuan
- Biology Department, Boston University, Boston MA 02215
| | - Juan I Fuxman Bass
- Bioinformatics Program, Boston University, Boston MA 02215,Biology Department, Boston University, Boston MA 02215,Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston MA 02215,correspondence:
| |
Collapse
|
25
|
Kim J, Ahn D, Park CJ. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53. FEBS J 2021; 289:3163-3182. [PMID: 34954873 DOI: 10.1111/febs.16333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/21/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Cellular senescence is protective against external oncogenic stress, but its accumulation causes aging-related diseases. Forkhead box O4 (FOXO4) and p53 are human transcription factors known to promote senescence by interacting with each other and activating p21 transcription. Inhibition of the interaction is a strategy for inducing apoptosis of senescent cells, but the binding surfaces that mediate the FOXO4-p53 interaction remain elusive. Here, we investigated two binding sites involved in the interaction between FOXO4 and p53 by NMR spectroscopy. NMR chemical shift perturbation analysis showed that the binding between FOXO4's forkhead domain (FHD) and p53's transactivation domain (TAD), and between FOXO4's C-terminal transactivation domain (CR3) and p53's DNA-binding domain (DBD), mediate the FOXO4-p53 interaction. Isothermal titration calorimetry data showed that both interactions have micromolar Kd values, and FOXO4 FHD-p53 TAD interaction has a higher binding affinity. We also showed that the intramolecular CR3-binding surface of FOXO4 FHD interacts with p53 TAD2, and FOXO4 CR3 interacts with the DNA/p53 TAD-binding surface of p53 DBD, suggesting a network of potentially competitive and/or coordinated interactions. Based on these results, we propose that a network of intramolecular and intermolecular interactions contributes to the two transcription factors' proper localisation on the p21 promoter and consequently promotes p21 transcription and cell senescence. This work provides structural information at the molecular level that is key to understanding the interplay of two proteins responsible for cellular senescence.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| | - Dabin Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Korea
| |
Collapse
|
26
|
Le HH, Cinaroglu SS, Manalo EC, Ors A, Gomes MM, Duan Sahbaz B, Bonic K, Origel Marmolejo CA, Quentel A, Plaut JS, Kawashima TE, Ozdemir ES, Malhotra SV, Ahiska Y, Sezerman U, Bayram Akcapinar G, Saldivar JC, Timucin E, Fischer JM. Molecular modelling of the FOXO4-TP53 interaction to design senolytic peptides for the elimination of senescent cancer cells. EBioMedicine 2021; 73:103646. [PMID: 34689087 PMCID: PMC8546421 DOI: 10.1016/j.ebiom.2021.103646] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression. METHODS We used molecular modelling to develop a series of rationally designed peptides to mimic and target FOXO4 disrupting the FOXO4-TP53 interaction and releasing TP53 to induce apoptosis. We then tested these peptides as senolytic agents for the elimination of senescent cells both in cell culture and in vivo. FINDINGS Here we show that these peptides can act as senolytics for eliminating senescent human cancer cells both in cell culture and in orthotopic mouse models. We then further characterized one peptide, ES2, showing that it disrupts FOXO4-TP53 foci, activates TP53 mediated apoptosis and preferentially binds FOXO4 compared to TP53. Next, we show that intratumoural delivery of ES2 plus a BRAF inhibitor results in a significant increase in apoptosis and a survival advantage in mouse models of melanoma. Finally, we show that repeated systemic delivery of ES2 to older mice results in reduced senescent cell numbers in the liver with minimal toxicity. INTERPRETATION Taken together, our results reveal that peptides can be generated to specifically target and eliminate FOXO4+ senescent cancer cells, which has implications for eradicating residual disease and as a combination therapy for frontline treatment of cancer. FUNDING This work was supported by the Cancer Early Detection Advanced Research Center at Oregon Health & Science University.
