1
|
Kao EC, Mizerik EA, Bacino CA, Dai H, Vossaert L, Scott DA. MED12 Loss-of-Function Variants as a Cause of Congenital Diaphragmatic Hernia in Females With Hardikar Syndrome and Nonspecific Intellectual Disability. Am J Med Genet A 2025; 197:e63868. [PMID: 39215511 PMCID: PMC11637953 DOI: 10.1002/ajmg.a.63868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mediator complex subunit 12 (MED12) is required for the assembly of the kinase module of Mediator, a regulatory complex that controls the formation of the RNA polymerase II-mediated preinitiation complex. MED12-related disorders display unique gender-specific genotype-phenotype associations and include X-linked recessive Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, and nonspecific intellectual disability in males predominantly carrying missense variants, and X-linked dominant Hardikar syndrome and nonspecific intellectual disability in females known to predominantly carry de novo nonsense/frameshift and nonsense/missense variants, respectively. MED12 was previously identified as a low-penetrance candidate gene for non-isolated congenital diaphragmatic hernia (CDH+). At the time, however, there was insufficient evidence to confirm this association. In a clinical database search, we identified 18 individuals who were molecularly diagnosed with MED12-related disorders by exome or genome sequencing, including eight missense, four frameshift, two nonsense, and one splice variant. Nine of these variants have not been previously reported. Two females with nonspecific intellectual disability were found to carry a de novo frameshift variant, indicating that potentially truncating variants causing nonspecific intellectual disability are not limited to nonsense variants. Notably, CDH was reported in three out of seven females with Hardikar syndrome or nonspecific intellectual disability but was not reported in males with MED12-related disorders. These results suggest that pathogenic MED12 variants are a cause of CDH+ in females with Hardikar syndrome and nonspecific intellectual disability.
Collapse
MESH Headings
- Humans
- Female
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/pathology
- Hernias, Diaphragmatic, Congenital/complications
- Intellectual Disability/genetics
- Intellectual Disability/pathology
- Mediator Complex/genetics
- Male
- Loss of Function Mutation/genetics
- Genetic Association Studies
- Muscle Hypotonia/genetics
- Muscle Hypotonia/pathology
- Muscle Hypotonia/congenital
- Phenotype
- Cleft Palate/genetics
- Cleft Palate/pathology
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/pathology
- Genetic Diseases, X-Linked/diagnosis
- Infant
- Child, Preschool
- Facies
- Mental Retardation, X-Linked
- Abnormalities, Multiple
- Constipation
- Anus, Imperforate
- Agenesis of Corpus Callosum
- Heart Defects, Congenital
- Blepharoptosis
- Blepharophimosis
Collapse
Affiliation(s)
- Eric C. Kao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Elizabeth A. Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Qiao L, Welch CL, Hernan R, Wynn J, Krishnan US, Zalieckas JM, Buchmiller T, Khlevner J, De A, Farkouh-Karoleski C, Wagner AJ, Heydweiller A, Mueller AC, de Klein A, Warner BW, Maj C, Chung D, McCulley DJ, Schindel D, Potoka D, Fialkowski E, Schulz F, Kipfmuller F, Lim FY, Magielsen F, Mychaliska GB, Aspelund G, Reutter HM, Needelman H, Schnater JM, Fisher JC, Azarow K, Elfiky M, Nöthen MM, Danko ME, Li M, Kosiński P, Wijnen RMH, Cusick RA, Soffer SZ, Cochius-Den Otter SCM, Schaible T, Crombleholme T, Duron VP, Donahoe PK, Sun X, High FA, Bendixen C, Brosens E, Shen Y, Chung WK. Common variants increase risk for congenital diaphragmatic hernia within the context of de novo variants. Am J Hum Genet 2024; 111:2362-2381. [PMID: 39332409 PMCID: PMC11568762 DOI: 10.1016/j.ajhg.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly often accompanied by other structural anomalies and/or neurobehavioral manifestations. Rare de novo protein-coding variants and copy-number variations contribute to CDH in the population. However, most individuals with CDH remain genetically undiagnosed. Here, we perform integrated de novo and common-variant analyses using 1,469 CDH individuals, including 1,064 child-parent trios and 6,133 ancestry-matched, unaffected controls for the genome-wide association study. We identify candidate CDH variants in 15 genes, including eight novel genes, through deleterious de novo variants. We further identify two genomic loci contributing to CDH risk through common variants with similar effect sizes among Europeans and Latinx. Both loci are in putative transcriptional regulatory regions of developmental patterning genes. Estimated heritability in common variants is ∼19%. Strikingly, there is no significant difference in estimated polygenic risk scores between isolated and complex CDH or between individuals harboring deleterious de novo variants and individuals without these variants. The data support a polygenic model as part of the CDH genetic architecture.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Terry Buchmiller
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andreas Heydweiller
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Andreas C Mueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - David J McCulley
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | | | | | | | - Felicitas Schulz
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Florian Kipfmuller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frank Magielsen
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Heiko Martin Reutter
- Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jason C Fisher
- New York University Grossman School of Medicine, Hassenfeld Children's Hospital at NYU Langone, New York, NY 10016, USA
| | - Kenneth Azarow
- Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Mindy Li
- Rush University Medical Center, Chicago, IL 60612, USA
| | - Przemyslaw Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Suzan C M Cochius-Den Otter
- Department of Neonatology and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Vincent P Duron
- Department of Surgery (Pediatrics), Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Sun
- Department of Pediatrics, San Diego Medical School, University of California, San Diego, San Diego, CA 92092, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Charlotte Bendixen
- Department of General, Visceral, Vascular, and Thoracic Surgery, Unit of Pediatric Surgery, University Hospital Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Liu S, Yu L. Role of genetics and the environment in the etiology of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000884. [PMID: 39183805 PMCID: PMC11340715 DOI: 10.1136/wjps-2024-000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by failure of diaphragm closure during embryonic development, leading to pulmonary hypoplasia and pulmonary hypertension, which contribute significantly to morbidity and mortality. The occurrence of CDH and pulmonary hypoplasia is theorized to result from both abnormalities in signaling pathways of smooth muscle cells in pleuroperitoneal folds and mechanical compression by abdominal organs within the chest cavity on the developing lungs. Although, the precise etiology of diaphragm maldevelopment in CDH is not fully understood, it is believed that interplay between genes and the environment contributes to its onset. Approximately 30% of patients with CDH possess chromosomal or single gene defects and these patients tend to have inferior outcomes compared with those without genetic associations. At present, approximately 150 gene variants have been linked to the occurrence of CDH. The variable expression of the CDH phenotype in the presence of a recognized genetic predisposition can be explained by an environmental effect on gene penetrance and expression. The retinoic acid pathway is thought to play an essential role in the interactions of genes and environment in CDH. However, apart from the gradually maturing retinol hypothesis, there is limited evidence implicating other environmental factors in CDH occurrence. This review aims to describe the pathogenesis of CDH by summarizing the genetic defects and potential environmental influences on CDH development.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Cardiac & Thoracic Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lan Yu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Rivas JFG, Clugston RD. The etiology of congenital diaphragmatic hernia: the retinoid hypothesis 20 years later. Pediatr Res 2024; 95:912-921. [PMID: 37990078 PMCID: PMC10920205 DOI: 10.1038/s41390-023-02905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect and a major cause of neonatal respiratory distress. Impacting ~2-3 in 10,000 births, CDH is associated with a high mortality rate, and long-term morbidity in survivors. Despite the significant impact of CDH, its etiology remains incompletely understood. In 2003, Greer et al. proposed the Retinoid Hypothesis, stating that the underlying cause of abnormal diaphragm development in CDH was related to altered retinoid signaling. In this review, we provide a comprehensive update to the Retinoid Hypothesis, discussing work published in support of this hypothesis from the past 20 years. This includes reviewing teratogenic and genetic models of CDH, lessons from the human genetics of CDH and epidemiological studies, as well as current gaps in the literature and important areas for future research. The Retinoid Hypothesis is one of the leading hypotheses to explain the etiology of CDH, as we continue to better understand the role of retinoid signaling in diaphragm development, we hope that this information can be used to improve CDH outcomes. IMPACT: This review provides a comprehensive update on the Retinoid Hypothesis, which links abnormal retinoic acid signaling to the etiology of congenital diaphragmatic hernia. The Retinoid Hypothesis was formulated in 2003. Twenty years later, we extensively review the literature in support of this hypothesis from both animal models and humans.
