1
|
Orlova A, Guseva D, Demina N, Polyakov A, Ryzhkova O. Spectrum of Mutations in PTPN11 in Russian Cohort. Genes (Basel) 2024; 15:345. [PMID: 38540404 PMCID: PMC10970286 DOI: 10.3390/genes15030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 06/14/2024] Open
Abstract
Noonan syndrome is a group of diseases with a similar clinical picture, consisting of 16 diseases caused by mutations in 15 genes. According to the literature, approximately half of all cases are attributed to Noonan syndrome type 1, NSML, caused by mutations in the PTPN11 gene. We analyzed 456 unrelated probands using a gene panel NGS, and in 206 cases, the cause of the disease was identified. Approximately half of the cases (107) were caused by variants in the PTPN11 gene, including three previously undescribed variants, one of which was classified as VOUS, and the other two as LP causative complex alleles. Frequent variants of the PTPN11 gene characteristics for Russian patients were identified, accounting for more than 38% (c.922A>G p.Asn308Asp, c.417G>C p.Glu139Asp, c.1403C>T p.Thr468Met) of all cases with mutations in the PTPN11 gene. A comparative characterization of frequent variants of the PTPN11 gene in different populations is shown. The most common features of Noonan syndrome in the studied sample were facial dysmorphisms and cardiovascular system abnormalities. A lower representation of patients with growth delay was observed compared to previously described samples.
Collapse
Affiliation(s)
- Anna Orlova
- SRC «Genome», Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Daria Guseva
- Counselling Unit, Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.G.); (N.D.)
| | - Nina Demina
- Counselling Unit, Research Centre for Medical Genetics, 115522 Moscow, Russia; (D.G.); (N.D.)
| | - Aleksander Polyakov
- DNA-Diagnostics Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia;
| | - Oksana Ryzhkova
- SRC «Genome», Research Centre for Medical Genetics, 115522 Moscow, Russia;
| |
Collapse
|
2
|
Saint-Laurent C, Mazeyrie L, Yart A, Edouard T. Novel therapeutic perspectives in Noonan syndrome and RASopathies. Eur J Pediatr 2024; 183:1011-1019. [PMID: 37863846 PMCID: PMC10951041 DOI: 10.1007/s00431-023-05263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia). Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.
Collapse
Affiliation(s)
- Céline Saint-Laurent
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France
| | - Laurène Mazeyrie
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Armelle Yart
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Thomas Edouard
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France.
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
3
|
Shoji Y, Hata A, Maeyama T, Wada T, Hasegawa Y, Nishi E, Ida S, Etani Y, Niihori T, Aoki Y, Okamoto N, Kawai M. Genetic backgrounds and genotype-phenotype relationships in anthropometric parameters of 116 Japanese individuals with Noonan syndrome. Clin Pediatr Endocrinol 2024; 33:50-58. [PMID: 38572385 PMCID: PMC10985011 DOI: 10.1297/cpe.2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Noonan syndrome (NS) is caused by pathogenic variants in genes encoding components of the RAS/MAPK pathway and presents with a number of symptoms, including characteristic facial features, congenital heart diseases, and short stature. Advances in genetic analyses have contributed to the identification of pathogenic genes in NS as well as genotype-phenotype relationships; however, updated evidence for the detection rate of pathogenic genes with the inclusion of newly identified genes is lacking in Japan. Accordingly, we examined the genetic background of 116 individuals clinically diagnosed with NS and the frequency of short stature. We also investigated genotype-phenotype relationships in the context of body mass index (BMI). Genetic testing revealed the responsible variants in 100 individuals (86%), where PTPN11 variants were the most prevalent (43%) and followed by SOS1 (12%) and RIT1 (9%). The frequency of short stature was the lowest in subjects possessing RIT1 variants. No genotype-phenotype relationships in BMI were observed among the genotypes. In conclusion, this study provides evidence for the detection rate of pathogenic genes and genotype-phenotype relationships in Japanese patients with NS, which will be of clinical importance for accelerating our understanding of the genetic backgrounds of Japanese patients with NS.
Collapse
Affiliation(s)
- Yasuko Shoji
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Epidemiology and Health Policy, University of Toyama, Toyama, Japan
| | - Ayaha Hata
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Takatoshi Maeyama
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tamaki Wada
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuiko Hasegawa
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Eriko Nishi
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Shinobu Ida
- Department of Clinical Laboratory, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yuri Etani
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Miyagi, Japan
| | - Nobuhiko Okamoto
- Department of Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Masanobu Kawai
- Department of Gastroenterology and Endocrinology, Osaka Women's and Children's Hospital, Osaka, Japan
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
4
|
Cherra SJ, Lamb R. Interactions between Ras and Rap signaling pathways during neurodevelopment in health and disease. Front Mol Neurosci 2024; 17:1352731. [PMID: 38463630 PMCID: PMC10920261 DOI: 10.3389/fnmol.2024.1352731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
The Ras family of small GTPases coordinates tissue development by modulating cell proliferation, cell-cell adhesion, and cellular morphology. Perturbations of any of these key steps alter nervous system development and are associated with neurological disorders. While the underlying causes are not known, genetic mutations in Ras and Rap GTPase signaling pathways have been identified in numerous neurodevelopmental disorders, including autism spectrum, neurofibromatosis, intellectual disability, epilepsy, and schizophrenia. Despite diverse clinical presentations, intersections between these two signaling pathways may provide a better understanding of how deviations in neurodevelopment give rise to neurological disorders. In this review, we focus on presynaptic and postsynaptic functions of Ras and Rap GTPases. We highlight various roles of these small GTPases during synapse formation and plasticity. Based on genomic analyses, we discuss how disease-related mutations in Ras and Rap signaling proteins may underlie human disorders. Finally, we discuss how recent observations have identified molecular interactions between these pathways and how these findings may provide insights into the mechanisms that underlie neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | | |
Collapse
|
5
|
Paldino E, Migliorato G, Fusco FR. Neuroimmune pathways involvement in neurodegeneration of R6/2 mouse model of Huntington's disease. Front Cell Neurosci 2024; 18:1360066. [PMID: 38444595 PMCID: PMC10912295 DOI: 10.3389/fncel.2024.1360066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
Mechanisms of tissue damage in Huntington's disease (HD) involve excitotoxicity, mitochondrial damage, and neuroinflammation, including microglia activation. CD47 is a membrane protein that interacts with the inhibitory immunoreceptor SIRPα. Engagement of SIRPα by CD47 provides a downregulatory signal that inhibits host cell phagocytosis, promoting a "don't-eat-me" signal. These proteins are involved in the immune response and are downmodulated in inflammatory diseases. The involvement of inflammation and of the inflammasome in HD has already been described. In this study, we focused on other factors that can be involved in the unregulated inflammatory response that accelerates and exacerbate the neurodegenerative process in HD. Our results show that CD47 on striatal neurons decreased in HD mice, while it increased in wild type mice with age. SIRPα, on the other hand, was present in neurons in the wild type and increases in the R6/2 mice at all stages. Recruitment of SIRPα and binding to CD47 promotes the activation through phosphorylating events of non-receptor protein tyrosine phosphatase SHP-1 and SHP-2 in neurons and microglia. SHP phosphatases are able to curb the activity of NLRP3 inflammasome thereby reducing the detrimental effect of neuroinflammation. Such activity is mediated by the inhibition (dephosphorylation) of the proteins signal transducer and activator of transcription (STAT). We found that activated SHP-1 was present in microglia and neurons of WT mice at 5 and 13 weeks, increasing with time; while in R6/2 it was not localized in neurons but only in microglia, where it decreases with time. Consequently, STAT1 was overexpressed in neurons of R6/2 mice, as an effect of lack of modulation by SHP-1. Thus, our results shed light on the pathophysiology of neuronal damage, on one hand, paving the way toward a modulation of signal transducer proteins by specific inhibitors to achieve neuroprotection in HD, on the other.
Collapse
Affiliation(s)
- Emanuela Paldino
- Laboratory of Neuroanatomy, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giorgia Migliorato
- Laboratory of Neuroanatomy, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | |
Collapse
|
6
|
Grimberg A, Hawkes CP. Growth Hormone Treatment for Non-GHD Disorders: Excitement Tempered by Biology. J Clin Endocrinol Metab 2024; 109:e442-e454. [PMID: 37450564 PMCID: PMC10795916 DOI: 10.1210/clinem/dgad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The success of growth hormone (GH) replacement in children with classical GH deficiency has led to excitement that other causes of short stature may benefit similarly. However, clinical experience has shown less consistent and generally less dramatic effects on adult height, perhaps not surprising in light of increased understanding of GH and growth plate biology. Nonetheless, clinical demand for GH treatment continues to grow. Upon the 20th anniversary of the US Food and Drug Administration's approval of GH treatment for idiopathic short stature, this review will consider the factors underlying the expansion of GH treatment, the biological mechanisms of GH action, the non-GH-deficient uses of GH as a height-promoting agent, biological constraints to GH action, and future directions.
