1
|
Park JY, Han S, Kim D, Nguyen TVT, Nam Y, Kim SM, Chang R, Kim YH. Enhancing the thermostability of lignin peroxidase: Heme as a keystone cofactor driving stability changes in heme enzymes. Heliyon 2024; 10:e37235. [PMID: 39319129 PMCID: PMC11419925 DOI: 10.1016/j.heliyon.2024.e37235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Heme-containing enzymes, critical across life's domains and promising for industrial use, face stability challenges. Despite the demand for robust industrial biocatalysts, the mechanisms underlying the thermal stability of heme enzymes remain poorly understood. Addressing this, our research utilizes a 'keystone cofactor heme-interaction approach' to enhance ligand binding and improve the stability of lignin peroxidase (LiP). We engineered mutants of the white-rot fungus PcLiP (Phanerochaete chrysosporium) to increase thermal stability by 8.66 °C and extend half-life by 29 times without losing catalytic efficiency at 60 °C, where typically, wild-type enzymes degrade. Molecular dynamics simulations reveal that an interlocked cofactor moiety contributes to enhanced structural stability in LiP variants. Additionally, a stability index developed from these simulations accurately predicts stabilizing mutations in other PcLiP isozymes. Using milled wood lignin, these mutants achieved triple the conversion yields at 40 °C compared to the wild type, offering insights for more sustainable white biotechnology through improved enzyme stability.
Collapse
Affiliation(s)
- Joo Yeong Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seunghyun Han
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Doa Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Trang Vu Thien Nguyen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Youhyun Nam
- Department of Applied Chemistry, University of Seoul, 163, Seoulsiripdae-ro, Seoul, 02504, Republic of Korea
| | - Suk Min Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, 163, Seoulsiripdae-ro, Seoul, 02504, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
2
|
Bombaça ACS, Caminha MA, Barbosa JMC, Pedra-Rezende Y, Ennes-Vidal V, Brunoro GVF, Archanjo BS, d'Avila CM, Valente RH, Menna-Barreto RFS. Heme metabolism in Strigomonas culicis: Implications of H 2O 2 resistance induction and symbiont elimination. J Biol Chem 2024; 300:107692. [PMID: 39159809 DOI: 10.1016/j.jbc.2024.107692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Monoxenous trypanosomatid Strigomonas culicis harbors an endosymbiotic bacterium, which enables the protozoa to survive without heme supplementation. The impact of H2O2 resistance and symbiont elimination on intracellular heme and Fe2+ availability was analyzed through a comparison of WT strain with both WT H2O2-resistant (WTR) and aposymbiotic (Apo) protozoa. The relative quantification of the heme biosynthetic pathway through label-free parallel reaction monitoring targeted mass spectrometry revealed that H2O2 resistance does not influence the abundance of tryptic peptides. However, the Apo strain showed increased coproporphyrinogen III oxidase and ferrochelatase levels. A putative ferrous iron transporter, homologous to LIT1 and TcIT from Leishmania major and Trypanosoma cruzi, was identified for the first time. Label-free parallel reaction monitoring targeted mass spectrometry also showed that S. culicis Iron Transporter (ScIT) increased 1.6- and 16.4-fold in WTR and Apo strains compared to WT. Accordingly, antibody-mediated blockage of ScIT decreased by 28.0% and 40.0% intracellular Fe2+concentration in both WTR and Apo strains, whereas no effect was detected in WT. In a heme-depleted medium, adding 10 μM hemin decreased ScIT transcript levels in Apo, whereas 10 μM PPIX, the substrate of ferrochelatase, increased intracellular Fe2+ concentration and ferric iron reduction. Overall, the data suggest mechanisms dependent on de novo heme synthesis (and its substrates) in the Apo strain to overcome reduced heme availability. Given the importance of heme and Fe2+ as cofactors in metabolic pathways, including oxidative phosphorylation and antioxidant systems, this study provides novel mechanistic insights associated with H2O2 resistance in S. culicis.
Collapse
Affiliation(s)
- Ana Cristina Souza Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelle Almeida Caminha
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | | - Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | - Vitor Ennes-Vidal
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Bráulio Soares Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, Brazil
| | - Claudia Masini d'Avila
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | |
Collapse
|
3
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
4
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. Methods Mol Biol 2024; 2776:21-41. [PMID: 38502496 DOI: 10.1007/978-1-0716-3726-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.
Collapse
Affiliation(s)
- Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense. Nat Commun 2022; 13:7075. [PMID: 36400774 PMCID: PMC9674590 DOI: 10.1038/s41467-022-34501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.
Collapse
|
6
|
Hałakuc P, Karnkowska A, Milanowski R. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans. BMC Ecol Evol 2022; 22:59. [PMID: 35534840 PMCID: PMC9082867 DOI: 10.1186/s12862-022-02014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Members of Euglenozoa (Discoba) are known for unorthodox rDNA organization. In Euglenida rDNA is located on extrachromosomal circular DNA. In Kinetoplastea and Euglenida the core of the large ribosomal subunit, typically formed by the 28S rRNA, consists of several smaller rRNAs. They are the result of the presence of additional internal transcribed spacers (ITSs) in the rDNA. Diplonemea is the third of the main groups of Euglenozoa and its members are known to be among the most abundant and diverse protists in the oceans. Despite that, the rRNA of only one diplonemid species, Diplonema papillatum, has been examined so far and found to exhibit continuous 28S rRNA. Currently, the rDNA organization has not been researched for any diplonemid. Herein we investigate the structure of rRNA genes in classical (Diplonemidae) and deep-sea diplonemids (Eupelagonemidae), representing the majority of known diplonemid diversity. The results fill the gap in knowledge about diplonemid rDNA and allow better understanding of the evolution of the fragmented structure of the rDNA in Euglenozoa. Results We used available genomic (culture and single-cell) sequencing data to assemble complete or almost complete rRNA operons for three classical and six deep-sea diplonemids. The rDNA sequences acquired for several euglenids and kinetoplastids were used to provide the background for the analysis. In all nine diplonemids, 28S rRNA seems to be contiguous, with no additional ITSs detected. Similarly, no additional ITSs were detected in basal prokinetoplastids. However, we identified five additional ITSs in the 28S rRNA of all analysed metakinetoplastids, and up to twelve in euglenids. Only three of these share positions, and they cannot be traced back to their common ancestor. Conclusions Presented results indicate that independent origin of additional ITSs in euglenids and kinetoplastids seems to be the most likely. The reason for such unmatched fragmentation remains unknown, but for some reason euglenozoan ribosomes appear to be prone to 28S rRNA fragmentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02014-9.
