1
|
Bottemanne H. Bayesian brain theory: Computational neuroscience of belief. Neuroscience 2025; 566:198-204. [PMID: 39643232 DOI: 10.1016/j.neuroscience.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Bayesian brain theory, a computational framework grounded in the principles of Predictive Processing (PP), proposes a mechanistic account of how beliefs are formed and updated. This theory assumes that the brain encodes a generative model of its environment, made up of probabilistic beliefs organized in networks, from which it generates predictions about future sensory inputs. The difference between predictions and sensory signals produces prediction errors, which are used to update belief networks. In this article, we introduce the fundamental principles of Bayesian brain theory, and show how the brain dynamics of prediction are associated with the generation and evolution of beliefs.
Collapse
Affiliation(s)
- Hugo Bottemanne
- MOODS Team, INSERM 1018, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Université Paris-Saclay, Faculté de Médecine Paris-Saclay, Kremlin Bicêtre, France; Department of Psychiatry, Bicêtre Hospital, Mood Center Paris Saclay, DMU Neurosciences, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris (AP-HP), Kremlin-Bicêtre, France; Institut du Cerveau - Paris Brain Institute, Institut National de la Santé et de la Recherche Médicale (INSERM U1127), Paris, France.
| |
Collapse
|
2
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of bidirectional network cores in the brain with perceptual awareness and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.30.591001. [PMID: 38746271 PMCID: PMC11092575 DOI: 10.1101/2024.04.30.591001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Papale P, Wang F, Self MW, Roelfsema PR. An extensive dataset of spiking activity to reveal the syntax of the ventral stream. Neuron 2025:S0896-6273(24)00881-X. [PMID: 39809277 DOI: 10.1016/j.neuron.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Visual neuroscience benefits from high-quality datasets with neuronal responses to many images. Several neuroimaging datasets have been published in recent years, but no comparable dataset with spiking activity exists. Here, we introduce the THINGS ventral stream spiking dataset (TVSD). We extensively sampled neuronal activity in response to >25,000 natural images from the THINGS database in macaques, using high-channel-count implants in three key cortical regions: primary visual cortex (V1), V4, and the inferotemporal cortex. We showcase the utility of TVSD by using an artificial neural network to visualize the tuning of neurons. We also characterize the correlated fluctuations in activity within and between areas and demonstrate that these noise correlations are strongest between neurons with similar tuning. The TVSD allows researchers to answer many questions about neuronal tuning, analyze the interactions within and between cortical regions, and compare spiking activity in monkeys to human neuroimaging data.
Collapse
Affiliation(s)
- Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands.
| | - Feng Wang
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
| |
Collapse
|
4
|
Farisco M, Evers K, Changeux JP. Is artificial consciousness achievable? Lessons from the human brain. Neural Netw 2024; 180:106714. [PMID: 39270349 DOI: 10.1016/j.neunet.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
We here analyse the question of developing artificial consciousness from an evolutionary perspective, taking the evolution of the human brain and its relation with consciousness as a reference model or as a benchmark. This kind of analysis reveals several structural and functional features of the human brain that appear to be key for reaching human-like complex conscious experience and that current research on Artificial Intelligence (AI) should take into account in its attempt to develop systems capable of human-like conscious processing. We argue that, even if AI is limited in its ability to emulate human consciousness for both intrinsic (i.e., structural and architectural) and extrinsic (i.e., related to the current stage of scientific and technological knowledge) reasons, taking inspiration from those characteristics of the brain that make human-like conscious processing possible and/or modulate it, is a potentially promising strategy towards developing conscious AI. Also, it cannot be theoretically excluded that AI research can develop partial or potentially alternative forms of consciousness that are qualitatively different from the human form, and that may be either more or less sophisticated depending on the perspectives. Therefore, we recommend neuroscience-inspired caution in talking about artificial consciousness: since the use of the same word "consciousness" for humans and AI becomes ambiguous and potentially misleading, we propose to clearly specify which level and/or type of consciousness AI research aims to develop, as well as what would be common versus differ in AI conscious processing compared to human conscious experience.
Collapse
Affiliation(s)
- Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; Biogem, Biology and Molecular Genetics Institute, Ariano Irpino (AV), Italy.
| | - Kathinka Evers
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
5
|
Papale P, Zuiderbaan W, Teeuwen RRM, Gilhuis A, Self MW, Roelfsema PR, Dumoulin SO. V1 neurons are tuned to perceptual borders in natural scenes. Proc Natl Acad Sci U S A 2024; 121:e2221623121. [PMID: 39495929 PMCID: PMC11572972 DOI: 10.1073/pnas.2221623121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
The visual system needs to identify perceptually relevant borders to segment complex natural scenes. The primary visual cortex (V1) is thought to extract local borders, and higher visual areas are thought to identify the perceptually relevant borders between objects and the background. To test this conjecture, we used natural images that had been annotated by human observers who marked the perceptually relevant borders. We assessed the effect of perceptual relevance on V1 responses using human neuroimaging, macaque electrophysiology, and computational modeling. We report that perceptually relevant borders elicit stronger responses in the early visual cortex than irrelevant ones, even if simple features, such as contrast and the energy of oriented filters, are matched. Moreover, V1 neurons discriminate perceptually relevant borders surprisingly fast, during the early feedforward-driven activity at a latency of ~50 ms, indicating that they are tuned to the features that characterize them. We also revealed a delayed, contextual effect that enhances the V1 responses that are elicited by perceptually relevant borders at a longer latency. Our results reveal multiple mechanisms that allow V1 neurons to infer the layout of objects in natural images.
Collapse
Affiliation(s)
- Paolo Papale
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam1105 BA, Netherlands
- Momilab Research Unit, Institutions, Markets, Technologies School for Advanced Studies Lucca, Lucca55100, Italy
| | - Wietske Zuiderbaan
- Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience (Koninklijke Nederlandse Akademie van Wetenschappen), Amsterdam1105 BA, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam1105 BK, Netherlands
| | - Rob R. M. Teeuwen
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam1105 BA, Netherlands
| | - Amparo Gilhuis
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam1105 BA, Netherlands
| | - Matthew W. Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam1105 BA, Netherlands
| | - Pieter R. Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam1105 BA, Netherlands
- Department of Integrative Neurophysiology, Vrije UniversiteitAmsterdam1081 HV, Netherlands
- Department of Neurosurgery, Academic Medical Centre, Amsterdam1100 DD, Netherlands
- Laboratory of Visual Brain Therapy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Sorbonne Université, ParisF-75012, France
| | - Serge O. Dumoulin
- Department of Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience (Koninklijke Nederlandse Akademie van Wetenschappen), Amsterdam1105 BA, Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam1105 BK, Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam1181 BT, Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht3584 CS, Netherlands
| |
Collapse
|
6
|
Jeurissen D, van Ham AF, Gilhuis A, Papale P, Roelfsema PR, Self MW. Border-ownership tuning determines the connectivity between V4 and V1 in the macaque visual system. Nat Commun 2024; 15:9115. [PMID: 39438464 PMCID: PMC11496508 DOI: 10.1038/s41467-024-53256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Cortical feedback connections are extremely numerous but the logic of connectivity between higher and lower areas remains poorly understood. Feedback from higher visual areas to primary visual cortex (V1) has been shown to enhance responses on perceptual figures compared to backgrounds, an effect known as figure-background modulation (FBM). A likely source of this feedback are border-ownership (BO) selective cells in mid-tier visual areas (e.g. V4) which represent the location of figures. We examined the connectivity between V4 cells and V1 cells using noise-correlations and micro-stimulation to estimate connectivity strength. We show that connectivity is consistent with a model in which BO-tuned V4 cells send positive feedback in the direction of their preferred figure and negative feedback in the opposite direction. This connectivity scheme can recreate patterns of FBM observed in previous studies. These results provide insights into the cortical connectivity underlying figure-background perception and establish a link between FBM and BO-tuning.
Collapse
Affiliation(s)
- Danique Jeurissen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, USA
| | - Anne F van Ham
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Amparo Gilhuis
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Paolo Papale
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, Amsterdam, The Netherlands
- Neurosurgery department, Academic University Medical Center, Postbus 22660, Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands.