Collapse
Affiliation(s)
- Juan F Garcia Rivas
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, Edmonton, AB, Canada
| | - Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Pendleton KE, Hernandez-Garcia A, Lyu JM, Campbell IM, Shaw CA, Vogt J, High FA, Donahoe PK, Chung WK, Scott DA. FOXP1 Haploinsufficiency Contributes to the Development of Congenital Diaphragmatic Hernia. J Pediatr Genet 2024; 13:29-34. [PMID: 38567173 PMCID: PMC10984716 DOI: 10.1055/s-0043-1767731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 03/30/2023]
Abstract
FOXP1 encodes a transcription factor involved in tissue regulation and cell-type-specific functions. Haploinsufficiency of FOXP1 is associated with a neurodevelopmental disorder: autosomal dominant mental retardation with language impairment with or without autistic features. More recently, heterozygous FOXP1 variants have also been shown to cause a variety of structural birth defects including central nervous system (CNS) anomalies, congenital heart defects, congenital anomalies of the kidney and urinary tract, cryptorchidism, and hypospadias. In this report, we present a previously unpublished case of an individual with congenital diaphragmatic hernia (CDH) who carries an approximately 3.8 Mb deletion. Based on this deletion, and deletions previously reported in two other individuals with CDH, we define a CDH critical region on chromosome 3p13 that includes FOXP1 and four other protein-coding genes. We also provide detailed clinical descriptions of two previously reported individuals with CDH who carry de novo, pathogenic variants in FOXP1 that are predicted to trigger nonsense-mediated mRNA decay. A subset of individuals with putatively deleterious FOXP4 variants has also been shown to develop CDH. Since FOXP proteins function as homo- or heterodimers and the homologs of FOXP1 and FOXP4 are expressed at the same time points in the embryonic mouse diaphragm, they may function together as a dimer, or in parallel as homodimers, to regulate gene expression during diaphragm development. Not all individuals with heterozygous, loss-of-function changes in FOXP1 develop CDH. Hence, we conclude that FOXP1 acts as a susceptibility factor that contributes to the development of CDH in conjunction with other genetic, epigenetic, environmental, and/or stochastic factors.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Genetics and Genomics Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jennifer M. Lyu
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Ian M. Campbell
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, United Kingdom
| | - Frances A. High
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States
| | - Wendy K. Chung
- Departments of Pediatrics, Columbia University, New York, New York, United States
- Department of Medicine, Columbia University, New York, New York, United States
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
6
|
Crisafulli L, Brindisi M, Liturri MG, Sobacchi C, Ficara F. PBX1: a TALE of two seasons-key roles during development and in cancer. Front Cell Dev Biol 2024; 12:1372873. [PMID: 38404687 PMCID: PMC10884236 DOI: 10.3389/fcell.2024.1372873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Pre-B cell leukemia factor 1 (PBX1) is a Three Aminoacid Loop Extension (TALE) homeodomain-containing transcription factor playing crucial roles in organ pattering during embryogenesis, through the formation of nuclear complexes with other TALE class and/or homeobox proteins to regulate target genes. Its contribution to the development of several organs has been elucidated mainly through the study of murine knockout models. A crucial role for human development has been recently highlighted through the discovery of different de novo pathogenic PBX1 variants in children affected by developmental defects. In the adult, PBX1 is expressed in selected tissues such as in the brain, in the gastro-intestinal and urinary systems, or in hematopoietic stem and progenitor cells, while in other organs is barely detectable. When involved in the t(1;19) chromosomal translocation it acts as an oncogene, since the resulting fusion protein drives pre-B cell leukemia, due to the induction of target genes not normally targeted by the native protein. Its aberrant expression has been associated to tumor development, progression, or therapy-resistance as in breast cancer, ovarian cancer or myeloproliferative neoplasm (MPN). On the other hand, in colorectal cancer PBX1 functions as a tumor suppressor, highlighting its context-dependent role. We here discuss differences and analogies of PBX1 roles during embryonic development and in cancer, focusing mainly on the most recent discoveries.
Collapse
Affiliation(s)
- Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Matteo Brindisi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | | | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council, Milan, Italy
| |
Collapse
|
7
|
Stokes G, Li Z, Talaba N, Genthe W, Brix MB, Pham B, Wienhold MD, Sandok G, Hernan R, Wynn J, Tang H, Tabima DM, Rodgers A, Hacker TA, Chesler NC, Zhang P, Murad R, Yuan JXJ, Shen Y, Chung WK, McCulley DJ. Rescuing lung development through embryonic inhibition of histone acetylation. Sci Transl Med 2024; 16:eadc8930. [PMID: 38295182 DOI: 10.1126/scitranslmed.adc8930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A major barrier to the impact of genomic diagnosis in patients with congenital malformations is the lack of understanding regarding how sequence variants contribute to disease pathogenesis and whether this information could be used to generate patient-specific therapies. Congenital diaphragmatic hernia (CDH) is among the most common and severe of all structural malformations; however, its underlying mechanisms are unclear. We identified loss-of-function sequence variants in the epigenomic regulator gene SIN3A in two patients with complex CDH. Tissue-specific deletion of Sin3a in mice resulted in defects in diaphragm development, lung hypoplasia, and pulmonary hypertension, the cardinal features of CDH and major causes of CDH-associated mortality. Loss of SIN3A in the lung mesenchyme resulted in reduced cellular differentiation, impaired cell proliferation, and increased DNA damage. Treatment of embryonic Sin3a mutant mice with anacardic acid, an inhibitor of histone acetyltransferase, reduced DNA damage, increased cell proliferation and differentiation, improved lung and pulmonary vascular development, and reduced pulmonary hypertension. These findings demonstrate that restoring the balance of histone acetylation can improve lung development in the Sin3a mouse model of CDH.
Collapse
Affiliation(s)
- Giangela Stokes
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Zhuowei Li
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nicole Talaba
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - William Genthe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria B Brix
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Betty Pham
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | | | - Gracia Sandok
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Diana M Tabima
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Pan Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yufeng Shen
- Department of Systems Biology, Department of Biomedical Informatics, and JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J McCulley
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Romero-Lopez M, Oria M, Ferrer-Marquez F, Varela MF, Lampe K, Watanabe-Chailland M, Martinez L, Peiro JL. Fetal lung hypoxia and energetic cell failure in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 2023; 39:180. [PMID: 37055635 PMCID: PMC11439903 DOI: 10.1007/s00383-023-05452-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) pathogenesis is poorly understood. We hypothesize that fetal CDH lungs are chronically hypoxic because of lung hypoplasia and tissue compression, affecting the cell bioenergetics as a possible explanation for abnormal lung development. METHODS To investigate this theory, we conducted a study using the rat nitrofen model of CDH. We evaluated the bioenergetics status using H1 Nuclear magnetic resonance and studied the expression of enzymes involved in energy production, the hypoxia-inducible factor 1α, and the glucose transporter 1. RESULTS The nitrofen-exposed lungs have increased levels of hypoxia-inducible factor 1α and the main fetal glucose transporter, more evident in the CDH lungs. We also found imbalanced AMP:ATP and ADP:ATP ratios, and a depleted energy cellular charge. Subsequent transcription levels and protein expression of the enzymes involved in bioenergetics confirm the attempt to prevent the energy collapse with the increase in lactate dehydrogenase C, pyruvate dehydrogenase kinase 1 and 2, adenosine monophosphate deaminase, AMP-activated protein kinase, calcium/calmodulin-dependent protein kinase 2, and liver kinase B1, while decreasing ATP synthase. CONCLUSION Our study suggests that changes in energy production could play a role in CDH pathogenesis. If confirmed in other animal models and humans, this could lead to the development of novel therapies targeting the mitochondria to improve outcomes.
Collapse
Affiliation(s)
- Mar Romero-Lopez
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Marc Oria
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Fernando Ferrer-Marquez
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Maria Florencia Varela
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Kristin Lampe
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Leopoldo Martinez
- Servicio de Cirugía Pediátrica, Hospital la Paz, Instituto de Investigación La Paz (IdiPAZ), Madrid, Spain
| | - Jose L Peiro
- Division of Pediatric General and Thoracic Surgery, Center for Fetal and Placental Research, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA.
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
9
|
Horn-Oudshoorn EJJ, Peters NCJ, Franx A, Eggink AJ, Cochius-den Otter SCM, Reiss IKM, DeKoninck PLJ. Termination of pregnancy after a prenatal diagnosis of congenital diaphragmatic hernia: Factors influencing the parental decision process. Prenat Diagn 2023; 43:95-101. [PMID: 36443507 PMCID: PMC10107614 DOI: 10.1002/pd.6274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the incidence of termination of pregnancies (TOP) and factors associated with the decision for TOP in prenatally detected congenital diaphragmatic hernia (CDH). STUDY DESIGN Single-centre retrospective cohort includes all prenatally detected CDH cases born between January 2009 and December 2021. Parental factors, such as parity, and fetal characteristics, such as disease severity, were collected. Descriptive statistics were used to present the data. Differences between terminated and continued pregnancies were analysed. RESULTS The study population consisted of 278 prenatally detected CDH cases of which 80% detected <24 weeks of gestation. The TOP rate was 28% in cases that were detected <24 weeks of gestation. Twenty continued pregnancies resulted in either intrauterine fetal demise (n = 6), preterm birth <24 weeks (n = 2), or comfort care after birth (n = 12). The survival rate was 70% in the remaining 195 live born cases. Factors associated with the decision for TOP were additional fetal genetic or anatomical abnormalities (p < 0.0001) and expected severity of pulmonary hypoplasia in left-sided CDH (p = 0.0456). CONCLUSION The decision to terminate a pregnancy complicated by fetal CDH depends on the severity of pulmonary hypoplasia and the presence of additional abnormalities. This emphasises the importance of early referral to expertise centres for detailed evaluation and multidisciplinary counselling.
Collapse
Affiliation(s)
- Emily J J Horn-Oudshoorn
- Department of Paediatrics, Division of Neonatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Nina C J Peters
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Arie Franx
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Suzan C M Cochius-den Otter
- Intensive Care and Department of Paediatric Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Department of Paediatrics, Division of Neonatology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Philip L J DeKoninck
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Fetal Medicine, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
10
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Burns NG, Kardon G. The role of genes and environment in the etiology of congenital diaphragmatic hernias. Curr Top Dev Biol 2022; 152:115-138. [PMID: 36707209 PMCID: PMC10923182 DOI: 10.1016/bs.ctdb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Structural birth defects are a common cause of abnormalities in newborns. While there are cases of structural birth defects arising due to monogenic defects or environmental exposures, many birth defects are likely caused by a complex interaction between genes and the environment. A structural birth defect with complex etiology is congenital diaphragmatic hernias (CDH), a common and often lethal disruption in diaphragm development. Mutations in more than 150 genes have been implicated in CDH pathogenesis. Although there is generally less evidence for a role for environmental factors in the etiology of CDH, deficiencies in maternal vitamin A and its derivative embryonic retinoic acid are strongly associated with CDH. However, the incomplete penetrance of CDH-implicated genes and environmental factors such as vitamin A deficiency suggest that interactions between genes and environment may be necessary to cause CDH. In this review, we examine the genetic and environmental factors implicated in diaphragm and CDH development. In addition, we evaluate the potential for gene-environment interactions in CDH etiology, focusing on the potential interactions between the CDH-implicated gene, Gata4, and maternal vitamin A deficiency.
Collapse
Affiliation(s)
- Nathan G Burns
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
12
|
Hardcastle A, Berry AM, Campbell IM, Zhao X, Liu P, Gerard AE, Rosenfeld JA, Sisoudiya SD, Hernandez-Garcia A, Loddo S, Di Tommaso S, Novelli A, Dentici ML, Capolino R, Digilio MC, Graziani L, Rustad CF, Neas K, Ferrero GB, Brusco A, Di Gregorio E, Wellesley D, Beneteau C, Joubert M, Van Den Bogaert K, Boogaerts A, McMullan DJ, Dean J, Giuffrida MG, Bernardini L, Varghese V, Shannon NL, Harrison RE, Lam WWK, McKee S, Turnpenny PD, Cole T, Morton J, Eason J, Jones MC, Hall R, Wright M, Horridge K, Shaw CA, Chung WK, Scott DA. Identifying phenotypic expansions for congenital diaphragmatic hernia plus (CDH+) using DECIPHER data. Am J Med Genet A 2022; 188:2958-2968. [PMID: 35904974 PMCID: PMC9474674 DOI: 10.1002/ajmg.a.62919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 01/31/2023]
Abstract
Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.