Collapse
|
7
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
8
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
9
|
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. Int J Mol Sci 2021; 22:ijms22126495. [PMID: 34204357 PMCID: PMC8233740 DOI: 10.3390/ijms22126495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Collapse
|
10
|
Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: Extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol 2021; 162:107208. [PMID: 34029719 DOI: 10.1016/j.ympev.2021.107208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
The transition to a heterotrophic lifestyle in angiosperms is characterized by convergent evolutionary changes. Plastid genome remodeling includes dramatic functional and physical reductions with the highest degrees observed in fully heterotrophic plants. Genes related to photosynthesis are generally absent or pseudogenized, while a few genes related to other metabolic processes that take place within the plastid are almost invariably maintained. The family Balanophoraceae consists of root holoparasites that present reduced plastid genomes with an extraordinarily elevated AT content and the single genetic code change ever documented in land plant plastomes (the stop codon TAG now codes for tryptophan). Here, we studied the plastomes of Lophophytum leandri and Ombrophytum subterraneum (Balanophoraceae) that showed the remarkable absence of the gene trnE, a highly biased nucleotide composition, and an independent genetic code change (the standard stop codon TGA codes for tryptophan). This is the second genetic code change identified in land plant plastomes. Analysis of the transcriptome of Lophophytum indicated that the entire C5 pathway typical of plants is conserved despite the lack of trnE in its plastome. A hypothetical model of plastome evolution in the Balanophoraceae is presented.
Collapse
Affiliation(s)
- Luis Federico Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
11
|
Abstract
In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c. KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists.
Collapse
|
12
|
Oborník M. Enigmatic Evolutionary History of Porphobilinogen Deaminase in Eukaryotic Phototrophs. BIOLOGY 2021; 10:biology10050386. [PMID: 33946769 PMCID: PMC8145841 DOI: 10.3390/biology10050386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
In most eukaryotic phototrophs, the entire heme synthesis is localized to the plastid, and enzymes of cyanobacterial origin dominate the pathway. Despite that, porphobilinogen deaminase (PBGD), the enzyme responsible for the synthesis of hydroxymethybilane in the plastid, shows phylogenetic affiliation to α-proteobacteria, the supposed ancestor of mitochondria. Surprisingly, no PBGD of such origin is found in the heme pathway of the supposed partners of the primary plastid endosymbiosis, a primarily heterotrophic eukaryote, and a cyanobacterium. It appears that α-proteobacterial PBGD is absent from glaucophytes but is present in rhodophytes, chlorophytes, plants, and most algae with complex plastids. This may suggest that in eukaryotic phototrophs, except for glaucophytes, either the gene from the mitochondrial ancestor was retained while the cyanobacterial and eukaryotic pseudoparalogs were lost in evolution, or the gene was acquired by non-endosymbiotic gene transfer from an unspecified α-proteobacterium and functionally replaced its cyanobacterial and eukaryotic counterparts.
Collapse
Affiliation(s)
- Miroslav Oborník
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
14
|
Doleželová E, Kunzová M, Dejung M, Levin M, Panicucci B, Regnault C, Janzen CJ, Barrett MP, Butter F, Zíková A. Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol 2020; 18:e3000741. [PMID: 32520929 PMCID: PMC7307792 DOI: 10.1371/journal.pbio.3000741] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/22/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.
Collapse
Affiliation(s)
- Eva Doleželová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Michaela Kunzová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michal Levin
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Clément Regnault
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian J. Janzen
- Welcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael P. Barrett
- Department of Cell and Developmental Biology, Biocenter, University Wuerzburg, Wuerzburg, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail:
| |
Collapse
|
15
|
High Throughput Approaches to Unravel the Mechanism of Action of a New Vanadium-Based Compound against Trypanosoma cruzi. Bioinorg Chem Appl 2020; 2020:1634270. [PMID: 32351549 PMCID: PMC7171612 DOI: 10.1155/2020/1634270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment for Chagas disease, a parasitosis caused by Trypanosoma cruzi, has always been based on two drugs, nifurtimox and benznidazole, despite the toxic side effects described after prolonged prescription. In this work, we study a new prospective antitrypanosomal drug based on vanadium, here named VIVO(5Brsal)(aminophen). We found a good IC50 value, (3.76 ± 0.08) μM, on CL Brener epimastigotes. The analysis of cell death mechanism allowed us to rule out the implication of a mechanism based on early apoptosis or necrosis. Recovery assays revealed a trypanostatic effect, accompanied by cell shape and motility alterations. An uptake mostly associated with the insoluble fraction of the parasites was deduced through vanadium determinations. Concordantly, no drastic changes of the parasite transcriptome were detected after 6 h of treatment. Instead, proteomic analysis uncovered the modulation of proteins involved in different processes such as energy and redox metabolism, transport systems, detoxifying pathways, ribosomal protein synthesis, and proteasome protein degradation. Overall, the results here presented lead us to propose that VIVO(5Brsal)(aminophen) exerts a trypanostatic effect on T. cruzi affecting parasite insoluble proteins.
Collapse
|
16
|
Ganyukova AI, Frolov AO, Malysheva MN, Spodareva VV, Yurchenko V, Kostygov AY. A novel endosymbiont-containing trypanosomatid Phytomonas borealis sp. n. from the predatory bug Picromerus bidens (Heteroptera: Pentatomidae). Folia Parasitol (Praha) 2020; 67. [PMID: 32350156 DOI: 10.14411/fp.2020.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
Here we describe the new trypanosomatid, Phytomonas borealis sp. n., from the midgut of the spiked shieldbugs, Picromerus bidens (Linnaeus), collected in two locations, Novgorod and Pskov Oblasts of Russia. The phylogenetic analyses, based on the 18S rRNA gene, demonstrated that this flagellate is a sister species to the secondary monoxenous Phytomonas nordicus Frolov et Malysheva, 1993, which was concurrently documented in the same host species in Pskov Oblast. Unlike P. nordicus, which can complete its development (including exit to haemolymph and penetration into salivary glands) in Picromerus bidens, the new species did not form any extraintestinal stages in the host. It also did not produce endomastigotes, indispensable for transmission in other Phytomonas spp. These observations, along with the fact that P. bidens overwinters at the egg stage, led us to the conclusion that the examined infections with P. borealis were non-specific. Strikingly, the flagellates from the Novgorod population contained prokaryotic endosymbionts, whereas the parasites from the second locality were endosymbiont-free. This is a first case documenting presence of intracellular symbiotic bacteria in Phytomonas spp. We suggest that this novel endosymbiotic association arose very recently and did not become obligate yet. Further investigation of P. borealis and its intracellular bacteria may shed light on the origin and early evolution of endosymbiosis in trypanosomatids.