Collapse
Affiliation(s)
- Hillary H Le
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Suleyman S Cinaroglu
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey; Eternans Ltd., UK
| | - Elise C Manalo
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Aysegul Ors
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Michelle M Gomes
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | | | - Karla Bonic
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Carlos A Origel Marmolejo
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Arnaud Quentel
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Justin S Plaut
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Dept of Bioengineering, University of California San Diego, USA
| | - Taryn E Kawashima
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - E Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Sanjay V Malhotra
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Dept of Cell, Developmental and Cancer Biology, Oregon Health & Science University, USA
| | | | - Ugur Sezerman
- Eternans Ltd., UK; School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey
| | - Gunseli Bayram Akcapinar
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey; Eternans Ltd., UK
| | - Joshua C Saldivar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Emel Timucin
- Eternans Ltd., UK; School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey
| | - Jared M Fischer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Dept of Molecular and Medical Genetics, Oregon Health & Science University, USA.
| |
Collapse
|
27
|
Joy ST, Henley MJ, De Salle SN, Beyersdorf MS, Vock IW, Huldin AJL, Mapp AK. A Dual-Site Inhibitor of CBP/p300 KIX is a Selective and Effective Modulator of Myb. J Am Chem Soc 2021; 143:15056-15062. [PMID: 34491719 DOI: 10.1021/jacs.1c04432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.
Collapse
Affiliation(s)
- Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isaac W Vock
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdisciplinary Research Experiences for Undergraduates Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allison J L Huldin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Bourgeois B, Gui T, Hoogeboom D, Hocking HG, Richter G, Spreitzer E, Viertler M, Richter K, Madl T, Burgering BMT. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep 2021; 36:109446. [PMID: 34320339 DOI: 10.1016/j.celrep.2021.109446] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/15/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Transcription factors harbor defined regulatory intrinsically disordered regions (IDRs), which raises the question of how they mediate binding to structured co-regulators and modulate their activity. Here, we present a detailed molecular regulatory mechanism of Forkhead box O4 (FOXO4) by the structured transcriptional co-regulator β-catenin. We find that the disordered FOXO4 C-terminal region, which contains its transactivation domain, binds β-catenin through two defined interaction sites, and this is regulated by combined PKB/AKT- and CK1-mediated phosphorylation. Binding of β-catenin competes with the autoinhibitory interaction of the FOXO4 disordered region with its DNA-binding Forkhead domain, and thereby enhances FOXO4 transcriptional activity. Furthermore, we show that binding of the β-catenin inhibitor protein ICAT is compatible with FOXO4 binding to β-catenin, suggesting that ICAT acts as a molecular switch between anti-proliferative FOXO and pro-proliferative Wnt/TCF/LEF signaling. These data illustrate how the interplay of IDRs, post-translational modifications, and co-factor binding contribute to transcription factor function.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Tianshu Gui
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Diana Hoogeboom
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Henry G Hocking
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Martin Viertler
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Klaus Richter
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| | - Boudewijn M T Burgering
- Oncode Institute and Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
| |
Collapse
|
29
|
Molecular Dynamics Simulations of Human FOXO3 Reveal Intrinsically Disordered Regions Spread Spatially by Intramolecular Electrostatic Repulsion. Biomolecules 2021; 11:biom11060856. [PMID: 34201262 PMCID: PMC8228108 DOI: 10.3390/biom11060856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
The human transcription factor FOXO3 (a member of the 'forkhead' family of transcription factors) controls a variety of cellular functions that make it a highly relevant target for intervention in anti-cancer and anti-aging therapies. FOXO3 is a mostly intrinsically disordered protein (IDP). Absence of knowledge of its structural properties outside the DNA-binding domain constitutes a considerable obstacle to a better understanding of structure/function relationships. Here, I present extensive molecular dynamics (MD) simulation data based on implicit solvation models of the entire FOXO3/DNA complex, and accelerated MD simulations under explicit solvent conditions of a central region of particular structural interest (FOXO3120-530). A new graphical tool for studying and visualizing the structural diversity of IDPs, the Local Compaction Plot (LCP), is introduced. The simulations confirm the highly disordered nature of FOXO3 and distinguish various degrees of folding propensity. Unexpectedly, two 'linker' regions immediately adjacent to the DNA-binding domain are present in a highly extended conformation. This extended conformation is not due to their amino acid composition, but rather is caused by electrostatic repulsion of the domains connected by the linkers. FOXO3 is thus an IDP present in an unusually extended conformation to facilitate interaction with molecular interaction partners.