Collapse
Affiliation(s)
- Amy Hardcastle
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Aliska M. Berry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ian M. Campbell
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Amanda E. Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Saumya D. Sisoudiya
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Sara Loddo
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Di Tommaso
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria L. Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Maria C. Digilio
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Ludovico Graziani
- Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Medical Genetics Unit, Tor Vergata Hospital, Rome, Italy
| | - Cecilie F. Rustad
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Giovanni B. Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Città della Salute e della Scienza University Hospital, Torino, Italy
| | | | - Diana Wellesley
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, Hampshire, UK
- University Hospital Southampton, Southampton, Hampshire, UK
| | - Claire Beneteau
- Nantes Université, CHU de Nantes, UF 9321 de Fœtopathologie et Génétique, Nantes, France
| | - Madeleine Joubert
- Nantes Université, CHU de Nantes, UF 9321 de Fœtopathologie et Génétique, Nantes, France
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven–KU Leuven, Leuven, Belgium
| | - Anneleen Boogaerts
- Center for Human Genetics, University Hospitals Leuven–KU Leuven, Leuven, Belgium
| | - Dominic J. McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, UK
| | - John Dean
- Clinical Genetics Service, Ashgrove House, NHS Grampian, Aberdeen, UK
| | - Maria G. Giuffrida
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Nora L Shannon
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rachel E. Harrison
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Wayne W. K. Lam
- South East of Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, Scotland
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Peter D. Turnpenny
- Clinical Genetics Department, Royal Devon and Exeter Hospital, Exeter, UK
| | - Trevor Cole
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, UK
| | - Jenny Morton
- Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham, UK
| | - Jacqueline Eason
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Marilyn C. Jones
- University of California, San Diego and Rady Children’s Hospital, San Diego, CA, USA
| | - Rebecca Hall
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Wright
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Karen Horridge
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Gofin Y, Zhao X, Gerard A, Scaglia F, Wangler MF, Vergano SAS, Scott DA. Evidence for an association between Coffin-Siris syndrome and congenital diaphragmatic hernia. Am J Med Genet A 2022; 188:2718-2723. [PMID: 35796094 PMCID: PMC9378577 DOI: 10.1002/ajmg.a.62889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Coffin-Siris syndrome (CSS) is an autosomal dominant neurodevelopmental syndrome that can present with a variety of structural birth defects. Pathogenic variants in 12 genes have been shown to cause CSS. Most of these genes encode proteins that are a part of the mammalian switch/sucrose non-fermentable (mSWI/SNF; BAF) complex. An association between genes that cause CSS and congenital diaphragmatic hernia (CDH) has been suggested based on case reports and the analysis of CSS and CDH cohorts. Here, we describe an unpublished individual with CSS and CDH, and we report additional clinical information on four published cases. Data from these individuals, and a review of the literature, provide evidence that deleterious variants in ARID1B, ARID1A, SMARCB1, SMARCA4, SMARCE1, ARID2, DPF2, and SMARCC2, which are associated with CSS types 1-8, respectively, are associated with the development of CDH. This suggests that additional genetic testing to identify a separate cause of CDH in an individual with CSS may be unwarranted, and that comprehensive genetic testing for individuals with non-isolated CDH should include an evaluation of CSS-related genes. These data also suggest that the mSWI/SNF (BAF) complex may play an important role in diaphragm development.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/genetics
- Chromosomal Proteins, Non-Histone
- DNA Helicases/genetics
- DNA-Binding Proteins/genetics
- Face/abnormalities
- Hand Deformities, Congenital/complications
- Hand Deformities, Congenital/diagnosis
- Hand Deformities, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/pathology
- Humans
- Intellectual Disability/pathology
- Micrognathism/genetics
- Micrognathism/pathology
- Neck/abnormalities
- Nuclear Proteins/genetics
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
- Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, Hong Kong SAR
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
| | - Samantha A. Schrier Vergano
- Division of Medical Genetics and Metabolism, Children’s Hospital of The King’s Daughters, Norfolk, VA 23507, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
15
|
Molecular Mechanisms Contributing to the Etiology of Congenital Diaphragmatic Hernia: A Review and Novel Cases. J Pediatr 2022; 246:251-265.e2. [PMID: 35314152 DOI: 10.1016/j.jpeds.2022.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
|
16
|
Zani A, Chung WK, Deprest J, Harting MT, Jancelewicz T, Kunisaki SM, Patel N, Antounians L, Puligandla PS, Keijzer R. Congenital diaphragmatic hernia. Nat Rev Dis Primers 2022; 8:37. [PMID: 35650272 DOI: 10.1038/s41572-022-00362-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a rare birth defect characterized by incomplete closure of the diaphragm and herniation of fetal abdominal organs into the chest that results in pulmonary hypoplasia, postnatal pulmonary hypertension owing to vascular remodelling and cardiac dysfunction. The high mortality and morbidity rates associated with CDH are directly related to the severity of cardiopulmonary pathophysiology. Although the aetiology remains unknown, CDH has a polygenic origin in approximately one-third of cases. CDH is typically diagnosed with antenatal ultrasonography, which also aids in risk stratification, alongside fetal MRI and echocardiography. At specialized centres, prenatal management includes fetal endoscopic tracheal occlusion, which is a surgical intervention aimed at promoting lung growth in utero. Postnatal management focuses on cardiopulmonary stabilization and, in severe cases, can involve extracorporeal life support. Clinical practice guidelines continue to evolve owing to the rapidly changing landscape of therapeutic options, which include pulmonary hypertension management, ventilation strategies and surgical approaches. Survivors often have long-term, multisystem morbidities, including pulmonary dysfunction, gastroesophageal reflux, musculoskeletal deformities and neurodevelopmental impairment. Emerging research focuses on small RNA species as biomarkers of severity and regenerative medicine approaches to improve fetal lung development.
Collapse
Affiliation(s)
- Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada. .,Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Wendy K Chung
- Department of Paediatrics, Columbia University, New York, NY, USA
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child and Clinical Department of Obstetrics and Gynaecology, University Hospitals, KU Leuven, Leuven, Belgium.,Institute for Women's Health, UCL, London, UK
| | - Matthew T Harting
- Department of Paediatric Surgery, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.,The Comprehensive Center for CDH Care, Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Tim Jancelewicz
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shaun M Kunisaki
- Division of General Paediatric Surgery, Johns Hopkins Children's Center, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neil Patel
- Department of Neonatology, Royal Hospital for Children, Glasgow, UK
| | - Lina Antounians
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pramod S Puligandla
- Department of Paediatric Surgery, Harvey E. Beardmore Division of Paediatric Surgery, Montreal Children's Hospital of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Paediatric Surgery, Paediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Scott TM, Campbell IM, Hernandez-Garcia A, Lalani SR, Liu P, Shaw CA, Rosenfeld JA, Scott DA. Clinical exome sequencing data reveal high diagnostic yields for congenital diaphragmatic hernia plus (CDH+) and new phenotypic expansions involving CDH. J Med Genet 2022; 59:270-278. [PMID: 33461977 PMCID: PMC8286264 DOI: 10.1136/jmedgenet-2020-107317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/17/2020] [Accepted: 12/26/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a life-threatening birth defect that often co-occurs with non-hernia-related anomalies (CDH+). While copy number variant (CNV) analysis is often employed as a diagnostic test for CDH+, clinical exome sequencing (ES) has not been universally adopted. METHODS We analysed a clinical database of ~12 000 test results to determine the diagnostic yields of ES in CDH+ and to identify new phenotypic expansions. RESULTS Among the 76 cases with an indication of CDH+, a molecular diagnosis was made in 28 cases for a diagnostic yield of 37% (28/76). A provisional diagnosis was made in seven other cases (9%; 7/76). Four individuals had a diagnosis of Kabuki syndrome caused by frameshift variants in KMT2D. Putatively deleterious variants in ALG12 and EP300 were each found in two individuals, supporting their role in CDH development. We also identified individuals with de novo pathogenic variants in FOXP1 and SMARCA4, and compound heterozygous pathogenic variants in BRCA2. The role of these genes in CDH development is supported by the expression of their mouse homologs in the developing diaphragm, their high CDH-specific pathogenicity scores generated using a previously validated algorithm for genome-scale knowledge synthesis and previously published case reports. CONCLUSION We conclude that ES should be ordered in cases of CDH+ when a specific diagnosis is not suspected and CNV analyses are negative. Our results also provide evidence in favour of phenotypic expansions involving CDH for genes associated with ALG12-congenital disorder of glycosylation, Rubinstein-Taybi syndrome, Fanconi anaemia, Coffin-Siris syndrome and FOXP1-related disorders.
Collapse
Affiliation(s)
- Tiana M. Scott
- Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT, 84602, USA,Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Ian M. Campbell
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seema R. Lalani
- Texas Children’s Hospital, Houston, TX, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA,Baylor Genetics, Houston, TX, 77021, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daryl A. Scott
- Texas Children’s Hospital, Houston, TX, 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA,Correspondence Daryl A. Scott, R813, One Baylor Plaza. BCM225, Houston, TX 77030, USA, , Phone: +1 713-203-7242
| |
Collapse
|
19
|
Bendixen C, Brosens E, Chung WK. Genetic Diagnostic Strategies and Counseling for Families Affected by Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:472-481. [PMID: 34911129 DOI: 10.1055/s-0041-1740337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Department of General, Visceral, Vascular and Thoracic Surgery, Unit of Pediatric Surgery, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wendy Kay Chung
- Department of Medicine, Columbia University Irving Medical Center, New York, United States.,Department of Pediatrics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
20
|
Developmental Pathways Underlying Lung Development and Congenital Lung Disorders. Cells 2021; 10:cells10112987. [PMID: 34831210 PMCID: PMC8616556 DOI: 10.3390/cells10112987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Lung organogenesis is a highly coordinated process governed by a network of conserved signaling pathways that ultimately control patterning, growth, and differentiation. This rigorously regulated developmental process culminates with the formation of a fully functional organ. Conversely, failure to correctly regulate this intricate series of events results in severe abnormalities that may compromise postnatal survival or affect/disrupt lung function through early life and adulthood. Conditions like congenital pulmonary airway malformation, bronchopulmonary sequestration, bronchogenic cysts, and congenital diaphragmatic hernia display unique forms of lung abnormalities. The etiology of these disorders is not yet completely understood; however, specific developmental pathways have already been reported as deregulated. In this sense, this review focuses on the molecular mechanisms that contribute to normal/abnormal lung growth and development and their impact on postnatal survival.