Collapse
Affiliation(s)
- Anna I Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktoria V Spodareva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexei Yu Kostygov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
17
|
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, Macedo DH, Žihala D, Lukeš J, Bates PA, Volf P, Opperdoes FR, Yurchenko V. Comparative genomics of Leishmania (Mundinia). BMC Genomics 2019; 20:726. [PMID: 31601168 PMCID: PMC6787982 DOI: 10.1186/s12864-019-6126-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. Results All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as β-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. Conclusions We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yuliya Kleschenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
18
|
Bianchi C, Kostygov AY, Kraeva N, Záhonová K, Horáková E, Sobotka R, Lukeš J, Yurchenko V. An enigmatic catalase of Blastocrithidia. Mol Biochem Parasitol 2019; 232:111199. [PMID: 31276694 DOI: 10.1016/j.molbiopara.2019.111199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022]
Abstract
Here we report that trypanosomatid flagellates of the genus Blastocrithidia possess catalase. This enzyme is not phylogenetically related to the previously characterized catalases in other monoxenous trypanosomatids, suggesting that their genes have been acquired independently. Surprisingly, Blastocrithidia catalase is less enzymatically active, compared to its counterpart from Leptomonas pyrrhocoris, posing an intriguing biological question why this gene has been retained in the evolution of trypanosomatids.
Collapse
Affiliation(s)
- Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
19
|
Frolov AO, Malysheva MN, Ganyukova AI, Spodareva VV, Yurchenko V, Kostygov AY. Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas. PLoS One 2019; 14:e0214484. [PMID: 30943229 PMCID: PMC6447171 DOI: 10.1371/journal.pone.0214484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/13/2019] [Indexed: 11/30/2022] Open
Abstract
Here we described a new trypanosomatid species, Phytomonas lipae, parasitizing the dock bug Coreus marginatus based on axenic culture and in vivo material. Using light and electron microscopy we characterized the development of this flagellate in the intestine, hemolymph and salivary glands of its insect host. The intestinal promastigotes of Phytomonas lipae do not divide and occur only in the anterior part of the midgut. From there they pass into hemolymph, increasing in size, and then to salivary glands, where they actively proliferate without attachment to the host's epithelium and form infective endomastigotes. We conducted molecular phylogenetic analyses based on 18s rRNA, gGAPDH and HSP83 gene sequences, of which the third marker performed the best in terms of resolving phylogenetic relationships within the genus Phytomonas. Our inference demonstrated rather early origin of the lineage comprising the new species, right after that of P. oxycareni, which represents the earliest known branch within the Phytomonas clade. This allowed us to compare the development of P. lipae and three other Phytomonas spp. in their insect hosts and reconstruct the vectorial part of the life cycle of their common ancestor.
Collapse
Affiliation(s)
- Alexander O. Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina N. Malysheva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Ganyukova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktoria V. Spodareva
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Alexei Y. Kostygov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
20
|
Fan T, Roling L, Meiers A, Brings L, Ortega-Rodés P, Hedtke B, Grimm B. Complementation studies of the Arabidopsis fc1 mutant substantiate essential functions of ferrochelatase 1 during embryogenesis and salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:618-632. [PMID: 30242849 DOI: 10.1111/pce.13448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Ferrochelatase (FC) is the final enzyme for haem formation in the tetrapyrrole biosynthesis pathway and encoded by two genes in higher plants. FC2 exists predominantly in green tissue, whereas FC1 is constitutively expressed. We intended to substantiate the specific roles of FC1. The embryo-lethal fc1-2 mutant was used to express the two genomic FC-encoding sequences under the FC1 and FC2 promoter and explore the complementation of the FC1 deficiency. Apart from the successful complementation with FC1, expression of FC2 under control of the FC1 promoter (pFC1::FC2) compensates for missing FC1 but not by FC2 promoter expression. The complementing lines pFC1FC2(fc1/fc1) succeeded under standard growth condition but failed under salt stress. The pFC1FC2(fc1/fc1) line exhibited symptoms of leaf senescence, including accelerated loss of haem and chlorophyll and elevated gene expression for chlorophyll catabolism. In contrast, ectopic FC1 expression (p35S::FC1) resulted in increased chlorophyll accumulation. The limited ability of FC2 to complement fc1 is explained by a faster turnover of FC2 mRNA during stress. It is suggested that FC1-produced haem is essential for embryogenesis and stress response. The pFC1::FC2 expression readily complements the fc1-2 embryo lethality, whereas higher FC1 transcript content contributes essentially to stress tolerance.
Collapse
Affiliation(s)
- Tingting Fan
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lena Roling
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Anna Meiers
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lea Brings
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | | | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
21
|
dos Santos Júnior ADCM, Ricart CAO, Pontes AH, Fontes W, de Souza AR, Castro MS, de Sousa MV, de Lima BD. Proteome analysis of Phytomonas serpens, a phytoparasite of medical interest. PLoS One 2018; 13:e0204818. [PMID: 30303999 PMCID: PMC6179244 DOI: 10.1371/journal.pone.0204818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/15/2018] [Indexed: 02/04/2023] Open
Abstract
The protozoan Phytomonas serpens (class Kinetoplastea) is an important phytoparasite that has gained medical importance due to its similarities to Trypanosoma cruzi, the etiological agent of Chagas disease. The present work describes the first proteome analysis of P. serpens. The parasite was separated into cytosolic and high density organelle fractions, which, together with total cell extract, were subjected to LC-MS/MS analyses. Protein identification was conducted using a comprehensive database composed of genome sequences of other related kinetoplastids. A total of 1,540 protein groups were identified among the three sample fractions. Sequences from Phytomonas sp. in the database allowed the highest number of identifications, with T. cruzi and T. brucei the human pathogens providing the greatest contribution to the identifications. Based on the proteomics data obtained, we proposed a central metabolic map of P. serpens, which includes all enzymes of the citric acid cycle. Data also revealed a new range of proteins possibly responsible for immunological cross-reactivity between P. serpens and T. cruzi.