Collapse
|
30
|
Kim J, Ahn D, Park CJ. FOXO4 Transactivation Domain Interaction with Forkhead DNA Binding Domain and Effect on Selective DNA Recognition for Transcription Initiation. J Mol Biol 2021; 433:166808. [PMID: 33450250 DOI: 10.1016/j.jmb.2021.166808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
Forkhead box O4 (FOXO4) is a human transcription factor (TF) that participates in cell homeostasis. While the structure and DNA binding properties of the conserved forkhead domain (FHD) have been thoroughly investigated, how the transactivation domain (TAD) regulates the DNA binding properties of the protein remains elusive. Here, we investigated the role of TAD in modulating the DNA binding properties of FOXO4 using solution NMR. We found that TAD and FHD form an intramolecular complex mainly governed by hydrophobic interaction. Remarkably, TAD and DNA share the same surface of FHD for binding. While FHD did not differentiate binding to target and non-target DNA, the FHD-TAD complex showed different behaviors depending on the DNA sequence. In the presence of TAD, free and DNA-bound FHD exhibited a slow exchange with target DNA and a fast exchange with non-target DNA. The interaction of the two domains affected the kinetic function of FHD depending on the type of DNA. Based on these findings, we suggest a transcription initiation model by which TAD modulates FOXO4 recognition of its target promoter DNA sequences. This study describes the function of TAD in FOXO4 and provides a new kinetic perspective on target sequence selection by TFs.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dabin Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
31
|
Pontin arginine methylation by CARM1 is crucial for epigenetic regulation of autophagy. Nat Commun 2020; 11:6297. [PMID: 33293536 PMCID: PMC7722926 DOI: 10.1038/s41467-020-20080-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a catabolic process through which cytoplasmic components are degraded and recycled in response to various stresses including starvation. Recently, transcriptional and epigenetic regulations of autophagy have emerged as essential mechanisms for maintaining homeostasis. Here, we identify that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a). Genome-wide analyses and biochemical studies reveal that methylated Pontin functions as a platform for recruiting Tip60 histone acetyltransferase with increased H4 acetylation and subsequent activation of autophagy genes regulated by FOXO3a. Surprisingly, CARM1-Pontin-FOXO3a signaling axis can work in the distal regions and activate autophagy genes through enhancer activation. Together, our findings provide a signaling axis of CARM1-Pontin-FOXO3a and further expand the role of CARM1 in nuclear regulation of autophagy. Epigenetic regulations of autophagy have emerged as mechanisms for maintaining cellular homeostasis. Here the authors reveal that the CARM1-Pontin-FOXO3a signaling axis can activate autophagy related genes through enhancer activation.
Collapse
|
32
|
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
|
33
|
Chen X, Liu W, Xiao J, Zhang Y, Chen Y, Luo C, Huang Q, Peng F, Gong W, Li S, He X, Zhuang Y, Wu N, Liu Y, Wang Y, Long H. FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. FASEB J 2020; 34:13300-13316. [PMID: 32786113 DOI: 10.1096/fj.202000783r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Podocyte injury is the primary cause of glomerular injury in diabetic nephropathy (DN). Advanced oxidation protein products (AOPPs), the triggers and markers of oxidative stress in DN, have been linked to podocyte damage. However, the underlying mechanism is not yet clear. Here, we investigated the potential role of FOXO3a, a key transcription factor in the response to stress, in mediating AOPPs-induced podocyte injury. We found that FOXO3a expression was increased in the glomeruli of kidney biopsies from patients with DN and it was positively correlated with proteinuria. The serum from patients with DN significantly increased FOXO3a and its downstream genes FasL and Bim, thereby inducing the high level of cleaved caspase3 and the loss of nephrin and podocin expressions in podocytes. Blockade of AOPPs signaling by a neutralizing antibody against the receptor of advanced glycation end products (αRAGE) abolished the effect of DN serum on podocytes, confirming the pathogenic role of AOPPs in DN serum. Downregulation of FOXO3a decreased AOPPs-induced podocyte apoptosis and restored the levels of podocyte markers nephrin and podocin, and upregulation of FOXO3a exacerbated these changes in podocytes after AOPPs treatment. Furthermore, FOXO3a specifically activated proapoptotic genes in podocytes only in the presence of AOPPs. Mechanistically, AOPPs increased the FOXO3a protein levels by inhibiting their autophagic degradation in a ROS/mTOR-dependent manner. Moreover AOPPs activated the accumulated FOXO3a by maintaining FOXO3a in the nucleus, and this process was dependent on ROS-mediated AKT signaling deactivation. These studies suggest that FOXO3a plays a critical role in mediating AOPPs-induced podocyte injury and reveal a new mechanistic linkage of oxidative stress, FOXO3a activation and podocyte injury in DN.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenting Liu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihua Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qianyin Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangqiu Gong
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyang He