Collapse
Affiliation(s)
- Adda Grimberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colin P Hawkes
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- INFANT Research Centre, University College Cork, Cork T12 DC4A, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork T12 R229, Ireland
| |
Collapse
|
7
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Hao LT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Moyer QJ, Dennis E, Kiziltug E, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nat Commun 2023; 14:7452. [PMID: 37978175 PMCID: PMC10656524 DOI: 10.1038/s41467-023-43062-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.
Collapse
Affiliation(s)
- Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Martijn A van der Ent
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Prendergast
- Yale Zebrafish Research Core, Yale School of Medicine, New Haven, CT, USA
| | - Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Duran
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
- Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Le Thi Hao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Myron Rolle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Po-Ying Fu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yung-Chun Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Paulina Piwowarczyk
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katie Pricola Fehnel
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Beverly Aagaard-Kienitz
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Quentin J Moyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew T Hale
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shih-Shan Lang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Chapman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Stapleton
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges Rodesch
- Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Stanislas Smajda
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Alejandro Berenstein
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mark R Proctor
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren B Orbach
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
9
|
Zhang M, Zhang J, Wang D, Liu Z, Xing K, Wang Y, Jiao M, Wang Y, Shi B, Zhang H, Zhang Y. C-X-C motif chemokine ligand 12 improves the developmental potential of bovine oocytes by activating SH2 domain-containing tyrosine phosphatase 2 during maturation†. Biol Reprod 2023; 109:282-298. [PMID: 37498179 DOI: 10.1093/biolre/ioad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In vitro maturation of mammalian oocytes is an important means in assisted reproductive technology. Most bovine immature oocytes complete nuclear maturation, but less than half develop to the blastocyst stage after fertilization. Thus, inefficient in vitro production is mainly caused by a suboptimal in vitro culture process, in which oocyte quality appears to be the limiting factor. In our study, a potential maternal regulator, C-X-C motif chemokine ligand 12, was identified by analyzing transcriptome data. C-X-C motif chemokine ligand 12 supplementation promoted the developmental potential of oocytes by improving protein synthesis and reorganizing cortical granules and mitochondria during in vitro maturation, which eventually increased blastocyst formation efficiency and cell number after parthenogenesis, fertilization, and cloning. All these promoting effects by C-X-C motif chemokine ligand 12 were achieved by activating SH2 domain-containing tyrosine phosphatase 2, thereby promoting the mitogen-activated protein kinase signaling pathway. These findings provide an in vitro maturation system that closely resembles the maternal environment to provide high-quality oocytes for in vitro production.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Debao Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangning Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Jensen NR, Kelly RR, Kelly KD, Khoo SK, Sidles SJ, LaRue AC. From Stem to Sternum: The Role of Shp2 in the Skeleton. Calcif Tissue Int 2023; 112:403-421. [PMID: 36422682 DOI: 10.1007/s00223-022-01042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.
Collapse
Affiliation(s)
- Nathaniel R Jensen
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan R Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kirsten D Kelly
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Stephanie K Khoo
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
| | - Sara J Sidles
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C LaRue
- Ralph H. Johnson VA Health Care System, Research Service, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Le HT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Genetic dysregulation of an endothelial Ras signaling network in vein of Galen malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532837. [PMID: 36993588 PMCID: PMC10055230 DOI: 10.1101/2023.03.18.532837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.
Collapse
|
12
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
13
|
Tamburrino F, Scarano E, Schiavariello C, Perri A, Pession A, Mazzanti L. Endocrinological manifestations in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:471-477. [PMID: 36401574 DOI: 10.1002/ajmg.c.32013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
The evaluation of endocrine involvement in RASopathies is important for the care and follow-up of patients affected by these conditions. Short stature is a cardinal feature of RASopathies and correlates with multiple factors. Growth hormone treatment is a therapeutic possibility to improve height and quality of life. Assessment of growth rate and growth laboratory parameters is routine, but age at start of therapy, dose and effects of growth hormone on final height need to be clarified. Puberty disorders and gonadal dysfunction, in particular in males, are other endocrinological areas to evaluate for their effects on growth and development. Thyroid dysfunction, autoimmune disease and bone involvement have also been reported in RASopathies. In this brief review, we describe the current knowledge on growth, growth hormone therapy, endocrinological involvement in patients affected by RASopathies.
Collapse
Affiliation(s)
- Federica Tamburrino
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Emanuela Scarano
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Concetta Schiavariello
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annamaria Perri
- Rare Diseases Unit, Department of Pediatrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Mazzanti
- Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
15
|
The Tyrosine Phosphatase SHP2: A New Target for Insulin Resistance? Biomedicines 2022; 10:biomedicines10092139. [PMID: 36140242 PMCID: PMC9495760 DOI: 10.3390/biomedicines10092139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The SH2 containing protein tyrosine phosphatase 2(SHP2) plays essential roles in fundamental signaling pathways, conferring on it versatile physiological functions during development and in homeostasis maintenance, and leading to major pathological outcomes when dysregulated. Many studies have documented that SHP2 modulation disrupted glucose homeostasis, pointing out a relationship between its dysfunction and insulin resistance, and the therapeutic potential of its targeting. While studies from cellular or tissue-specific models concluded on both pros-and-cons effects of SHP2 on insulin resistance, recent data from integrated systems argued for an insulin resistance promoting role for SHP2, and therefore a therapeutic benefit of its inhibition. In this review, we will summarize the general knowledge of SHP2’s molecular, cellular, and physiological functions, explaining the pathophysiological impact of its dysfunctions, then discuss its protective or promoting roles in insulin resistance as well as the potency and limitations of its pharmacological modulation.
Collapse
|
16
|
Fauser J, Huyot V, Matsche J, Szynal BN, Alexeev Y, Kota P, Karginov AV. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J Cell Biol 2022; 221:e202111066. [PMID: 35829702 PMCID: PMC9284425 DOI: 10.1083/jcb.202111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.
Collapse
Affiliation(s)
- Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Vincent Huyot
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob Matsche
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | - Barbara N. Szynal
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| | | | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrei V. Karginov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
17
|
Cao Y, Duan H, Su A, Xu L, Lai B. A pan-cancer analysis confirms PTPN11's potential as a prognostic and immunological biomarker. Aging (Albany NY) 2022; 14:5590-5610. [PMID: 35802774 PMCID: PMC9320542 DOI: 10.18632/aging.204171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Protein tyrosine phosphatase, non-receptor type 11 (PTPN11) is a multifunctional tyrosine phosphatase and has a significant part in many types of tumors. As of yet, neither the expression profile of PTPN11 nor its significance in pan-cancer diagnosis has been clarified. With the assistance of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we have comprehensively mapped the expression profiles, prognostic significance, genetic alteration, phosphorylation status, infiltration of immune cells, and functional properties of PTPN11 in 33 human tumors. There was an inconsistent expression of PTPN11 in different tumors, and the alteration of PTPN11 expression predicted the survival outcomes of cancer patients. A significant association was found between the genetic alteration levels of PTPN11 and some tumor predictions. Besides, the reduced PTPN11 phosphorylation levels were observed in breast cancer, clear cell RCC, head and neck carcinoma, and lung adenocarcinoma (LUAD). Furthermore, there was a significant association between PTPN11 expression and infiltration of cancer-associated fibroblasts and endothelial cells, along with tumor mutation burden, microsatellite instability, mismatch repair genes, and immunoregulators. Finally, pathway enrichment analysis demonstrated that PTPN11-associated terms and pathways were involved in malignancy. Taken together, PTPN11 may become a new biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Yapeng Cao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Haixia Duan
- Department of Reproduction Gynecology, Northwest Women and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Ailing Su
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Liran Xu
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
18
|
Jorge AAL, Edouard T, Maghnie M, Pietropoli A, Kelepouris N, Romano A, Zenker M, Horikawa R. Outcomes in growth hormone-treated Noonan syndrome children: impact of PTPN11 mutation status. Endocr Connect 2022; 11:e210615. [PMID: 35245205 PMCID: PMC9066595 DOI: 10.1530/ec-21-0615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Mutations in PTPN11 are associated with Noonan syndrome (NS). Although the effectiveness of growth hormone therapy (GHT) in treating short stature due to NS has been previously demonstrated, the effect of PTPN11 mutation status on the long-term outcomes of GHT remains to be elucidated. METHODS This analysis included pooled data from the observational American Norditropin Studies: Web-Enabled Research Program (NCT01009905) and the randomized, double-blinded GHLIQUID-4020 clinical trial (NCT01927861). Pediatric patients with clinically diagnosed NS and confirmed PTPN11mutation status were eligible for inclusion. The effectiveness analysis included patients who were GHT-naïve and pre-pubertal at GHT start. Growth outcomes and safety were assessed over 4 years of GHT (Norditropin®, Novo Nordisk A/S). RESULTS A total of 69 patients were included in the effectiveness analysis (71% PTPN11 positive). The proportion of females was 32.7 and 30.0% in PTPN11-positive and negative patients, respectively, and mean age at GHT start was 6.4 years in both groups. Using general population reference data, after 4 years of GHT, the mean (s.d.) height SD score (HSDS) was -1.9 (1.1) and -1.7 (0.8) for PTPN11-positive and PTPN11-negative patients, respectively, with no statistical difference observed between groups. The mean (s.d.) change in HSDS at 4 years was +1.3 (0.8) in PTPN11-positive patients and +1.5 (0.7) in PTPN11-negative patients (no significant differences between groups). Safety findings were consistent with previous analyses. CONCLUSIONS GHT resulted in improved growth outcomes over 4 years in GHT-naïve, pre-pubertal NS patients, irrespective of PTPN11 mutation status.