Collapse
|
21
|
Qiao L, Xu L, Yu L, Wynn J, Hernan R, Zhou X, Farkouh-Karoleski C, Krishnan US, Khlevner J, De A, Zygmunt A, Crombleholme T, Lim FY, Needelman H, Cusick RA, Mychaliska GB, Warner BW, Wagner AJ, Danko ME, Chung D, Potoka D, Kosiński P, McCulley DJ, Elfiky M, Azarow K, Fialkowski E, Schindel D, Soffer SZ, Lyon JB, Zalieckas JM, Vardarajan BN, Aspelund G, Duron VP, High FA, Sun X, Donahoe PK, Shen Y, Chung WK. Rare and de novo variants in 827 congenital diaphragmatic hernia probands implicate LONP1 as candidate risk gene. Am J Hum Genet 2021; 108:1964-1980. [PMID: 34547244 PMCID: PMC8546037 DOI: 10.1016/j.ajhg.2021.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly that is often accompanied by other anomalies. Although the role of genetics in the pathogenesis of CDH has been established, only a small number of disease-associated genes have been identified. To further investigate the genetics of CDH, we analyzed de novo coding variants in 827 proband-parent trios and confirmed an overall significant enrichment of damaging de novo variants, especially in constrained genes. We identified LONP1 (lon peptidase 1, mitochondrial) and ALYREF (Aly/REF export factor) as candidate CDH-associated genes on the basis of de novo variants at a false discovery rate below 0.05. We also performed ultra-rare variant association analyses in 748 affected individuals and 11,220 ancestry-matched population control individuals and identified LONP1 as a risk gene contributing to CDH through both de novo and ultra-rare inherited largely heterozygous variants clustered in the core of the domains and segregating with CDH in affected familial individuals. Approximately 3% of our CDH cohort who are heterozygous with ultra-rare predicted damaging variants in LONP1 have a range of clinical phenotypes, including other anomalies in some individuals and higher mortality and requirement for extracorporeal membrane oxygenation. Mice with lung epithelium-specific deletion of Lonp1 die immediately after birth, most likely because of the observed severe reduction of lung growth, a known contributor to the high mortality in humans. Our findings of both de novo and inherited rare variants in the same gene may have implications in the design and analysis for other genetic studies of congenital anomalies.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Le Xu
- Department of Pediatrics, University of California, San Diego Medical School, San Diego, CA 92093, USA
| | - Lan Yu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rebecca Hernan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xueya Zhou
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Usha S Krishnan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julie Khlevner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aliva De
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annette Zygmunt
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Foong-Yen Lim
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Howard Needelman
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | - Robert A Cusick
- University of Nebraska Medical Center College of Medicine, Omaha, NE 68114, USA
| | | | - Brad W Warner
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy J Wagner
- Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN 37232, USA
| | | | | | - David J McCulley
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 52726, USA
| | | | - Kenneth Azarow
- Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | - Jane B Lyon
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jill M Zalieckas
- Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Badri N Vardarajan
- Department of Neurology, Taub Institute for Research on Alzheimer Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
| | - Gudrun Aspelund
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vincent P Duron
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego Medical School, San Diego, CA 92093, USA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Cannata G, Caporilli C, Grassi F, Perrone S, Esposito S. Management of Congenital Diaphragmatic Hernia (CDH): Role of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22126353. [PMID: 34198563 PMCID: PMC8231903 DOI: 10.3390/ijms22126353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Collapse
Affiliation(s)
- Giulia Cannata
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
| | - Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.C.); (C.C.); (F.G.)
- Correspondence: ; Tel.: +39-0521-7047
| |
Collapse
|
23
|
Extracellular Vesicles and Their miRNA Content in Amniotic and Tracheal Fluids of Fetuses with Severe Congenital Diaphragmatic Hernia Undergoing Fetal Intervention. Cells 2021; 10:cells10061493. [PMID: 34198576 PMCID: PMC8231823 DOI: 10.3390/cells10061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) are at high risk of postnatal mortality due to lung hypoplasia and arterial pulmonary hypertension. In severe cases, prenatal intervention by fetal endoscopic tracheal occlusion (FETO) can improve survival by accelerating lung growth. However, postnatal mortality remains in the range of about 50% despite fetal treatment, and there is currently no clear explanation for this different clinical response to FETO. We evaluated the concentration of extracellular vesicles (EVs) and associated microRNA expression in amniotic and tracheal fluids of fetuses with CDH undergoing FETO, and we examined the association between molecular findings and postnatal survival. We observed a higher count of EVs in the amniotic fluid of non-survivors and in the tracheal fluid sampled in utero at the time of reversal of tracheal occlusion, suggesting a pro-inflammatory lung reactivity that is already established in utero and that could be associated with a worse postnatal clinical course. In addition, we observed differential regulation of four EV-enclosed miRNAs (miR-379-5p, miR-889-3p; miR-223-3p; miR-503-5p) in relation to postnatal survival, with target genes possibly involved in altered lung development. Future research should investigate molecular therapeutic agents targeting differentially regulated miRNAs to normalize their expression and potentially improve clinical outcomes.
Collapse
|
24
|
Gilbert RM, Schappell LE, Gleghorn JP. Defective mesothelium and limited physical space are drivers of dysregulated lung development in a genetic model of congenital diaphragmatic hernia. Development 2021; 148:dev199460. [PMID: 34015093 PMCID: PMC8180258 DOI: 10.1242/dev.199460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a developmental disorder associated with diaphragm defects and lung hypoplasia. The etiology of CDH is complex and its clinical presentation is variable. We investigated the role of the pulmonary mesothelium in dysregulated lung growth noted in the Wt1 knockout mouse model of CDH. Loss of WT1 leads to intrafetal effusions, altered lung growth, and branching defects prior to normal closure of the diaphragm. We found significant differences in key genes; however, when Wt1 null lungs were cultured ex vivo, growth and branching were indistinguishable from wild-type littermates. Micro-CT imaging of embryos in situ within the uterus revealed a near absence of space in the dorsal chest cavity, but no difference in total chest cavity volume in Wt1 null embryos, indicating a redistribution of pleural space. The altered space and normal ex vivo growth suggest that physical constraints are contributing to the CDH lung phenotype observed in this mouse model. These studies emphasize the importance of examining the mesothelium and chest cavity as a whole, rather than focusing on single organs in isolation to understand early CDH etiology.
Collapse
Affiliation(s)
- Rachel M. Gilbert
- Departments of Biomedical Engineering, University of Delaware, Newark, DE 19716,USA
| | - Laurel E. Schappell
- Departments of Biomedical Engineering, University of Delaware, Newark, DE 19716,USA
| | - Jason P. Gleghorn
- Departments of Biomedical Engineering, University of Delaware, Newark, DE 19716,USA
- Departments of Biological Sciences, University of Delaware, Newark, DE 19716,USA
| |
Collapse
|
25
|
Kaya TB, Aydemir O, Ceylaner S, Ceylaner G, Tekin AN. Isolated congenital diaphragm hernia associated with homozygous SLIT3 gene variant in dizygous twins. Eur J Med Genet 2021; 64:104215. [PMID: 33933663 DOI: 10.1016/j.ejmg.2021.104215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a serious life-threatening birth defect characterized by abnormal development in the muscular or tendinous portion of the diaphragm during embryogenesis. Despite its high incidence, the etiology of CDH hasn't been fully understood. Genetic factors are important in pathogenesis; however, few single genes have been definitively implicated in human CDH. SLIT1, SLIT2, and SLIT3 (slit guidance ligand) are three human homologs of the drosophila Slit gene. They interact with roundabout (Robo) homolog receptors to affect cell migration, adhesion, cell motility, and angiogenesis and play important roles in cell signaling pathways including the guidance of axons. In this report, we presented dizygous twin babies with CDH related to the SLIT3 gene variant. Previous studies showed that Slit3 null mice had congenital diaphragmatic hernias on or near the ventral midline portion of the central tendon. This is the first report of homozygous SLIT3 variant associated with CDH in humans.
Collapse
Affiliation(s)
- Tugba Barsan Kaya
- Eskişehir Osmangazi University Faculty of Medicine, Department of Neonatology, Eskişehir, Turkey.
| | - Ozge Aydemir
- Eskişehir Osmangazi University Faculty of Medicine, Department of Neonatology, Eskişehir, Turkey
| | | | | | - Ayse Neslihan Tekin
- Eskişehir Osmangazi University Faculty of Medicine, Department of Neonatology, Eskişehir, Turkey
| |
Collapse
|
26
|
Morphofunctional Characterization of Different Tissue Factors in Congenital Diaphragmatic Hernia Affected Tissue. Diagnostics (Basel) 2021; 11:diagnostics11020289. [PMID: 33673194 PMCID: PMC7918239 DOI: 10.3390/diagnostics11020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Congenital diaphragm hernia (CDH) is a congenital disease that occurs during prenatal development. Although the morbidity and mortality rate is rather significant, the pathogenesis of CDH has been studied insignificantly due to the decreased accessibility of human pathological material. Therefore the aim of our work was to evaluate growth factors (transforming growth factor-beta (TGF-β), basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF)) and their receptors (fibroblast growth factor receptor 1 (FGFR1), insulin-like growth factor 1 (IGF-1R)), muscle (dystrophin, myosin, alpha actin) and nerve quality (nerve growth factor (NGF), nerve growth factor receptor (NGFR), neurofilaments (NF)) factors, local defense factors (ß-defensin 2, ß-defensin 4), programmed cell death (TUNEL), and separate gene (Wnt-1) expression in human pathological material to find immunohistochemical marker differences between the control and the CDH patient groups. A semi-quantitative counting method was used for the evaluation of the tissues and structures in the Biotin-Streptavidin-stained slides. Various statistically significant differences were found in immunoreactive expression between the patient and the control group tissue and the morphological structures as well as very strong, strong, and moderate correlations between immunoreactives in different diaphragm cells and structures. These significant changes and various correlations indicate that multiple morphopathogenetic pathways are affected in CDH pathogenesis. This work contains the evaluation of the causes for these changes and their potential involvement in CDH pathogenesis.