Collapse
Affiliation(s)
- Agenor de Castro Moreira dos Santos Júnior
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Arthur Henriques Pontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Agnelo Rodrigues de Souza
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Mariana Souza Castro
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Marcelo Valle de Sousa
- Laboratory Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| | - Beatriz Dolabela de Lima
- Laboratory of Gene Biology, Department of Cell Biology, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
22
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
23
|
Kelly S, Ivens A, Mott GA, O'Neill E, Emms D, Macleod O, Voorheis P, Tyler K, Clark M, Matthews J, Matthews K, Carrington M. An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biol Evol 2018; 9:2093-2109. [PMID: 28903536 PMCID: PMC5737535 DOI: 10.1093/gbe/evx152] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - G Adam Mott
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - David Emms
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Olivia Macleod
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Matthew Clark
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jacqueline Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Keith Matthews
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
24
|
The reduced genome of Candidatus Kinetoplastibacterium sorsogonicusi, the endosymbiont of Kentomonas sorsogonicus (Trypanosomatidae): loss of the haem-synthesis pathway. Parasitology 2018; 145:1287-1293. [PMID: 29642956 DOI: 10.1017/s003118201800046x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trypanosomatids of the genera Angomonas and Strigomonas (subfamily Strigomonadinae) have long been known to contain intracellular beta-proteobacteria, which provide them with many important nutrients such as haem, essential amino acids and vitamins. Recently, Kentomonas sorsogonicus, a divergent member of Strigomonadinae, has been described. Herein, we characterize the genome of its endosymbiont, Candidatus Kinetoplastibacterium sorsogonicusi. This genome is completely syntenic with those of other known Ca. Kinetoplastibacterium spp., but more reduced in size (~742 kb, compared with 810-833 kb, respectively). Gene losses are not concentrated in any hot-spots but are instead distributed throughout the genome. The most conspicuous loss is that of the haem-synthesis pathway. For long, removing haemin from the culture medium has been a standard procedure in cultivating trypanosomatids isolated from insects; continued growth was considered as an evidence of endosymbiont presence. However, we demonstrate that, despite bearing the endosymbiont, K. sorsogonicus cannot grow in culture without haem. Thus, the traditional test cannot be taken as a reliable criterion for the absence or presence of endosymbionts in trypanosomatid flagellates. It remains unclear why the ability to synthesize such an essential compound was lost in Ca. K. sorsogonicusi, whereas all other known bacterial endosymbionts of trypanosomatids retain them.
Collapse
|
25
|
Schwelm A, Badstöber J, Bulman S, Desoignies N, Etemadi M, Falloon RE, Gachon CMM, Legreve A, Lukeš J, Merz U, Nenarokova A, Strittmatter M, Sullivan BK, Neuhauser S. Not in your usual Top 10: protists that infect plants and algae. MOLECULAR PLANT PATHOLOGY 2018; 19:1029-1044. [PMID: 29024322 PMCID: PMC5772912 DOI: 10.1111/mpp.12580] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 05/09/2023]
Abstract
Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research.
Collapse
Affiliation(s)
- Arne Schwelm
- Department of Plant Biology, Uppsala BioCentre, Linnean Centre for Plant BiologySwedish University of Agricultural SciencesUppsala SE‐75007Sweden
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Julia Badstöber
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Simon Bulman
- New Zealand Institute for Plant and Food Research LtdLincoln 7608New Zealand
| | - Nicolas Desoignies
- Applied Plant Ecophysiology, Haute Ecole Provinciale de Hainaut‐CondorcetAth 7800Belgium
| | - Mohammad Etemadi
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| | - Richard E. Falloon
- New Zealand Institute for Plant and Food Research LtdLincoln 7608New Zealand
| | - Claire M. M. Gachon
- The Scottish Association for Marine ScienceScottish Marine InstituteOban PA37 1QAUK
| | - Anne Legreve
- Université catholique de Louvain, Earth and Life InstituteLouvain‐la‐Neuve 1348Belgium
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre37005 České Budějovice (Budweis)Czech Republic
- Faculty of SciencesUniversity of South Bohemia37005 České Budějovice (Budweis)Czech Republic
- Integrated Microbial Biodiversity, Canadian Institute for Advanced ResearchTorontoOntario M5G 1Z8Canada
| | - Ueli Merz
- Plant PathologyInstitute of Integrative Biology, ETH Zurich, Zurich 8092Switzerland
| | - Anna Nenarokova
- Institute of Parasitology, Biology Centre37005 České Budějovice (Budweis)Czech Republic
- Faculty of SciencesUniversity of South Bohemia37005 České Budějovice (Budweis)Czech Republic
| | - Martina Strittmatter
- The Scottish Association for Marine ScienceScottish Marine InstituteOban PA37 1QAUK
- Present address:
Station Biologique de Roscoff, CNRS – UPMC, UMR7144 Adaptation and Diversity in the Marine Environment, Place Georges Teissier, CS 90074, 29688 Roscoff CedexFrance
| | - Brooke K. Sullivan
- School of BiosciencesUniversity of Melbourne, Parkville, Vic. 3010Australia
- School of BiosciencesVictorian Marine Science ConsortiumQueenscliffVic. 3225Australia
| | - Sigrid Neuhauser
- Institute of Microbiology, University of InnsbruckInnsbruck 6020Austria
| |
Collapse
|
26
|
Füssy Z, Oborník M. Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events. Methods Mol Biol 2018; 1829:17-35. [PMID: 29987712 DOI: 10.1007/978-1-4939-8654-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
Collapse
Affiliation(s)
- Zoltán Füssy
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic.