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, Scotland.
| |
Collapse
|
7
|
Xiong Y(S, Donoghue JA, Lundqvist M, Mahnke M, Major AJ, Brown EN, Miller EK, Bastos AM. Propofol-mediated loss of consciousness disrupts predictive routing and local field phase modulation of neural activity. Proc Natl Acad Sci U S A 2024; 121:e2315160121. [PMID: 39374396 PMCID: PMC11494327 DOI: 10.1073/pnas.2315160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Predictive coding is a fundamental function of the cortex. The predictive routing model proposes a neurophysiological implementation for predictive coding. Predictions are fed back from the deep-layer cortex via alpha/beta (8 to 30 Hz) oscillations. They inhibit the gamma (40 to 100 Hz) and spiking that feed sensory inputs forward. Unpredicted inputs arrive in circuits unprepared by alpha/beta, resulting in enhanced gamma and spiking. To test the predictive routing model and its role in consciousness, we collected data from intracranial recordings of macaque monkeys during passive presentation of auditory oddballs before and after propofol-mediated loss of consciousness (LOC). In line with the predictive routing model, alpha/beta oscillations in the awake state served to inhibit the processing of predictable stimuli. Propofol-mediated LOC eliminated alpha/beta modulation by a predictable stimulus in the sensory cortex and alpha/beta coherence between sensory and frontal areas. As a result, oddball stimuli evoked enhanced gamma power, late period (>200 ms from stimulus onset) spiking, and superficial layer sinks in the sensory cortex. LOC also resulted in diminished decodability of pattern-level prediction error signals in the higher-order cortex. Therefore, the auditory cortex was in a disinhibited state during propofol-mediated LOC. However, despite these enhanced feedforward responses in the auditory cortex, there was a loss of differential spiking to oddballs in the higher-order cortex. This may be a consequence of a loss of within-area and interareal spike-field coupling in the alpha/beta and gamma frequency bands. These results provide strong constraints for current theories of consciousness.
Collapse
Affiliation(s)
| | - Jacob A. Donoghue
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mikael Lundqvist
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm171 77, Sweden
| | - Meredith Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alex James Major
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emery N. Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- The Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA02114
- The Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Earl K. Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - André M. Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN37235
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
8
|
Pronold J, van Meegen A, Shimoura RO, Vollenbröker H, Senden M, Hilgetag CC, Bakker R, van Albada SJ. Multi-scale spiking network model of human cerebral cortex. Cereb Cortex 2024; 34:bhae409. [PMID: 39428578 PMCID: PMC11491286 DOI: 10.1093/cercor/bhae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
Collapse
Affiliation(s)
- Jari Pronold
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- RWTH Aachen University, D-52062 Aachen, Germany
| | - Alexander van Meegen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Renan O Shimoura
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
| | - Hannah Vollenbröker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mario Senden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, NL-6229 ER Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, NL-6229 ER Maastricht, The Netherlands
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, D-20246 Hamburg, Germany
| | - Rembrandt Bakker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6525 EN Nijmegen, The Netherlands
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
9
|
Kaldewaij R, Salamone PC, Enmalm A, Östman L, Pietrzak M, Karlsson H, Löfberg A, Gauffin E, Samuelsson M, Gustavson S, Capusan AJ, Olausson H, Heilig M, Boehme R. Ketamine reduces the neural distinction between self- and other-produced affective touch: a randomized double-blind placebo-controlled study. Neuropsychopharmacology 2024; 49:1767-1774. [PMID: 38918578 PMCID: PMC11399133 DOI: 10.1038/s41386-024-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
A coherent sense of self is crucial for social functioning and mental health. The N-methyl-D-aspartate antagonist ketamine induces short-term dissociative experiences and has therefore been used to model an altered state of self-perception. This randomized double-blind placebo-controlled cross-over study investigated the mechanisms for ketamine's effects on the bodily sense of self in the context of affective touch. Thirty healthy participants (15 females/15 males, age 19-39) received intravenous ketamine or placebo while performing self-touch and receiving touch by someone else during functional MRI - a previously established neural measure of tactile self-other-differentiation. Afterwards, tactile detection thresholds during self- and other-touch were assessed, as well as dissociative states, interoceptive awareness, and social touch attitudes. Compared to placebo, ketamine administration elicited dissociation and reduced neural activity associated with self-other-differentiation in the right temporoparietal cortex, which was most pronounced during other-touch. This reduction correlated with ketamine-induced reductions in interoceptive awareness. The temporoparietal cortex showed higher connectivity to somatosensory cortex and insula during other- compared to self-touch. This difference was augmented by ketamine, and correlated with dissociation strength for somatosensory cortex. These results demonstrate that disrupting the self-experience through ketamine administration affects neural activity associated with self-other-differentiation in a region involved in touch perception and social cognition, especially with regard to social touch by someone else. This process may be driven by ketamine-induced effects on top-down signaling, rendering the processing of predictable self-generated and unpredictable other-generated touch more similar. These findings provide further evidence for the intricate relationship of the bodily self with the tactile sense.
Collapse
Affiliation(s)
- Reinoud Kaldewaij
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Paula C Salamone
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Adam Enmalm
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Lars Östman
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Michal Pietrzak
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Hanna Karlsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andreas Löfberg
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Martin Samuelsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Sarah Gustavson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Rebecca Boehme
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:63. [PMID: 39013944 PMCID: PMC11252134 DOI: 10.1038/s41537-024-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
11
|
Eckmann S, Young EJ, Gjorgjieva J. Synapse-type-specific competitive Hebbian learning forms functional recurrent networks. Proc Natl Acad Sci U S A 2024; 121:e2305326121. [PMID: 38870059 PMCID: PMC11194505 DOI: 10.1073/pnas.2305326121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024] Open
Abstract
Cortical networks exhibit complex stimulus-response patterns that are based on specific recurrent interactions between neurons. For example, the balance between excitatory and inhibitory currents has been identified as a central component of cortical computations. However, it remains unclear how the required synaptic connectivity can emerge in developing circuits where synapses between excitatory and inhibitory neurons are simultaneously plastic. Using theory and modeling, we propose that a wide range of cortical response properties can arise from a single plasticity paradigm that acts simultaneously at all excitatory and inhibitory connections-Hebbian learning that is stabilized by the synapse-type-specific competition for a limited supply of synaptic resources. In plastic recurrent circuits, this competition enables the formation and decorrelation of inhibition-balanced receptive fields. Networks develop an assembly structure with stronger synaptic connections between similarly tuned excitatory and inhibitory neurons and exhibit response normalization and orientation-specific center-surround suppression, reflecting the stimulus statistics during training. These results demonstrate how neurons can self-organize into functional networks and suggest an essential role for synapse-type-specific competitive learning in the development of cortical circuits.
Collapse
Affiliation(s)
- Samuel Eckmann
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Edward James Young
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, CambridgeCB2 1PZ, United Kingdom
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- School of Life Sciences, Technical University Munich, Freising85354, Germany
| |
Collapse
|
12
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Bottemanne H, Berkovitch L, Gauld C, Balcerac A, Schmidt L, Mouchabac S, Fossati P. Storm on predictive brain: A neurocomputational account of ketamine antidepressant effect. Neurosci Biobehav Rev 2023; 154:105410. [PMID: 37793581 DOI: 10.1016/j.neubiorev.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
For the past decade, ketamine, an N-methyl-D-aspartate receptor (NMDAr) antagonist, has been considered a promising treatment for major depressive disorder (MDD). Unlike the delayed effect of monoaminergic treatment, ketamine may produce fast-acting antidepressant effects hours after a single administration at subanesthetic dose. Along with these antidepressant effects, it may also induce transient dissociative (disturbing of the sense of self and reality) symptoms during acute administration which resolve within hours. To understand ketamine's rapid-acting antidepressant effect, several biological hypotheses have been explored, but despite these promising avenues, there is a lack of model to understand the timeframe of antidepressant and dissociative effects of ketamine. In this article, we propose a neurocomputational account of ketamine's antidepressant and dissociative effects based on the Predictive Processing (PP) theory, a framework for cognitive and sensory processing. PP theory suggests that the brain produces top-down predictions to process incoming sensory signals, and generates bottom-up prediction errors (PEs) which are then used to update predictions. This iterative dynamic neural process would relies on N-methyl-D-aspartate (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic receptors (AMPAr), two major component of the glutamatergic signaling. Furthermore, it has been suggested that MDD is characterized by over-rigid predictions which cannot be updated by the PEs, leading to miscalibration of hierarchical inference and self-reinforcing negative feedback loops. Based on former empirical studies using behavioral paradigms, neurophysiological recordings, and computational modeling, we suggest that ketamine impairs top-down predictions by blocking NMDA receptors, and enhances presynaptic glutamate release and PEs, producing transient dissociative symptoms and fast-acting antidepressant effect in hours following acute administration. Moreover, we present data showing that ketamine may enhance a delayed neural plasticity pathways through AMPAr potentiation, triggering a prolonged antidepressant effect up to seven days for unique administration. Taken together, the two sides of antidepressant effects with distinct timeframe could constitute the keystone of antidepressant properties of ketamine. These PP disturbances may also participate to a ketamine-induced time window of mental flexibility, which can be used to improve the psychotherapeutic process. Finally, these proposals could be used as a theoretical framework for future research into fast-acting antidepressants, and combination with existing antidepressant and psychotherapy.