Collapse
Affiliation(s)
- Alexander A L Jorge
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children’s Hospital, Toulouse University Hospital, RESTORE INSERM UMR1301, Toulouse, France
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Alberto Pietropoli
- Novo Nordisk Health Care AG, Global Medical Affairs Biopharm, Zürich, Switzerland
| | - Nicky Kelepouris
- Novo Nordisk Inc., Clinical, Medical and Regulatory Biopharm-RED, Plainsboro, New Jersey, USA
| | - Alicia Romano
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Martin Zenker
- Institute of Human Genetics & Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Reiko Horikawa
- Department of Endocrine and Metabolism, National Center for Child Health and Development, Tokyo, Japan
- Correspondence should be addressed to R Horikawa:
| |
Collapse
|
19
|
Dahlgren J, Noordam C. Growth, Endocrine Features, and Growth Hormone Treatment in Noonan Syndrome. J Clin Med 2022; 11:jcm11072034. [PMID: 35407641 PMCID: PMC8999676 DOI: 10.3390/jcm11072034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Noonan syndrome is a heterogeneous congenital disorder. The main features are typical facial features, short stature and cardiac defects. The diagnosis is clinical: in 80% of patients with Noonan syndrome a genetic defect can be shown. Inheritance is predominantly autosomal dominant and seldom autosomal recessive. In 2001, PTPN11 was the first gene connected to Noonan syndrome, and until now, at least 20 other genes have been discovered. All genes code for proteins involved in the RAS-MAP-kinase pathway, and therefore, Noonan syndrome is one of the known RASopathies. Other RASopathies include neurofibromatosis and CFC syndrome. Short stature is one of the defining features of Noonan syndrome. The cause is not fully understood but is multifactorial. Other endocrinological features are confined to delayed puberty and hypogonadism in boys and males. To increase adult height, children with Noonan syndrome have been treated with human growth hormone since the 1990s. This seems to be beneficial in most of the children treated. In this narrative review, we describe the current knowledge on growth, endocrinological features and growth hormone treatment in patients with Noonan syndrome.
Collapse
Affiliation(s)
- Jovanna Dahlgren
- Department of Pediatrics, University of Gothenburg, 41685 Gothenburg, Sweden;
| | - Cees Noordam
- Centre for Paediatric Endocrinology Zurich (PEZZ), 8006 Zurich, Switzerland
- Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +41-4-4364-3700
| |
Collapse
|
20
|
Li X, Yao R, Chang G, Li Q, Song C, Li N, Ding Y, Li J, Chen Y, Wang Y, Huang X, Shen Y, Zhang H, Wang J, Wang X. Clinical Profiles and Genetic Spectra of 814 Chinese Children With Short Stature. J Clin Endocrinol Metab 2022; 107:972-985. [PMID: 34850017 PMCID: PMC8947318 DOI: 10.1210/clinem/dgab863] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/25/2022]
Abstract
CONTEXT Data and studies based on exome sequencing for the genetic evaluation of short stature are limited, and more large-scale studies are warranted. Some factors increase the likelihood of a monogenic cause of short stature, including skeletal dysplasia, severe short stature, and small for gestational age (SGA) without catch-up growth. However, whether these factors can serve as predictors of molecular diagnosis remains unknown. OBJECTIVE We aimed to explore the diagnostic efficiency of the associated risk factors and their exome sequences for screening. METHODS We defined and applied factors that increased the likelihood of monogenic causes of short stature in diagnostic genetic tests based on next-generation sequencing (NGS) in 814 patients with short stature and at least 1 other factor. RESULTS Pathogenic/likely pathogenic (P/LP) variants in genes, copy number variations, and chromosomal abnormalities were identified in 361 patients. We found P/LP variants among 111 genes, and RASopathies comprised the most important etiology. Short stature combined with other phenotypes significantly increased the likelihood of a monogenic cause, including skeletal dysplasia, facial dysmorphism, and intellectual disability, compared with simple severe short stature (<-3 SD scores). We report novel candidate pathogenic genes, KMT2C for unequivocal growth hormone insensitivity and GATA6 for SGA. CONCLUSION Our study identified the diagnostic characteristics of NGS in short stature with different risk factors. Our study provides novel insights into the current understanding of the etiology of short stature in patients with different phenotypes.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qun Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolism disease, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Huang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongnian Shen
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Kong J, Long YQ. Recent advances in the discovery of protein tyrosine phosphatase SHP2 inhibitors. RSC Med Chem 2022; 13:246-257. [PMID: 35434626 PMCID: PMC8942255 DOI: 10.1039/d1md00386k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/17/2023] Open
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) is a non-receptor protein tyrosine phosphatase encoded by the Ptpn11 gene, which regulates cell growth, differentiation and apoptosis via modulating various signaling pathways, such as the RAS/ERK signaling pathway, and participates in the PD-1/PD-L1 pathway governing immune surveillance. It has been recognized as a breakthrough antitumor therapeutic target. Besides, numerous studies have shown that SHP2 plays an important role in the regulation of inflammatory diseases. However, inhibitors targeting the active site of SHP2 lack drug-likeness due to their low selectivity and poor bioavailability, thus none has advanced to clinical development. Recently, allosteric inhibitors that stabilize the inactive conformation of SHP2 have achieved breakthrough progress, providing the clinical proof for the druggability of SHP2 as an antitumor drug target. This paper reviews the recently reported design and discovery of SHP2 small molecule inhibitors, focused on the structure-activity relationship (SAR) analysis of several representative SHP2 inhibitors, outlining the evolution and therapeutic potential of the small molecule inhibitors targeting SHP2.
Collapse
Affiliation(s)
- Jiao Kong
- Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College Suzhou 215123 China
| | - Ya-Qiu Long
- Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College Suzhou 215123 China
| |
Collapse
|
22
|
Quilang RC, Lui S, Forbes K. miR-514a-3p: a novel SHP-2 regulatory miRNA that modulates human cytotrophoblast proliferation. J Mol Endocrinol 2022; 68:99-110. [PMID: 34792485 PMCID: PMC8789026 DOI: 10.1530/jme-21-0175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP-2), encoded by the PTPN11 gene, forms a central component of multiple signalling pathways and is required for insulin-like growth factor (IGF)-induced placental growth. Altered expression of SHP-2 is associated with aberrant placental and fetal growth indicating that drugs modulating SHP-2 expression may improve adverse pregnancy outcome associated with altered placental growth. We have previously demonstrated that placental PTPN11/SHP-2 expression is controlled by miRNAs. SHP-2 regulatory miRNAs may have therapeutic potential; however, the individual miRNA(s) that regulate SHP-2 expression in the placenta remain to be established. We performed in silico analysis of 3'UTR target prediction databases to identify libraries of Hela cells transfected with individual miRNA mimetics, enriched in potential SHP-2 regulatory miRNAs. Analysis of PTPN11 levels by quantitative (q) PCR revealed that miR-758-3p increased, while miR-514a-3p reduced PTPN11 expression. The expression of miR-514a-3p and miR-758-3p within the human placenta was confirmed by qPCR; miR-514a-3p (but not miR-758-3p) levels inversely correlated with PTPN11 expression. To assess the interaction between these miRNAs and PTPN11/SHP-2, specific mimetics were transfected into first-trimester human placental explants and then cultured for up to 4 days. Overexpression of miR-514a-3p, but not miR-758-3p, significantly reduced PTPN11 and SHP-2 expression. microRNA-ribonucleoprotein complex (miRNP)-associated mRNA assays confirmed that this interaction was direct. miR-514a-3p overexpression attenuated IGF-I-induced trophoblast proliferation (BrdU incorporation). miR-758-3p did not alter trophoblast proliferation. These data demonstrate that by modulating SHP-2 expression, miR-514a-3p is a novel regulator of IGF signalling and proliferation in the human placenta and may have therapeutic potential in pregnancies complicated by altered placental growth.