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
27
|
Kostygov AY, Butenko A, Nenarokova A, Tashyreva D, Flegontov P, Lukeš J, Yurchenko V. Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas. Front Microbiol 2017; 8:1940. [PMID: 29046673 PMCID: PMC5632650 DOI: 10.3389/fmicb.2017.01940] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced size, extensive gene loss, low GC content, numerous gene rearrangements, and low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, has a strikingly low number of pseudogenes, and almost all genes are single copied. This suggests that it already passed the intensive period of host adaptation, which still can be observed in the genome of Polynucleobacter necessarius, a certainly recent endosymbiont. Phylogenetically, Ca. P. novymonadis is more related to P. necessarius, an intracytoplasmic bacterium of free-living ciliates, than to Ca. Kinetoplastibacterium spp., the only other known endosymbionts of trypanosomatid flagellates. As judged by the extent of the overall genome reduction and the loss of particular metabolic abilities correlating with the increasing dependence of the symbiont on its host, Ca. P. novymonadis occupies an intermediate position P. necessarius and Ca. Kinetoplastibacterium spp. We conclude that the relationships between Ca. P. novymonadis and N. esmeraldas are well-established, although not as fine-tuned as in the case of Strigomonadinae and their endosymbionts.
Collapse
Affiliation(s)
- Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.,Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Anna Nenarokova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Daria Tashyreva
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia.,Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
28
|
Horáková E, Changmai P, Vancová M, Sobotka R, Van Den Abbeele J, Vanhollebeke B, Lukeš J. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions. J Biol Chem 2017; 292:6998-7010. [PMID: 28232490 DOI: 10.1074/jbc.m116.762997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
The human parasite Trypanosoma brucei does not synthesize heme de novo and instead relies entirely on heme supplied by its vertebrate host or its insect vector, the tsetse fly. In the host bloodstream T. brucei scavenges heme via haptoglobin-hemoglobin (HpHb) receptor-mediated endocytosis occurring in the flagellar pocket. However, in the procyclic developmental stage, in which T. brucei is confined to the tsetse fly midgut, this receptor is apparently not expressed, suggesting that T. brucei takes up heme by a different, unknown route. To define this alternative route, we functionally characterized heme transporter TbHrg in the procyclic stage. RNAi-induced down-regulation of TbHrg in heme-limited culture conditions resulted in slower proliferation, decreased cellular heme, and marked changes in cellular morphology so that the cells resemble mesocyclic trypomastigotes. Nevertheless, the TbHrg KO developed normally in the tsetse flies at rates comparable with wild-type cells. T. brucei cells overexpressing TbHrg displayed up-regulation of the early procyclin GPEET and down-regulation of the late procyclin EP1, two proteins coating the T. brucei surface in the procyclic stage. Light microscopy of immunostained TbHrg indicated localization to the flagellar membrane, and scanning electron microscopy revealed more intense TbHrg accumulation toward the flagellar pocket. Based on these findings, we postulate that T. brucei senses heme levels via the flagellar TbHrg protein. Heme deprivation in the tsetse fly anterior midgut might represent an environmental stimulus involved in the transformation of this important human parasite, possibly through metabolic remodeling.
Collapse
Affiliation(s)
- Eva Horáková
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Piya Changmai
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Marie Vancová
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Roman Sobotka
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.,Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czech Republic
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine, B2000 Antwerp, Belgium
| | - Benoit Vanhollebeke
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, B6041 Gosselies, Belgium, and
| | - Julius Lukeš
- From the Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic, .,Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic.,Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
29
|
Butler CE, Jaskowska E, Kelly S. Genome Sequence of Phytomonas françai, a Cassava (Manihot esculenta) Latex Parasite. GENOME ANNOUNCEMENTS 2017; 5:e01266-16. [PMID: 28082482 PMCID: PMC5256229 DOI: 10.1128/genomea.01266-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022]
Abstract
Here, we report the genome sequence of the cassava (Manihot esculenta) latex parasite Phytomonas françai P. françai infection is linked with the yield-loss disease "chochamento de raizes" (empty roots) in the Unha variety of cassava, a disease characterized by poor root development and chlorosis of the leaves.
Collapse
Affiliation(s)
- Claire E Butler
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eleanor Jaskowska
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Hey D, Ortega-Rodes P, Fan T, Schnurrer F, Brings L, Hedtke B, Grimm B. Transgenic Tobacco Lines Expressing Sense or Antisense FERROCHELATASE 1 RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1. PLANT & CELL PHYSIOLOGY 2016; 57:2576-2585. [PMID: 27818378 DOI: 10.1093/pcp/pcw171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In plants, two genes encode ferrochelatase (FC), which catalyzes iron chelation into protoporphyrin IX at the final step of heme biosynthesis. FERROCHELATASE1 (FC1) is continuously, but weakly expressed in roots and leaves, while FC2 is dominantly active in leaves. As a continuation of previous studies on the physiological consequences of FC2 inactivation in tobacco, we aimed to assign FC1 function in plant organs. While reduced FC2 expression leads to protoporphyrin IX accumulation in leaves, FC1 down-regulation and overproduction caused reduced and elevated FC activity in root tissue, respectively, but were not associated with changes in macroscopic phenotype, plant development or leaf pigmentation. In contrast to the lower heme content resulting from a deficiency of the dominant FC2 expression in leaves, a reduction of FC1 in roots and leaves does not significantly disturb heme accumulation. The FC1 overexpression was used for an additional approach to re-examine FC activity in mitochondria. Transgenic FC1 protein was immunologically shown to be present in mitochondria. Although matching only a small portion of total cellular FC activity, the mitochondrial FC activity in a FC1 overexpressor line increased 5-fold in comparison with wild-type mitochondria. Thus, it is suggested that FC1 contributes to mitochondrial heme synthesis.