Collapse
Affiliation(s)
- Hugo Bottemanne
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France; Sorbonne University, Department of Psychiatry, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Lucie Berkovitch
- Saclay CEA Centre, Neurospin, Gif-Sur-Yvette Cedex, France; Department of Psychiatry, GHU Paris Psychiatrie et Neurosciences, Service Hospitalo-Universitaire, Paris, France
| | - Christophe Gauld
- Department of Child Psychiatry, CHU de Lyon, F-69000 Lyon, France; Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, F-69000 Lyon, France
| | - Alexander Balcerac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Liane Schmidt
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France
| | - Stephane Mouchabac
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Psychiatry, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Philippe Fossati
- Paris Brain Institute - Institut du Cerveau (ICM), UMR 7225 / UMRS 1127, Sorbonne University / CNRS / INSERM, Paris, France; Sorbonne University, Department of Philosophy, Science Norm Democracy Research Unit, UMR, 8011, Paris, France
| |
Collapse
|
14
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563001. [PMID: 37904992 PMCID: PMC10614973 DOI: 10.1101/2023.10.18.563001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
15
|
Li JS, Sarma AA, Sejnowski TJ, Doyle JC. Internal feedback in the cortical perception-action loop enables fast and accurate behavior. Proc Natl Acad Sci U S A 2023; 120:e2300445120. [PMID: 37738297 PMCID: PMC10523540 DOI: 10.1073/pnas.2300445120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Animals move smoothly and reliably in unpredictable environments. Models of sensorimotor control, drawing on control theory, have assumed that sensory information from the environment leads to actions, which then act back on the environment, creating a single, unidirectional perception-action loop. However, the sensorimotor loop contains internal delays in sensory and motor pathways, which can lead to unstable control. We show here that these delays can be compensated by internal feedback signals that flow backward, from motor toward sensory areas. This internal feedback is ubiquitous in neural sensorimotor systems, and we show how internal feedback compensates internal delays. This is accomplished by filtering out self-generated and other predictable changes so that unpredicted, actionable information can be rapidly transmitted toward action by the fastest components, effectively compressing the sensory input to more efficiently use feedforward pathways: Tracts of fast, giant neurons necessarily convey less accurate signals than tracts with many smaller neurons, but they are crucial for fast and accurate behavior. We use a mathematically tractable control model to show that internal feedback has an indispensable role in achieving state estimation, localization of function (how different parts of the cortex control different parts of the body), and attention, all of which are crucial for effective sensorimotor control. This control model can explain anatomical, physiological, and behavioral observations, including motor signals in the visual cortex, heterogeneous kinetics of sensory receptors, and the presence of giant cells in the cortex of humans as well as internal feedback patterns and unexplained heterogeneity in neural systems.
Collapse
Affiliation(s)
- Jing Shuang Li
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Anish A. Sarma
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
- School of Medicine, Vanderbilt University, Nashville, TN37232
| | - Terrence J. Sejnowski
- Department of Neurobiology, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA92037
- Department of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - John C. Doyle
- Control and Dynamical Systems, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
16
|
Xiong YS, Donoghue JA, Lundqvist M, Mahnke M, Major AJ, Brown EN, Miller EK, Bastos AM. Propofol-mediated loss of consciousness disrupts predictive routing and local field phase modulation of neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.02.555990. [PMID: 37732234 PMCID: PMC10508719 DOI: 10.1101/2023.09.02.555990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Predictive coding is a fundamental function of the cortex. The predictive routing model proposes a neurophysiological implementation for predictive coding. Predictions are fed back from deep-layer cortex via alpha/beta (8-30Hz) oscillations. They inhibit the gamma (40-100Hz) and spiking that feed sensory inputs forward. Unpredicted inputs arrive in circuits unprepared by alpha/beta, resulting in enhanced gamma and spiking. To test the predictive routing model and its role in consciousness, we collected data from intracranial recordings of macaque monkeys during passive presentation of auditory oddballs (e.g., AAAAB) before and after propofol-mediated loss of consciousness (LOC). In line with the predictive routing model, alpha/beta oscillations in the awake state served to inhibit the processing of predictable stimuli. Propofol-mediated LOC eliminated alpha/beta modulation by a predictable stimulus in sensory cortex and alpha/beta coherence between sensory and frontal areas. As a result, oddball stimuli evoked enhanced gamma power, late (> 200 ms from stimulus onset) period spiking, and superficial layer sinks in sensory cortex. Therefore, auditory cortex was in a disinhibited state during propofol-mediated LOC. However, despite these enhanced feedforward responses in auditory cortex, there was a loss of differential spiking to oddballs in higher order cortex. This may be a consequence of a loss of within-area and inter-area spike-field coupling in the alpha/beta and gamma frequency bands. These results provide strong constraints for current theories of consciousness. Significance statement Neurophysiology studies have found alpha/beta oscillations (8-30Hz), gamma oscillations (40-100Hz), and spiking activity during cognition. Alpha/beta power has an inverse relationship with gamma power/spiking. This inverse relationship suggests that gamma/spiking are under the inhibitory control of alpha/beta. The predictive routing model hypothesizes that alpha/beta oscillations selectively inhibit (and thereby control) cortical activity that is predictable. We tested whether this inhibitory control is a signature of consciousness. We used multi-area neurophysiology recordings in monkeys presented with tone sequences that varied in predictability. We recorded brain activity as the anesthetic propofol was administered to manipulate consciousness. Compared to conscious processing, propofol-mediated unconsciousness disrupted alpha/beta inhibitory control during predictive processing. This led to a disinhibition of gamma/spiking, consistent with the predictive routing model.
Collapse
|
17
|
Wybo WAM, Tsai MC, Tran VAK, Illing B, Jordan J, Morrison A, Senn W. NMDA-driven dendritic modulation enables multitask representation learning in hierarchical sensory processing pathways. Proc Natl Acad Sci U S A 2023; 120:e2300558120. [PMID: 37523562 PMCID: PMC10410730 DOI: 10.1073/pnas.2300558120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
While sensory representations in the brain depend on context, it remains unclear how such modulations are implemented at the biophysical level, and how processing layers further in the hierarchy can extract useful features for each possible contextual state. Here, we demonstrate that dendritic N-Methyl-D-Aspartate spikes can, within physiological constraints, implement contextual modulation of feedforward processing. Such neuron-specific modulations exploit prior knowledge, encoded in stable feedforward weights, to achieve transfer learning across contexts. In a network of biophysically realistic neuron models with context-independent feedforward weights, we show that modulatory inputs to dendritic branches can solve linearly nonseparable learning problems with a Hebbian, error-modulated learning rule. We also demonstrate that local prediction of whether representations originate either from different inputs, or from different contextual modulations of the same input, results in representation learning of hierarchical feedforward weights across processing layers that accommodate a multitude of contexts.
Collapse
Affiliation(s)
- Willem A. M. Wybo
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure–Function Relationships (INM-10), Jülich Research Center, DE-52428Jülich, Germany
| | - Matthias C. Tsai
- Department of Physiology, University of Bern, CH-3012Bern, Switzerland
| | - Viet Anh Khoa Tran
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure–Function Relationships (INM-10), Jülich Research Center, DE-52428Jülich, Germany
- Department of Computer Science - 3, Faculty 1, RWTH Aachen University, DE-52074Aachen, Germany
| | - Bernd Illing
- Laboratory of Computational Neuroscience, École Polytechnique Fédérale de Lausanne, CH-1015Lausanne, Switzerland
| | - Jakob Jordan
- Department of Physiology, University of Bern, CH-3012Bern, Switzerland
| | - Abigail Morrison
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure–Function Relationships (INM-10), Jülich Research Center, DE-52428Jülich, Germany
- Department of Computer Science - 3, Faculty 1, RWTH Aachen University, DE-52074Aachen, Germany
| | - Walter Senn
- Department of Physiology, University of Bern, CH-3012Bern, Switzerland
| |
Collapse
|
18
|
Klink PC, Teeuwen RRM, Lorteije JAM, Roelfsema PR. Inversion of pop-out for a distracting feature dimension in monkey visual cortex. Proc Natl Acad Sci U S A 2023; 120:e2210839120. [PMID: 36812207 PMCID: PMC9992771 DOI: 10.1073/pnas.2210839120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
During visual search, it is important to reduce the interference of distracting objects in the scene. The neuronal responses elicited by the search target stimulus are typically enhanced. However, it is equally important to suppress the representations of distracting stimuli, especially if they are salient and capture attention. We trained monkeys to make an eye movement to a unique "pop-out" shape stimulus among an array of distracting stimuli. One of these distractors had a salient color that varied across trials and differed from the color of the other stimuli, causing it to also pop-out. The monkeys were able to select the pop-out shape target with high accuracy and actively avoided the pop-out color distractor. This behavioral pattern was reflected in the activity of neurons in area V4. Responses to the shape targets were enhanced, while the activity evoked by the pop-out color distractor was only briefly enhanced, directly followed by a sustained period of pronounced suppression. These behavioral and neuronal results demonstrate a cortical selection mechanism that rapidly inverts a pop-out signal to "pop-in" for an entire feature dimension thereby facilitating goal-directed visual search in the presence of salient distractors.