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Zhuang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Na Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanxia Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxian Wang
- Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Lochhead MR, Brown AD, Kirlin AC, Chitayat S, Munro K, Findlay JE, Baillie GS, LeBrun DP, Langelaan DN, Smith SP. Structural insights into TAZ2 domain-mediated CBP/p300 recruitment by transactivation domain 1 of the lymphopoietic transcription factor E2A. J Biol Chem 2020; 295:4303-4315. [PMID: 32098872 PMCID: PMC7105314 DOI: 10.1074/jbc.ra119.011078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
The E-protein transcription factors guide immune cell differentiation, with E12 and E47 (hereafter called E2A) being essential for B-cell specification and maturation. E2A and the oncogenic chimera E2A-PBX1 contain three transactivation domains (ADs), with AD1 and AD2 having redundant, independent, and cooperative functions in a cell-dependent manner. AD1 and AD2 both mediate their functions by binding to the KIX domain of the histone acetyltransferase paralogues CREB-binding protein (CBP) and E1A-binding protein P300 (p300). This interaction is necessary for B-cell maturation and oncogenesis by E2A-PBX1 and occurs through conserved ΦXXΦΦ motifs (with Φ denoting a hydrophobic amino acid) in AD1 and AD2. However, disruption of this interaction via mutation of the KIX domain in CBP/p300 does not completely abrogate binding of E2A and E2A-PBX1. Here, we determined that E2A-AD1 and E2A-AD2 also interact with the TAZ2 domain of CBP/p300. Characterization of the TAZ2:E2A-AD1(1-37) complex indicated that E2A-AD1 adopts an α-helical structure and uses its ΦXXΦΦ motif to bind TAZ2. Whereas this region overlapped with the KIX recognition region, key KIX-interacting E2A-AD1 residues were exposed, suggesting that E2A-AD1 could simultaneously bind both the KIX and TAZ2 domains. However, we did not detect a ternary complex involving E2A-AD1, KIX, and TAZ2 and found that E2A containing both intact AD1 and AD2 is required to bind to CBP/p300. Our findings highlight the structural plasticity and promiscuity of E2A-AD1 and suggest that E2A binds both the TAZ2 and KIX domains of CBP/p300 through AD1 and AD2.
Collapse
Affiliation(s)
- Marina R Lochhead
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alyssa C Kirlin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Seth Chitayat
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Kim Munro
- Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jane E Findlay
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - David P LeBrun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - David N Langelaan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada; Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
35
|
Fasano C, Disciglio V, Bertora S, Lepore Signorile M, Simone C. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells 2019; 8:cells8091110. [PMID: 31546924 PMCID: PMC6769815 DOI: 10.3390/cells8091110] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions.
Collapse
Affiliation(s)
- Candida Fasano
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Vittoria Disciglio
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Stefania Bertora
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Martina Lepore Signorile
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy.
| | - Cristiano Simone
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
36
|
Garg A, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, Tenzer S, Sönnichsen C, Wolf E. Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. J Biol Chem 2019; 294:16604-16619. [PMID: 31515273 DOI: 10.1074/jbc.ra119.009845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
The mammalian CLOCK:BMAL1 transcription factor complex and its coactivators CREB-binding protein (CBP)/p300 and mixed-lineage leukemia 1 (MLL1) critically regulate circadian transcription and chromatin modification. Circadian oscillations are regulated by interactions of BMAL1's C-terminal transactivation domain (TAD) with the KIX domain of CBP/p300 (activating) and with the clock protein CRY1 (repressing) as well as by the BMAL1 G-region preceding the TAD. Circadian acetylation of Lys537 within the G-region enhances repressive BMAL1-TAD-CRY1 interactions. Here, we characterized the interaction of the CBP-KIX domain with BMAL1 proteins, including the BMAL1-TAD, parts of the G-region, and Lys537 Tethering the small compound 1-10 in the MLL-binding pocket of the CBP-KIX domain weakened BMAL1 binding, and MLL1-bound KIX did not form a ternary complex with BMAL1, indicating that the MLL-binding pocket is important for KIX-BMAL1 interactions. Small-angle X-ray scattering (SAXS) models of BMAL1 and BMAL1:KIX complexes revealed that the N-terminal BMAL1 G-region including Lys537 forms elongated extensions emerging from the bulkier BMAL1-TAD:KIX core complex. Fitting high-resolution KIX domain structures into the SAXS-derived envelopes suggested that the G-region emerges near the MLL-binding pocket, further supporting a role of this pocket in BMAL1 binding. Additionally, mutations in the second CREB-pKID/c-Myb-binding pocket of the KIX domain moderately impacted BMAL1 binding. The BMAL1(K537Q) mutation mimicking Lys537 acetylation, however, did not affect the KIX-binding affinity, in contrast to its enhancing effect on CRY1 binding. Our results significantly advance the mechanistic understanding of the protein interaction networks controlling CLOCK:BMAL1- and CBP-dependent gene regulation in the mammalian circadian clock.