Collapse
Affiliation(s)
- Daniel Hey
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Patricia Ortega-Rodes
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Tingting Fan
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Florian Schnurrer
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Lea Brings
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Boris Hedtke
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| |
Collapse
|
31
|
Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement. PLoS One 2016; 11:e0166338. [PMID: 27861576 PMCID: PMC5115734 DOI: 10.1371/journal.pone.0166338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the “green” dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts (“dinotoms”): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
Collapse
|
32
|
Distinct Prominent Roles for Enzymes of Plasmodium berghei Heme Biosynthesis in Sporozoite and Liver Stage Maturation. Infect Immun 2016; 84:3252-3262. [PMID: 27600503 DOI: 10.1128/iai.00148-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022] Open
Abstract
Malarial parasites have evolved complex regulation of heme supply and disposal to adjust to heme-rich and -deprived host environments. In addition to its own pathway for heme biosynthesis, Plasmodium likely harbors mechanisms for heme scavenging from host erythrocytes. Elaborate compartmentalization of de novo heme synthesis into three subcellular locations, including the vestigial plastid organelle, indicates critical roles in life cycle progression. In this study, we systematically profile the essentiality of heme biosynthesis by targeted gene deletion of enzymes in early steps of this pathway. We show that disruption of endogenous heme biosynthesis leads to a first detectable defect in oocyst maturation and sporogony in the Anopheles vector, whereas blood stage propagation, colonization of mosquito midguts, or initiation of oocyst development occurs indistinguishably from that of wild-type parasites. Although sporozoites are produced by parasites lacking an intact pathway for heme biosynthesis, they are absent from mosquito salivary glands, indicative of a vital role for heme biosynthesis only in sporozoite maturation. Rescue of the first defect in sporogony permitted analysis of potential roles in liver stages. We show that liver stage parasites benefit from but do not strictly depend upon their own aminolevulinic acid synthase and that they can scavenge aminolevulinic acid from the host environment. Together, our experimental genetics analysis of Plasmodium enzymes for heme biosynthesis exemplifies remarkable shifts between the use of endogenous and host resources during life cycle progression.
Collapse
|
33
|
Zanetti A, Ferreira RC, Serrano MG, Takata CSA, Campaner M, Attias M, de Souza W, Teixeira MMG, Camargo EP. Phytomonas (Euglenozoa: Trypanosomatidae): Phylogenetic analyses support infrageneric lineages and a new species transmitted to Solanaceae fruits by a pentatomid hemipteran. Eur J Protistol 2016; 56:232-249. [PMID: 27771468 DOI: 10.1016/j.ejop.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022]
Abstract
The genus Phytomonas includes trypanosomatids transmitted to the fruits, latex, and phloem of vascular plants by hemipterans. We inferred the phylogenetic relationships of plant and insect isolates assigned to the previously defined genetic groups A-F and H of Phytomonas, particularly those from groups A, C and E comprising flagellates of Solanaceae fruits. Phylogenetic analyses using glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) and Small Subunit rRNA (SSU rRNA) genes strongly supported the monophyly of the genus Phytomonas and its division into seven main infrageneric phylogenetic lineages (Phy clades). Isolates from fruit or latex do not constitute monophyletic assemblages but disperse through more than one lineages. In this study, fruit flagellates were distributed in three clades: PhyA, formed by isolates from Solanaceae and phytophagous hemipterans; PhyC comprising flagellates from four plant families; and PhyE, which contains 15 fruit isolates from seven species of Solanaceae. The flagellates of PhyE are described as Phytomonas dolleti n. sp. according to their positioning in phylogenetic trees, complemented by data about their life cycle, and developmental and morphological characteristics in cultures, fruits of Solanum spp., and salivary glands of the vector, the phytophagous hemipteran Arvelius albopunctatus (Pentatomidae).
Collapse
Affiliation(s)
- Andernice Zanetti
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, Brazil
| | - Robson C Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, Brazil
| | - Myrna G Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Carmen S A Takata
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, Brazil
| | - Marta Campaner
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, Brazil
| | - Marcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Marta M G Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, Brazil.
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, USP, São Paulo, SP, Brazil
| |
Collapse
|
34
|
Maishman L, Obado SO, Alsford S, Bart JM, Chen WM, Ratushny AV, Navarro M, Horn D, Aitchison JD, Chait BT, Rout MP, Field MC. Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res 2016; 44:10554-10570. [PMID: 27625397 PMCID: PMC5159534 DOI: 10.1093/nar/gkw751] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 12/17/2022] Open
Abstract
The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component.
Collapse
Affiliation(s)
- Luke Maishman
- School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - Samson O Obado
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, 18100 Grenada, Spain
| | - Wei-Ming Chen
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA
| | - Alexander V Ratushny
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA.,Institute for Systems Biology, Seattle, WA 98109, USA
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Cientificas, 18100 Grenada, Spain
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - John D Aitchison
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, WA 98109, USA.,Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brian T Chait
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael P Rout
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| |
Collapse
|
35
|
Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. A Narnavirus in the Trypanosomatid Protist Plant Pathogen Phytomonas serpens. GENOME ANNOUNCEMENTS 2016; 4:e00711-16. [PMID: 27469953 PMCID: PMC4966457 DOI: 10.1128/genomea.00711-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022]
Abstract
We describe here a new RNA virus (PserNV1) from the plant protist parasite Phytomonas serpens (family Trypanosomatidae, Kinetoplastida, supergroup Excavata). The properties of PserNV1 permit assignment to the genus Narnavirus (Narnaviridae), the first reported from a host other than fungi or oomycetes.