Collapse
Affiliation(s)
- P. Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, ParisF-75012, France
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Rob R. M. Teeuwen
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Jeannette A. M. Lorteije
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Pieter R. Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, ParisF-75012, France
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Smart C, Mitchell A, McCutcheon F, Medcalf RL, Thiele A. Tissue-type plasminogen activator induces conditioned receptive field plasticity in the mouse auditory cortex. iScience 2023; 26:105947. [PMID: 36711245 PMCID: PMC9874071 DOI: 10.1016/j.isci.2023.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is a serine protease that is expressed in various compartments in the brain. It is involved in neuronal plasticity, learning and memory, and addiction. We evaluated whether tPA, exogenously applied, could influence neuroplasticity within the mouse auditory cortex. We used a frequency-pairing paradigm to determine whether neuronal best frequencies shift following the pairing protocol. tPA administration significantly affected the best frequency after pairing, whereby this depended on the pairing frequency relative to the best frequency. When the pairing frequency was above the best frequency, tPA caused a best frequency shift away from the conditioned frequency. tPA significantly widened auditory tuning curves. Our data indicate that regional changes in proteolytic activity within the auditory cortex modulate the fine-tuning of auditory neurons, supporting the function of tPA as a modulator of neuronal plasticity.
Collapse
Affiliation(s)
- Caitlin Smart
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Anna Mitchell
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Fiona McCutcheon
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
20
|
Wagatsuma N, Shimomura H, Nobukawa S. Disinhibitory circuit mediated by connections from vasoactive intestinal polypeptide to somatostatin interneurons underlies the paradoxical decrease in spike synchrony with increased border ownership selective neuron firing rate. Front Comput Neurosci 2022; 16:988715. [PMID: 36405781 PMCID: PMC9672816 DOI: 10.3389/fncom.2022.988715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The activity of border ownership selective (BOS) neurons in intermediate-level visual areas indicates which side of a contour owns a border relative to its classical receptive field and provides a fundamental component of figure-ground segregation. A physiological study reported that selective attention facilitates the activity of BOS neurons with a consistent border ownership preference, defined as two neurons tuned to respond to the same visual object. However, spike synchrony between this pair is significantly suppressed by selective attention. These neurophysiological findings are derived from a biologically-plausible microcircuit model consisting of spiking neurons including two subtypes of inhibitory interneurons, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) interneurons, and excitatory BOS model neurons. In our proposed model, BOS neurons and SOM interneurons cooperate and interact with each other. VIP interneurons not only suppress SOM interneuron responses but also are activated by feedback signals mediating selective attention, which leads to disinhibition of BOS neurons when they are directing selective attention toward an object. Our results suggest that disinhibition arising from the synaptic connections from VIP to SOM interneurons plays a critical role in attentional modulation of neurons in intermediate-level visual areas.
Collapse
Affiliation(s)
- Nobuhiko Wagatsuma
- Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan
- *Correspondence: Nobuhiko Wagatsuma,
| | - Haruka Shimomura
- Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
21
|
Sadibolova R, Terhune DB. The temporal context in bayesian models of interval timing: Recent advances and future directions. Behav Neurosci 2022; 136:364-373. [PMID: 35737557 PMCID: PMC9552499 DOI: 10.1037/bne0000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Sensory perception, motor control, and cognition necessitate reliable timing in the range of milliseconds to seconds, which implies the existence of a highly accurate timing system. Yet, partly owing to the fact that temporal processing is modulated by contextual factors, perceived time is not isomorphic to physical time. Temporal estimates exhibit regression to the mean of an interval distribution (global context) and are also affected by preceding trials (local context). Recent Bayesian models of interval timing have provided important insights regarding these observations, but questions remain as to how exposure to past intervals shapes perceived time. In this article, we provide a brief overview of Bayesian models of interval timing and their contribution to current understanding of context effects. We then proceed to highlight recent developments in the field concerning precision weighting of Bayesian evidence in both healthy timing and disease and the neurophysiological and neurochemical signatures of timing prediction errors. We further aim to bring attention to current outstanding questions for Bayesian models of interval timing, such as the likelihood conceptualization. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
22
|
Wagatsuma N, Nobukawa S, Fukai T. A microcircuit model involving parvalbumin, somatostatin, and vasoactive intestinal polypeptide inhibitory interneurons for the modulation of neuronal oscillation during visual processing. Cereb Cortex 2022; 33:4459-4477. [PMID: 36130096 PMCID: PMC10110453 DOI: 10.1093/cercor/bhac355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/12/2022] Open
Abstract
Various subtypes of inhibitory interneurons contact one another to organize cortical networks. Most cortical inhibitory interneurons express 1 of 3 genes: parvalbumin (PV), somatostatin (SOM), or vasoactive intestinal polypeptide (VIP). This diversity of inhibition allows the flexible regulation of neuronal responses within and between cortical areas. However, the exact roles of these interneuron subtypes and of excitatory pyramidal (Pyr) neurons in regulating neuronal network activity and establishing perception (via interactions between feedforward sensory and feedback attentional signals) remain largely unknown. To explore the regulatory roles of distinct neuronal types in cortical computation, we developed a computational microcircuit model with biologically plausible visual cortex layers 2/3 that combined Pyr neurons and the 3 inhibitory interneuron subtypes to generate network activity. In simulations with our model, inhibitory signals from PV and SOM neurons preferentially induced neuronal firing at gamma (30-80 Hz) and beta (20-30 Hz) frequencies, respectively, in agreement with observed physiological results. Furthermore, our model indicated that rapid inhibition from VIP to SOM subtypes underlies marked attentional modulation for low-gamma frequency (30-50 Hz) in Pyr neuron responses. Our results suggest the distinct but cooperative roles of inhibitory interneuron subtypes in the establishment of visual perception.
Collapse
Affiliation(s)
- Nobuhiko Wagatsuma
- Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.,Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| |
Collapse
|
23
|
Perry A, Hughes LE, Adams N, Naessens M, Murley AG, Rouse MA, Street D, Jones PS, Cope TE, Kocagoncu E, Rowe JB. The neurophysiological effect of NMDA-R antagonism of frontotemporal lobar degeneration is conditional on individual GABA concentration. Transl Psychiatry 2022; 12:348. [PMID: 36030249 PMCID: PMC9420128 DOI: 10.1038/s41398-022-02114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023] Open
Abstract
There is a pressing need to accelerate therapeutic strategies against the syndromes caused by frontotemporal lobar degeneration, including symptomatic treatments. One approach is for experimental medicine, coupling neurophysiological studies of the mechanisms of disease with pharmacological interventions aimed at restoring neurochemical deficits. Here we consider the role of glutamatergic deficits and their potential as targets for treatment. We performed a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study in 20 people with symptomatic frontotemporal lobar degeneration (10 behavioural variant frontotemporal dementia, 10 progressive supranuclear palsy) and 19 healthy age- and gender-matched controls. Both magnetoencephalography sessions recorded a roving auditory oddball paradigm: on placebo or following 10 mg memantine, an uncompetitive NMDA-receptor antagonist. Ultra-high-field magnetic resonance spectroscopy confirmed lower concentrations of GABA in the right inferior frontal gyrus of people with frontotemporal lobar degeneration. While memantine showed a subtle effect on early-auditory processing in patients, there was no significant main effect of memantine on the magnitude of the mismatch negativity (MMN) response in the right frontotemporal cortex in patients or controls. However, the change in the right auditory cortex MMN response to memantine (vs. placebo) in patients correlated with individuals' prefrontal GABA concentration. There was no moderating effect of glutamate concentration or cortical atrophy. This proof-of-concept study demonstrates the potential for baseline dependency in the pharmacological restoration of neurotransmitter deficits to influence cognitive neurophysiology in neurodegenerative disease. With changes to multiple neurotransmitters in frontotemporal lobar degeneration, we suggest that individuals' balance of excitation and inhibition may determine drug efficacy, with implications for drug selection and patient stratification in future clinical trials.