Collapse
Affiliation(s)
- Archit Garg
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany.,Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Roberto Orru
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Weixiang Ye
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Maja Köhn
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany
| | - Carsten Sönnichsen
- Institute of Physical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany .,Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| |
Collapse
|
37
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
38
|
Osei-Sarfo K, Gudas LJ. Retinoids induce antagonism between FOXO3A and FOXM1 transcription factors in human oral squamous cell carcinoma (OSCC) cells. PLoS One 2019; 14:e0215234. [PMID: 30978209 PMCID: PMC6461257 DOI: 10.1371/journal.pone.0215234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
To gain a greater understanding of oral squamous cell carcinoma (OSCC) we investigated the actions of all-trans-retinoic acid (RA; a retinoid), bexarotene (a pan-RXR agonist), and forkhead box (FOX) transcription factors in human OSCC-derived cell lines. RA and bexarotene have been shown to limit several oncogenic pathways in many cell types. FOXO proteins typically are associated with tumor suppressive activities, whereas FOXM1 acts as an oncogene when overexpressed in several cancers. RA and/or bexarotene increased the transcript levels of FOXO1, FOXO3A, and TRAIL receptors; reduced the transcript levels of FOXM1, Aurora kinase B (AURKB), and vascular endothelial growth factor A (VEGFA); and decreased the proliferation of OSCC-derived cell lines. Also, RA and/or bexarotene influenced the recruitment of FOXO3A and FOXM1 to target genes. Additionally, FOXM1 depletion reduced cell proliferation, decreased transcript levels of downstream targets of FOXM1, and increased transcript levels of TRAIL receptors. Overexpression of FOXO3A decreased proliferation and increased binding of histone deacetylases (HDACs) 1 and 2 at the FOXM1, AURKB, and VEGFA promoters. This research suggests novel influences of the drugs RA and bexarotene on the expression of FOXM1 and FOXO3A in transcriptional regulatory pathways of human OSCC.
Collapse
Affiliation(s)
- Kwame Osei-Sarfo
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States of America
- Weill Cornell Meyer Cancer Center, New York, NY, United States of America
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States of America
- Weill Cornell Meyer Cancer Center, New York, NY, United States of America
| |
Collapse
|
39
|
Challenges in the Structural-Functional Characterization of Multidomain, Partially Disordered Proteins CBP and p300: Preparing Native Proteins and Developing Nanobody Tools. Methods Enzymol 2018; 611:607-675. [PMID: 30471702 DOI: 10.1016/bs.mie.2018.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural and functional characterization of large multidomain signaling proteins containing long disordered linker regions represents special methodological and conceptual challenges. These proteins show extreme structural heterogeneity and have complex posttranslational modification patterns, due to which traditional structural biology techniques provide results that are often difficult to interpret. As demonstrated through the example of two such multidomain proteins, CREB-binding protein (CBP) and its paralogue, p300, even the expression and purification of such proteins are compromised by their extreme proteolytic sensitivity and structural heterogeneity. In this chapter, we describe the effective expression of CBP and p300 in a eukaryotic host, Sf9 insect cells, followed by their tandem affinity purification based on two terminal tags to ensure their structural integrity. The major focus of this chapter is on the development of novel accessory tools, single-domain camelid antibodies (nanobodies), for structural-functional characterization. Specific nanobodies against full-length CBP and p300 can specifically target their different regions and can be used for their marking, labeling, and structural stabilization in a broad range of in vitro and in vivo studies. Here, we describe four high-affinity nanobodies binding to the KIX and the HAT domains, either mimicking known interacting partners or revealing new functionally relevant conformations. As immunization of llamas results in nanobody libraries with a great sequence variation, deep sequencing and interaction analysis with different regions of the proteins provide a novel approach toward developing a panel of specific nanobodies.
Collapse
|
40
|
Voss AK, Thomas T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. Bioessays 2018; 40:e1800078. [PMID: 30144132 DOI: 10.1002/bies.201800078] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Indexed: 01/08/2023]
Abstract
Histone acetylation has been recognized as an important post-translational modification of core nucleosomal histones that changes access to the chromatin to allow gene transcription, DNA replication, and repair. Histone acetyltransferases were initially identified as co-activators that link DNA-binding transcription factors to the general transcriptional machinery. Over the years, more chromatin-binding modes have been discovered suggesting direct interaction of histone acetyltransferases and their protein complex partners with histone proteins. While much progress has been made in characterizing histone acetyltransferase complexes biochemically, cell-free activity assay results are often at odds with in-cell histone acetyltransferase activities. In-cell studies suggest specific histone lysine targets, but broad recruitment modes, apparently not relying on specific DNA sequences, but on chromatin of a specific functional state. Here we review the evidence for general versus specific roles of individual nuclear lysine acetyltransferases in light of in vivo and in vitro data in the mammalian system.