Collapse
Affiliation(s)
- Natalia S Akopyants
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah E Dobson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julius Lukeš
- Biology Centre and Faculty of Sciences, Institute of Parasitology, University of South Bohemia, České Budějovice, Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Stubenhaus BM, Dustin JP, Neverett ER, Beaudry MS, Nadeau LE, Burk-McCoy E, He X, Pearson BJ, Pellettieri J. Light-induced depigmentation in planarians models the pathophysiology of acute porphyrias. eLife 2016; 5. [PMID: 27240733 PMCID: PMC4887210 DOI: 10.7554/elife.14175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022] Open
Abstract
Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias – decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis. DOI:http://dx.doi.org/10.7554/eLife.14175.001 Porphyrias are rare diseases that involve ring-shaped molecules called porphyrins accumulating in various parts of the body. Porphyrins are produced as part of the normal process that makes an important molecule called heme, which is required to transport oxygen. However, high levels of porphyrins can be toxic. For example, porphyrins deposited in the skin can cause swelling and blistering when the skin is exposed to bright light. Other disease symptoms include neurological issues ranging from anxiety and confusion to seizures or paralysis. It has been speculated that porphyrias may have affected several historical figures, including the artist Vincent van Gogh. In addition to their role in heme production, porphyrins also have other roles. For example, they are used as pigments in the wing feathers of some owls. Researchers are trying to understand more about how organisms regulate porphyrin production so that it might be possible to develop more effective treatments for porphyria in humans. Here, Stubenhaus et al. studied how a flatworm called Schmidtea mediterranea makes porphyrins. A group of undergraduate students noticed that these animals – which are normally brown in color – turned white when they were exposed to sunlight for several days. Stubenhaus et al. found that S. mediterranea makes porphyrins in the pigment cells of its skin using the same genes that make porphyrins in humans. Together with other molecules called ommochromes, the porphyrins give rise to the normal color of this flatworm. However, when the animals are exposed to intense light for extended periods of time, which is unlikely to occur in the wild, porphyrin production leads to loss of the pigment cells. The experiments also show that starvation increases the rate of pigment cell loss in light-exposed flatworms, which mirrors the worsening of disease symptoms some porphyria patients experience when they diet or fast. Stubenhaus et al. propose that flatworms are useful models in which to study the molecular processes that are responsible for porphyrias in humans. Further research is required to determine the exact chemical structure of the porphyrin and ommochrome molecules produced in different flatworm species. Stubenhaus et al. also plan to use flatworms to screen for drugs that could potentially be developed into new treatments for porphyria. DOI:http://dx.doi.org/10.7554/eLife.14175.002
Collapse
Affiliation(s)
| | - John P Dustin
- Department of Biology, Keene State College, Keene, United States
| | - Emily R Neverett
- Department of Biology, Keene State College, Keene, United States
| | - Megan S Beaudry
- Department of Biology, Keene State College, Keene, United States
| | - Leanna E Nadeau
- Department of Biology, Keene State College, Keene, United States
| | - Ethan Burk-McCoy
- Department of Biology, Keene State College, Keene, United States
| | - Xinwen He
- The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bret J Pearson
- The Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| | | |
Collapse
|
37
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
38
|
Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell 2016; 161:858-67. [PMID: 25957689 DOI: 10.1016/j.cell.2015.04.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrion maintains and regulates its proteome with chaperones primarily inherited from its bacterial endosymbiont ancestor. Among these chaperones is the AAA+ unfoldase ClpX, an important regulator of prokaryotic physiology with poorly defined function in the eukaryotic mitochondrion. We observed phenotypic similarity in S. cerevisiae genetic interaction data between mitochondrial ClpX (mtClpX) and genes contributing to heme biosynthesis, an essential mitochondrial function. Metabolomic analysis revealed that 5-aminolevulinic acid (ALA), the first heme precursor, is 5-fold reduced in yeast lacking mtClpX activity and that total heme is reduced by half. mtClpX directly stimulates ALA synthase in vitro by catalyzing incorporation of its cofactor, pyridoxal phosphate. This activity is conserved in mammalian homologs; additionally, mtClpX depletion impairs vertebrate erythropoiesis, which requires massive upregulation of heme biosynthesis to supply hemoglobin. mtClpX, therefore, is a widely conserved stimulator of an essential biosynthetic pathway and uses a previously unrecognized mechanism for AAA+ unfoldases.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana S Branco
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Hildick-Smith
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
40
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
41
|
Alkhaldi AAM, Martinek J, Panicucci B, Dardonville C, Zíková A, de Koning HP. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 6:23-34. [PMID: 27054061 PMCID: PMC4805778 DOI: 10.1016/j.ijpddr.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
Lipophilic bisphosphonium salts are among the most promising antiprotozoal leads currently under investigation. As part of their preclinical evaluation we here report on their mode of action against African trypanosomes, the etiological agents of sleeping sickness. The bisphosphonium compounds CD38 and AHI-9 exhibited rapid inhibition of Trypanosoma brucei growth, apparently the result of cell cycle arrest that blocked the replication of mitochondrial DNA, contained in the kinetoplast, thereby preventing the initiation of S-phase. Incubation with either compound led to a rapid reduction in mitochondrial membrane potential, and ATP levels decreased by approximately 50% within 1 h. Between 4 and 8 h, cellular calcium levels increased, consistent with release from the depolarized mitochondria. Within the mitochondria, the Succinate Dehydrogenase complex (SDH) was investigated as a target for bisphosphonium salts, but while its subunit 1 (SDH1) was present at low levels in the bloodstream form trypanosomes, the assembled complex was hardly detectable. RNAi knockdown of the SDH1 subunit produced no growth phenotype, either in bloodstream or in the procyclic (insect) forms and we conclude that in trypanosomes SDH is not the target for bisphosphonium salts. Instead, the compounds inhibited ATP production in intact mitochondria, as well as the purified F1 ATPase, to a level that was similar to 1 mM azide. Co-incubation with azide and bisphosphonium compounds did not inhibit ATPase activity more than either product alone. The results show that, in T. brucei, bisphosphonium compounds do not principally act on succinate dehydrogenase but on the mitochondrial FoF1 ATPase. Bisphosphonium salts display highly promising antiprotozoal activity. It has been reported that, in Leishmania, they act on the mitochondrial SDH complex. We show that in Trypanosoma brucei SDH is not essential and not the drug target. Instead, we present strong evidence that the F1F0 ATPase is the target.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jan Martinek
- Institute of Parasitology, Biology Centre & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alena Zíková
- Institute of Parasitology, Biology Centre & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
42
|
Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. Biochim Biophys Acta Gen Subj 2015; 1860:363-70. [PMID: 26523873 DOI: 10.1016/j.bbagen.2015.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Every eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes. SCOPE OF REVIEW This review covers what is known about processes associated with iron-sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host-parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites. MAJOR CONCLUSIONS The processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron-sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites. GENERAL SIGNIFICANCE As early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron-sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.