Collapse
Affiliation(s)
- Rachel C Quilang
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sylvia Lui
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Karen Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
23
|
He D, Li Y, Yang W, Chen S, Sun H, Li P, Zhang M, Ban B. Molecular diagnosis for growth hormone deficiency in Chinese children and adolescents and evaluation of impact of rare genetic variants on treatment efficacy of growth hormone. Clin Chim Acta 2022; 524:1-10. [PMID: 34826401 DOI: 10.1016/j.cca.2021.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Growth hormone is an effective therapy for growth hormone deficiency (GHD) but with a rather variable individual sensitivity. It is unclear whether rare genetic variants may contribute to the differential GH responsiveness. METHODS The present study aims to investigate the molecular etiology of GHD in Chinese children and adolescents and evaluate the impact of rare variants on therapeutic efficacies of GH. RESULTS Twenty-one rare heterozygous variant were classified as promising uncertain significance (n = 14), pathogenic (n = 5) or likely pathogenic (n = 2) for 21 of the 93 GHD patients. After GHD patients harboring these rare variants were excluded, inter-individual variability in the response to GH therapy obviously reduced and the negative correlation between initiation age of treatment and height SDS change became stronger in the group without rare variants. Among rare variants, 7 (likely) pathogenic variants (7.5%, 7/93) involved a total of 6 genes not only associated with GH secretion (PROKR2, LZTR1), but also growth plate chondrocyte signaling (ACAN, FBN1, COL9A1) or genetic syndromes (PTPN11). CONCLUSIONS Rare genetic variants are an important factor contributing to differential GH responsiveness and genetic testing should be factored into accurate diagnosis and treatment decision making in the future. CLINICAL TRIAL REGISTRATION NUMBER ChiCTR1900026510.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, PR China
| | - Shuxiong Chen
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Hailing Sun
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Ping Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, PR China; Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, PR China; Chinese Research Center for Behavior Medicine in Growth and Development, Jining, PR China.
| |
Collapse
|
24
|
Siano MA, Pivonello R, Salerno M, Falco M, Mauro C, De Brasi D, Klain A, Sestito S, De Luca A, Pinna V, Simeoli C, Concolino D, Mainolfi CG, Mannarino T, Strisciuglio P, Tartaglia M, Melis D. Endocrine system involvement in patients with RASopathies: A case series. Front Endocrinol (Lausanne) 2022; 13:1030398. [PMID: 36483002 PMCID: PMC9724702 DOI: 10.3389/fendo.2022.1030398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Endocrine complications have been described in patients affected by RASopathies but no systematic assessment has been reported. In this study, we investigate the prevalence of endocrine disorders in a consecutive unselected cohort of patients with RASopathies. STUDY DESIGN 72 patients with a genetically confirmed RASopathy (Noonan syndrome [NS], N=53; 29 LEOPARD syndrome [LS], N=2; cardiofaciocutaneous syndrome [CFCS], N=14; subjects showing co-occurring pathogenic variants in PTPN11 and NF1, N=3) and an age- and sex-matched healthy controls were included in the study. Endocrine system involvement was investigated by assessing the thyroid function, pubertal development, auxological parameters, adrenal function and bone metabolism. RESULTS Short stature was detected in 40% and 64% of the NS and CFCS subcohorts, respectively. Patients showed lower Z-scores at DXA than controls (p<0.05) when considering the entire case load and both NS and CFCS groups. Vitamin D and Calcitonin levels were significantly lower (p< 0.01), Parathormone levels significantly higher (p<0.05) in patients compared to the control group (p<0.05). Patients with lower BMD showed reduced physical activity and joint pain. Finally, anti-TPO antibody levels were significantly higher in patients than in controls when considering the entire case load and both NS and CFCS groups. CONCLUSIONS The collected data demonstrate a high prevalence of thyroid autoimmunity, confirming an increased risk to develop autoimmune disorders both in NS and CFCS. Reduced BMD, probably associated to reduced physical activity and inflammatory cytokines, also occurs. These findings are expected to have implications for the follow-up and prevention of osteopenia/osteoporosis in both NS and CFCS.
Collapse
Affiliation(s)
- M. A. Siano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - R. Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - M. Salerno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Falco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - C. Mauro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - D. De Brasi
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - A. Klain
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - S. Sestito
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - A. De Luca
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - V. Pinna
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - C. Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - D. Concolino
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - Ciro Gabriele Mainolfi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - T. Mannarino
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - P. Strisciuglio
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Tartaglia
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - D. Melis
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: D. Melis,
| |
Collapse
|
25
|
Zhang Y, Lu W, Zhao Q, Chen J, Wang T, Ji J. The role of the protein tyrosine phosphatase SHP2 in ossification. Dev Dyn 2021; 251:748-758. [PMID: 34962674 DOI: 10.1002/dvdy.449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
SHP2, encoded by the PTPN11 gene, participates in multiple cell functions including cell proliferation, movement, and differentiation. PTPN11 loss-of-function and gain-of-function mutations are both associated with diseases, such as Noonan syndrome, whose manifestations include bone defects, suggesting a crucial role for SHP2 in the skeleton. However, the exact mechanisms by which SHP2 regulates bone development remain unclear. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in skeletal development, especially its roles in ossification. Overall, a better understanding of the functions of SHP2 in ossification will provide a new avenue to treat-related skeletal diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wei Lu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qing Zhao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jindong Chen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Tiancong Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jun Ji
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
26
|
Edouard T, Zenker M, Östman-Smith I, Ortega Castelló E, Wolf CM, Burkitt-Wright E, Verloes A, García-Miñaúr S, Tartaglia M, Shaikh G, Lebl J. Management of growth failure and other endocrine aspects in patients with Noonan syndrome across Europe: A sub-analysis of a European clinical practice survey. Eur J Med Genet 2021; 65:104404. [PMID: 34896604 DOI: 10.1016/j.ejmg.2021.104404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
AIM To date, there is a lack of international guidelines regarding the management of the endocrine features of individuals with Noonan syndrome (NS). The aim was to develop a clinical practice survey to gather information on current treatment and management of these patients across Europe. MATERIALS AND METHODS A group of 10 experts from three clinical specialities involved in the management of NS patients (clinical geneticists, paediatric endocrinologists, and paediatric cardiologists) developed a 60-question clinical practice survey. The questionnaire was implemented in Survey Monkey and sent to physicians from these three specialities via European/national societies. Contingency tables and the Chi-Squared test for independence were used to examine differences between specialities and countries. RESULTS In total, responses of 364 specialists (paediatric endocrinologists, 40%; geneticists, 30%; paediatric cardiologists, 30%) from 20 European countries were analysed. While endocrinologists mostly referred to national growth charts for the general population, geneticists mostly referred to NS-specific growth charts. Approximately half of the endocrinologists perform growth hormone (GH) stimulation tests in short patients with low IGF1 levels. Two thirds of endocrinologists begin GH treatment for short patients in early childhood (4-6.9 years), and over half of them selected a threshold of -2 standard deviation score (SDS) according to national growth charts. The main concerns about GH treatment appear to be presence of hypertrophic cardiomyopathy (HCM) (59%), increased risk of malignancy (46%), and limited efficacy (31%). When asked if they consider HCM as a contraindication for GH treatment, one third of respondents skipped this question, and among those who replied, two thirds selected 'cannot answer', suggesting a high level of uncertainty. A total of 21 adverse cardiac responses to GH treatment were reported. Although most respondents had not encountered any malignancy during GH treatment, six malignancies were reported. Finally, about half of the endocrinologists expected a typical final height gain of 1-1.5 SDS with GH treatment. CONCLUSION This survey describes for the first time the current clinical practice of endocrine aspects of NS across Europe and helps us to identify gaps in the management but also in the knowledge of this genetic disorder.
Collapse
Affiliation(s)
- Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, RESTORE INSERM UMR1301, Toulouse, France.