Collapse
|
27
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Pbx1, Meis1, and Runx1 Expression Is Decreased in the Diaphragmatic and Pulmonary Mesenchyme of Rats with Nitrofen-Induced Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:120-125. [PMID: 32862424 DOI: 10.1055/s-0040-1714736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to originate from mesenchymal defects in pleuroperitoneal folds (PPFs) and primordial lungs. Pre-B-cell leukemia homeobox 1 (Pbx1), its binding partner myeloid ecotropic integration site 1 (Meis1), and runt-related transcription factor 1 (Runx1) are expressed in diaphragmatic and lung mesenchyme, functioning as transcription cofactors that modulate mesenchymal cell proliferation. Furthermore, Pbx1 -/- mice develop diaphragmatic defects and PH similar to human CDH. We hypothesized that diaphragmatic and pulmonary Pbx1, Meis1, and Runx1 expression is decreased in the nitrofen-induced CDH model. MATERIALS AND METHODS Time-mated rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on D13, D15, and D18, and were divided into control and nitrofen-exposed specimens. Diaphragmatic and pulmonary gene expression levels of Pbx1, Meis1, and Runx1 were analyzed by quantitative real-time polymerase chain reaction. Immunofluorescence-double-staining for Pbx1, Meis1, and Runx1 was combined with mesenchymal/myogenic markers Gata4 and myogenin to evaluate protein expression. RESULTS Relative mRNA expression of Pbx1, Meis1, and Runx1 was significantly decreased in PPFs (D13), developing diaphragms/lungs (D15), and muscularized diaphragms/differentiated lungs (D18) of nitrofen-exposed fetuses compared with controls. Confocal-laser-scanning-microscopy revealed markedly diminished Pbx1, Meis1, and Runx1 immunofluorescence in diaphragmatic and pulmonary mesenchyme, associated with less proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared with controls. CONCLUSION Decreased Pbx1, Meis1, and Runx1 expression during diaphragmatic development and lung branching morphogenesis may reduce mesenchymal cell proliferation, causing malformed PPFs and disrupted airway branching, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Beacon Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Brosens E, Peters NCJ, van Weelden KS, Bendixen C, Brouwer RWW, Sleutels F, Bruggenwirth HT, van Ijcken WFJ, Veenma DCM, Otter SCMCD, Wijnen RMH, Eggink AJ, van Dooren MF, Reutter HM, Rottier RJ, Schnater JM, Tibboel D, de Klein A. Unraveling the Genetics of Congenital Diaphragmatic Hernia: An Ongoing Challenge. Front Pediatr 2021; 9:800915. [PMID: 35186825 PMCID: PMC8852845 DOI: 10.3389/fped.2021.800915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the diaphragm has not developed properly. It may occur either as an isolated anomaly or with additional anomalies. It is thought to be a multifactorial disease in which genetic factors could either substantially contribute to or directly result in the developmental defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number Variations (CNVs) impacting specific genes and loci develop CDH typically in the form of a monogenetic syndrome. These patients often have other associated anatomical malformations. In patients without a known monogenetic syndrome, an increased genetic burden of de novo coding variants contributes to disease development. In early years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes are commonly analyzed with next generation sequencing (NGS) based approaches. While more potential pathogenic variants are being detected, analysis of the data presents a bottleneck-largely due to the lack of full appreciation of the functional consequence and/or relevance of the detected variant. The exact heritability of CDH is still unknown. Damaging de novo alterations are associated with the more severe and complex phenotypes and worse clinical outcome. Phenotypic, genetic-and likely mechanistic-variability hampers individual patient diagnosis, short and long-term morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical follow-up at regular intervals and detailed registries are needed to find associations between long-term morbidity, genetic alterations, and clinical parameters. Since CDH is a relatively rare disorder with only a few recurrent changes large cohorts of patients are needed to identify genetic associations. Retrospective whole genome sequencing of historical patient cohorts using will yield valuable data from which today's patients and parents will profit Trio whole genome sequencing has an excellent potential for future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis and predict clinical prognosis. In this review, we explore the pitfalls and challenges in the analysis and interpretation of genetic information, present what is currently known and what still needs further study, and propose strategies to reap the benefits of genetic screening.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nina C J Peters
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Kim S van Weelden
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Charlotte Bendixen
- Unit of Pediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, Bonn, Germany
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Danielle C M Veenma
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Suzan C M Cochius-Den Otter
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Alex J Eggink
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko Martin Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - J Marco Schnater
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
29
|
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. ROBO2 signaling in lung development regulates SOX2/SOX9 balance, branching morphogenesis and is dysregulated in nitrofen-induced congenital diaphragmatic hernia. Respir Res 2020; 21:302. [PMID: 33208157 PMCID: PMC7672875 DOI: 10.1186/s12931-020-01568-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Characterized by abnormal lung growth or maturation, congenital diaphragmatic hernia (CDH) affects 1:3000 live births. Cellular studies report proximal (SOX2+) and distal (SOX9+) progenitor cells as key modulators of branching morphogenesis and epithelial differentiation, whereas transcriptome studies demonstrate ROBO/SLIT as potential therapeutic targets for diaphragm defect repair in CDH. In this study, we tested the hypothesis that (a) experimental-CDH could changes the expression profile of ROBO1, ROBO2, SOX2 and SOX9; and (b) ROBO1 or ROBO2 receptors are regulators of branching morphogenesis and SOX2/SOX9 balance. Methods The expression profile for receptors and epithelial progenitor markers were assessed by Western blot and immunohistochemistry in a nitrofen-induced CDH rat model. Immunohistochemistry signals by pulmonary structure were also quantified from embryonic-to-saccular stages in normal and hypoplastic lungs. Ex vivo lung explant cultures were harvested at E13.5, cultures during 4 days and treated with increasing doses of recombinant rat ROBO1 or human ROBO2 Fc Chimera proteins for ROBO1 and ROBO2 inhibition, respectively. The lung explants were analyzed morphometrically and ROBO1, ROBO2, SOX2, SOX9, BMP4, and β-Catenin were quantified by Western blot. Results Experimental-CDH induces distinct expression profiles by pulmonary structure and developmental stage for both receptors (ROBO1 and ROBO2) and epithelial progenitor markers (SOX2 and SOX9) that provide evidence of the impairment of proximodistal patterning in experimental-CDH. Ex vivo functional studies showed unchanged branching morphogenesis after ROBO1 inhibition; increased fetal lung growth after ROBO2 inhibition in a mechanism-dependent on SOX2 depletion and overexpression of SOX9, non-phospho β-Catenin, and BMP4. Conclusions These studies provided evidence of receptors and epithelial progenitor cells which are severely affected by CDH-induction from embryonic-to-saccular stages and established the ROBO2 inhibition as promoter of branching morphogenesis through SOX2/SOX9 balance.
Collapse
Affiliation(s)
- Ana N Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
30
|
Bogenschutz EL, Fox ZD, Farrell A, Wynn J, Moore B, Yu L, Aspelund G, Marth G, Yandell M, Shen Y, Chung WK, Kardon G. Deep whole-genome sequencing of multiple proband tissues and parental blood reveals the complex genetic etiology of congenital diaphragmatic hernias. HGG ADVANCES 2020; 1:100008. [PMID: 33263113 PMCID: PMC7703690 DOI: 10.1016/j.xhgg.2020.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
The diaphragm is critical for respiration and separation of the thoracic and abdominal cavities, and defects in diaphragm development are the cause of congenital diaphragmatic hernias (CDH), a common and often lethal birth defect. The genetic etiology of CDH is complex. Single-nucleotide variants (SNVs), insertions/deletions (indels), and structural variants (SVs) in more than 150 genes have been associated with CDH, although few genes are recurrently mutated in multiple individuals and mutated genes are incompletely penetrant. This suggests that multiple genetic variants in combination, other not-yet-investigated classes of variants, and/or nongenetic factors contribute to CDH etiology. However, no studies have comprehensively investigated in affected individuals the contribution of all possible classes of variants throughout the genome to CDH etiology. In our study, we used a unique cohort of four individuals with isolated CDH with samples from blood, skin, and diaphragm connective tissue and parental blood and deep whole-genome sequencing to assess germline and somatic de novo and inherited SNVs, indels, and SVs. In each individual we found a different mutational landscape that included germline de novo and inherited SNVs and indels in multiple genes. We also found in two individuals a 343 bp deletion interrupting an annotated enhancer of the CDH-associated gene GATA4, and we hypothesize that this common SV (found in 1%-2% of the population) acts as a sensitizing allele for CDH. Overall, our comprehensive reconstruction of the genetic architecture of four CDH individuals demonstrates that the etiology of CDH is heterogeneous and multifactorial.