Collapse
Affiliation(s)
- Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, 3 1G Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
| | - Tim Thomas
- Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia
| |
Collapse
|
41
|
Bourgeois B, Madl T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett 2018; 592:2083-2097. [PMID: 29683489 PMCID: PMC6033032 DOI: 10.1002/1873-3468.13057] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Forkhead box O (FOXO) and p53 proteins are transcription factors that regulate diverse signalling pathways to control cell cycle, apoptosis and metabolism. In the last decade both FOXO and p53 have been identified as key players in aging, and their misregulation is linked to numerous diseases including cancers. However, many of the underlying molecular mechanisms remain mysterious, including regulation of ageing by FOXOs and p53. Several activities appear to be shared between FOXOs and p53, including their central role in the regulation of cellular senescence. In this review, we will focus on the recent advances on the link between FOXOs and p53, with a particular focus on the FOXO4‐p53 axis and the role of FOXO4/p53 in cellular senescence. Moreover, we discuss potential strategies for targeting the FOXO4‐p53 interaction to modulate cellular senescence as a drug target in treatment of aging‐related diseases and morbidity.
Collapse
Affiliation(s)
- Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Austria.,BioTechMed, Graz, Austria
| |
Collapse
|
42
|
Li Z, Liu Y, Guo X, Sun G, Ma Q, Dai Y, Zhu G, Sun Y. Long noncoding RNA myocardial infarction‑associated transcript is associated with the microRNA‑150‑5p/P300 pathway in cardiac hypertrophy. Int J Mol Med 2018; 42:1265-1272. [PMID: 29786749 PMCID: PMC6089782 DOI: 10.3892/ijmm.2018.3700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/17/2018] [Indexed: 01/09/2023] Open
Abstract
In numerous diseases, abnormal expression of myocardial infarction-associated transcript (MIAT) has been reported to be involved in cell proliferation, apoptosis and migration. However, whether this long non-coding RNA MIAT has a regulatory effect on heart hypertrophy requires further investigation. To this end, the present study evaluated MIAT in hypertrophic cardiomyocytes in vitro and in vivo. Neonatal rat ventricular myocytes (NRVMs) were induced by isoproterenol (ISO) to create a cell hypertrophy model, and mice were intraperitoneally injected with ISO to establish an animal model. Echocardiography, immunofluorescence staining, western blot analysis, RNA isolation and reverse transcription-polymerase chain reaction were applied to test the involvement of MIAT in cardiac hypertrophy. The results revealed that MIAT was upregulated under ISO stimulation at the mRNA level both in vivo and in vitro. Silencing of MIAT resulted in decreased expression levels of atrial natriuretic peptide and brain natriuretic peptide in ISO-treated NRVM cardiomyocytes, confirming the connection between MIAT and hypertrophy. Furthermore, MIAT small interfering RNA significantly increased microRNA (miR)-150 and decreased P300 expression in NRVMs. In conclusion, the MIAT/miR-150-5p axis targets P300 as a positive regulator of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yamin Liu
- Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qun Ma
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying Dai
- Department of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Guangshuo Zhu
- Department of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
43
|
Tsitsipatis D, Gopal K, Steinbrenner H, Klotz LO. FOXO1 cysteine-612 mediates stimulatory effects of the coregulators CBP and PGC1α on FOXO1 basal transcriptional activity. Free Radic Biol Med 2018; 118:98-107. [PMID: 29496617 DOI: 10.1016/j.freeradbiomed.2018.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 11/15/2022]
Abstract
Hepatic production and release of metabolites, nutrients and micronutrient transporters is tightly regulated at the level of gene expression. In this regard, transcription factor FOXO1 modulates the expression of genes such as G6PC and SELENOP, encoding the catalytic subunit of glucose 6-phosphatase and the plasma selenium transporter selenoprotein P, respectively. Here, we analyzed the role of cysteine residues in FOXO1 in controlling its activity with respect to regulation of G6PC and SELENOP in HepG2 human hepatoma cells. None of the seven FOXO1 cysteines affected FOXO1 binding to DNA or its basal subcellular distribution. Whereas overexpression of wildtype FOXO1 caused a strong induction of both G6PC and SELENOP promoter activities and mRNA levels, the induction was lowered by approx. 50% if cysteine-deficient FOXO1 was overexpressed instead. Only the most C-terminal of the seven FOXO1 cysteines, Cys612, was required and sufficient to ensure full FOXO1 transactivation activity. Coexpression of FOXO1 coregulators, CBP or PGC1α, had a strong synergistic effect in stimulating G6PC promoter activity and expression, fully relying on the presence of FOXO1 Cys612. Similarly, a synergistic effect of FOXO1 and CBP was observed for SELENOP. In contrast, stimulation of SELENOP by PGC1α was independent of FOXO1-Cys612, due to the close proximity of a hepatocyte nuclear factor-4α binding site to the FOXO1 binding site within the SELENOP promoter, as demonstrated using mutant SELENOP promoter constructs. In summary, full basal FOXO1 transactivation activity relies on Cys612, which mediates synergistic effects of coregulators, CBP or PGC1α, on FOXO1 transcriptional activity. The extent of Cys612 contribution depends on the promoter context of FOXO1 target genes.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