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ingegerd Östman-Smith
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Eduardo Ortega Castelló
- Department of Statistics and Data Science, Faculty of Statistical Studies, Complutense University of Madrid, Madrid, Spain
| | - Cordula M Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital and Université de Paris Medical School, Paris, France
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz Research Institute (IdiPAZ), Hospital Universitario La Paz, Madrid, Spain
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Guftar Shaikh
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
27
|
Delagrange M, Rousseau V, Cessans C, Pienkowski C, Oliver I, Jouret B, Cartault A, Diene G, Tauber M, Salles JP, Yart A, Edouard T. Low bone mass in Noonan syndrome children correlates with decreased muscle mass and low IGF-1 levels. Bone 2021; 153:116170. [PMID: 34492361 DOI: 10.1016/j.bone.2021.116170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
Abstract
Although musculoskeletal abnormalities have long been described in patients with Noonan syndrome (NS), only a few studies have investigated the bone status of these patients. The aim of this retrospective observational study was to describe the bone health of children with NS. Thirty-five patients with a genetically confirmed diagnosis of NS were enrolled. We analyzed the axial skeleton (lumbar spine) using dual energy X-ray absorptiometry and the appendicular skeleton (hand) with the BoneXpert system. Bone metabolism markers, including mineral homeostasis parameters, serum 25-hydroxy vitamin D (25-OHD) levels and markers of bone formation and resorption were also reported. Compared to the general population, axial and appendicular bone mass was significantly decreased in children with NS (p < 0.0001). Serum 25-OHD levels were low in about half of the patients and were negatively correlated with age (r = -0.52; p < 0.0001). Patients with NS exhibited reduced bone formation marker levels and increased bone resorption marker levels (p < 0.0001). No gender difference or genotype-phenotype correlations were found for the different bone parameters. Muscle mass and, to a lesser extent, serum insulin-like growth factor 1 (IGF-1) levels were independent predictors of whole-body bone mineral content (p < 0.0001 for both parameters; adjusted R2 = 0.97). In conclusion, bone mass is reduced in children with NS and correlates with decreased muscle mass and low serum IGF-1 levels. These data justify addressing all potential threats to bone health including sufficient calcium and vitamin D intake, regular physical exercise, and hormone replacement therapy.
Collapse
Affiliation(s)
- Marine Delagrange
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Vanessa Rousseau
- MeDatAS-CIC unit, CIC1436, Toulouse University Hospital, Toulouse, France
| | - Catie Cessans
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Catherine Pienkowski
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Isabelle Oliver
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Béatrice Jouret
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Audrey Cartault
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Gwenaelle Diene
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Maithé Tauber
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Jean-Pierre Salles
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Research Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France; RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France.
| |
Collapse
|
28
|
Lim J, Sari-Ak D, Bagga T. Siglecs as Therapeutic Targets in Cancer. BIOLOGY 2021; 10:1178. [PMID: 34827170 PMCID: PMC8615218 DOI: 10.3390/biology10111178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Hypersialylation is a common post-translational modification of protein and lipids found on cancer cell surfaces, which participate in cell-cell interactions and in the regulation of immune responses. Sialic acids are a family of nine-carbon α-keto acids found at the outermost ends of glycans attached to cell surfaces. Given their locations on cell surfaces, tumor cells aberrantly overexpress sialic acids, which are recognized by Siglec receptors found on immune cells to mediate broad immunomodulatory signaling. Enhanced sialylation exposed on cancer cell surfaces is exemplified as "self-associated molecular pattern" (SAMP), which tricks Siglec receptors found on leukocytes to greatly down-regulate immune responsiveness, leading to tumor growth. In this review, we focused on all 15 human Siglecs (including Siglec XII), many of which still remain understudied. We also highlighted strategies that disrupt the course of Siglec-sialic acid interactions, such as antibody-based therapies and sialic acid mimetics leading to tumor cell depletion. Herein, we introduced the central roles of Siglecs in mediating pro-tumor immunity and discussed strategies that target these receptors, which could benefit improved cancer immunotherapy.
Collapse
Affiliation(s)
- Jackwee Lim
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| | - Duygu Sari-Ak
- Department of Medical Biology, School of Medicine, University of Health Sciences, Istanbul 34668, Turkey;
| | - Tanaya Bagga
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Singapore 138648, Singapore;
| |
Collapse
|
29
|
Fowlkes JL, Thrailkill KM, Bunn RC. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Bone 2021; 152:116060. [PMID: 34144233 PMCID: PMC8316423 DOI: 10.1016/j.bone.2021.116060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/07/2023]
Abstract
The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.
Collapse
Affiliation(s)
- John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| | - R Clay Bunn
- University of Kentucky Barnstable Brown Diabetes Center, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America
| |
Collapse
|
30
|
Rodríguez F, Gaete X, Cassorla F. Etiology and Treatment of Growth Delay in Noonan Syndrome. Front Endocrinol (Lausanne) 2021; 12:691240. [PMID: 34149626 PMCID: PMC8212989 DOI: 10.3389/fendo.2021.691240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
Noonan syndrome is characterized by multiple phenotypic features, including growth retardation, which represents the main cause of consultation to the clinician. Longitudinal growth during childhood and adolescence depends on several factors, among them an intact somatotrophic axis, which is characterized by an adequate growth hormone (GH) secretion by the pituitary, subsequent binding to its receptor, proper function of the post-receptor signaling pathway for this hormone (JAK-STAT5b and RAS/MAPK), and ultimately by the production of its main effector, insulin like growth factor 1 (IGF-1). Several studies regarding the function of the somatotrophic axis in patients with Noonan syndrome and data from murine models, suggest that partial GH insensitivity at a post-receptor level, as well as possible derangements in the RAS/MAPK pathway, are the most likely causes for the growth failure in these patients. Treatment with recombinant human growth hormone (rhGH) has been used extensively to promote linear growth in these patients. Numerous treatment protocols have been employed so far, but the published studies are quite heterogeneous regarding patient selection, length of treatment, and dose of rhGH utilized, so the true benefit of GH therapy is somewhat difficult to establish. This review will discuss the possible etiologies for the growth delay, as well as the outcomes following rhGH treatment in patients with Noonan syndrome.
Collapse
Affiliation(s)
- Fernando Rodríguez
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Ximena Gaete
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
- Pediatrics Department, Hospital Clínico San Borja – Arriarán, Santiago, Chile
| | - Fernando Cassorla
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Kobar K, Collett K, Prykhozhij SV, Berman JN. Zebrafish Cancer Predisposition Models. Front Cell Dev Biol 2021; 9:660069. [PMID: 33987182 PMCID: PMC8112447 DOI: 10.3389/fcell.2021.660069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer predisposition syndromes are rare, typically monogenic disorders that result from germline mutations that increase the likelihood of developing cancer. Although these disorders are individually rare, resulting cancers collectively represent 5-10% of all malignancies. In addition to a greater incidence of cancer, affected individuals have an earlier tumor onset and are frequently subjected to long-term multi-modal cancer screening protocols for earlier detection and initiation of treatment. In vivo models are needed to better understand tumor-driving mechanisms, tailor patient screening approaches and develop targeted therapies to improve patient care and disease prognosis. The zebrafish (Danio rerio) has emerged as a robust model for cancer research due to its high fecundity, time- and cost-efficient genetic manipulation and real-time high-resolution imaging. Tumors developing in zebrafish cancer models are histologically and molecularly similar to their human counterparts, confirming the validity of these models. The zebrafish platform supports both large-scale random mutagenesis screens to identify potential candidate/modifier genes and recently optimized genome editing strategies. These techniques have greatly increased our ability to investigate the impact of certain mutations and how these lesions impact tumorigenesis and disease phenotype. These unique characteristics position the zebrafish as a powerful in vivo tool to model cancer predisposition syndromes and as such, several have already been created, including those recapitulating Li-Fraumeni syndrome, familial adenomatous polyposis, RASopathies, inherited bone marrow failure syndromes, and several other pathogenic mutations in cancer predisposition genes. In addition, the zebrafish platform supports medium- to high-throughput preclinical drug screening to identify compounds that may represent novel treatment paradigms or even prevent cancer evolution. This review will highlight and synthesize the findings from zebrafish cancer predisposition models created to date. We will discuss emerging trends in how these zebrafish cancer models can improve our understanding of the genetic mechanisms driving cancer predisposition and their potential to discover therapeutic and/or preventative compounds that change the natural history of disease for these vulnerable children, youth and adults.