Collapse
Affiliation(s)
- Eric L. Bogenschutz
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zac D. Fox
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andrew Farrell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Barry Moore
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lan Yu
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gudrun Aspelund
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabor Marth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
- JP Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
31
|
Wild KT, Gordon T, Bhoj EJ, Du H, Jhangiani SN, Posey JE, Lupski JR, Scott DA, Zackai EH. Congenital diaphragmatic hernia as a prominent feature of a SPECC1L-related syndrome. Am J Med Genet A 2020; 182:2919-2925. [PMID: 32954677 DOI: 10.1002/ajmg.a.61878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Congenital diaphragmatic hernias (CDH) confer substantial morbidity and mortality. Genetic defects, including chromosomal anomalies, copy number variants, and sequence variants are identified in ~30% of patients with CDH. A genetic etiology is not yet found in 70% of patients, however there is a growing number of genetic syndromes and single gene disorders associated with CDH. While there have been two reported individuals with X-linked Opitz G/BBB syndrome with MID1 mutations who have CDH as an associated feature, CDH appears to be a much more prominent feature of a SPECC1L-related autosomal dominant Opitz G/BBB syndrome. Features unique to autosomal dominant Opitz G/BBB syndrome include branchial fistulae, omphalocele, and a bicornuate uterus. Here we present one new individual and five previously reported individuals with CDH found to have SPECC1L mutations. These cases provide strong evidence that SPECC1L is a bona fide CDH gene. We conclude that a SPECC1L-related Opitz G/BBB syndrome should be considered in any patient with CDH who has additional features of hypertelorism, a prominent forehead, a broad nasal bridge, anteverted nares, cleft lip/palate, branchial fistulae, omphalocele, and/or bicornuate uterus.
Collapse
Affiliation(s)
- K Taylor Wild
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tia Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Kennesaw State University, Kennesaw, Georgia, USA
| | - Elizabeth J Bhoj
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Elaine H Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2020; 10:98-114. [PMID: 32949227 PMCID: PMC7780804 DOI: 10.1002/sctm.20-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/09/2020] [Indexed: 01/06/2023] Open
Abstract
Three‐dimensional lung organoids (LOs) derived from pluripotent stem cells have the potential to enhance our understanding of disease mechanisms and to enable novel therapeutic approaches in neonates with pulmonary disorders. We established a reproducible ex vivo model of lung development using transgene‐free human induced pluripotent stem cells generated from fetuses and infants with Bochdalek congenital diaphragmatic hernia (CDH), a polygenic disorder associated with fetal lung compression and pulmonary hypoplasia at birth. Molecular and cellular comparisons of CDH LOs revealed impaired generation of NKX2.1+ progenitors, type II alveolar epithelial cells, and PDGFRα+ myofibroblasts. We then subjected these LOs to disease relevant mechanical cues through ex vivo compression and observed significant changes in genes associated with pulmonary progenitors, alveolar epithelial cells, and mesenchymal fibroblasts. Collectively, these data suggest both primary cell‐intrinsic and secondary mechanical causes of CDH lung hypoplasia and support the use of this stem cell‐based approach for disease modeling in CDH.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guihua Jiang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan C Biancotti
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Nakamura H, Doi T, Puri P, Friedmacher F. Transgenic animal models of congenital diaphragmatic hernia: a comprehensive overview of candidate genes and signaling pathways. Pediatr Surg Int 2020; 36:991-997. [PMID: 32591848 PMCID: PMC7385019 DOI: 10.1007/s00383-020-04705-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by incomplete formation of the diaphragm. Because CDH herniation occurs at the same time as preacinar airway branching, normal lung development becomes severely disrupted, resulting almost invariably in pulmonary hypoplasia. Despite various research efforts over the past decades, the pathogenesis of CDH and associated lung hypoplasia remains poorly understood. With the advent of molecular techniques, transgenic animal models of CDH have generated a large number of candidate genes, thus providing a novel basis for future research and treatment. This review article offers a comprehensive overview of genes and signaling pathways implicated in CDH etiology, whilst also discussing strengths and limitations of transgenic animal models in relation to the human condition.
Collapse
Affiliation(s)
- Hiroki Nakamura
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Takashi Doi
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Beacon Hospital, University College Dublin, Dublin, Ireland
| | - Florian Friedmacher
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland ,Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Arts P, Garland J, Byrne AB, Hardy TS, Babic M, Feng J, Wang P, Ha T, King‐Smith SL, Schreiber AW, Crawford A, Manton N, Moore L, Barnett CP, Scott HS. Paternal mosaicism for a novel PBX1 mutation associated with recurrent perinatal death: Phenotypic expansion of the PBX1-related syndrome. Am J Med Genet A 2020; 182:1273-1277. [PMID: 32141698 PMCID: PMC7217179 DOI: 10.1002/ajmg.a.61541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 11/11/2022]
Abstract
Autosomal dominant (de novo) mutations in PBX1 are known to cause congenital abnormalities of the kidney and urinary tract (CAKUT), with or without extra-renal abnormalities. Using trio exome sequencing, we identified a PBX1 p.(Arg107Trp) mutation in a deceased one-day-old neonate presenting with CAKUT, asplenia, and severe bilateral diaphragmatic thinning and eventration. Further investigation by droplet digital PCR revealed that the mutation had occurred post-zygotically in the father, with different variant allele frequencies of the mosaic PBX1 mutation in blood (10%) and sperm (20%). Interestingly, the father had subclinical hydronephrosis in childhood. With an expected recurrence risk of one in five, chorionic villus sampling and prenatal diagnosis for the PBX1 mutation identified recurrence in a subsequent pregnancy. The family opted to continue the pregnancy and the second affected sibling was stillborn at 35 weeks, presenting with similar severe bilateral diaphragmatic eventration, microsplenia, and complete sex reversal (46, XY female). This study highlights the importance of follow-up studies for presumed de novo and low-level mosaic variants and broadens the phenotypic spectrum of developmental abnormalities caused by PBX1 mutations.
Collapse
Affiliation(s)
- Peer Arts
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jessica Garland
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Alicia B. Byrne
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| | - Tristan S.E. Hardy
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- RepromedDulwichAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Milena Babic
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jinghua Feng
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Thuong Ha
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sarah L. King‐Smith
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| | - Andreas W. Schreiber
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - April Crawford
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Nick Manton
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Lynette Moore
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Christopher P. Barnett
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Hamish S. Scott
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| |
Collapse
|
35
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that is associated with significant morbidity and mortality, especially when associated with additional congenital anomalies. Both environmental and genetic factors are thought to contribute to CDH. The genetic contributions to CDH are highly heterogeneous and incompletely defined. No one genetic cause accounts for more than 1-2% of CDH cases. In this review, we summarize the known genetic causes of CDH from chromosomal anomalies to individual genes. Both de novo and inherited variants contribute to CDH. Genes causing CDH are increasingly identified from animal models and from genomic strategies including exome and genome sequencing in humans. CDH genes are often transcription factors, genes involved in cell migration or the components of extracellular matrix. We provide clinical genetic testing strategies in the clinical evaluation that can identify a genetic cause in up to ∼30% of patients with non-isolated CDH and can be useful to refine prognosis, identify associated medical and neurodevelopmental issues to address, and inform family planning options.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Rebecca R. Hernan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Wagner R, Montalva L, Zani A, Keijzer R. Basic and translational science advances in congenital diaphragmatic hernia. Semin Perinatol 2020; 44:151170. [PMID: 31427115 DOI: 10.1053/j.semperi.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a birth defect that is characterized by lung hypoplasia, pulmonary hypertension and a diaphragmatic defect that allows herniation of abdominal organs into the thoracic cavity. Although widely unknown to the public, it occurs as frequently as cystic fibrosis (1:2500). There is no monogenetic cause, but different animal models revealed various biological processes and epigenetic factors involved in the pathogenesis. However, the pathobiology of CDH is not sufficiently understood and its mortality still ranges between 30 and 50%. Future collaborative initiatives are required to improve our basic knowledge and advance novel strategies to (prenatally) treat the abnormal lung development. This review focusses on the genetic, epigenetic and protein background and the latest advances in basic and translational aspects of CDH research.
Collapse
Affiliation(s)
- Richard Wagner
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louise Montalva
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatric Surgery, Hospital Robert Debré, Paris, France
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada.
| |
Collapse
|
37
|
Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes Dev 2019; 33:258-275. [PMID: 30824532 PMCID: PMC6411007 DOI: 10.1101/gad.318774.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pbx genes encode transcription factors that belong to the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. We have witnessed a surge in information about the roles of this gene family as leading actors in the transcriptional control of development. PBX proteins represent a clear example of how transcription factors can regulate developmental processes by combinatorial properties, acting within multimeric complexes to implement activation or repression of transcription depending on their interaction partners. Here, we revisit long-emphasized functions of PBX transcription factors as cofactors for HOX proteins, major architects of the body plan. We further discuss new knowledge on roles of PBX proteins in different developmental contexts as upstream regulators of Hox genes-as factors that interact with non-HOX proteins and can work independently of HOX-as well as potential pioneer factors. Committed to building a perfect body, PBX proteins govern regulatory networks that direct essential morphogenetic processes and organogenesis in vertebrate development. Perturbations of PBX-dependent networks can cause human congenital disease and cancer.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Institute of Human Genetics, University of California at San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
38
|
Dalmer TRA, Clugston RD. Gene ontology enrichment analysis of congenital diaphragmatic hernia-associated genes. Pediatr Res 2019; 85:13-19. [PMID: 30287891 PMCID: PMC6760551 DOI: 10.1038/s41390-018-0192-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/16/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a commonly occurring major congenital anomaly with a profound impact on neonatal mortality. The etiology of CDH is poorly understood and is complicated by multiple clinical presentations, reflecting the location and type of diaphragm defect. With the increased power of genetic screening, more genes are being associated with CDH, creating a knowledge gap between CDH-associated genes and their contribution to diaphragm embryogenesis. Our goal was to investigate CDH-associated genes and identify common pathways that may lead to abnormal diaphragm development. A comprehensive list of CDH-associated genes was identified from the literature and categorized according to multiple factors, including type of CDH. We undertook a large-scale gene function analysis using gene ontology to identify significantly enriched biological pathways and molecular functions associated with our gene set. We identified 218 CDH-associated genes. Our gene ontology analysis showed that genes representing distinct biological pathways are significantly enriched in relation to different clinical presentations of CDH. This includes retinoic acid signaling in Bochdalek CDH, myogenesis in diaphragm eventration, and angiogenesis in central tendon defects. We have identified unique genotype-phenotype relationships highlighting the major genetic drivers of the different types of CDH.