Abstract
The evolutionarily conserved FOXO family of transcription factors has emerged as a significant arbiter of neural cell fate and function in mammals. From the neural stem cell (NSC) state through mature neurons under both physiological and pathological conditions, they have been found to modulate neural cell survival, stress responses, lineage commitment, and neuronal signaling. Lineage-specific FOXO knockout mice have provided an invaluable tool for the dissection of FOXO biology in the nervous system. Within the NSC compartments of the brain, FOXOs are required for the maintenance of NSC quiescence and for the clearance of reactive oxygen species. Within mature neurons, FOXO transcriptional activity is essential for the prevention of age-dependent axonal degeneration. Acutely, FOXO3 has been found to cause axonal degeneration upon withdrawal of neurotrophic factors. In more active neural signaling, FOXO6 promotes increased dendritic spine density of hippocampal neurons and is required for the consolidation of memories. In addition to the central nervous system (CNS), FOXOs also influence the functionality of the peripheral nervous system (PNS). FOXO1 knockout within the PNS results in a reduction of sympathetic tone and decreased levels of brain-derived norepinephrine and lower energy expenditure. FOXO3 knockout mice have impaired hearing which may be due to defects in synapse localization within the ear. Given the scope of FOXO activities in both the CNS and PNS, it will be of interest to study FOXOs within the context of neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. From within the nervous system, FOXOs may also regulate important parameters such as whole-body metabolism, motor function, and catecholamine production, making FOXOs key players in physiologic homeostasis.
Collapse
Affiliation(s)
- Evan E Santo
- Weill Cornell Medicine, New York, NY, United States
| | - Jihye Paik
- Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
45
|
Davy PMC, Allsopp RC, Donlon TA, Morris BJ, Willcox DC, Willcox BJ. FOXO3 and Exceptional Longevity: Insights From Hydra to Humans. Curr Top Dev Biol 2018; 127:193-212. [PMID: 29433738 DOI: 10.1016/bs.ctdb.2017.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is a complex, multifactorial process with significant plasticity. While several biological pathways appear to influence aging, few genes have been identified that are both evolutionarily conserved and have a strong impact on aging and age-related phenotypes. The FoxO3 gene (FOXO3), and its homologs in model organisms, appears especially important, forming a key gene in the insulin/insulin-like growth factor-signaling pathway, and influencing life span across diverse species. We highlight some of the key findings that are associated with FoxO3 protein, its gene and homologs in relation to lifespan in different species, and the insights these findings might provide about the molecular, cellular, and physiological processes that modulate aging and longevity in humans.
Collapse
Affiliation(s)
- Philip M C Davy
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, United States
| | - Richard C Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI, United States
| | - Timothy A Donlon
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; Ohana Genetics, Honolulu, HI, United States
| | - Brian J Morris
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | - Donald Craig Willcox
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; Okinawa International University, Ginowan, Okinawa, Japan
| | - Bradley J Willcox
- Honolulu Heart Program/Honolulu-Asia Aging Study, Kuakini Medical Center, Honolulu, HI, United States; John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
| |
Collapse
|
46
|
Abstract
Forkhead box O (FOXO) transcription factors are central regulators of cellular homeostasis. FOXOs respond to a wide range of external stimuli, including growth factor signaling, oxidative stress, genotoxic stress, and nutrient deprivation. These signaling inputs regulate FOXOs through a number of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and methylation. Covalent modifications can affect localization, DNA binding, and interactions with other cofactors in the cell. FOXOs integrate the various modifications to regulate cell type-specific gene expression programs that are essential for metabolic homeostasis, redox balance, and the stress response. Together, these functions are critical for coordinating a response to environmental fluctuations in order to maintain cellular homeostasis during development and to support healthy aging.