Collapse
Affiliation(s)
- Kim Kobar
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keon Collett
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Dong L, Han D, Meng X, Xu M, Zheng C, Xia Q. Activating Mutation of SHP2 Establishes a Tumorigenic Phonotype Through Cell-Autonomous and Non-Cell-Autonomous Mechanisms. Front Cell Dev Biol 2021; 9:630712. [PMID: 33777940 PMCID: PMC7991796 DOI: 10.3389/fcell.2021.630712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023] Open
Abstract
Gain-of-function mutation of SHP2 is a central regulator in tumorigenesis and cancer progression through cell-autonomous mechanisms. Activating mutation of SHP2 in microenvironment was identified to promote cancerous transformation of hematopoietic stem cell in non-autonomous mechanisms. It is interesting to see whether therapies directed against SHP2 in tumor or microenvironmental cells augment antitumor efficacy. In this review, we summarized different types of gain-of-function SHP2 mutations from a human disease. In general, gain-of-function mutations destroy the auto-inhibition state from wild-type SHP2, leading to consistency activation of SHP2. We illustrated how somatic or germline mutation of SHP2 plays an oncogenic role in tumorigenesis, stemness maintenance, invasion, etc. Moreover, the small-molecule SHP2 inhibitors are considered as a potential strategy for enhancing the efficacy of antitumor immunotherapy and chemotherapy. We also discussed the interconnection between phase separation and activating mutation of SHP2 in drug resistance of antitumor therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Da Han
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Mengchuan Xu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chuwen Zheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
33
|
Malaquias AC, Jorge AAL. Activation of the MAPK pathway (RASopathies) and partial growth hormone insensitivity. Mol Cell Endocrinol 2021; 519:111040. [PMID: 33011209 DOI: 10.1016/j.mce.2020.111040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
RASopathies are a heterogeneous group of syndromes caused by germline mutations in genes encoding components of the RAS/MAPK pathway. Postnatal short stature is a cardinal feature of the RASopathies. Although the pathophysiology of these conditions is not fully understood to date, growth hormone insensitivity is one possibility, based on the observation of low IGF-1 values, generally preserved GH secretion and suboptimal growth response to recombinant human GH therapy. In this review, we will discuss the clinical and experimental evidence of GH insensitivity in patients with Noonan syndrome and other RASopathies, as well as their molecular basis.
Collapse
Affiliation(s)
- Alexsandra C Malaquias
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Unidade de Endocrinologia Pediátrica, Departamento de Pediatria, Irmandade da Santa Casa de Misericórdia de São Paulo, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
34
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
35
|
Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 2020; 144:139-146. [PMID: 32921395 DOI: 10.1016/j.jphs.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene in human. Clinically, SHP2 has been identified as a causal factor of several diseases, such as Noonan syndrome, LEOPARD syndrome as well as myeloid malignancies. Interestingly, both loss-of-function and gain-of-function mutations occur in the PTPN11 gene. Analyses by biochemical and cell biological means as well as probing with small molecule compounds have demonstrated that SHP2 has both phosphatase-dependent and independent functions. In comparison with its phosphatase activity, the non-phosphatase-like function of SHP2 has not been well introduced or summarized. This review mainly focuses on the phosphatase-independent functions and its regulation by small molecule compounds as well as their use for disease therapy.
Collapse
|
36
|
El Kholy M, Elsedfy H, Perin L, Abi Habid W, Thibaud N, Bozzola M, Rossignol S, Leneuve P, Godeau F, Chantot-Bastaraud S, Netchine I, Le Bouc Y. Normal Growth despite Combined Pituitary Hormone Deficiency. Horm Res Paediatr 2020; 92:133-142. [PMID: 31022718 DOI: 10.1159/000499318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The paradox of normal growth despite a lack of growth hormone (GH) is an unexplained phenomenon described in some pathological (sellar, suprasellar, and hypothalamic disorders) and overgrowth syndromes. It has been suggested that the paradoxical growth is due to other GH variants, GH-like moieties, prolactin, insulin, insulin-like growth factors (IGFs), and unidentified serum factors or growth mechanisms. The objective of this study was to determine the mechanism underlying this normal growth without GH. CASE DESCRIPTION We describe here growth, hormonal, and genetic analyses for an adolescent boy with panhypopituitarism who achieved an adult height above his genetic potential. RESULTS Normal growth was observed despite low serum GH, IGF-I, IGF-II, IGF binding protein 3 (IGFBP-3) and acid labile subunit (ALS) concentrations, but the IGF-II/IGFBP-3 molar ratio was slightly high. Panhypopituitarism was associated with a heterozygous missense mutation of HESX1, with variable penetrance in heterozygous relatives. Exome analysis detected heterozygous missense mutations of various genes involved in intracellular signaling pathways. The growth-promoting activity of the patient's serum was unable to induce AKT phosphorylation in the MCF-7 cell line. CONCLUSION The high IGF-II/IGFBP-3 molar ratio was not the cause of the sustained high growth velocity, due to the low affinity of IGF-II for IGF type 1 receptor. The key finding was the HESX1 mutation, as similar cases have been described before, suggesting a common mechanism for growth without GH. However, the variable penetrance of this variant in heterozygous relatives suggests that modifier genes or mechanisms involving combinations with mutations of other genes involved in intracellular signaling pathways might be responsible.
Collapse
Affiliation(s)
| | - Heba Elsedfy
- Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Laurence Perin
- Explorations Fonctionnelles et génétique endocriniennes, Hôpital Armand-Trousseau, AP-HP, Paris, France
| | - Walid Abi Habid
- Unité Mixe Recherche Scientifique 938, Centre de Recherche St-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie Paris 6, Sorbonne Université, Paris, France
| | - Nathalie Thibaud
- Explorations Fonctionnelles et génétique endocriniennes, Hôpital Armand-Trousseau, AP-HP, Paris, France
| | - Mauro Bozzola
- Unit of Pediatrics and Adolescentology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Sylvie Rossignol
- Explorations Fonctionnelles et génétique endocriniennes, Hôpital Armand-Trousseau, AP-HP, Paris, France.,Unité Mixe Recherche Scientifique 938, Centre de Recherche St-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie Paris 6, Sorbonne Université, Paris, France
| | - Patricia Leneuve
- Unité Mixe Recherche Scientifique 938, Centre de Recherche St-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie Paris 6, Sorbonne Université, Paris, France
| | - François Godeau
- Unité Mixe Recherche Scientifique 938, Centre de Recherche St-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie Paris 6, Sorbonne Université, Paris, France
| | | | - Irène Netchine
- Explorations Fonctionnelles et génétique endocriniennes, Hôpital Armand-Trousseau, AP-HP, Paris, France.,Unité Mixe Recherche Scientifique 938, Centre de Recherche St-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie Paris 6, Sorbonne Université, Paris, France
| | - Yves Le Bouc
- Explorations Fonctionnelles et génétique endocriniennes, Hôpital Armand-Trousseau, AP-HP, Paris, France, .,Unité Mixe Recherche Scientifique 938, Centre de Recherche St-Antoine (CRSA), Institut National de la Santé et de la Recherche Médicale, Université Pierre et Marie Curie Paris 6, Sorbonne Université, Paris, France,
| |
Collapse
|
37
|
Athota JP, Bhat M, Nampoothiri S, Gowrishankar K, Narayanachar SG, Puttamallesh V, Farooque MO, Shetty S. Molecular and clinical studies in 107 Noonan syndrome affected individuals with PTPN11 mutations. BMC MEDICAL GENETICS 2020; 21:50. [PMID: 32164556 PMCID: PMC7068896 DOI: 10.1186/s12881-020-0986-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
Background Noonan syndrome (NS), an autosomal dominant developmental genetic disorder, is caused by germline mutations in genes associated with the RAS / mitogen-activated protein kinase (MAPK) pathway. In several studies PTPN11 is one of the genes with a significant number of pathogenic variants in NS-affected patients. Therefore, clinically diagnosed NS individuals are initially tested for pathogenic variants in PTPN11 gene to confirm the relationship before studying genotype–phenotype correlation. Methods Individuals (363) with clinically diagnosed NS from four hospitals in South India were recruited and the exons of PTPN11 gene were sequenced. Results Thirty-two previously described pathogenic variants in eight different exons in PTPN11 gene were detected in 107 patients, of whom 10 were familial cases. Exons 3, 8 and 13 had the highest number of pathogenic variants. The most commonly identified pathogenic variants in this series were in exon 8 (c.922A > G, c.923A > G), observed in 22 of the affected. Congenital cardiac anomalies were present in 84% of the mutation-positive cohort, the majority being defects in the right side of the heart. The most common facial features were downward-slanting palpebral fissures, hypertelorism and low-set posteriorly rotated ears. Other clinical features included short stature (40%), pectus excavatum (54%) and, in males, unilateral or bilateral cryptorchidism (44%). Conclusion The clinical features and mutational spectrum observed in our cohort are similar to those reported in other large studies done worldwide. This is the largest case series of NS-affected individuals with PTPN11 mutations described till date from India.
Collapse
Affiliation(s)
| | - Meenakshi Bhat
- Molecular Genetics, Centre for Human Genetics, Bengaluru, 560100, India.,Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, 560029, India
| | - Sheela Nampoothiri
- Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre (AIMS), Kochi, 682041, India
| | | | | | | | | | - Swathi Shetty
- Molecular Genetics, Centre for Human Genetics, Bengaluru, 560100, India.
| |
Collapse
|
38
|
Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur J Med Chem 2020; 190:112117. [PMID: 32061959 DOI: 10.1016/j.ejmech.2020.112117] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, regulates cell proliferation, differentiation, apoptosis and survival via releasing intramolecular autoinhibition and modulating various signaling pathways, such as mitogen-activated protein kinase (MAPK) pathway. Mutations and aberrant expression of SHP2 are implicated in human developmental disorders, leukemias and several solid tumors. As an oncoprotein in some cancers, SHP2 represents a rational target for inhibitors to interfere. Nevertheless, its tumor suppressive effect has also been uncovered, indicating the context-specificity. Even so, two types of SHP2 inhibitors including targeting catalytic pocket and allosteric sites have been developed associated with resolved cocrystal complexes. Herein, we describe its structure, biological function, deregulation in human diseases and summarize recent advance in development of SHP2 inhibitors, trying to give an insight into the therapeutic potential in future.