Collapse
Affiliation(s)
- Alistair Perry
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Laura E Hughes
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Natalie Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Michelle Naessens
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthew A Rouse
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Duncan Street
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Thomas E Cope
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
24
|
Kitazono J, Aoki Y, Oizumi M. Bidirectionally connected cores in a mouse connectome: towards extracting the brain subnetworks essential for consciousness. Cereb Cortex 2022; 33:1383-1402. [PMID: 35860874 PMCID: PMC9930638 DOI: 10.1093/cercor/bhac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
Where in the brain consciousness resides remains unclear. It has been suggested that the subnetworks supporting consciousness should be bidirectionally (recurrently) connected because both feed-forward and feedback processing are necessary for conscious experience. Accordingly, evaluating which subnetworks are bidirectionally connected and the strength of these connections would likely aid the identification of regions essential to consciousness. Here, we propose a method for hierarchically decomposing a network into cores with different strengths of bidirectional connection, as a means of revealing the structure of the complex brain network. We applied the method to a whole-brain mouse connectome. We found that cores with strong bidirectional connections consisted of regions presumably essential to consciousness (e.g. the isocortical and thalamic regions, and claustrum) and did not include regions presumably irrelevant to consciousness (e.g. cerebellum). Contrarily, we could not find such correspondence between cores and consciousness when we applied other simple methods that ignored bidirectionality. These findings suggest that our method provides a novel insight into the relation between bidirectional brain network structures and consciousness.
Collapse
Affiliation(s)
- Jun Kitazono
- Corresponding authors: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. ,
| | - Yuma Aoki
- Graduate School of Information Science and Technology, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masafumi Oizumi
- Corresponding authors: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. ,
| |
Collapse
|
25
|
Leptourgos P, Bansal S, Dutterer J, Culbreth A, Powers A, Suthaharan P, Kenney J, Erickson M, Waltz J, Wijtenburg SA, Gaston F, Rowland LM, Gold J, Corlett P. Relating Glutamate, Conditioned, and Clinical Hallucinations via 1H-MR Spectroscopy. Schizophr Bull 2022; 48:912-920. [PMID: 35199836 PMCID: PMC9212089 DOI: 10.1093/schbul/sbac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Hallucinations may be driven by an excessive influence of prior expectations on current experience. Initial work has supported that contention and implicated the anterior insula in the weighting of prior beliefs. STUDY DESIGN Here we induce hallucinated tones by associating tones with the presentation of a visual cue. We find that people with schizophrenia who hear voices are more prone to the effect and using computational modeling we show they overweight their prior beliefs. In the same participants, we also measured glutamate levels in anterior insula, anterior cingulate, dorsolateral prefrontal, and auditory cortices, using magnetic resonance spectroscopy. STUDY RESULTS We found a negative relationship between prior-overweighting and glutamate levels in the insula that was not present for any of the other voxels or parameters. CONCLUSIONS Through computational psychiatry, we bridge a pathophysiological theory of psychosis (glutamate hypofunction) with a cognitive model of hallucinations (prior-overweighting) with implications for the development of new treatments for hallucinations.
Collapse
Affiliation(s)
- Pantelis Leptourgos
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Sonia Bansal
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Jenna Dutterer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Adam Culbreth
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Albert Powers
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Praveen Suthaharan
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Joshua Kenney
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT,USA
| | - Molly Erickson
- Department of Psychiatry, University of Chicago, Chicago, IL,USA
| | - James Waltz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Frank Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - James Gold
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Catonsville, MD,USA
| | - Philip Corlett
- To whom correspondence should be addressed; 34 Park Street, New Haven, CT 06511, USA; tel: 203-974-7866, fax: 203 974 7866, e-mail:
| |
Collapse
|
26
|
Gilbert JR, Wusinich C, Zarate CA. A Predictive Coding Framework for Understanding Major Depression. Front Hum Neurosci 2022; 16:787495. [PMID: 35308621 PMCID: PMC8927302 DOI: 10.3389/fnhum.2022.787495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Predictive coding models of brain processing propose that top-down cortical signals promote efficient neural signaling by carrying predictions about incoming sensory information. These "priors" serve to constrain bottom-up signal propagation where prediction errors are carried via feedforward mechanisms. Depression, traditionally viewed as a disorder characterized by negative cognitive biases, is associated with disrupted reward prediction error encoding and signaling. Accumulating evidence also suggests that depression is characterized by impaired local and long-range prediction signaling across multiple sensory domains. This review highlights the electrophysiological and neuroimaging evidence for disrupted predictive processing in depression. The discussion is framed around the manner in which disrupted generative predictions about the sensorium could lead to depressive symptomatology, including anhedonia and negative bias. In particular, the review focuses on studies of sensory deviance detection and reward processing, highlighting research evidence for both disrupted generative predictions and prediction error signaling in depression. The role of the monoaminergic and glutamatergic systems in predictive coding processes is also discussed. This review provides a novel framework for understanding depression using predictive coding principles and establishes a foundational roadmap for potential future research.
Collapse
Affiliation(s)
- Jessica R. Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
27
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
28
|
Teeuwen RRM, Wacongne C, Schnabel UH, Self MW, Roelfsema PR. A neuronal basis of iconic memory in macaque primary visual cortex. Curr Biol 2021; 31:5401-5414.e4. [PMID: 34653360 PMCID: PMC8699744 DOI: 10.1016/j.cub.2021.09.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Abstract
After a briefly presented visual stimulus disappears, observers retain a detailed representation of this stimulus for a short period of time. This sensory storage is called iconic memory. We measured iconic memory in the perception of monkeys and its neuronal correlates in the primary visual cortex (area V1). We determined how many milliseconds extra viewing time iconic memory is worth and how it decays by varying the duration of a brief stimulus and the timing of a mask. The V1 activity that persists after the disappearance of a stimulus predicted accuracy, with a time course resembling the worth and decay of iconic memory. Finally, we examined how iconic memory interacts with attention. A cue presented after the stimulus disappears boosts attentional influences pertaining to a relevant part of the stimulus but only if it appears before iconic memory decayed. Our results relate iconic memory to neuronal activity in early visual cortex.
Collapse
Affiliation(s)
- Rob R M Teeuwen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam, the Netherlands
| | - Catherine Wacongne
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam, the Netherlands
| | - Ulf H Schnabel
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 Amsterdam, the Netherlands; Psychiatry Department, Academic Medical Center, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081 Amsterdam, the Netherlands.
| |
Collapse
|
29
|
Predictive Feedback, Early Sensory Representations, and Fast Responses to Predicted Stimuli Depend on NMDA Receptors. J Neurosci 2021; 41:10130-10147. [PMID: 34732525 DOI: 10.1523/jneurosci.1311-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Learned associations between stimuli allow us to model the world and make predictions, crucial for efficient behavior (e.g., hearing a siren, we expect to see an ambulance and quickly make way). While there are theoretical and computational frameworks for prediction, the circuit and receptor-level mechanisms are unclear. Using high-density EEG, Bayesian modeling, and machine learning, we show that inferred "causal" relationships between stimuli and frontal alpha activity account for reaction times (a proxy for predictions) on a trial-by-trial basis in an audiovisual delayed match-to-sample task which elicited predictions. Predictive β feedback activated sensory representations in advance of predicted stimuli. Low-dose ketamine, an NMDAR blocker, but not the control drug dexmedetomidine, perturbed behavioral indices of predictions, their representation in higher-order cortex, feedback to posterior cortex, and pre-activation of sensory templates in higher-order sensory cortex. This study suggests that predictions depend on alpha activity in higher-order cortex, β feedback, and NMDARs, and ketamine blocks access to learned predictive information.SIGNIFICANCE STATEMENT We learn the statistical regularities around us, creating associations between sensory stimuli. These associations can be exploited by generating predictions, which enable fast and efficient behavior. When predictions are perturbed, it can negatively influence perception and even contribute to psychiatric disorders, such as schizophrenia. Here we show that the frontal lobe generates predictions and sends them to posterior brain areas, to activate representations of predicted sensory stimuli before their appearance. Oscillations in neural activity (α and β waves) are vital for these predictive mechanisms. The drug ketamine blocks predictions and the underlying mechanisms. This suggests that the generation of predictions in the frontal lobe, and the feedback pre-activating sensory representations in advance of stimuli, depend on NMDARs.