Collapse
|
47
|
Yadav A, Thakur JK, Yadav G. KIXBASE: A comprehensive web resource for identification and exploration of KIX domains. Sci Rep 2017; 7:14924. [PMID: 29097748 PMCID: PMC5668377 DOI: 10.1038/s41598-017-14617-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
The KIX domain has emerged in the last two decades as a critical site of interaction for transcriptional assembly, regulation and gene expression. Discovered in 1994, this conserved, triple helical globular domain has been characterised in various coactivator proteins of yeast, mammals and plants, including the p300/CBP (a histone acetyl transferase), MED15 (a subunit of the mediator complex of RNA polymerase II), and RECQL5 helicases. In this work, we describe the first rigorous meta analysis of KIX domains across all forms of life, leading to the development of KIXBASE, a predictive web server and global repository for detection and analysis of KIX domains. To our knowledge, KIXBASE comprises the largest online collection of KIX sequences, enabling assessments at the level of both sequence and structure, incorporating PSIPRED and MUSTER at the backend for further annotation and quality assessment. In addition, KIXBASE provides useful information about critical aspects of KIX domains such as their intrinsic disorder, hydrophobicity profiles, functional classification and annotation based on domain architectures. KIXBASE represents a significant enrichment of the currently annotated KIX dataset, especially in the plant kingdom, thus highlighting potential targets for biochemical characterization. The KIX webserver and database are both freely available to the scientific community, at http://www.nipgr.res.in/kixbase/home.php.
Collapse
Affiliation(s)
- Archana Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
48
|
Lecoq L, Raiola L, Chabot PR, Cyr N, Arseneault G, Legault P, Omichinski JG. Structural characterization of interactions between transactivation domain 1 of the p65 subunit of NF-κB and transcription regulatory factors. Nucleic Acids Res 2017; 45:5564-5576. [PMID: 28334776 PMCID: PMC5435986 DOI: 10.1093/nar/gkx146] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/25/2017] [Indexed: 01/27/2023] Open
Abstract
p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.
Collapse
Affiliation(s)
- Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Luca Raiola
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Philippe R Chabot
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Arseneault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
49
|
Huang Y, Gao M, Yang F, Zhang L, Su Z. Deciphering the promiscuous interactions between intrinsically disordered transactivation domains and the KIX domain. Proteins 2017; 85:2088-2095. [PMID: 28786199 DOI: 10.1002/prot.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
The kinase-inducible domain interacting (KIX) domain of the transcriptional coactivator CBP protein carries 2 isolated binding sites (designated as the c-Myb site and the MLL site) and is capable of binding numerous intrinsically disordered transactivation domains (TADs), including c-Myb and pKID via the c-Myb site, and MLL, E2A and c-Jun via the MLL site. In this study we compared the kinetics for binding of various disordered TADs to the KIX domain via computational biophysical analyses. We found that the binding rates are heavily affected by long-range electrostatic interactions. The basal rate constants for forming the encounter complexes are similar for different KIX binding peptides, favorable electrostatic interactions between the MLL site and the peptides result in greater association rates when peptides bind to the MLL site. FOXO3a and p53 TAD each contains 2 copies of KIX binding motif and each motif interacts with both the MLL site and the c-Myb site. Our kinetics studies suggest that binding of FOXO3a or p53 TAD to the KIX domain is via a sequential mechanism, where one KIX binding motif binds to the MLL site first and then the other KIX binding motif binds to the c-Myb site. Considering the promiscuous interactions between FOXO3a and KIX, and p53 TAD and KIX, electrostatic steering simplifies the binding mechanism. This study highlights the importance of long-range electrostatic interactions in molecular recognition process involving multi-motif intrinsically disordered proteins and promiscuous interactions.
Collapse
Affiliation(s)
- Yongqi Huang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Fei Yang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Lei Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| |
Collapse
|
50
|
Hou Z, Su L, Pei J, Grishin NV, Zhang H. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor. Structure 2017; 25:1187-1194.e3. [PMID: 28669630 DOI: 10.1016/j.str.2017.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.
Collapse
Affiliation(s)
- Zhiqiang Hou
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|