Collapse
|
39
|
Malaquias AC, Noronha RM, Souza TTO, Homma TK, Funari MFA, Yamamoto GL, Silva FV, Moraes MB, Honjo RS, Kim CA, Nesi-França S, Carvalho JAR, Quedas EPS, Bertola DR, Jorge AAL. Impact of Growth Hormone Therapy on Adult Height in Patients with PTPN11 Mutations Related to Noonan Syndrome. Horm Res Paediatr 2020; 91:252-261. [PMID: 31132774 DOI: 10.1159/000500264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/10/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the response to recombinant human growth hormone (rhGH) treatment in patients with Noonan syndrome (NS). MATERIALS AND METHODS Forty-two patients (35 PTPN11+) were treated with rhGH, and 17 were followed-up until adult height. The outcomes were changes in growth velocity (GV) and height standard deviation scores (SDS) for normal (height-CDC SDS) and Noonan standards (height-NS SDS). RESULTS The pretreatment chronological age was 10.3 ± 3.5 years. Height-CDC SDS and height-NS SDS were -3.1 ± 0.7 and -0.5 ± 0.6, respectively. PTPN11+ patients had a better growth response than PTPN11- patients. GV SDS increased from -1.2 ± 1.8 to 3.1 ± 2.8 after the first year of therapy in PTPN11+ patients, and from -1.9 ± 2.6 to -0.1 ± 2.6 in PTPN11- patients. The gain in height-CDC SDS during the first year was higher in PTPN11+ than PTPN11- (0.6 ± 0.4 vs. 0.1 ± 0.2, p = 0.008). Similarly, the gain was observed in height-NS SDS (0.6 ± 0.3 vs. 0.2 ± 0.2, respectively, p < 0.001). Among the patients that reached adult height (n = 17), AH-CDC SDS and AH-NS SDS were -2.1 ± 0.7 and 0.7 ± 0.8, respectively. The total increase in height SDS was 1.3 ± 0.7 and 1.5 ± 0.6 for normal and NS standards, respectively. CONCLUSIONS This study supports the advantage of rhGH therapy on adult height in PTPN11+ patients. In comparison, PTPN11- patients showed a poor response to rhGH. However, this PTPN11- group was small, preventing an adequate comparison among different genotypes and no guarantee of response to therapy in genes besides PTPN11.
Collapse
Affiliation(s)
- Alexsandra C Malaquias
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil, .,Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brazil,
| | - Renata M Noronha
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil.,Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brazil
| | - Thaiana T O Souza
- Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brazil
| | - Thais K Homma
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil.,Laboratorio de Hormonios e Genetica Molecular (LIM/42), Unidade de Endocrinologia do Desenvolvimento, Hospital das Clinicas, FMUSP, Sao Paulo, Brazil
| | - Mariana F A Funari
- Laboratorio de Hormonios e Genetica Molecular (LIM/42), Unidade de Endocrinologia do Desenvolvimento, Hospital das Clinicas, FMUSP, Sao Paulo, Brazil
| | | | - Fernanda Viana Silva
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Rachel S Honjo
- Unidade de Genetica, Instituto da Crianca, FMUSP, Sao Paulo, Brazil
| | - Chong A Kim
- Unidade de Genetica, Instituto da Crianca, FMUSP, Sao Paulo, Brazil
| | - Suzana Nesi-França
- Unidade de Endocrinologia Pediatrica, Departamento de Pediatria, Universidade Federal do Parana, Curitiba, Brazil
| | - Julienne A R Carvalho
- Unidade de Endocrinologia Pediatrica, Departamento de Pediatria, Universidade Federal do Parana, Curitiba, Brazil
| | - Elisangela P S Quedas
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genetica, Instituto da Crianca, FMUSP, Sao Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia-Genetica, LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), Sao Paulo, Brazil.,Laboratorio de Hormonios e Genetica Molecular (LIM/42), Unidade de Endocrinologia do Desenvolvimento, Hospital das Clinicas, FMUSP, Sao Paulo, Brazil
| |
Collapse
|
40
|
Zhu L, Lv L, Wu D, Shao J. KAT6B Genetic Variant Identified in a Short Stature Chinese Infant: A Report of Physical Growth in Clinical Spectrum of KAT6B-Related Disorders. Front Pediatr 2020; 8:124. [PMID: 32391291 PMCID: PMC7190791 DOI: 10.3389/fped.2020.00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/06/2020] [Indexed: 02/03/2023] Open
Abstract
Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS, OMIM#603736) and genitopatellar syndrome (GTPTS, OMIM#606170), characterized by global developmental delay/intellectual disability and special clinical manifestations, are two distinct clinically overlapping syndromes caused by truncating sequence variants in the KAT6B (10q22.2) gene. We detected a de novo heterozygous variant within exon 16 of KAT6B (Chr10p: 76781966-76781967) in a 7-months-old female infant who showed symptoms of short stature, global developmental delay, blepharophimosis, and lacrimal duct anomalies highly consistent with SBBYSS. Following the clinical features, we analyzed the KAT6B gene using Next Generation Sequencing (NGS) techniques. Her parents didn't present the same genetic variant. The patient we reported here is mainly characterized by syndromic forms of short stature and developmental delay, which may contribute to the understanding of clinical genetics for KAT6B-associated disorders.
Collapse
Affiliation(s)
- Liuyan Zhu
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Lina Lv
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Dingwen Wu
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Genetics and Metabolism, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shao
- Department of Pediatric Health Care, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
41
|
Ranke MB, Lindberg A, Carlsson M, Camacho-Hübner C, Rooman R. Treatment with Growth Hormone in Noonan Syndrome Observed during 25 Years of KIGS: Near Adult Height and Outcome Prediction. Horm Res Paediatr 2019; 91:46-55. [PMID: 30939478 DOI: 10.1159/000498859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS There is little information how rhGH treatment affects height in NS. This study aims to analyze data from the NS patients assembled in KIGS over 25 years. PATIENTS/METHODS Of 613 (389 m/224 f) NS patients documented, 476 (302 m/174 f) were treated for 1 year, 237 (160 m/77 f) of which served to develop a 1st year height velocity (HV) prediction algorithm. One-hundred and forty (74 m/66 f) had reached near adult height (NAH). Factors affecting NAH on rhGH were determined. RESULTS At the start of rhGH, the NAH groups were (median, m, f) 11.0 and 10.3 years, with a height SDS of -3.2 and -3.8 SDS (Prader), respectively. The total gain after 6.3 and 5.6 years on rhGH (0.27 and 0.30 mg/kg/week) was 1.2 and 1.3 SDS. Age at the start of rhGH (negative), height at the start of rhGH, rhGH dose, number of rhGH injections/wk and birth weight (all positive) explained 36% of the variability of 1st year HV. Height at the start of rhGH, 1st year growth on rhGH, birth weight, and gender explained 74% of the variability of NAH. Causes for rhGH treatment discontinuation and adverse events were also analyzed. CONCLUSION rhGH treatment increases NAH in NS. Prediction algorithms may optimize treatment in the future.