Collapse
|
30
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
31
|
Schielke A, Krekelberg B. N-methyl d-aspartate receptor hypofunction reduces visual contextual integration. J Vis 2021; 21:9. [PMID: 34128974 PMCID: PMC8212430 DOI: 10.1167/jov.21.6.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Visual cognition is finely tuned to the elements in a scene but also relies on contextual integration to improve visual detection and discrimination. This integration is impaired in patients with schizophrenia. Studying impairments in contextual integration may lead to biomarkers of schizophrenia, tools to monitor disease progression, and, in animal models, insight into the underlying neural deficits. We developed a nonhuman primate model to test the hypothesis that hypofunction of the N-methyl d-aspartate receptor (NMDAR) impairs contextual integration. Two male rhesus macaques (Macaca mulatta) were trained to indicate which of two patterns on the screen had the highest contrast. One of these patterns appeared in isolation, and the other was surrounded by a high-contrast pattern. In humans, this high-contrast context is known to lead to an underestimation of contrast. This so-called Chubb illusion is thought to result from surround suppression, a key contextual integration mechanism. To test the involvement of NMDAR in this process, we compared animals' perceptual bias with and without intramuscular injections of a subanesthetic dose of the NMDAR antagonist ketamine. In the absence of ketamine, the animals reported a Chubb illusion - matching reports in healthy humans. Hence, monkeys - just like humans - perform visual contextual integration. This reaffirms the importance of nonhuman primates to help understand visual cognition. Injection of ketamine significantly reduced the strength of the illusion and thus impaired contextual integration. This supports the hypothesis that NMDAR hypofunction plays a causal role in specific behavioral impairments observed in schizophrenia.
Collapse
Affiliation(s)
- Alexander Schielke
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.,Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, NJ, USA.,
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.,
| |
Collapse
|
32
|
Dasilva M, Brandt C, Alwin Gieselmann M, Distler C, Thiele A. Contribution of Ionotropic Glutamatergic Receptors to Excitability and Attentional Signals in Macaque Frontal Eye Field. Cereb Cortex 2021; 31:3266-3284. [PMID: 33626129 PMCID: PMC8196243 DOI: 10.1093/cercor/bhab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,College of Medicine and Health, University of Exeter, EX1 2LU, UK
| | - Christian Brandt
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum 44801 Germany
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
33
|
Shine JM, Müller EJ, Munn B, Cabral J, Moran RJ, Breakspear M. Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nat Neurosci 2021; 24:765-776. [PMID: 33958801 DOI: 10.1038/s41593-021-00824-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/23/2021] [Indexed: 02/02/2023]
Abstract
Decades of neurobiological research have disclosed the diverse manners in which the response properties of neurons are dynamically modulated to support adaptive cognitive functions. This neuromodulation is achieved through alterations in the biophysical properties of the neuron. However, changes in cognitive function do not arise directly from the modulation of individual neurons, but are mediated by population dynamics in mesoscopic neural ensembles. Understanding this multiscale mapping is an important but nontrivial issue. Here, we bridge these different levels of description by showing how computational models parametrically map classic neuromodulatory processes onto systems-level models of neural activity. The ensuing critical balance of systems-level activity supports perception and action, although our knowledge of this mapping remains incomplete. In this way, quantitative models that link microscale neuronal neuromodulation to systems-level brain function highlight gaps in knowledge and suggest new directions for integrating theoretical and experimental work.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Eli J Müller
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Brandon Munn
- Brain and Mind Center, The University of Sydney, Camperdown, New South Wales, Australia.,Center for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | | | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia. .,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
34
|
Wagatsuma N, Hu B, von der Heydt R, Niebur E. Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention. PLoS Comput Biol 2021; 17:e1008829. [PMID: 33765007 PMCID: PMC8023487 DOI: 10.1371/journal.pcbi.1008829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/06/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention. Vision allows us to make sense out of a very complex signal, the patterns of light rays reaching our eyes. Two mechanisms are essential for this: perceptual organization which structures the input into meaningful visual objects, and attention which selects only the most important parts in the input. Prior work suggests that both of these mechanisms are implemented by neurons called grouping cells. These organize the object features into coherent entities (perceptual grouping) and access them as needed (selective attention). For technical reasons it is difficult to observe grouping cells but their effect can be seen in the influence they have on responses of other classes of cells. These responses have been measured experimentally and it was found that they depend in unexpected ways on where the subject was attending. Using a computational model, we here demonstrate that the responses can be understood in terms of the interaction between two kinds of selective attention, both of which are known to occur in primate perception. One is attention to a specific area in the environment, the other is to specific objects. A model including both of these attentional mechanisms generates neuronal responses in agreement with the observed patterns of neural activity.
Collapse
Affiliation(s)
| | - Brian Hu
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Rüdiger von der Heydt
- Zanvyl Krieger Mind/Brain Institute, and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, and Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
35
|
Ketamine Affects Prediction Errors about Statistical Regularities: A Computational Single-Trial Analysis of the Mismatch Negativity. J Neurosci 2020; 40:5658-5668. [PMID: 32561673 DOI: 10.1523/jneurosci.3069-19.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/12/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The auditory mismatch negativity (MMN) is significantly reduced in schizophrenia. Notably, a similar MMN reduction can be achieved with NMDA receptor (NMDAR) antagonists. Both phenomena have been interpreted as reflecting an impairment of predictive coding or, more generally, the "Bayesian brain" notion that the brain continuously updates a hierarchical model to infer the causes of its sensory inputs. Specifically, neurobiological interpretations of predictive coding view perceptual inference as an NMDAR-dependent process of minimizing hierarchical precision-weighted prediction errors (PEs), and disturbances of this putative process play a key role in hierarchical Bayesian theories of schizophrenia. Here, we provide empirical evidence for this theory, demonstrating the existence of multiple, hierarchically related PEs in a "roving MMN" paradigm. We applied a hierarchical Bayesian model to single-trial EEG data from healthy human volunteers of either sex who received the NMDAR antagonist S-ketamine in a placebo-controlled, double-blind, within-subject fashion. Using an unrestricted analysis of the entire time-sensor space, our trial-by-trial analysis indicated that low-level PEs (about stimulus transitions) are expressed early (102-207 ms poststimulus), while high-level PEs (about transition probability) are reflected by later components (152-199 and 215-277 ms) of single-trial responses. Furthermore, we find that ketamine significantly diminished the expression of high-level PE responses, implying that NMDAR antagonism disrupts the inference on abstract statistical regularities. Our findings suggest that NMDAR dysfunction impairs hierarchical Bayesian inference about the world's statistical structure. Beyond the relevance of this finding for schizophrenia, our results illustrate the potential of computational single-trial analyses for assessing potential pathophysiological mechanisms.
Collapse
|
36
|
Fong MF, Finnie PS, Kim T, Thomazeau A, Kaplan ES, Cooke SF, Bear MF. Distinct Laminar Requirements for NMDA Receptors in Experience-Dependent Visual Cortical Plasticity. Cereb Cortex 2020; 30:2555-2572. [PMID: 31832634 PMCID: PMC7174998 DOI: 10.1093/cercor/bhz260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary visual cortex (V1) is the locus of numerous forms of experience-dependent plasticity. Restricting visual stimulation to one eye at a time has revealed that many such forms of plasticity are eye-specific, indicating that synaptic modification occurs prior to binocular integration of thalamocortical inputs. A common feature of these forms of plasticity is the requirement for NMDA receptor (NMDAR) activation in V1. We therefore hypothesized that NMDARs in cortical layer 4 (L4), which receives the densest thalamocortical input, would be necessary for all forms of NMDAR-dependent and input-specific V1 plasticity. We tested this hypothesis in awake mice using a genetic approach to selectively delete NMDARs from L4 principal cells. We found, unexpectedly, that both stimulus-selective response potentiation and potentiation of open-eye responses following monocular deprivation (MD) persist in the absence of L4 NMDARs. In contrast, MD-driven depression of deprived-eye responses was impaired in mice lacking L4 NMDARs, as was L4 long-term depression in V1 slices. Our findings reveal a crucial requirement for L4 NMDARs in visual cortical synaptic depression, and a surprisingly negligible role for them in cortical response potentiation. These results demonstrate that NMDARs within distinct cellular subpopulations support different forms of experience-dependent plasticity.
Collapse
Affiliation(s)
- Ming-fai Fong
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Sb Finnie
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taekeun Kim
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eitan S Kaplan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Samuel F Cooke
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Maurice Wohl Institute for Clinical Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
- The Medical Research Council Centre for Neurodevelopmental Disorders (MRC CNDD), King's College London, London SE5 8AF, UK
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
37
|
Pulvinar Modulates Synchrony across Visual Cortical Areas. Vision (Basel) 2020; 4:vision4020022. [PMID: 32290073 PMCID: PMC7357165 DOI: 10.3390/vision4020022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/26/2023] Open
Abstract
The cortical visual hierarchy communicates in different oscillatory ranges. While gamma waves influence the feedforward processing, alpha oscillations travel in the feedback direction. Little is known how this oscillatory cortical communication depends on an alternative route that involves the pulvinar nucleus of the thalamus. We investigated whether the oscillatory coupling between the primary visual cortex (area 17) and area 21a depends on the transthalamic pathway involving the pulvinar in cats. To that end, visual evoked responses were recorded in areas 17 and 21a before, during and after inactivation of the pulvinar. Local field potentials were analyzed with Wavelet and Granger causality tools to determine the oscillatory coupling between layers. The results indicate that cortical oscillatory activity was enhanced during pulvinar inactivation, in particular for area 21a. In area 17, alpha band responses were represented in layers II/III. In area 21a, gamma oscillations, except for layer I, were significantly increased, especially in layer IV. Granger causality showed that the pulvinar modulated the oscillatory information between areas 17 and 21a in gamma and alpha bands for the feedforward and feedback processing, respectively. Together, these findings indicate that the pulvinar is involved in the mechanisms underlying oscillatory communication along the visual cortex.