Collapse
Affiliation(s)
- Timothy R. A. Dalmer
- grid.17089.37Department of Physiology, and Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB Canada
| | - Robin D. Clugston
- grid.17089.37Department of Physiology, and Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
39
|
Qi H, Yu L, Zhou X, Wynn J, Zhao H, Guo Y, Zhu N, Kitaygorodsky A, Hernan R, Aspelund G, Lim FY, Crombleholme T, Cusick R, Azarow K, Danko ME, Chung D, Warner BW, Mychaliska GB, Potoka D, Wagner AJ, ElFiky M, Wilson JM, Nickerson D, Bamshad M, High FA, Longoni M, Donahoe PK, Chung WK, Shen Y. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet 2018; 14:e1007822. [PMID: 30532227 PMCID: PMC6301721 DOI: 10.1371/journal.pgen.1007822] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/20/2018] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is often accompanied by other congenital anomalies. Previous exome sequencing studies for CDH have supported a role of de novo damaging variants but did not identify any recurrently mutated genes. To investigate further the genetics of CDH, we analyzed de novo coding variants in 362 proband-parent trios including 271 new trios reported in this study. We identified four unrelated individuals with damaging de novo variants in MYRF (P = 5.3x10(-8)), including one likely gene-disrupting (LGD) and three deleterious missense (D-mis) variants. Eight additional individuals with de novo LGD or missense variants were identified from our other genetic studies or from the literature. Common phenotypes of MYRF de novo variant carriers include CDH, congenital heart disease and genitourinary abnormalities, suggesting that it represents a novel syndrome. MYRF is a membrane associated transcriptional factor highly expressed in developing diaphragm and is depleted of LGD variants in the general population. All de novo missense variants aggregated in two functional protein domains. Analyzing the transcriptome of patient-derived diaphragm fibroblast cells suggest that disease associated variants abolish the transcription factor activity. Furthermore, we showed that the remaining genes with damaging variants in CDH significantly overlap with genes implicated in other developmental disorders. Gene expression patterns and patient phenotypes support pleiotropic effects of damaging variants in these genes on CDH and other developmental disorders. Finally, functional enrichment analysis implicates the disruption of regulation of gene expression, kinase activities, intra-cellular signaling, and cytoskeleton organization as pathogenic mechanisms in CDH.
Collapse
Affiliation(s)
- Hongjian Qi
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Applied Mathematics and Applied Physics, Columbia University, New York, New York, United States of America
| | - Lan Yu
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Xueya Zhou
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Julia Wynn
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Haoquan Zhao
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, United States of America
| | - Yicheng Guo
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Na Zhu
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Alexander Kitaygorodsky
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, United States of America
| | - Rebecca Hernan
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
| | - Gudrun Aspelund
- Department of Surgery, Columbia University Medical Center, New York, New York, United States of America
| | - Foong-Yen Lim
- Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America
| | | | - Robert Cusick
- Children's Hospital & Medical Center of Omaha, University of Nebraska College of Medicine, Omaha, Nebraska, United States of America
| | - Kenneth Azarow
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melissa E Danko
- Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dai Chung
- Monroe Carell Jr. Children's Hospital, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brad W Warner
- Washington University, St. Louis Children's Hospital, St. Louis, Missouri, United States of America
| | - George B Mychaliska
- University of Michigan, CS Mott Children's Hospital, Ann Arbor, Michigan, United States of America
| | - Douglas Potoka
- Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amy J Wagner
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mahmoud ElFiky
- Department of Pediatric Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jay M Wilson
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Debbie Nickerson
- University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- University of Washington, Seattle, Washington, United States of America
| | - Frances A High
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mauro Longoni
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Patricia K Donahoe
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Wendy K Chung
- Department of Pediatrics Medical Center, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York, United States of America
- JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
40
|
Callaway DA, Campbell IM, Stover SR, Hernandez-Garcia A, Jhangiani SN, Punetha J, Paine IS, Posey JE, Muzny D, Lally KP, Lupski JR, Shaw CA, Fernandes CJ, Scott DA. Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm. J Pediatr Genet 2018; 7:164-173. [PMID: 30430034 PMCID: PMC6234038 DOI: 10.1055/s-0038-1655755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Wolf-Hirschhorn syndrome (WHS) is caused by partial deletion of the short arm of chromosome 4 and is characterized by dysmorphic facies, congenital heart defects, intellectual/developmental disability, and increased risk for congenital diaphragmatic hernia (CDH). In this report, we describe a stillborn girl with WHS and a large CDH. A literature review revealed 15 cases of WHS with CDH, which overlap a 2.3-Mb CDH critical region. We applied a machine-learning algorithm that integrates large-scale genomic knowledge to genes within the 4p16.3 CDH critical region and identified FGFRL1 , CTBP1 , NSD2 , FGFR3 , CPLX1 , MAEA , CTBP1-AS2 , and ZNF141 as genes whose haploinsufficiency may contribute to the development of CDH.
Collapse
Affiliation(s)
- Danielle A. Callaway
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Ian M. Campbell
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Samantha R. Stover
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Ingrid S. Paine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin P. Lally
- Department of Pediatric Surgery, McGovern Medical School at UT Health, Houston, Texas, United States
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Caraciolo J. Fernandes
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
41
|
Liu H, Li X, Yu WQ, Liu CX. Upregulated EFNB2 and EPHB4 promotes lung development in a nitrofen-induced congenital diaphragmatic hernia rat model. Int J Mol Med 2018; 42:2373-2382. [PMID: 30106123 PMCID: PMC6192726 DOI: 10.3892/ijmm.2018.3824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common congenital malformation associated with high mortality rates, mainly due to pulmonary hypoplasia and persistent pulmonary hypertension following birth. The present study aimed to investigate abnormal lung development in a rat CDH model, and examine temporal and spatial changes in the expression of ephrin type‑B receptor 4 (EPHB4) and ephrin‑B2 (EFNB2) during fetal lung development, to elucidate the role of these factors during lung morphogenesis. Pregnant rats received nitrofen on embryonic day (E) 8.5 to induce CDH, and fetal lungs were collected on E13.5, E15.5, E17.5, E19.5, and E21.5. The mean linear intercept (MLI) and mean alveolar number (MAN) were observed in fetal lung tissue at E21.5 following hematoxylin and eosin staining. E13.5 fetal lungs were cultured for 96 h in serum‑free medium and branch development was observed under a microscope. The gene and protein expression levels of EPHB4 and EFNB2 were assessed by reverse transcription‑quantitative polymerase chain reaction analysis, and immunoblotting and immunohistochemistry, respectively. The fetal rat lungs were treated with EFNB2 and the activity of key signaling pathways was assessed. The lung index (lung weight/body weight) at E21.5 was significantly lower in the CDH rats, compared with that in the control fetal rats. The MLI and MAN were also lower in the CDH group. The number of lung terminal buds at E13.5 (embryonic stage), and the lung‑explant perimeter and surface were all smaller in the CDH group rats than in the control group at the same age. Pulmonary hypoplasia was observed following 96 h of in vitro culture. No significant differences were found in the expression levels of EFNB2 and EPHB4 between the CDH and control groups at E13.5 (embryonic stage) or E15.5 (pseudoglandular stage), however, EFNB2 and EPHB4 were significantly upregulated at E17.5 (canalicular stage), and at E19.5 and E21.5 (saccular/alveolar stages). EFNB2 stimulated pulmonary branching and EFNB2 supplementation decreased the activity of p38, c‑Jun NH2‑terminal kinase, extracellular signal‑regulated kinase, and signal transducer and activator of transcription. The CDH fetal rats developed pulmonary dysplasia at an early stage of fetal pulmonary development. Upregulated expression of EFNB2 and EPHB4 was observed in the rat lung of nitrofen‑induced CDH, and the increased expression of EFNB2 promoted rat lung development in the nitrofen‑induced CDH model.
Collapse
Affiliation(s)
- Hao Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, Liaoning 117004, P.R. China
| | - Xue Li
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, Liaoning 117004, P.R. China
| | - Wen Qian Yu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, Liaoning 117004, P.R. China
| | - Cai Xia Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning 110004
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Benxi, Liaoning 117004, P.R. China
| |
Collapse
|
42
|
Kammoun M, Souche E, Brady P, Ding J, Cosemans N, Gratacos E, Devriendt K, Eixarch E, Deprest J, Vermeesch JR. Genetic profile of isolated congenital diaphragmatic hernia revealed by targeted next-generation sequencing. Prenat Diagn 2018; 38:654-663. [PMID: 29966037 DOI: 10.1002/pd.5327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is characterized by a defective closure of the diaphragm occurring as an isolated defect in 60% of cases. Lung size, liver herniation, and pulmonary circulation are major prognostic indices. Isolated CDH genetics is heterogeneous and poorly understood. Whether genetic lesions are also outcome determinants has never been explored. OBJECTIVES To identify isolated CDH genetic causes, to fine map the mutational burden, and to search for a correlation between the genotype and the disease severity and outcome. METHODS Targeted massively parallel sequencing of 143 human and mouse CDH causative and candidate genes in a cohort of 120 fetuses with isolated CDH and detailed outcome measures. RESULTS Pathogenic and likely pathogenic variants were identified in 10% of the cohort. These variants affect both known CDH causative genes, namely, ZFPM2, GATA4, and NR2F2, and new genes, namely, TBX1, TBX5, GATA5, and PBX1. In addition, mutation burden analysis identified LBR, CTBP2, NSD1, MMP14, MYOD1, and EYA1 as candidate genes with enrichment in rare but predicted deleterious variants. No obvious correlation between the genotype and the phenotype or short-term outcome has been found. CONCLUSION Targeted resequencing identifies a genetic cause in 10% of isolated CDH and identifies new candidate genes.
Collapse
Affiliation(s)
- Molka Kammoun
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Erika Souche
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Paul Brady
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jia Ding
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nele Cosemans
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Gratacos
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Koen Devriendt
- Department for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Jan Deprest
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
43
|
Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2018; 115:5247-5252. [PMID: 29712845 PMCID: PMC5960281 DOI: 10.1073/pnas.1714885115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.