Collapse
Affiliation(s)
- Michael B Ranke
- Division of Paediatric Endocrinology, University Children's Hospital, Tübingen, Germany,
| | | | | | | | | |
Collapse
|
42
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
43
|
Inoue SI, Morozumi N, Yoshikiyo K, Maeda H, Aoki Y. C-type natriuretic peptide improves growth retardation in a mouse model of cardio-facio-cutaneous syndrome. Hum Mol Genet 2019; 28:74-83. [PMID: 30239744 DOI: 10.1093/hmg/ddy333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Cardio-facio-cutaneous (CFC) syndrome, a genetic disorder caused by germline mutations in BRAF, KRAS, MAP2K1 and MAP2K2, is characterized by growth retardation, heart defects, dysmorphic facial appearance and dermatologic abnormalities. We have previously reported that knock-in mice expressing the CFC syndrome-associated mutation, Braf Q241R, showed growth retardation because of gastrointestinal dysfunction. However, other factors associated with growth retardation, including chondrogenesis and endocrinological profile, have not been examined. Here, we show that 3- and 4-week-old BrafQ241R/+ mice have decreased body weight and length, as well as reduced growth plate width in the proximal tibiae. Furthermore, proliferative and hypertrophic chondrocyte zones of the growth plate were reduced in BrafQ241R/+ mice compared with Braf+/+ mice. Immunohistological analysis revealed that extracellular signal-regulated kinase (ERK) activation was enhanced in hypertrophic chondrocytes in BrafQ241R/+ mice. In accordance with growth retardation and reduced growth plate width, decreased serum levels of insulin-like growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) were observed in BrafQ241R/+ mice at 3 and 4 weeks of age. Treatment with C-type natriuretic peptide (CNP), a stimulator of endochondral bone growth and a potent inhibitor of the FGFR3-RAF1-MEK/ERK signaling, increased body and tail lengths in Braf+/+ and BrafQ241R/+ mice. In conclusion, ERK activation in chondrocytes and low serum IGF-1/IGFBP-3 levels could be associated with the growth retardation observed in BrafQ241R/+ mice. Our data also suggest that CNP is a potential therapeutic target in CFC syndrome.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai
| | - Naomi Morozumi
- Immunology and Inflammatory Disease Field, Asubio Pharma Co., Ltd, Kobe
| | | | - Hiroaki Maeda
- Immunology and Inflammatory Disease Field, Asubio Pharma Co., Ltd, Kobe.,End-Organ Disease Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai
| |
Collapse
|
44
|
Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood 2019; 134:9-21. [PMID: 30940614 DOI: 10.1182/blood-2018-11-887141] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Evans syndrome (ES) is a rare severe autoimmune disorder characterized by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. In most cases, the underlying cause is unknown. We sought to identify genetic defects in pediatric ES (pES), based on a hypothesis of strong genetic determinism. In a national, prospective cohort of 203 patients with early-onset ES (median [range] age at last follow-up: 16.3 years ([1.2-41.0 years]) initiated in 2004, 80 nonselected consecutive individuals underwent genetic testing. The clinical data were analyzed as a function of the genetic findings. Fifty-two patients (65%) received a genetic diagnosis (the M+ group): 49 carried germline mutations and 3 carried somatic variants. Thirty-two (40%) had pathogenic mutations in 1 of 9 genes known to be involved in primary immunodeficiencies (TNFRSF6, CTLA4, STAT3, PIK3CD, CBL, ADAR1, LRBA, RAG1, and KRAS), whereas 20 patients (25%) carried probable pathogenic variants in 16 genes that had not previously been reported in the context of autoimmune disease. Lastly, no genetic abnormalities were found in the remaining 28 patients (35%, the M- group). The M+ group displayed more severe disease than the M- group, with a greater frequency of additional immunopathologic manifestations and a greater median number of lines of treatment. Six patients (all from the M+ group) died during the study. In conclusion, pES was potentially genetically determined in at least 65% of cases. Systematic, wide-ranging genetic screening should be offered in pES; the genetic findings have prognostic significance and may guide the choice of a targeted treatment.
Collapse
|
45
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
46
|
Abstract
Deviations from the precisely coordinated programme of human head development can lead to craniofacial and orofacial malformations often including a variety of dental abnormalities too. Although the aetiology is still unknown in many cases, during the last decades different intracellular signalling pathways have been genetically linked to specific disorders. Among these pathways, the RAS/extracellular signal-regulated kinase (ERK) signalling cascade is the focus of this review since it encompasses a large group of genes that when mutated cause some of the most common and severe developmental anomalies in humans. We present the components of the RAS/ERK pathway implicated in craniofacial and orodental disorders through a series of human and animal studies. We attempt to unravel the specific molecular targets downstream of ERK that act on particular cell types and regulate key steps in the associated developmental processes. Finally we point to ambiguities in our current knowledge that need to be clarified before RAS/ERK-targeting therapeutic approaches can be implemented.
Collapse
|
47
|
Tajan M, Pernin-Grandjean J, Beton N, Gennero I, Capilla F, Neel BG, Araki T, Valet P, Tauber M, Salles JP, Yart A, Edouard T. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Hum Mol Genet 2019; 27:2276-2289. [PMID: 29659837 DOI: 10.1093/hmg/ddy133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023] Open
Abstract
Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins. In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Julie Pernin-Grandjean
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Nicolas Beton
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Isabelle Gennero
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Florence Capilla
- INSERM, US006, ANEXPLO/CREFRE, Histopathology Unit, Purpan Hospital, Toulouse, France
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Philippe Valet
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Maithé Tauber
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Jean-Pierre Salles
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Thomas Edouard
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
48
|
Jo KJ, Kim YM, Yoon JY, Lee YJ, Han YM, Yoo HW, Kim HS, Cheon CK. Comparison of effectiveness of growth hormone therapy according to disease-causing genes in children with Noonan syndrome. KOREAN JOURNAL OF PEDIATRICS 2018; 62:274-280. [PMID: 30514065 PMCID: PMC6642922 DOI: 10.3345/kjp.2018.06842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Purpose To analyze the growth response to growth hormone (GH) therapy in prepubertal patients with Noonan syndrome (NS) harboring different genetic mutations. Methods Twenty-three patients with prepubertal NS treated at Pusan National University Children’s Hospital between March 2009 and July 2017 were enrolled. According to the disease-causing genes identified, the patients with NS were divided into 4 groups. Three groups were positive for mutations of the PTPN11, RAF1, and SOS1 genes. The five genes undetected (FGU) group was negative for PTPN11, RAF1, SOS1, KRAS, and BRAF gene mutations. The influence of genotype was retrospectively analyzed by comparing the growth parameters after GH therapy. Results The mean chronological age at the start of GH treatment was 5.85±2.67 years. At the beginning of the GH treatment, the height standard deviation score (SDS), growth velocity (GV), and lower levels of insulin-like growth factor-1 (IGF)-1 levels were not statistically different among the groups. All the 23 NS patients had significantly increased height SDS and serum IGF-1 level during the 3 years of treatment. GV was highest during the first year of treatment. During the 3 years of GH therapy, the PTPN11, RAF1, and SOS1 groups showed less improvement in height SDS, IGF-1 SDS, and GV, and less increase in bone age-to-chronological age ratio than the FGU group. Conclusion The 3-year GH therapy in the 23 prepubertal patients with NS was effective in improving height SDS, GV, and serum IGF-1 levels. The FGU group showed a better response to recombinant human GH therapy than the PTPN11, RAF1, and SOS1 groups.
Collapse
Affiliation(s)
- Kyo Jin Jo
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yoo Mi Kim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Ju Young Yoon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yeoun Joo Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Young Mi Han
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Han-Wook Yoo
- Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyang-Sook Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
49
|
Grosse G, Hilger A, Ludwig M, Reutter H, Lorenzen F, Even G, Holterhus PM, Woelfle J. Targeted Resequencing of Putative Growth-Related Genes Using Whole Exome Sequencing in Patients with Severe Primary IGF-I Deficiency. Horm Res Paediatr 2018; 88:408-417. [PMID: 29073591 DOI: 10.1159/000480505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS To elucidate the genetic causes of severe primary insulin-like growth factor-I deficiency (SPIGFD) by systematic, targeted, next-generation sequencing (NGS)-based resequencing of growth-related genes. METHODS Clinical phenotyping followed by NGS in 17 families including 6 affected sib pairs. RESULTS We identified disease-causing, heterozygous, de novo variants in HRAS (p.Gly13Cys) and FAM111A (p.Arg569His) in 2 male patients with syndromic SPIGFD. A previously described homozygous GHR nonsense variant was detected in 2 siblings of a consanguineous family (p.Glu198*). Furthermore, we identified an inherited novel variant in the IGF2 gene (p.Arg156Cys) of a maternally imprinted gene in a less severely affected father and his affected daughter. We detected 2 other novel missense variants in SH2B1 and SOCS2, both were inherited from an unaffected parent. CONCLUSIONS Screening of growth-related genes using NGS-based, large-scale, targeted resequencing identified disease-causing variants in HRAS, FAM111A, and GHR. Considering the increased risk of subjects with HRAS mutations for neoplasms, close clinical monitoring and a thorough discussion of the risk/benefit ratio of the treatment with recombinant IGF-I is mandatory. Segregation analysis proved to be critical in the interpretation of potential SPIGFD-associated gene variations.
Collapse
Affiliation(s)
- Greta Grosse
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Alina Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Children's Hospital, Department of Pediatrics, University of Bonn, Bonn, Germany
| | | | - Gertrud Even
- Children's Hospital, Pediatric Endocrinology Division, University of Cologne, Cologne, Germany
| | - Paul-Martin Holterhus
- Children's Hospital, Pediatric Endocrinology Division, University of Kiel, Kiel, Germany
| | - Joachim Woelfle
- Children's Hospital, Department of Pediatrics, University of Bonn, Bonn, Germany,
| | | |
Collapse
|
50
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|