Collapse
|
38
|
Resolving the Spatial Profile of Figure Enhancement in Human V1 through Population Receptive Field Modeling. J Neurosci 2020; 40:3292-3303. [PMID: 32139585 DOI: 10.1523/jneurosci.2377-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
The detection and segmentation of meaningful figures from their background is one of the primary functions of vision. While work in nonhuman primates has implicated early visual mechanisms in this figure-ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7 Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex (N = 6, four females). We used a novel population receptive field mapping-based approach to resolve the spatial profiles of two constituent mechanisms of figure-ground modulation: a local boundary response, and a further enhancement spanning the full extent of the figure region that is driven by global differences in features. Reconstructing the distinct spatial profiles of these effects reveals that figure enhancement modulates responses in human early visual cortex in a manner consistent with a mechanism of automatic, contextually driven feedback from higher visual areas.SIGNIFICANCE STATEMENT A core function of the visual system is to parse complex 2D input into meaningful figures. We do so constantly and seamlessly, both by processing information about visible edges and by analyzing large-scale differences between figure and background. While influential neurophysiology work has characterized an intriguing mechanism that enhances V1 responses to perceptual figures, we have a poor understanding of how the early visual system contributes to figure-ground processing in humans. Here, we use advanced computational analysis methods and high-field human fMRI data to resolve the distinct spatial profiles of local edge and global figure enhancement in the early visual system (V1 and LGN); the latter is distinct and consistent with a mechanism of automatic, stimulus-driven feedback from higher-level visual areas.
Collapse
|
39
|
Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron 2020; 105:776-798. [PMID: 32135090 PMCID: PMC8770991 DOI: 10.1016/j.neuron.2020.01.026] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
We review the central tenets and neuroanatomical basis of the global neuronal workspace (GNW) hypothesis, which attempts to account for the main scientific observations regarding the elementary mechanisms of conscious processing in the human brain. The GNW hypothesis proposes that, in the conscious state, a non-linear network ignition associated with recurrent processing amplifies and sustains a neural representation, allowing the corresponding information to be globally accessed by local processors. We examine this hypothesis in light of recent data that contrast brain activity evoked by either conscious or non-conscious contents, as well as during conscious or non-conscious states, particularly general anesthesia. We also discuss the relationship between the intertwined concepts of conscious processing, attention, and working memory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Neuroscience Graduate Program, and Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pieter Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA.
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| |
Collapse
|
40
|
The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory. J Neurosci 2020; 40:2458-2470. [PMID: 32051326 PMCID: PMC7083532 DOI: 10.1523/jneurosci.2121-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many tasks demand that information is kept online for a few seconds before it is used to guide behavior. The information is kept in working memory as the persistent firing of neurons encoding the memorized information. The neural mechanisms responsible for persistent activity are not yet well understood. Theories attribute an important role to ionotropic glutamate receptors, and it has been suggested that NMDARs are particularly important for persistent firing because they exhibit long time constants. Ionotropic AMPARs have shorter time constants and have been suggested to play a smaller role in working memory. Here we compared the contribution of AMPARs and NMDARs to persistent firing in the dlPFC of male macaque monkeys performing a delayed saccade to a memorized spatial location. We used iontophoresis to eject small amounts of glutamate receptor antagonists, aiming to perturb, but not abolish, neuronal activity. We found that both AMPARs and NMDARs contributed to persistent activity. Blockers of the NMDARs decreased persistent firing associated with the memory of the neuron's preferred spatial location but had comparatively little effect on the representation of the antipreferred location. They therefore decreased the information conveyed by persistent firing about the memorized location. In contrast, AMPAR blockers decreased activity elicited by the memory of both the preferred and antipreferred location, with a smaller effect on the information conveyed by persistent activity. Our results provide new insights into the contribution of AMPARs and NMDARs to persistent activity during working memory tasks. SIGNIFICANCE STATEMENT Working memory enables us to hold on to information that is no longer available to the senses. It relies on the persistent activity of neurons that code for the memorized information, but the detailed mechanisms are not yet well understood. Here we investigated the role of NMDARs and AMPARs in working memory using iontophoresis of antagonists in the PFC of monkeys remembering the location of a visual stimulus for an eye movement response. AMPARs and NMDARs both contributed to persistent activity. NMDAR blockers mostly decreased persistent firing associated with the memory of the neuron's preferred spatial location, whereas AMPAR blockers caused a more general suppression. These results provide new insight into the contribution of AMPARs and NMDARs to working memory.
Collapse
|
41
|
Standage D, Paré M, Blohm G. Hierarchical recruitment of competition alleviates working memory overload in a frontoparietal model. J Vis 2019; 19:8. [PMID: 31621817 DOI: 10.1167/19.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The storage limitations of visual working memory have been the subject of intense research interest for several decades, but few studies have systematically investigated the dependence of these limitations on memory load that exceeds our retention abilities. Under this real-world scenario, performance typically declines beyond a critical load among low-performing subjects, a phenomenon known as working memory overload. We used a frontoparietal cortical model to test the hypothesis that high-performing subjects select a manageable number of items for storage, thereby avoiding overload. The model accounts for behavioral and electrophysiological data from high-performing subjects in a parameter regime where competitive encoding in its prefrontal network selects items for storage, interareal projections sustain their representations after stimulus offset, and weak dynamics in its parietal network limit their mutual interference. Violation of these principles accounts for these data among low-performing subjects, implying that poor visual working memory performance reflects poor control over frontoparietal circuitry, making testable predictions for experiments.
Collapse
Affiliation(s)
- Dominic Standage
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Martin Paré
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
42
|
Roelfsema PR, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nat Rev Neurosci 2019; 19:166-180. [PMID: 29449713 DOI: 10.1038/nrn.2018.6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to support maximally adaptive behaviour. Here, we provide an overview of factors that determine the change in the strength of synapses, with a focus on synaptic plasticity in sensory cortices. We review the influence of neuromodulators and feedback connections in synaptic plasticity and suggest a specific framework in which these factors can interact to improve the functioning of the entire network.
Collapse
Affiliation(s)
- Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.,Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Psychiatry Department, Academic Medical Center, Amsterdam, Netherlands
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Geneva Neuroscience Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Self MW, van Kerkoerle T, Goebel R, Roelfsema PR. Benchmarking laminar fMRI: Neuronal spiking and synaptic activity during top-down and bottom-up processing in the different layers of cortex. Neuroimage 2019. [DOI: 10.1016/j.neuroimage.2017.06.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
44
|
Grent-'t-Jong T, Rivolta D, Gross J, Gajwani R, Lawrie SM, Schwannauer M, Heidegger T, Wibral M, Singer W, Sauer A, Scheller B, Uhlhaas PJ. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia. Brain 2019; 141:2511-2526. [PMID: 30020423 PMCID: PMC6061682 DOI: 10.1093/brain/awy175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
Hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has been implicated as a possible mechanism underlying cognitive deficits and aberrant neuronal dynamics in schizophrenia. To test this hypothesis, we first administered a sub-anaesthetic dose of S-ketamine (0.006 mg/kg/min) or saline in a single-blind crossover design in 14 participants while magnetoencephalographic data were recorded during a visual task. In addition, magnetoencephalographic data were obtained in a sample of unmedicated first-episode psychosis patients (n = 10) and in patients with chronic schizophrenia (n = 16) to allow for comparisons of neuronal dynamics in clinical populations versus NMDAR hypofunctioning. Magnetoencephalographic data were analysed at source-level in the 1–90 Hz frequency range in occipital and thalamic regions of interest. In addition, directed functional connectivity analysis was performed using Granger causality and feedback and feedforward activity was investigated using a directed asymmetry index. Psychopathology was assessed with the Positive and Negative Syndrome Scale. Acute ketamine administration in healthy volunteers led to similar effects on cognition and psychopathology as observed in first-episode and chronic schizophrenia patients. However, the effects of ketamine on high-frequency oscillations and their connectivity profile were not consistent with these observations. Ketamine increased amplitude and frequency of gamma-power (63–80 Hz) in occipital regions and upregulated low frequency (5–28 Hz) activity. Moreover, ketamine disrupted feedforward and feedback signalling at high and low frequencies leading to hypo- and hyper-connectivity in thalamo-cortical networks. In contrast, first-episode and chronic schizophrenia patients showed a different pattern of magnetoencephalographic activity, characterized by decreased task-induced high-gamma band oscillations and predominantly increased feedforward/feedback-mediated Granger causality connectivity. Accordingly, the current data have implications for theories of cognitive dysfunctions and circuit impairments in the disorder, suggesting that acute NMDAR hypofunction does not recreate alterations in neural oscillations during visual processing observed in schizophrenia.