Collapse
Affiliation(s)
- Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
43
|
Horáková E, Changmai P, Paris Z, Salmon D, Lukeš J. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion ofTrypanosoma brucei. FEBS J 2015; 282:4157-75. [DOI: 10.1111/febs.13411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eva Horáková
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Piya Changmai
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
| | - Zdeněk Paris
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis; Centro de Ciências e da Saude; Federal University of Rio de Janeiro; Brazil
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) Czech Republic
- Faculty of Sciences; University of South Bohemia; České Budějovice (Budweis) Czech Republic
- Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
44
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
45
|
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 2015; 96:55-67. [PMID: 25557487 DOI: 10.1111/mmi.12920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 01/19/2023]
Abstract
Trypanosomatids are a very diverse group composed of monoxenous and dixenous parasites belonging to the excavate class Kinetoplastea. Here we studied the respiration of five monoxenous species (Blechomonas ayalai, Herpetomonas muscarum, H. samuelpessoai, Leptomonas pyrrhocoris and Sergeia podlipaevi) introduced into culture, each representing a novel yet globally distributed and/or species-rich clade, and compare them with well-studied flagellates Trypanosoma brucei, Phytomonas serpens, Crithidia fasciculata and Leishmania tarentolae. Differences in structure and activities of respiratory chain complexes, respiration and other biochemical parameters recorded under laboratory conditions reveal their substantial diversity, likely a reflection of different host environments. Phylogenetic relationships of the analysed trypanosomatids do not correlate with their biochemical parameters, with the differences within clades by far exceeding those among clades. As the S. podlipaevi canonical respiratory chain complexes have very low activities, we believe that its mitochondrion is utilised for purposes other than oxidative phosphorylation. Hence, the single reticulated mitochondrion of diverse trypanosomatids seems to retain multipotency, with the capacity to activate its individual components based on the host environment.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Over 100 years after trypanosomatids were first discovered in plant tissues, Phytomonas parasites have now been isolated across the globe from members of 24 different plant families. Most identified species have not been associated with any plant pathology and to date only two species are definitively known to cause plant disease. These diseases (wilt of palm and coffee phloem necrosis) are problematic in areas of South America where they threaten the economies of developing countries. In contrast to their mammalian infective relatives, our knowledge of the biology of Phytomonas parasites and how they interact with their plant hosts is limited. This review draws together a century of research into plant trypanosomatids, from the first isolations and experimental infections to the recent publication of the first Phytomonas genomes. The availability of genomic data for these plant parasites opens a new avenue for comparative investigations into trypanosomatid biology and provides fresh insight into how this important group of parasites have adapted to survive in a spectrum of hosts from crocodiles to coconuts.
Collapse
Affiliation(s)
- Eleanor Jaskowska
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire Butler
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Affiliation(s)
- Paul A. Sigala
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| |
Collapse
|
48
|
Brown RWB, Collingridge PW, Gull K, Rigden DJ, Ginger ML. Evidence for loss of a partial flagellar glycolytic pathway during trypanosomatid evolution. PLoS One 2014; 9:e103026. [PMID: 25050549 PMCID: PMC4106842 DOI: 10.1371/journal.pone.0103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma brucei flagellar proteins resembling glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK): we show the latter associates with the axoneme and the former is a novel paraflagellar rod component. The paraflagellar rod is an essential extra-axonemal structure in trypanosomes and related protists, providing a platform into which metabolic activities can be built. Yet, bioinformatics interrogation and structural modelling indicate neither the trypanosome PGK-like nor the GAPDH-like protein is catalytically active. Orthologs are present in a free-living ancestor of the trypanosomatids, Bodo saltans: the PGK-like protein from B. saltans also lacks key catalytic residues, but its GAPDH-like protein is predicted to be catalytically competent. We discuss the likelihood that the trypanosome GAPDH-like and PGK-like proteins constitute molecular evidence for evolutionary loss of a flagellar glycolytic pathway, either as a consequence of niche adaptation or the re-localization of glycolytic enzymes to peroxisomes and the extensive changes to glycolytic flux regulation that accompanied this re-localization. Evidence indicating loss of localized ATP provision via glycolytic enzymes therefore provides a novel contribution to an emerging theme of hidden diversity with respect to compartmentalization of the ubiquitous glycolytic pathway in eukaryotes. A possibility that trypanosome GAPDH-like protein additionally represents a degenerate example of a moonlighting protein is also discussed.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michael L. Ginger
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui MA, Hammarton TC, Field MC, Da Silva C, Couloux A, Poulain J, Katinka M, Jabbari K, Aury JM, Campbell DA, Cintron R, Dickens NJ, Docampo R, Sturm NR, Koumandou VL, Fabre S, Flegontov P, Lukeš J, Michaeli S, Mottram JC, Szöőr B, Zilberstein D, Bringaud F, Wincker P, Dollet M. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet 2014; 10:e1004007. [PMID: 24516393 PMCID: PMC3916237 DOI: 10.1371/journal.pgen.1004007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease. Some plant trypanosomes, single-celled organisms living in phloem sap, are responsible for important palm diseases, inducing frequent expensive and toxic insecticide treatments against their insect vectors. Other trypanosomes multiply in latex tubes without detriment to their host. Despite the wide range of behaviors and impacts, these trypanosomes have been rather unceremoniously lumped into a single genus: Phytomonas. A battery of molecular probes has been used for their characterization but no clear phylogeny or classification has been established. We have sequenced the genomes of a pathogenic phloem-specific Phytomonas from a diseased South American coconut palm and a latex-specific isolate collected from an apparently healthy wild euphorb in the south of France. Upon comparison with each other and with human pathogenic trypanosomes, both Phytomonas revealed distinctive compact genomes, consisting essentially of single-copy genes, with the vast majority of genes shared by both isolates irrespective of their effect on the host. A strong cohort of enzymes in the sugar metabolism pathways was consistent with the nutritional environments found in plants. The genetic nuances may reveal the basis for the behavioral differences between these two unique plant parasites, and indicate the direction of our future studies in search of effective treatment of the crop disease parasites.
Collapse
Affiliation(s)
- Betina M. Porcel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
- * E-mail: (BMP); (MD)
| | - France Denoeud
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Fred Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Mohammed-Amine Madoui
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Tansy C. Hammarton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Arnaud Couloux
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Michael Katinka
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Kamel Jabbari
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - David A. Campbell
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Roxana Cintron
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicholas J. Dickens
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Sturm
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | | | - Sandrine Fabre
- CIRAD, TA A-98/F, Campus International de Baillarguet, Montpellier, France
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Shulamit Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Balázs Szöőr
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dan Zilberstein
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, Université Bordeaux Segalen, CNRS UMR-5536, Bordeaux, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
- Université d'Evry, UMR 8030, Evry, France
- Centre National de Recherche Scientifique (CNRS), UMR 8030, Evry, France
| | - Michel Dollet
- CIRAD, TA A-98/F, Campus International de Baillarguet, Montpellier, France
- * E-mail: (BMP); (MD)
| |
Collapse
|
50
|
Verner Z, Čermáková P, Škodová I, Kováčová B, Lukeš J, Horváth A. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Mol Biochem Parasitol 2014; 193:55-65. [DOI: 10.1016/j.molbiopara.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|