Collapse
|
44
|
Pinz H, Pyle LC, Li D, Izumi K, Skraban C, Tarpinian J, Braddock SR, Telegrafi A, Monaghan KG, Zackai E, Bhoj EJ. De novo variants in Myelin regulatory factor (MYRF) as candidates of a new syndrome of cardiac and urogenital anomalies. Am J Med Genet A 2018; 176:969-972. [PMID: 29446546 PMCID: PMC5867271 DOI: 10.1002/ajmg.a.38620] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/08/2017] [Accepted: 01/07/2018] [Indexed: 12/31/2022]
Abstract
Myelin Regulatory Factor (MYRF) is a transcription factor that has previously been associated with the control of the expression of myelin-related genes. However, it is highly expressed in human tissues and mouse embryonic tissues outside the nervous system such as the stomach, lung, and small intestine. It has not previously been reported as a cause of any Mendelian disease. We report here two males with Scimitar syndrome [MIM 106700], and other features including penoscrotal hypospadias, cryptorchidism, pulmonary hypoplasia, tracheal anomalies, congenital diaphragmatic hernia, cleft spleen, thymic involution, and thyroid fibrosis. Gross neurologic functioning appears to be within normal limits. In both individuals a de novo variant in MYRF was identified using exome sequencing. Neither variant is found in gnomAD. Heterozygous variants in MYRF should be considered in patients with variants of Scimitar syndrome and urogenital anomalies.
Collapse
Affiliation(s)
- Hailey Pinz
- Divisionof Medical Genetics, Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Louise C. Pyle
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Dong Li
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kosuke Izumi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cara Skraban
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer Tarpinian
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephen R. Braddock
- Divisionof Medical Genetics, Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri
| | | | | | - Elaine Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth J. Bhoj
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Gata-6 expression is decreased in diaphragmatic and pulmonary mesenchyme of fetal rats with nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2018; 34:315-321. [PMID: 29196881 DOI: 10.1007/s00383-017-4219-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia are thought to be caused by a malformation of the underlying diaphragmatic and airway mesenchyme. GATA binding protein 6 (Gata-6) is a zinc finger-containing transcription factor that plays a crucial role during diaphragm and lung development. In the primordial diaphragm, Gata-6 expression is restricted to mesenchymal compartments of the pleuroperitoneal folds (PPFs). In addition, Gata-6 is essential for airway branching morphogenesis through upregulation of mesenchymal signaling. Recently, mutations in Gata-6 have been linked to human CDH. We hypothesized that diaphragmatic and pulmonary Gata-6 expression is decreased in the nitrofen-induced CDH model. METHODS Time-mated rats were exposed to either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on selected timepoints D13, D15 and D18, and divided into control and nitrofen-exposed specimens (n = 12 per sample, timepoint and experimental group, respectively). Diaphragmatic and pulmonary gene expression of Gata-6 was analyzed by qRT-PCR. Immunofluorescence-double staining for Gata-6 was combined with the diaphragmatic mesenchymal marker Gata-4 and the pulmonary mesenchymal marker Fgf-10 to evaluate protein expression and localization in fetal diaphragms and lungs. RESULTS Relative mRNA expression levels of Gata-6 were significantly decreased in PPFs on D13 (0.57 ± 0.21 vs. 2.27 ± 1.30; p < 0.05), developing diaphragms (0.94 ± 0.59 vs. 2.28 ± 1.89; p < 0.05) and lungs (0.56 ± 0.16 vs. 0.71 ± 0.39; p < 0.05) on D15 and fully muscularized diaphragms (1.20 ± 1.10 vs. 2.52 ± 1.86; p < 0.05) and differentiated lungs (0.56 ± 0.05 vs. 0.77 ± 0.14; p < 0.05) on D18 of nitrofen-exposed fetuses compared to controls. Confocal laser scanning microscopy demonstrated markedly diminished immunofluorescence of Gata-6 mainly in diaphragmatic and pulmonary mesenchyme, which was associated with a reduction of proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared to controls. CONCLUSION Decreased Gata-6 expression during diaphragmatic development and lung branching morphogenesis may disrupt mesenchymal cell proliferation, causing malformed PPFs and reduced airway branching, thus leading to diaphragmatic defects and pulmonary hypoplasia in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
46
|
McCulley DJ, Wienhold MD, Hines EA, Hacker TA, Rogers A, Pewowaruk RJ, Zewdu R, Chesler NC, Selleri L, Sun X. PBX transcription factors drive pulmonary vascular adaptation to birth. J Clin Invest 2018; 128:655-667. [PMID: 29251627 PMCID: PMC5785269 DOI: 10.1172/jci93395] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023] Open
Abstract
A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme-specific deletion of CDH-implicated genes encoding pre-B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan J. Pewowaruk
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
| | - Naomi C. Chesler
- Department of Pediatrics
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
- Program in Craniofacial Biology, Institute of Human Genetics, Departments of Orofacial Sciences and Anatomy, UCSF, San Francisco, California, USA
| | - Xin Sun
- Laboratory of Genetics
- Department of Pediatrics, UCSD, San Diego, California, USA
| |
Collapse
|
47
|
Kammoun M, Brady P, De Catte L, Deprest J, Devriendt K, Vermeesch JR. Congenital diaphragmatic hernia as a part of Nance-Horan syndrome? Eur J Hum Genet 2018; 26:359-366. [PMID: 29358614 DOI: 10.1038/s41431-017-0032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
Nance-Horan syndrome is a rare X-linked developmental disorder characterized by bilateral congenital cataract, dental anomalies, facial dysmorphism, and intellectual disability. Here, we identify a patient with Nance-Horan syndrome caused by a new nonsense NHS variant. In addition, the patient presented congenital diaphragmatic hernia. NHS gene expression in murine fetal diaphragm was demonstrated, suggesting a possible involvement of NHS in diaphragm development. Congenital diaphragmatic hernia could result from NHS loss of function in pleuroperitoneal fold or in somites-derived muscle progenitor cells leading to an impairment of their cells migration.
Collapse
Affiliation(s)
- Molka Kammoun
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Paul Brady
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Luc De Catte
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Jan Deprest
- Department Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49, box 602, 3000, Leuven, Belgium.
| |
Collapse
|
48
|
Slavotinek A, Risolino M, Losa M, Cho MT, Monaghan KG, Schneidman-Duhovny D, Parisotto S, Herkert JC, Stegmann APA, Miller K, Shur N, Chui J, Muller E, DeBrosse S, Szot JO, Chapman G, Pachter NS, Winlaw DS, Mendelsohn BA, Dalton J, Sarafoglou K, Karachunski PI, Lewis JM, Pedro H, Dunwoodie SL, Selleri L, Shieh J. De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Hum Mol Genet 2017; 26:4849-4860. [PMID: 29036646 PMCID: PMC6455034 DOI: 10.1093/hmg/ddx363] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Abstract
We present eight patients with de novo, deleterious sequence variants in the PBX1 gene. PBX1 encodes a three amino acid loop extension (TALE) homeodomain transcription factor that forms multimeric complexes with TALE and HOX proteins to regulate target gene transcription during development. As previously reported, Pbx1 homozygous mutant mice (Pbx1-/-) develop malformations and hypoplasia or aplasia of multiple organs, including the craniofacial skeleton, ear, branchial arches, heart, lungs, diaphragm, gut, kidneys, and gonads. Clinical findings similar to those in Pbx mutant mice were observed in all patients with varying expressivity and severity, including external ear anomalies, abnormal branchial arch derivatives, heart malformations, diaphragmatic hernia, renal hypoplasia and ambiguous genitalia. All patients but one had developmental delays. Previously reported patients with congenital anomalies affecting the kidney and urinary tract exhibited deletions and loss of function variants in PBX1. The sequence variants in our cases included missense substitutions adjacent to the PBX1 homeodomain (p.Arg184Pro, p.Met224Lys, and p.Arg227Pro) or within the homeodomain (p.Arg234Pro, and p.Arg235Gln), whereas p.Ser262Glnfs*2, and p.Arg288* yielded truncated PBX1 proteins. Functional studies on five PBX1 sequence variants revealed perturbation of intrinsic, PBX-dependent transactivation ability and altered nuclear translocation, suggesting abnormal interactions between mutant PBX1 proteins and wild-type TALE or HOX cofactors. It is likely that the mutations directly affect the transcription of PBX1 target genes to impact embryonic development. We conclude that deleterious sequence variants in PBX1 cause intellectual disability and pleiotropic malformations resembling those in Pbx1 mutant mice, arguing for strong conservation of gene function between these two species.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Maurizio Risolino
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Marta Losa
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sarah Parisotto
- Division of Genetics, Department of Pediatrics, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Johanna C Herkert
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Genetics, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - Kathryn Miller
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Natasha Shur
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Jacqueline Chui
- Clinical Genetics, Stanford Children’s Health at CPMC, San Francisco, CA, USA
| | - Eric Muller
- Clinical Genetics, Stanford Children’s Health at CPMC, San Francisco, CA, USA
| | - Suzanne DeBrosse
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Justin O Szot
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Gavin Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Nicholas S Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - David S Winlaw
- University of Sydney, Medical School, Sydney, NSW, Australia
- Heart Centre for Children, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Bryce A Mendelsohn
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Joline Dalton
- Paul and Shelia Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, USA
| | - Kyriakie Sarafoglou
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | | | - Jane M Lewis
- Department of Urology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Helio Pedro
- Division of Genetics, Department of Pediatrics, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Sally L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Licia Selleri
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Iwashita N, Sakaue M, Shirai M, Yamamoto M. Early development of pleuroperitoneal fold of the diaphragm in the rat fetus. J Vet Med Sci 2017; 80:1-7. [PMID: 29109354 PMCID: PMC5797851 DOI: 10.1292/jvms.17-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The embryonic diaphragm comprises four major structural components derived from the transverse septum, the dorsal foregut mesentery, the pleuroperitoneal folds (PPFs), and the body wall. In this study, the appearance of PPFs and related factors were investigated using light microscopy of horizontal sections of rat fetuses from embryonic day 12 to 13. In rat fetuses, the sign of PPF projection was noted in the sidewall of the pericardioperitoneal canal at embryonic day 12, and was confirmed as folds at embryonic day 12.25. Expressions of GATA4, COUP-TF2, and FOG2 were detected in PPF at the early stage of formation. Localizations of these factors suggested that COUP-TF2 and FOG2 are the main factors in PPF appearance and that GATA4 is unlikely to be a main factor, although it is necessary for PPF formation.
Collapse
Affiliation(s)
- Naoki Iwashita
- Laboratory of Anatomy II, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| | - Mitsuyuki Shirai
- Laboratory of Veterinary Pharmacology, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| | - Masako Yamamoto
- Laboratory of Anatomy II, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
50
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|