Collapse
Affiliation(s)
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute of Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Ruchika Gajwani
- Institute of Health and Wellbeing, University of Glasgow, UK
| | | | | | - Tonio Heidegger
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | | | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.,Ernst Strüngmann Institute for Neuroscience (ESI) in Cooperation with Max Planck Society, Frankfurt am Main, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Andreas Sauer
- MEG-Unit, Goethe University, Frankfurt am Main, Germany.,Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Bertram Scheller
- Department of Anaesthesia, Intensive Care Medicine and Pain Therapy, Goethe University, Frankfurt am Main, Germany
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
46
|
Lamme VAF. Challenges for theories of consciousness: seeing or knowing, the missing ingredient and how to deal with panpsychism. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0344. [PMID: 30061458 DOI: 10.1098/rstb.2017.0344] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2018] [Indexed: 12/24/2022] Open
Abstract
Significant progress has been made in the study of consciousness. Promising theories have been developed and a wealth of experimental data has been generated, both guiding us towards a better understanding of this complex phenomenon. However, new challenges have surfaced. Is visual consciousness about the seeing or the knowing that you see? Controversy about whether the conscious experience is better explained by theories that focus on phenomenal (P-consciousness) or cognitive aspects (A-consciousness) remains, and the debate seems to reach a stalemate. Can we ever resolve this? A further challenge is that many theories of consciousness seem to endorse high degrees of panpsychism-the notion that all beings or even lifeless objects have conscious experience. Should we accept this, or does it imply that these theories require further ingredients that would put a lower bound on beings or devices that have conscious experience? If so, what could these 'missing ingredients' be? These challenges are discussed, and potential solutions are offered.This article is part of the theme issue 'Perceptual consciousness and cognitive access'.
Collapse
Affiliation(s)
- Victor A F Lamme
- Amsterdam Brain and Cognition (ABC), Department of Psychology, University of Amsterdam, 1001 NK Amsterdam, The Netherlands
| |
Collapse
|
47
|
Saiepour MH, Min R, Kamphuis W, Heimel JA, Levelt CN. β-Catenin in the Adult Visual Cortex Regulates NMDA-Receptor Function and Visual Responses. Cereb Cortex 2019; 28:1183-1194. [PMID: 28184425 DOI: 10.1093/cercor/bhx029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
The formation, plasticity and maintenance of synaptic connections is regulated by molecular and electrical signals. β-Catenin is an important protein in these events and regulates cadherin-mediated cell adhesion and the recruitment of pre- and postsynaptic proteins in an activity-dependent fashion. Mutations in the β-catenin gene can cause cognitive disability and autism, with life-long consequences. Understanding its synaptic function may thus be relevant for the treatment of these disorders. So far, β-catenin's function has been studied predominantly in cell culture and during development but knowledge on its function in adulthood is limited. Here, we show that ablating β-catenin in excitatory neurons of the adult visual cortex does not cause the same synaptic deficits previously observed during development. Instead, it reduces NMDA-receptor currents and impairs visual processing. We conclude that β-catenin remains important for adult cortical function but through different mechanisms than during development.
Collapse
Affiliation(s)
- M Hadi Saiepour
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Rogier Min
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Willem Kamphuis
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - J Alexander Heimel
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
48
|
Yang ST, Wang M, Paspalas CD, Crimins JL, Altman MT, Mazer JA, Arnsten AFT. Core Differences in Synaptic Signaling Between Primary Visual and Dorsolateral Prefrontal Cortex. Cereb Cortex 2019; 28:1458-1471. [PMID: 29351585 PMCID: PMC6041807 DOI: 10.1093/cercor/bhx357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/21/2017] [Indexed: 01/26/2023] Open
Abstract
Neurons in primary visual cortex (V1) are more resilient than those in dorsolateral prefrontal cortex (dlPFC) in aging, schizophrenia and Alzheimer’s disease. The current study compared glutamate and neuromodulatory actions in macaque V1 to those in dlPFC, and found striking regional differences. V1 neuronal firing to visual stimuli depended on AMPA receptors, with subtle NMDA receptor contributions, while dlPFC depends primarily on NMDA receptors. Neuromodulatory actions also differed between regions. In V1, cAMP signaling increased neuronal firing, and the phosphodiesterase PDE4A was positioned to regulate cAMP effects on glutamate release from axons. HCN channels in V1 were classically located on distal dendrites, and enhanced cell firing. These data contrast with dlPFC, where PDE4A and HCN channels are concentrated in thin spines, and cAMP-HCN signaling gates inputs and weakens firing. These regional differences may explain why V1 neurons are more resilient than dlPFC neurons to the challenges of age and disease.
Collapse
Affiliation(s)
- Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510, USA
| | | | - Johanna L Crimins
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510, USA
| | - Marcus T Altman
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510, USA
| | - James A Mazer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Department of Cell Biology & Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510, USA
| |
Collapse
|
49
|
Self MW, Jeurissen D, van Ham AF, van Vugt B, Poort J, Roelfsema PR. The Segmentation of Proto-Objects in the Monkey Primary Visual Cortex. Curr Biol 2019; 29:1019-1029.e4. [PMID: 30853432 DOI: 10.1016/j.cub.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/07/2019] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
Abstract
During visual perception, the brain enhances the representations of image regions that belong to figures and suppresses those that belong to the background. Natural images contain many regions that initially appear to be part of a figure when analyzed locally (proto-objects) but are actually part of the background if the whole image is considered. These proto-grounds must be correctly assigned to the background to allow correct shape identification and guide behavior. To understand how the brain resolves this conflict between local and global processing, we recorded neuronal activity from the primary visual cortex (V1) of macaque monkeys while they discriminated between n/u shapes that have a central proto-ground region. We studied the fine-grained spatiotemporal profile of neural activity evoked by the n/u shape and found that neural representation of the object proceeded from a coarse-to-fine resolution. Approximately 100 ms after the stimulus onset, the representation of the proto-ground region was enhanced together with the rest of the n/u surface, but after ∼115 ms, the proto-ground was suppressed back to the level of the background. Suppression of the proto-ground was only present in animals that had been trained to perform the shape-discrimination task, and it predicted the choice of the animal on a trial-by-trial basis. Attention enhanced figure-ground modulation, but it had no effect on the strength of proto-ground suppression. The results indicate that the accuracy of scene segmentation is sharpened by a suppressive process that resolves local ambiguities by assigning proto-grounds to the background.
Collapse
Affiliation(s)
- Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Danique Jeurissen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Anne F van Ham
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Bram van Vugt
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Jasper Poort
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Psychiatry department, Academic Medical Center, Postbus 22660, 1100DD Amsterdam, the Netherlands
| |
Collapse
|
50
|
Schnabel UH, Bossens C, Lorteije JAM, Self MW, Op de Beeck H, Roelfsema PR. Figure-ground perception in the awake mouse and neuronal activity elicited by figure-ground stimuli in primary visual cortex. Sci Rep 2018; 8:17800. [PMID: 30542060 PMCID: PMC6290763 DOI: 10.1038/s41598-018-36087-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
Figure-ground segregation is the process by which the visual system identifies image elements of figures and segregates them from the background. Previous studies examined figure-ground segregation in the visual cortex of monkeys where figures elicit stronger neuronal responses than backgrounds. It was demonstrated in anesthetized mice that neurons in the primary visual cortex (V1) of mice are sensitive to orientation contrast, but it is unknown whether mice can perceptually segregate figures from a background. Here, we examined figure-ground perception of mice and found that mice can detect figures defined by an orientation that differs from the background while the figure size, position or phase varied. Electrophysiological recordings in V1 of awake mice revealed that the responses elicited by figures were stronger than those elicited by the background and even stronger at the edge between figure and background. A figural response could even be evoked in the absence of a stimulus in the V1 receptive field. Current-source-density analysis suggested that the extra activity was caused by synaptic inputs into layer 2/3. We conclude that the neuronal mechanisms of figure-ground segregation in mice are similar to those in primates, enabling investigation with the powerful techniques for circuit analysis now available in mice.
Collapse
Affiliation(s)
- Ulf H Schnabel
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Christophe Bossens
- Laboratory of Biological Psychology, Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Jeannette A M Lorteije
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthew W Self
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Hans Op de Beeck
- Laboratory of Biological Psychology, Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Psychiatry Department, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Integrative Neurophysiology, Vrije Universiteit, Amsterdam, Amsterdam, Neuroscience, The Netherlands.
| |
Collapse
|